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Abstract

Symmetric tensors of order larger than two arise more and more often in signal and image
processing and automatic control, because of the recent complementary use of High-Order
Statistics (HOS). However, very few special purpose tools are at disposal for manipulating
such objects in engineering problems. In this paper, the decomposition of a symmetric
tensor into a sum of simpler ones is focused on, and links with the theory of homogeneous
polynomials in several variables (i.e. quantics) are pointed out. This decomposition may be
seen as a formal extension of the Eigen Value Decomposition (EVD), known for symmetric
matrices. By reviewing the state of the art, quite surprising statements are emphasized, that
explain why the problem is much more complicated in the tensor case than in the matrix
case. Very few theoretical results can be applied in practice, even for cubics or quartics,
because proofs are not constructive. Nevertheless in the binary case, we have more freedom
to devise numerical algorithms.

Keywords. Tensors, Polynomials, Diagonalization, EVD, High-Order Statistics, Cumu-
lants.

1 Introduction

In signal processing, mainly second order statistics have been used for a long time. But the po-
tentiality of higher order statistics has clearly emerged during the last decade, and their possible
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role in industrial products is now recognized, with still some distrust however. For the moment,
only statistics of moderate order are seriously considered (putting aside rank statistics). Typi-
cally, statistics of integer order used in signal processing applications would involve essentially
quadrics, cubics, or quartics, but not polynomials of higher degree.

Even if it is clear that HOS such as moments or cumulants should be treated as symmetric
tensors, 1t is much less obvious to know how to do it in practice, preserving fully their properties
(e.g. symmetry, multilinearity). This is the reason why cumulants are used in signal processing
algorithms after contraction or slicing. In particular whether a tensor can be decomposed into
a sum of simpler ones is a relevant question, and surprisingly has received only partial answers
to date. Since tensors and homogeneous polynomials are bijectively associated (cf section 2.2),
this question is addressed thanks to old results borrowed from algebraic geometry.

In fact, if tensors do not seem to have been widely studied as such in the past, beside specific
forms that appear in physics, homogeneous polynomials have. In fact, invariant theory has been
one of the major mathematical research topics in the nineteenth century. Over a long period of
time, researchers as famous as Gauss, Kronecker, Noether, Cayley, Weyl, Hilbert, or Dieudonné,
have contributed to this field. At that time, a homogeneous polynomial of degree d in n variables
was called a n-ary d-ic [27] [23]. For d = 2,3,4,5,6.. the adopted terminology was the quadric,
the cubic, the quartic, the quintic, the sextic... The same terminology will be subsequently
retained.

The goal of this paper is (i) to explain why the optimal use of symmetric tensors is difficult,
(ii) to give a overview of the (unappreciated) state of the art, and (iii) to identify what could be
new directions of investigations, and in particular towards special purpose numerical algorithms.
This work turned out to be very difficult, the literature in the field being very forbidding, perhaps
because algebra and its terminology have evolved, as the reader see himself by looking over
reference [27].

The paper is organized as follows. Notation, statement of the problem, and link with homo-
geneous polynomials are established in section 2. The main course is section 3, which reports
the results most often applicable, before section 4 succintly addresses the rare cases. The last
section concludes with a summary and some perspectives.

2 General

2.1 Tensors

A tensor of dimension n and order d is an object defined in a n-dimensional coordinate system
by a table with d indices, g;, i,,1 < i, < n, that follows a particular transformation formula if
the coordinate system is changed. More precisely, if a linear transform is applied to the space so
that any vector u is changed into a vector U = Au, where A is a n X n invertible matrix, then
the tensor is transformed into:

Giria = Giyig = Y Aivjy-Aiga G, - (1)
J1,--Ja

This property is often referred to as the multilinearity property of tensors. A tensor G is sym-
metric if Gy(5. 1) = Gij x, for any permutation o. Denote IR the set of real numbers. The
set T(n;d) of symmetric tensors of dimension n and order d is a vector space on IR. Tt can be
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checked out that the vector space T (n;d) is of dimension
Dinsd)=( "+, 2)

The set of cumulants of order d of a multichannel real random variable X of dimension n
forms a symmetric tensor of order d and dimension n. The same holds true for moments. For
instance, if the following table is defined:

tij ok = E{X; X; .. Xz},

then this table is symmetric and satisfies the multilinearity property (1). Actually, moments and
cumulants are more than tensors, since they satisfy the multilinearity property even under non
invertible transformations: matrix A defining the transform may be rank deficient or rectangular.
See [15] [17] for more details.

