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Recently the idea of using generalized Procrustes analysis for aligning sets of molecules was

introduced using standard algorithms. In this paper it is shown that, by tailoring the algorithm to

this specific problem, a great gain in computational speed and memory efficiency can be obtained,

but even more importantly, by using rotations without reflection, changes in chirality of molecules

can be prevented, which was not previously possible. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the tasks in three-dimensional quantitative structure–

activity relationship (3D-QSAR) analyses of structure–acti-

vity data is to optimally align several compounds in data sets.

In a previous paper, Kroonenberg et al. [1] proposed to base

this alignment process on generalized Procrustes analysis

(GPA). Their approach is a geometric one, as the proposed

alignment was based on the relative positions of common

atoms in three dimensions, and it resulted in a consensus align-

ment that used all molecules in the data set and avoided the

bias introduced in the pairwise alignment strategy which is

commonly used (for a review see Reference [2]). In their

paper the authors provide the rationale for this strategy and

discuss in detail the chemical background to the alignment

problem.

Generalized Procrustes analysis (see Reference [3] for an

overview), named after the innkeeper in Greek mythology

who shaped the torsos of his guests in various ways so as to

give them an optimal fit to their beds, is often used to align

configurations from different analyses to assess them with

respect to each other. The technique is frequently used in the

social and behavioral sciences, but has seen even more use in

sensory perception [4]. Procrustes analysis has been used in

QSAR studies to compare different sets of properties of

diverse compounds in a similarity study [5], and the techni-

que has also been used in X-ray crystallography to align two

molecules in a pairwise manner [6]. Apart from the work of

Kroonenberg et al. [1], GPA has not been used for geometric

alignment of sets of molecules, but independently Robert

and Carbó-Dorca [6] hinted that GPA might be useful for

such alignments.

For the application of GPA to the general alignment pro-

blem, each molecule is represented by a matrix in which the

rows are the atoms, with mostly a different number of them

for each molecule, and the columns are their co-ordinates in

three-dimensional space. Commandeur [7] developed a vari-

ant of GPA that will handle differing numbers of rows in

different samples. This feature makes it possible to use the

technique for aligning molecules that have some common

atoms and some non-common or unique ones, i.e. for partial

alignment (see also Reference [8]). Given that a compound

is rigid, aligning on common atoms automatically orients the

geometric arrangements of the other atoms of the molecules

so that they can be assessed with respect to each other and to

atoms in other molecules.

To realize an alignment of the molecules in a study, at least

three common atoms have to be chosen for the alignment

rule. Furthermore, it has to be decided whether it is desirable

to align (1) on a limited number of atoms or (2) on all atoms

that are common to all molecules or (3) on all atoms that are

common to all molecules as well as on those atoms that are

common to two or more but not all molecules. When align-

ing on a limited number of atoms, their choice is of crucial

importance and should be determined on chemical grounds.

This type of choice is not considered in the present paper.

1.1. Chirality
When aligning molecules, there is a potential problem in con-

serving their chirality, where chirality refers to the ‘handed-

ness’ of molecules and is related to the order in which the

bonds are arranged around atoms. Even though two mole-

cules may fit perfectly onto each other after reflection, such
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reflections are not allowed, because the absolute stereochem-

istry of molecules must be maintained. Receptors are chiral

and thus stereoisomers can have different biological proper-

ties. Therefore, either a proper selection of the atoms on

which the molecules are to be aligned has to be made such

that reflections do not occur, or the algorithm which opti-

mally aligns the molecules should not permit the reflections

themselves. In this respect, two situations are relevant when

aligning molecules. The first is the situation where chiral

molecules are included in the set to be aligned; the second is

where the molecules in the set are non-chiral and reflections

should be avoided to prevent them becoming chiral. In many

cases a solution could be to include a judicious selection of

atoms in the alignment set so that reflection cannot occur. Un-

fortunately, in very simple molecules this might not always

be possible. For example, for the CHFClBr molecules in

Figure 1 the only atoms available for alignment are the H

and C atoms, because including any of the other atoms will

destroy the stereochemistry of one of the molecules.