As a consequence, when statistics of order larger than two (HOS) are utilized, the appro-
priate framework 1s no longer linear algebra anymore, but multilinear algebra, and the tables
representing those statistics are in fact tensors, but not matrices.

Of course for simplicity, most algorithms taking advantage of HOS resort only to slices or
contracted forms of those tensors, that can be stored in matrices (see for instance [25] and
references therein). But it should be borne in mind that information is discarded when proceeding
this way, and symmetry 1s broken.

2.2 Homogeneous polynomials

As a first obvious statement, it can be pointed out that there exists a bijective relation between
the space of tensors T'(n;d) and the space of homogeneous polynomials of degree d in n variables,
which will be denoted here F(n;d). Indeed, let G be a tensor of 7 (n;d), then the polynomial

n
P T @) = > Giyigiy Tiy Tiy i, (3)

21,12,..24=1

can be bijectively associated with . In the above expression, it is clear that because of the
symmetry of (G, some terms appear several times. Actually, there is another way of writing
polynomials of F(n;d) by resorting to a standard compact notation [12] [10] [20], widely used in
invariant theory.

Let IN be the set of integers {0,1,2,..}, and J(n) the subset {1,2,..n}. A multi-index of
size n is a vector of n indices, i € IN". By convention, if « € IR" and i € IN", a' denotes
the product [], a*, and (i)! = [], (ix!). The length of a multi-index i is defined as |i| = 3, ix.
Lastly, ¢(7) denotes the multinomial coefficient, namely e(i) = [i|l/(i)!. With these notations,
any homogeneous polynomial of F(n;d) can be written as

p(x) = > y(isp) e(i) ¥ (4)

li|=d

Each coefficient 4(i; p) characterizing polynomial p(-) is associated with one entry of the corre-
sponding symmetric tensor, (5. The exact expression of the mapping f:i€ IN" < j= f(i), j €
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J (n)d is as follows. The k'* component i, of multi-index i represents the number of times index
k appears in j. For example, with d = 3 and n = 4, we would have f(2010) = 113. Even in the
community of engineers using HOS, these two notations are simultaneously used [15].

With these notations, it is also clear that expression (3) can be written in compact form as

px)= > GG)xTD. (5)

jeJ(n)?

Now, as seen in section 2.1, the dimension of 7 (n;d) is D = (”’Zd_l)7 and so is the dimension
of F(n;d). The set of monomials B(n;d) = {x!, |i| = d} is chosen as a basis of F(n;d).

The scalar product between two polynomials of F(n;d) is defined as:

(pa) =" e(i)v(isp) v(i;q), (6)

li|=d

which means in particular that monomials in the basis B are orthogonal and have a squared
norm (x!,x!) = (i)!/d! = 1/¢(i). The projection of any polynomial p(x) onto basis B yields then
its components y(i). Sometimes, the apolar scalar product is used instead, and is defined as d!
times the previous one.

The choice of this Euclidian scalar product has other advantages. Suppose a(-) is a linear
form acting on IR"™, and defined by its n-dimensional vector . Denote (% the polynomial
of F(n;d) obtained by raising the form to the d*® power. Then its scalar product with any
polynomial ¢ of F(n;d) turns out to be, from (6):

(g,017) =" (i) v(isg) o = g(a). (7)

Moreover, if O,.x = a1 3671—|-~ ctay % and a(x) = ay 1+ - - @y ¥, then we have Vp € F(n;d—1):

d{q,a(x) p) = (Fax(q),p),

which i1s another nice invariant property of this inner-product.

During the last century, one objective of invariant theory was to classify polynomials based
on canonical forms, valid up to a change of variables. The methods used at that time were in
some way, quite efficient [27] [23] [19]. Then, came the modern theory of algebraic geometry,
which gave a very theoretical and general setting for this field [9] [18]. Our discussion borrows
results from both frameworks.

2.3 Statement of the problem

It 1s known that symmetric matrices can be diagonalized by a change of coordinates, and that
there are infinitely many ways of doing it; Sylvester’s theorem on inertia states an invariance
property enjoyed by minimal representations. The question is whether this holds true for tensors
of higher order, and in particular of order 3 or 4.

This problem can be rephrased in terms of polynomials. Given a polynomial p of F(n;d),
d > 2, under what conditions, if any, can this polynomial be written as a sum of N d** powers
of linear forms 7 Then several more basic questions can be raised: (i) What is the minimal value
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of N required in general (the generic case, valid for almost every polynomial) 7 (ii) Given p, can
one compute the exact minimal value of N (i.e. the width, as defined in definition 2) 7 (iii) Once
N is determined, how many such decompositions exist ? (iv) Can something be done when N is
imposed 7 (v) How can a decomposition be computed in practice 7 Some answers are attempted
to be given in this paper.

It is pointed out in particular that Sylvester’s theorem for quadratic forms does not extend
easily to higher degrees, and the search for canonical forms is still an open problem for many
values of the pair (n;d). The goal of this paper is to show how large is the difficulty, and to give
an 1dea of the state of the art, as accurately as is possible in a few pages. Other approaches have
been also proposed recently but are not discussed subsequently. In [14] for instance, an extension
of the Singular Value Decomposition to third order tensors is proposed. In [5], a canonical
decomposition of tensors of 7 (n;2k) into n* powers is suggested, based on the assimilation of
tensors to linear operators, whereas in [6] an approximate decomposition is described that always
yields n powers. See also [7] for a discussion of the two latter approaches.

2.4 Application in array processing

Decompositions of quadrics in sums of powers are already used in antenna processing, and related

areas in signal processing. The principle consists of approximating a symmetric matrix (the

covariance of the observations) by another of lower rank, allowing to partition the space into

signal and noise subspaces [2]. Now in order to apply the same principle to higher order tensors,

one would like to approximate a tensor of F(n;d) by another of lower width, with our terminology.
More precisely, the linear statistical model assumed in array processing is of the form:

z(v) = ZAj(I/) si(v) + po(v),

where z(v) are observed random vectors of dimension n, A;(v) are unknown deterministic vec-
tors, s;(v) are random scalar variables, also referred to as “sources”, and pv(v) accounts for
background and measurement noises. Standard identification algorithms exist when the array
is known (that is, every A;(v) belongs to a known manifold A(6,r)), and when the number of
sensors n, is strictly larger than the number of sources, r. This constraint comes from the fact
that only second order statistics are utilized.

Here, it is not assumed that n > r. On the contrary, n and r are allowed to take any value. Of
course, if r 1s too large, identifiability problems will occur. As will be pointed out in section 3.2,
there is in fact an upper bound to r (namely the width of the approximating tensor), depending
on n and on the order d of the statistics to be used. Contrary to [16], the array manifold is not
required, to be able to detect and estimate the sources s;, as well as to identify the source vectors
Aj;. If one desires to perform localization, the array manifold can be used only in a second stage,
and an improved robustness (against calibration errors for instance) is expected, compared to
standard procedures where the array manifold is utilized right from the beginning.

Thus, a cumulants-based approach would not only permit to get rid of Gaussian noise, or to
improve on robustness, but also to identify » > n signal components. However, several problems
need to be fixed before the framework proposed in this paper can be efficiently utilized in array
processing. Potential applications, currently under study in the case where » = n, include channel
identification and equalization, Air traffic control in Radar, Super-resolution in Sonar, Speech
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deconvolution, Texture analysis, Object recognition, or Reactor monitoring. Some of them are
resorting presently to Independent Component Analysis (ICA), a suboptimal decomposition; see
[6] and references therein.

3 Decompositions in the generic case

3.1 Introduction

Denote by IR the field on which we are working. From a practical point of view it will be IR,
but if we need to use geometrical properties (and find all the roots of a polynomial for instance),
it will be'. Let p be a polynomial of F(n;d), and Ly, 1 < k < N, N linear forms such that:

n

p(x) = Z Li(x), Li(x) = a;z;. (8)

Jj=1

The expansion of this sum of powers in the basis of monomials B(n; d) defines a map ® from the
set X = IK™Y of coefficients ag ; onto Y = K P, with D defined as in (2):

P - X =K"N - Y=K"
a—= ((alvi), . (ani)) = (CI(ai,j))

where coefficients ¢r(a; ;) are given by ¢(i), as defined in (4). The image of this polynomial map
contains a dense open subset U of the algebraic manifold (or variety) W (the closure of (X))
in Y (see [24, th6, p. 60]). The complementary of U in ®(X) is then a closed subset defined
by algebraic equations. If the closure ®(X') is whole space ), then the image is dense in Y. In
applications, coefficients are always given with some uncertainty, so that we are interested in
properties that are true only on a (open) dense subset of J. To precise this notion, we introduce
the following definition:

Definition 1 — A property will be true in the generic case, or for generic polynomaials, if it is
true in a dense algebraic open subset of ).