In more complex molecules where non-chiral atoms define

the three-dimensional structure, a proper selection of atoms

may prevent reflections. An example of a ‘bad’ choice for the

standard algorithm is the phenyl ring in cocaine molecules,

because the ring fits perfectly in two dimensions and there-

fore contains no information on the third dimension, so that

rotations with reflections will not rule out the appearance of

chiral molecules, as is demonstrated in Figure 2.

As shown in Reference [1], alignment can be done by using

publicly available software; however, as mentioned in that

paper, the standard GPA algorithms permit undesirable re-

flections of configurations. Moreover, as is explained in the

Appendix of Reference [1], standard algorithms are unneces-

sarily computationally inefficient and are rather wasteful in

their memory usage. The dedicated algorithm proposed in

the present paper solves the reflection and the memory issue

and also avoids several computational inefficiencies.

2. GENERALIZED PROCRUSTES ANALYSIS

In GPA the match between n configurations Xj, each of order

p�m, is investigated under all relative Euclidean distance

preserving transformations. In the present case the Xj contain

the geometric configuration of molecule j described by the

co-ordinates of its atoms (rows) on three co-ordinate axes

(columns). Relative Euclidean distance-preserving transfor-

mations are orthonormal transformations (i.e. rotations and

reflections), translations and isotropic scaling factors. Since

consensus molecular alignment requires absolute Euclidean

distance preserving transformations, isotropic scaling factors

are undesirable and will therefore not be considered in the

present paper.

In the case of consensus molecular alignment, not all atoms

are common to all molecules. Formally, this can be ‘trans-

lated’ into a matching problem where some rows of the con-

figurations are missing and others are not (see Reference [1]

for details). Gower [9] first solved the problem of matching

n configurations subject to relative Euclidean distance-

preserving transformations and coined the term generalized

Procrustes analysis. Ten Berge [10] improved Gower’s method

for the determination of isotropic scaling factors and ortho-

normal transformations. Commandeur [7] showed how to

handle the situation of missing rows in GPA, of which a con-

densed overview is provided first.

2.1. Generalized Procrustes analysis with
missing rows
The dimensionality (m) in molecular consensus alignment is

by definition always equal to three, but in our theoretical

exposition we will describe the m-dimensional case for grea-

ter generality.

Let Mj be a diagonal matrix of order p� p with ones on the

diagonal if the corresponding rows in Xj are not missing, and

with zeros on the diagonal for rows which are missing. Also,

let 1 be an appropriately sized column vector consisting of

ones, Rj be an unknown orthonormal (rotation) matrix of order

m�m, and uj be an unknown translation vector of order

m� 1. Let the n translation vectors uj be collected in the nm�
1 partitioned column vector u, and the orthonormal matrices

Rj in the nm�m partitioned matrix R, then the least squares

criterion or loss function for evaluating the match between n

given—and possibly incomplete—configurations Xj in GPA

is defined as

fðu;R;ZÞ ¼
Xn

j¼1

tr½ðXj � 1uT
j ÞRj � Z�T

�Mj½ðXj � 1uT
j ÞRj � Z� ð1Þ

In (1), Z is an unknown group or centroid configuration of

order p�m.

As discussed in Reference [7] for fixed R and Z, and keep-

ing all but the jth translation vector uj fixed, the conditional

Figure 1. Left versionandright versionofCHFClBrmolecule.

Figure 2. Original configurations (left). Configurations after a Procrustes analysis in which the
commonatomsconsistedof thebasesof the twopyramids (right).Distancesareunaffected.
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global minimum of (1) is obtained for

uj ¼
ðXj � ZRT

j Þ
TMj1

1TMj1
ð2Þ

Substituting all the uj defined in (2) into (1) gives

fðR;ZÞ ¼
Xn

j¼1

trðXjRj � ZÞTCjðXjRj � ZÞ ð3Þ

where the

Cj ¼ Mj I�
11TMj

1TMj1

 !
ð4Þ

are symmetric and idempotent centering matrices, leaving (1)

to be minimized over only two sets of unknowns: R and Z.