Ezxample. Generic quadratic forms of a vector space of dimension n are sums of n squares.
The case where this is not true corresponds to quadratic forms whose determinant vanishes.
This determinant defines a closed set and its complementary is an open dense subset of the set
of quadratic forms.

Definition 2 — Given a polynomial p of F(n;d), the “width” of p refers to the minimal number
of forms, w(p), necessary to write p as a sum d'* powers of linear forms. The width of a generic
polynomial of F(n;d) is denoted g(n;d).

Thus g(n, d) denotes the minimal value to be given to N so that (8) holds true in the generic
case [20]. Then g(n,d) is obviously smaller than D, by definition. On the other hand, it is
also larger than D/n. In fact the dimension of the image cannot be greater than the number of
parameters in function ® (which is nN). If nN were smaller than D then the image would lie
in an hypersurface and would not be dense. But these bounds are clearly too loose to be really
useful.
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Tt has been shown recently by Reznick [21] that

vpe Fmd), w(p) < ("5477), (©)

which is a much tighter bound. Moreover, this bound holds true when p ranges in the whole
space F(n;d), and not only in a dense subset (i.e. the inequality is valid not only in the generic
case).

There is no general expression that gives the exact value of g(n,d). To be accurate, it is
necessary to study each case separately, and this has been done mostly during the nineteenth
century in the frame of invariant theory. Table 1 summarizes known values of g(n,d). Again,
these values correspond to the generic case, and there are smaller and larger reachable values
(see example in section 4).

Ezample. To show how careful we have to be, consider for instance a generic ternary quartic.
Counting the number of parameters on each side, we would expect that it could be decomposed
into 5 linear forms since 5 x 3 > (), but the correct number of linear forms is 6 (see Clebsh’s
Theorem [10, p 26] and table 1).

3.2 Number of forms required: the generic width

The generic width, ¢g(n, d), is known for some values of degree d and dimension n. The easy case
is when d = 2, since it is dealt with quadratic polynomials (quadrics), and the decomposition
into a sum of n squares is possible, though not unique. This is equivalent to saying that the
rank of a quadratic form is generically n. Another case has already been well studied, namely
the case of binary forms. It is handled by the following theorems.

Theorem 3 (Sylvester) — A generic binary form of odd degree 2m — 1 can be decomposed
into a sum of m powers of linear forms.

For binary forms of even degree d = 2m, there are infinitely many such decompositions in
m+ 1 powers [20, section 5], unless some determinant is null (as explained in the theorem below),
and a decomposition in m powers is in general impossible. Unicity can be insured by various
constraints. The other cases (non-generic) are treated by the following theorem:

Theorem 4 (Sylvester) — A polynomial p(z,y) = Y, vie(i)z'y*=" can be decomposed into a
sum of v powers as p(z,y) = Z;Il N (o z+ B; y)? if and only if the form

r

ge(z,y) = [[Biz—ajy)=> gy
=0

Jj=1
Yo Yoo Tr Yo
. Y1 Y2 Yr41 g1
satisfies . . . = 0.
Yd—r e Yd gr

and has r distinct roots (real if the problem is real).
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See [23, p 153], [12, p 63], or [21, section 6, p 28]. In fact, the last theorem implies an
algorithm to decompose any binary polynomial into a minimal sum of powers, as will be seen in
section 3.4.3.

Partial proof. Tf p(x,y) is decomposable as p(z,y) = 22:1 Aj (ejz + B y)® with r < d then
it is not hard to see that for any monomial m of degree d—r in (2, y), we have (m¢.(z, y), p) = 0.
These equations correspond to the rows of the previous matrix. The determinant of this matrix
is called the catalecticant.

Ezample. A normal form of any binary quartic is u* + v* + Au?v2. If the catalecticant of
order 3 vanishes then A = 0 and the polynomial is a sum of two squares. [23, p 157].

Ezxample. The case of ternary cubics is also well known. Their general normal form is
u? + 03 +wd + 6 uvw [23, p 157] [3, p 278], but there are seven other possible forms [22] [21,
section 7, p29]. Knowing the minimal number of powers in the decomposition of a polynomial
p, one can then determine a canonical form of p, that makes it possible to classify polynomials.
The case of ternary quartics is discussed in [20] for instance.