For fixed R, Commandeur [7] showed that the conditional

global minimum of (3) with respect to Z is attained for

Z ¼ C�
Xn

j¼1

CjXjRj ð5Þ

where

C ¼
Xn

j¼1

Cj ð6Þ

and C� of order p� p is the Moore–Penrose inverse of the

sum of the centering matrices Cj in (4). The reason why a

generalized inverse must be determined in order to solve for

unknown Z is that

C1 ¼
Xn

j¼1

Mj I�
11TMj

1TMj1

 !
1

¼
Xn

j¼1

Mj1�
Xn

j¼1

Mj1 ¼ 0 ð7Þ

showing that C, the sum of the centering matrices Cj, has no

proper inverse. In Section 4 we will have more to say about

this issue.

Substitution of (5) into (3) yields a loss function that no

longer contains matrix Z,

fðRÞ ¼
Xn

j¼1

trRT
j X

T
j CjXjRj

� tr
Xn

j¼1

CjXjRj

0
@

1
A

T

C�
Xn

j¼1

CjXjRj

0
@

1
A ð8Þ

leaving the original loss function (1) to be minimized over

only one set of unknowns.

The minimization of (8) is equivalent to the maximi-

zation of

gðRÞ ¼ tr
Xn

j¼1

CjXjRj

0
@

1
A

T

C�
Xn

j¼1

CjXjRj

0
@

1
A ð9Þ

under the constraint that the n square matrices Rj are ortho-

normal, i.e.

RT
j Rj ¼ RjR

T
j ¼ Im for j ¼ 1; . . . ; n ð10Þ

Considering only one particular Rj, it can be verified that the

maximization of (9) is equivalent to the maximization of

hðRjÞ ¼ trRT
j Bj ð11Þ

with

Bj ¼ XT
j CjC

�
X
i6¼j

CiXiRi ð12Þ

Function (11) is globally maximized subject to (10) by

Rj ¼ PQT ð13Þ

where P and Q (both of order m�m) hold the left and right

singular vectors of the singular value decomposition

Bj ¼ PUQT ð14Þ

For a proof we refer to References [10,11].

Since (9) cannot be solved for the n Rj simultaneously, an

alternating least squares algorithm [12] is used where (9) is

consecutively being maximized for j¼ 1 , . . . , n and R is up-

dated after each step. This process is repeated until n steps

jointly fail to raise (9) above some threshold value. It can be

shown that (9) will increase at each step until the algorithm

convergences, albeit not necessarily to the global maximum

of (9) (see Reference [10] for details).

At convergence the centroid configuration Z can be calcu-

lated from (5) and the translation vectors can then be obtain-

ed from (2). Because the whole GPA solution is unique up to

a simultaneous orthonormal transformation of all optimally

transformed configurations, the whole solution is gener-

ally rotated to the principal components of Z. If K denotes

the m�m matrix of eigenvectors from the eigenvalue–

eigenvector decomposition

ZTCZ ¼ KKKT ð15Þ

then the principal component orientation is achieved by

computing ZK and ðXj � 1uT
j ÞRjK.

As discussed in Reference [7], the total sum of squares of

the n configurations about the origin can be partitioned into

two parts: Xn

j¼1

trXT
j CjXj ¼ trZTCZþ fðu;R;ZÞ ð16Þ

The first part, trZTCZ, is the proportion of the total sum of

squares accounted for by the GPA model, while the second

part, f(u, R, Z), is a residual sum of squares (SS). This means

that the term

SSfit ¼
trZTCZPn

j¼1 trXT
j CjXj

ð17Þ

satisfies 04 SSfit4 1 and can be interpreted as the propor-

tion of explained variation in the GPA solution.

2.2. The GPA algorithm and molecular
alignment
In the context of consensus molecular alignment there are

two problems with the algorithm outlined above. Firstly, the

solution (13) incorporates both rotations and reflections, with

the possibility of the undesirable effect of transforming molec-

ules into their chiral counterparts in order to obtain an opti-

mal match. Therefore in Section 3 a procedure is discussed

for obtaining the optimum of (11) under the additional res-

triction that Rj is a pure rotation matrix.