For larger values of n or d, in order to know whether the dimension of Y reaches D(n;d) or
not, we compute the rank of the Jacobian of @ (defined in section 3.1), which gives the dimension
of a generic tangent space to this variety, or equivalently the dimension of the variety. If this rank
is maximal (equal to D) then the image is dense. Else the image is an open-subset of an algebraic
variety of dimension strictly less than D(n;d). The Jacobian of & :a+— ). L¢ can be computed
in the following way : differentiating ® with respect to a; ; yields to d x; L‘li_l7 so that the Jaco-
bian of ® is the matrix of (le‘li_l, c, T L‘li_l7 leg_l, e Tp Lg_l,. o le}i\,_l, e, T L}i\,_l)
in B(n;d). This yields the following theorem:

Theorem 5 (Lasker-Wakeford) — A generic polynomial of degree d in n variables can be
decomposed minimally in a sum of N powers of linear forms if and only if there exist lin-
ear forms Li,...,Lx such that the rank of (le‘li_l, AU L‘li_l, leg_l, AU Lg_l,. .
le}i\,_l, e, T L}i\,_l) is equal to D(n;d).

See [26], [13], [21], [10] for more details. Another way to formulate this theorem is to say that
there exist linear forms Ly,..., Ly such that there is no polynomial of degree d orthogonal (for
the scalar product defined in (6)) to the forms L‘f—l7 .. .,L}i\,_l.

Remark that it is enough to find a point a such that the corresponding Jacobian is of maximal
rank, for the rank will be the same in a neighborhood (for the Zariski topology) of this point. Tn
other words, the rank will be generically D(n;d) if we can find one point for which it is true.

An incremental algorithm for computing ¢(n, d)

Here a probabilistic algorithm is described, that computes the generic width of polynomials of
F(n;d). According to theorem 5, we have to check the rank of the matrix

M(x; N) = (2 LY e DY e LY e DA e DY 2 LAY (10)

in the basis of all monomials of degree d.

This is done incrementally, adding at each step a block (2 Lg_l, AU L,‘j_l) and find values
of the coefficients such that the rank and the generic rank are equal at this step. When the
iteration stops, we are left with g(n,d) linear forms such that the corresponding matrix is of
maximal rank.
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1. Take for the first n linear forms : Ly = x1,..., L, = x,. Set imtially k = n + 1.

2. Take a new form Lj := Z?:l a; y2; and compute the rank of the matrix M (x; k) defined
in (10), which depends only on the variables ay, ; (the other coefficients are numerical).

3. Find randomly numerical values for aj ; such the corresponding matrix has the same rank
as the matrix in variables ay, ;.

4. Tf the rank of matrix M (x; k) is full, then stop and set g(n;d) = k. Else go to step 2 with
k—k+1.

This algorithm has been implemented in MAPLE, and the results are reported in table 1. The
values of g(n,d) obtained coincide with those obtained already algebraically, when they were
indeed known. But the program also allowed to fill the values that were yet unknown?! (indicated

in bold face).

3.3 Number of solutions

Now, given a generic polynomial, we want to know how many decompositions there are. In fact,
as we are dealing with algebraic varieties, this means that we want to know what is the dimension
and the degree of these varieties.

Proposition 6 — Given a generic polynomial p, the solutions a such that ®(a) = p form an
algebraic variety of dimension nN — D.

Proof. The set of coefficients a such that ®(a) = p is the fiber ®~1(p) of ® over p. This map
between two affine spaces of dimension nN and D (with nN > D) is regular. According to [24,
th 7, p 60], the dimension of the fiber is at least n N — D. The latter bound is reached for generic
polynomials (on a non-empty open subset of V). |

Ezample. Consider the case of polynomials of degree 2 in n variables. A well-known theorem
of Sylvester tells that a generic quadric is a sum of n signed squares. Consequently, as the
dimension of X is n? and the one of Y is %n (n 4+ 1), the dimension of a generic fiber is n? —
tn(n+1) = £n(n—1). It is the dimension of the orthogonal group of the corresponding quadric
(set of matrices that leaves the quadratic form unchanged).

In the case where the dimension of a generic fiber i1s null, it contains a finite number of
points. This number of points (by definition) is the degree of the map ®. As it is defined by

D polynomials of degree d, a rough bound on the degree is d” (according to Bézout’s theorem
[24]).
3.4 Calculation of a decomposition

To date, constructive algorithms for calculating a decomposition into powers of linear forms exist
only for cubics and binary forms.

1We discovered recently a work borrowing tools from another area of algebraic geometry [1]. Although it
was addressing a different question (interpolation), the results presented allow to compute the generic width in a
different way, especially for d > 4.
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3.4.1 Completion of the cube

The first (well known) constructive method is based on a simple idea that is usually applied to
quadrics.

Theorem 7 — Any polynomial of F(n;3) can be decomposed as
p(x) =Yy} +a(x), (11)
Jj=1

where y; are linear forms in the x;’s, and q a polynomial of partial degree in x1 equal to d—3 = 0.

Proof. As now briefly explained, the proof may be described in 4 stages in the case of cubics
(d = 3). Even if the principle of the proof could be generalized to d > 3, the theorem would
not yield a means of recursion, and thus would not give any possibility of computing the desired
decomposition.

1. Any polynomial ¢(x) of F(n;3) can be written p(x) = u$ + 3u} hy + 3uy ha + hs, where
hy, are polynomials of F(n — 1;k) in variables us, ..up.

2. Letting v1 = uy + hy and v; = u; for ¢ > 1, yields an expression where the term in v%
disappears: p(x) = v3 + 3v; Ha + Hs, where Hy = ho — h? and Hz = 2h3 — 3 hiho + hs.

3. The quadratic form Hs can be diagonalized after an appropriate linear transformation in
the variables vs, ..v,,, keeping v; unchanged. Denoting y; the new variables, and k the rank of
Ha, k< n: p(x) =3 +3y Z?:z 3/?—|—G3,7 where (5 is a polynomial of F(n—1;3) in the variables
Y2, --Yn-

4. Lastly, the two first terms of the last expression of p above can be transformed into the
sum Zle 3 by defining the linear forms f; = k='/3y; + k=5 (y; + AZ?:Z yj), where A is a
root of (k2 + k) A2 +2(1+ k)X +1=0[21]. [ |

The conclusion is that any polynomial p of F(n;3) can always be decomposed into a sum of
at most n(n + 1)/2 — 1 powers of linear forms.

3.4.2 Simultaneous diagonalization

Now the inconvenience of the previous approach is that the number of forms obtained in the
decomposition is in general much larger than the achievable bound, D. The approach described
below leads to a smaller number of forms, and was proposed by Reznick [21]. Our attempts to
extend this result to the real case have not succeeded.

Theorem 8 (Reichstein’s canonical form) — Any polynomial of F(n;3) can be decomposed
as
p(x) =y +q(as, .zn), (12)
j=1

where y; are linear forms in the x;’s, and ¢ a polynomial of F(n — 2;3).
Proof. This proof was given by Reznick in [21]. Consider the partial derivatives f1 = dp/dzq

and fo = Op/Oxs. Since these are quadratic forms, they can be written as f; = x7.S;x and
fo = x7 Sox where S; and S5 are symmetric. Yet, the pencil (S1,S2) admits generically distinct
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eigenvalues. Thus, there exist a basis of (possibly complex) vectors a; such that fo = >\ y7,
=3, y?, and y; = al'x. Integrating f; and f» with respect to z; and =z, respectively, leads
to two expressions of p:

p(x) = zl: 3;1 U 4 qi(wa, 23, ., ) = zZ: 3212 YP 4 a1, 23, ., T0).
On the other hand, it can be seen that A; a;1 = a;2, by checking out the second derivative. As
a consequence the first terms coincide in both sides, and so do the remainders ¢; and ¢, which
must then be independent of both z; and x5. [ |

Thus, this theorem allows to reduce by half the number of variables recursively. As a conse-
quence, the polynomial p of F(n;3) can be decomposed into a sum of at most n(n + 2)/4 cubes
of linear forms if n is even, and at most (n+ 1)2/4 if n is odd. This is about twice as less as the
number of forms obtained in section 3.4.1.

3.4.3 Binary forms

Theorem 4 actually gives an algorithm to compute the decomposition of any binary form in sums
of powers. We have implemented the MATLAB program listed in figure 5.
We show now the results obtained with some examples. Take p(z,y) = (2z+y)*+ (z +4y)*:

> p=convd([2,1],4)+convd([1,4],4)
p =17 48 120 264 257
> [lambda,ql=binarydec2(p)
err = 6.70011e-14
lambda =
1.0000
256.0000
2.0000 1.0000
0.2500 1.0000

So we find the original canonical expression as expected, as shows the small reconstruction
error, err. Let’s take now another example with p(z,y) = (22 + y)® + (=2z + y)° + (32 + 3y)°.