Secondly, as discussed in Reference [1], each of the n molec-

ules Xj may contain many unique atoms, so that the number
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of rows of the configurations (p) can easily become very large

(see also Section 5.2). Amongst others, this has the drawback

that the computation of the generalized inverse of the p� p

matrix C in (6)—even though it has only to be calculated

once—can become very time-consuming. In Section 4 we

show how this problem can be handled by restricting the ana-

lysis to the non-unique atoms of the molecules only.

3. THE PURE ROTATION OPTIMIZATION
PROCEDURE

Letting |A| denote the determinant of a square matrix A, it

follows from (10) that

jRjR
T
j j ¼ jImj ¼ 1 ð18Þ

the determinant of Im being the product of its eigenvalues.

Because Rj is a square matrix and, moreover,

jRjR
T
j j ¼ jRjj2 ð19Þ

it follows from (18) and (19) that

jRjj ¼ �1 ð20Þ

If the determinant of Rj equals 1, the orthonormal matrix is a

pure rotation matrix; if its determinant equals �1, then the

orthonormal matrix also involves a reflection. In order to

avoid a reflection, (11) must be maximized subject to two

restrictions:

RT
j Rj ¼ RjR

T
j ¼ Im ð21Þ

and

jRjj ¼ 1 ð22Þ

Together, conditions (21) and (22) guarantee that Rj is a pure

rotation matrix and therefore that no stereoisomers of the

original molecules can be obtained.

The solution to the maximization of (11) subject to (21) and

(22) is due to Gower [13]. Let

R̂Rj ¼ PQT ð23Þ

where P and Q (both of order m�m) hold the left and right

singular vectors from the singular value decomposition de-

fined in (14). When (23) satisfies (22), we are done. On the

other hand, when jR̂Rjj ¼ �1, that column of either matrix P

or matrix Q (which one of the two is immaterial) must be

reflected which corresponds with the smallest singular value

on the diagonal of U in (14).

4. THE DEDICATED GPA ALGORITHM

Since unique atoms always fit perfectly in the GPA solution,

they contribute nothing whatsoever to the value of loss func-

tion (1) and therefore do not need to enter the GPA itself.

4.1. GPA on the set of non-unique atoms
The computational effort required in a GPA of molecules

each containing many unique atoms can be considerably

reduced by restricting the analysis to the non-unique atoms

of the molecules only. Formally, this is achieved by selecting

those rows of the n molecules corresponding to the elements

of the p� 1 vector

w ¼
Xn

j¼1

Mj1 ð24Þ

(where matrices Mj are defined in (1)) which satisfy

wi 6¼ 1; i ¼ 1; . . . ; p ð25Þ

We will denote the number of elements of (24) satisfying the

latter inequality with s, so that s is the number of non-unique

atoms and t¼ p� s is the total number of unique atoms.

Also, let M�
j and X�

j of order s� s and s�m denote the

submatrices of Mj and Xj corresponding to the elements of

(24) satisfying (25) respectively. Then (4) and (6) become

C�
j ¼ M�

j I�
11TM�

j

1TM�
j 1

 !
ð26Þ

and

C� ¼
Xn

j¼1

C�
j ð27Þ

respectively and the computation of the Moore–Penrose

inverse of the p� p matrix C in (6) is reduced to a potentially

much smaller problem of order s� s.

Moreover, in the special situation where atoms are either

common to all molecules or unique to one molecule (i.e. the

situation where vector w in (24) consists of s elements equal

to m, and t elements equal to 1), the analysis can even be

restricted to n configurations X�
j containing no missing rows

at all. In that case the computation of the Moore–Penrose

inverse of (27) becomes especially easy:

C�� ¼
Xn

j¼1

C�
j

0
@

1
A
�

¼ ðnJÞ� ¼ 1

n
J ð28Þ

where

J ¼ I� 11T

1T1
ð29Þ

is the complete centering matrix of order s� s, so that in this

situation the computation of an inverse is not necessary.

The last equality in (28) holds true because J in (29) is a sym-

metric and idempotent matrix satisfying JJ¼ J (see e.g.

Reference [14], pp. 32–33).