> p=convd([2,1],5)+convd([-2,1],5)+convd ([3,3],5)
p = 243 1375 2430 2510 1215 245
> [lambda,ql=binarydec2(p);
err = 7.52827e-13
> [lambda,q] =
1.0000 2.0000 1.0000
1.0000 -2.0000 1.0000
243.0000 1.0000 1.0000

The polynomial is reconstructed correctly with 3 linear forms (3% = 243). Now let’s see a last
example. Take p(z,y) = (22 + y)°® + (32 — 5y)° + (=22 + y)° + (z + ¥)°, and get:

> p=convd([2,1],6)+convd([3,-5],6)+convd([-2,1],6)+convd([1,1],6)
858 -7284 30870 -67480 84510 -56244 15628

> [lambda,ql=binarydec2(p);
err = 16.9017
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In the present case, the reconstructed polynomial is different from the original, p. In fact, we
are here in the generic case and the fiber is of dimension 2 x 4 — (6 + 1) = 1 (see table 2). So we
have one degree of freedom to choose a solution.

Another interesting analysis is to look at the effect of measurement noise on the robustness
of this algorithm. For this purpose, we took the polynomial po(z,y) = (22 +y)* + (2 +4y)*, and
tried to identify the linear forms generating the polynomial p(z,y) = po(z,y) + pg(z,y), where
the coefficients of g(x,y) were generated randomly. Two noise distributions were envisaged:
uniform in the interval [0, 1], and Gaussian.

The algorithm outputs r linear forms ¢;(z, y) and r coefficients A;. This allows to reconstruct
the polynomial p(z,y) = > i_, i ¢i(z,y)?. As p increases, we can measure two kinds of errors.
The first one is p(x,y) — p(x,y), and measures the ability of the algorithm to reconstruct an
arbitrary polynomial. The second error is p(z,y) — po(2,y), and represents the deviation to the
original noise free polynomial. This error also accounts for the ability to reject additive noise. In
table 3, the norm of the errors are reported, in the canonical metric previously introduced in (6),
and detailed in the function binarydec2. Since the null space of the Hankel matrix is estimated
with a given tolerance thanks to the use of SVD, the algorithm proves some robustness. Tt is
more robust against uniform noise, but on the other hand Gaussian noise is more realistic if the
tensor is formed of sample cumulants.

3.4.4 General case

In the general case, to date, there is no really efficient way to find a decomposition of a generic
polynomial. Given a polynomial p, the problem is equivalent to finding a solution of a polynomial
system in the coefficients a; ; of the linear forms. In practice, the size of the polynomial system
is so huge that usual techniques based on resultants and elimination [4] cannot work. For
instance for a generic polynomial of degree 4 in 3 variables, we need to consider 6 linear forms
or 18 variables. The system corresponds to 15 equations of degree 4 in the variables a; ;, so
that a classical multivariate resultant would yield a polynomial in one variable of degree 4'° =
1073741824.

A more feasible approach to this problem is now given. It is based on a classical Least-
Squares method, that starts from a given point and minimizes the square of the FEuclidian
distance (defined in section 2.2) between the polynomial 3", L¢ and the polynomial p that we
want to decompose.

This program as been implemented in MAPLE and the C-language. The first system computes
the Jacobian of the norm and its Hessian with respect to variables a; ;, and generates a C-code
that evaluates these matrices. This C-code is then linked with a general-purpose minimization
algorithm (developed by J. Grimm, SAFIR Project). One could also use a more sofisticated
method [11].

We illustrate this method on the following polynomial:

4 3 3 2.2
1+ 21X+ 21T X3+ 217 X9
2 2.2 3 2 2 3 4 3
+xiT o3+ 1T 23T X129 + X122 X3+ 122023 21237 22 + 22" 23

2 2 3 4
+ x2” 23" + 223" + 23
The decomposition found is

(0.6307218544 21 + 0.541354088 x5 + 0.3534113236 x3)*
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0.02997684794 21 + 0.6869227237 25 + 0.4622302052 23)*

+( )
+(0.1770527171 21 4 0.9112083062 x5 + 0.05298312847 x3)*
+ (0.8287429345 21 4 0.03202241062 25 + 0.329541934 z3)*
+(0.2009353301 21 4 0.166255501 25 + 0.9812070694 23)*
+ (0.7785569235 1 + 0.1896890002 25 — 0.07313337321 3)*

and the error 1s

0.60038718147983510 2.

The figure shows the projection of the approximation on the plane of the first two coordinates.
Tt ends on the point (0.6307...,0.5413...) which corresponds to the first coordinates of the first
linear form in the decomposition. This method converges more easily when the initial polynomial
is “generic” (the number of linear form is the generic number) and when the number of solution
is big. When the initial polynomial is not a sum of the generic number of linear forms, the
convergence often fails.