For given configurations X�
j of order s�m we now have to

maximize

gðRÞ ¼ tr
Xn

j¼1

C�
j X

�
j Rj

0
@

1
A

T

C��
Xn

j¼1

C�
j X

�
j Rj

0
@

1
A ð30Þ

subject to (21) and (22). This can be achieved by applying the pro-

cedures presented in Sections 2 and 3 to (30). At convergence of

the algorithm the centroid configuration can be computed as

Z� ¼ C��
Xn

j¼1

C�
j X

�
j Rj ð31Þ

and

u�
j ¼

ðX�
j � Z�RT

j Þ
TM�

j 1

1TM�
j 1

ð32Þ

then yields the translation vectors.
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4.2. Adapting the unique atoms to the GPA
solution for the non-unique atoms
After the GPA of these reduced configurations we need to

reinstate the unique atoms of the molecules in the obtained

solution. Letting K� denote the m�m matrix of eigenvectors

from the eigenvalue–eigenvector decomposition

Z�TC�Z� ¼ K�K�K�T ð33Þ

where Z� is now of order s�m, this is achieved by computing

Yj ¼ ðXj � 1u�T
j ÞRjK

� for j ¼ 1; . . . ; n ð34Þ

for the p�m matrices Xj containing the co-ordinates of the

complete molecules (including their unique atoms). Finally,

using the full p� p matrices Mj defined in (1),

Zþ ¼
Xn

j¼1

Mj

0
@

1
A

�1Xn

j¼1

MjYj ð35Þ

yields the co-ordinates of the complete centroid configura-

tion of order p�m. It may be noted that the proportion of

explained variation calculated as

trZþTCZþPn
j¼1 trXT

j CjXj

ð36Þ

is identical to the proportion computed in (17).

5. RESULTS

We will consider three types of improvements of the dedi-

cated algorithm (reflection-free rotation, gain in execution

speed, and reduction of memory usage) in turn. To illustrate

them, the same set of cocaine derivatives was used as dis-

cussed by Kroonenberg et al. [1] (see their Table 1). This set

consisted of 13 cocaine molecules each of which has a tropane

and a phenyl ring (see Figure 3), and compared with the

other molecules, cocainehin and sulphurhin have a number

of additional atoms between the rings. The 13 molecules had

43, 40, 42, 40, 43, 44, 47, 47, 47, 47, 42, 45 and 41 atoms

respectively, or a total of 568 atoms. All computations were

carried out with Fortran90 programs compiled under

Windows, which are available from the second author (see

also his website: http://three-mode.leidenuniv.nl). A user-

friendly interface for running the complete analysis is under

construction.

5.1. Reflection-free rotation
The set of atoms proposed for the alignment of the cocaine

molecules consisted of the s¼ 6 carbon atoms of the phenyl

ring (see Figure 3). Because a phenyl ring is rigid, the co-

ordinates after alignment should be very similar, and the six

carbon atoms were chosen because these atoms should main-

tain the nearly identical geometry in all molecules if aligned

properly. Thus misalignments should be easily identified if

the atoms of the phenyl ring in all molecules were not nearly

perfectly superimposed onto each other. The alignment was

also chosen because it contained a plane of symmetry, which

would make it easier to identify problems with the transla-

tion and/or rotations of atoms that are not used for alignment.

When analyzed with the standard GPA algorithm, the

alignment procedure resulted in the alignment given in Plate

1A, while the analysis with the dedicated algorithm yielded

the alignment given in Plates 1B and 1C. In Plate 1A, two of

the molecules have been transformed into their chiral vari-

ants, as is evident from the ester group sticking out at the

top, while with the dedicated algorithm the chirality of all

molecules has been preserved. What is also evident is that the

tropane rings and ester groups of two molecules (cocainehin

and sulphurhin) are not well aligned, and this is due to the

additional atoms between the tropane and the phenyl rings.

5.2. Gain in execution speed
Let r denote the total number of atoms in the molecules

and s the number of atoms used for alignment (see also

Section 4.1). If the s atoms are common to all n molecules,

then the number of rows of the configurations required

in the standard GPA algorithm equals p¼ r� s(n�1). In

the example discussed in Section 5.1, this amounts to

p¼ 568� (6)(12)¼ 496 rows for each configuration. Thus

each configuration has s ¼ 6 rows of common atoms plus

490 rows of the unique atoms of all molecules together.

Comparing the standard and the dedicated GPA algo-

rithm, the gain in execution speed with the dedicated algo-

rithm is primarily due to elimination of the inversion of the

huge summed centering matrix C of order 496� 496 defined

in (6). In the dedicated algorithm there are only six common

atoms, so that the summed centering matrix C* has size

6� 6, and in this case no explicit inversion is necessary be-

cause all molecules contain all six alignment atoms (see (28)).

The execution speed of the standard algorithm was 27.30 s

for the initialization, including the inversion of the summed

centering matrix, and 2.85 s for the main algorithm, while

the dedicated algorithm needed less than 0.01 s for the ini-

tialization and 0.05 s for the main iterations.

As a second example, for a comparable set of 20 amino

acids the execution speed of the standard algorithm was

6.00 s for the initialization and 1.43 s for the main algorithm,

while the dedicated algorithm required less than 0.001 s for

both initialization and main iterations.

5.3. Gain in memory usage
Apart from an increase in computational speed by only

using the common atoms for the Procrustes analysis proper,

further gains can be made, especially in memory usage, by

storing the data in a more efficient way. In particular, it was

possible to reduce the memory requirement by storing only

the molecules themselves, rather than the configurations

with 496 rows of three co-ordinates. For the set of 13 cocaine

derivatives with 496 rows per configuration there were a

total of 496� 13¼ 6448 rows of three co-ordinates each,

versus only 568 in the improved set-up.

Figure 3. Alignment on the carbonatomsof thephenyl ringof co-
cainemolecules.
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For the 20 amino acids the standard algorithm required

working with 20� 290¼ 5800 rows, while the new set-up

only required 290 of them. These reductions not only have

their effect in pure data storage, but also in the size of the

arrays necessary for the computations.

For the basic memory allocation in the standard algorithm

used on the cocaine molecules, 30 Mb basic storage was

needed, while in the dedicated algorithm we could make

do with 45 kb. The comparable figures for the amino acids

were 15.5 Mb and 44 kb. These huge reductions in memory

usage also made for more efficient computations. With more

and larger molecules the comparative memory requirements

of the standard algorithm will increase even further.

6. DISCUSSION

In this paper we have presented a dedicated generalized

Procrustes algorithm for aligning molecules. Its special fea-

tures are that it does not allow reflections during rotations,

so that the stereochemistry of the molecules is preserved.

Moreover, special measures have been taken in the program

to reduce both execution times and memory usage. Our

examples showed real gains on all accounts.

A matter not discussed in this paper, but crucial to prac-

tical applications of generalized Procrustes analysis for the

alignment of sets of molecules, is the choice of common atoms

for alignment. Even though this issue falls largely outside

the scope of this paper, it may be remarked that, on different

grounds, one can argue in favor of as many or as few atoms

as possible to align on. With a few well-chosen atoms such as

those in the phenyl ring, one can obtain a near perfect fit

for the aligned atoms, and because of that examine in detail

the differences and similarities between the other parts of

the (rigid) molecules. On the other hand, one can get a good

assessment of the overall similarities between the molecules

by choosing, for instance, the phenyl ring, the tropane ring

and the ester group for alignment, with the exception of

cocainehin and sulphurhin for which only the phenyl ring

would be fitted. Thus the purpose of the alignment and the

type of molecules under consideration will determine the

choice of alignment or common atoms.
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Plate 1A. Result ofaligning the13 cocainemoleculeson thephenylrings
when reflections are not blocked.Twomirrored COOH ester groups can
be clearly seen.Thephenylrings fit perfectlyandare seenhereasa line,
because theplaneof thephenylringsisin the lineofsight.

Plate 1B. Resultofalignmentwithoutreflections.Allphenylringsareper-
fectly aligned (as in Plate 1A), and all but two tropane rings and two
COOHestergroups (ofcocainehinandsulphurhin) arealsowellaligned.

Plate 1C. SamesolutionasinPlate1B,butagaintheplaneofthephenylringsisinthelineof
sight.The commonpositionof theestergroupscannowbeseenmore clearly.
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