The advantage of the proposed method is that the larger the dimension of the fiber, the more
chances to converge to a solution. The drawback is that we are not sure to find an acceptable
solution and that the formula of the norm, the Jacobian, and the Hessian, become huge when the
dimension and the degree increase. Tt is expected that combining algebraic methods (using the
symmetry of the problem) and numerical techniques such as homotopies, would help to achieve
this decomposition in generic cases.

4 Minimal decompositions in non-generic cases

We consider now the problem of determining the minimal number of powers, w(p), that needs to
be used to decompose a given polynomial p. This happens to be a problem closely related to the
classification of orbits of polynomials under linear change of variables, which is in itself a hard
problem of algebraic geometry (see for instance [9, p 53]).

As we have seen in section 3.4.3, we can describe explicitly when a binary form can be
decomposed in a sum of r powers and this decomposition can be achieved by a simple algorithm.
One surprising property of this decomposition is that in some non-generic case the number of
powers can be larger than in the generic case. For instance, the binary polynomial z? y cannot
be decomposed in less than a sum of 3 powers : z2y = %((1‘ + )2+ (—z+y)? —243). In the
other cases, the characterization of width » polynomials in F(n;d) is not so simple.

Let £, be the set of polynomials of width w(p) = r. We propose here a general method to
characterize the closure of these sets. Denote R = IK [yi,axy], 1 <k < n,1 <[ <r, the set of
polynomials in the variables 45, aj ;. We note a; = (a;1,. .., a;,) the coefficients of the jt* linear
form and a} = aj{l - a;"n Let Z, be the ideal of R generated by the polynomial ~; — 2;21 a}.

Tn the case of one power (w = 1), the map ® defines another map between projective spaces:

[ Pt — PPt
a:(al,...an) = (a§1~~~a;”)i1+...+in:d

)

where P! is the projective space associated with IK ™. This map is known as the Veronese
map and its image 1s called the Veronese Variety. It 1s a closed variety whose ideal 1s generated
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by all the polynomials satisfying:

’y(ll,,Zn)’y(jl,,jn) —’y(k’l,,kn)’y(h,,ln) IO (13)

with i + js = ks + [ for all 1 < s < n (see [24, p 40]). So a polynomial p is a power of a linear
form if and only if its coefficients satisfy the previous relations (13).

For a sum of two powers (w = 2), the map cannot be extended as a map between polynomial
spaces in this way, because we can find non-zero elements (a; ;) such that the image by @ is the
zero polynomial in z;. If d is odd, take for instance Lo = — L. Thus the image is not necessarily
closed, and cannot be defined by equations but also needs inequalities. A polynomial p is a sum
of two powers if by a change of variables, it is of the form z{ 4 zZ. Conversely, the orbit of the
previous polynomial under the action of Gi,, (the group of invertible n x n matrices) is the set
Ly. The closure of L5 is defined by the polynomials in IK [v;] N Zy where Z is the ideal of R
generated by the equations v; — (ai1 + aiz) = 0. Indeed these are the polynomials which vanish
by substitution (al 4 al) for 43. Moreover, a polynomial vanishes on Lo (resp. L£s) if and only
if it vanishes by substitutions (ai1 + aiz) for ~3. These relations can be computed by elimination
techniques (for instance using Grobner Bases [8]).

This technique extends naturally to sums of any powers in the following way. The relations
satisfied by the points in £, are the polynomials of IK [v;] N Z,. They give information only on
the closure, and as we be seen with an example below, more information 1s needed to compute
the width of a polynomial.

As many forms as the dimension

The special case where a polynomial p into n variables 18 decomposable in a sum of n powers
of independent linear forms is worth considering. By a change of variables, it can be written
in the form z{ + -+ 4 2. The Hessian of this polynomial in these variables is det(,, »,;(p)) =
(d(d—1)"TI, :L‘f_z. If p is decomposable in a sum of n powers then its Hessian, being
a covariant, will be the product of n linear forms with multiplicity d — 2 after any change
of variables. The linear forms that appear as factors of it are precisely (up to a scalar) the
forms that appear in the decomposition of p. Geometrically, the hypersurface defined by the
Hessian is the union of hyperplanes with multiplicity d — 2. This can be checked easily by taking
the intersection of a varying line with this hypersurface. The intersection points should vary

“linearly” with the line. Once these hyperplanes are known L;(z) = 0, one has to compute the
scalars \; such that p=>""_, N LE

An algorithm for cubics

We illustrate this problem with polynomials of degree 3 in 3 variables. In this case, we have
three varieties, £1, Lo, L3, and L4 = F (3,3), since the generic width is 4. Of course, we have
L1 C L, CLsC F(3,3).

Equations of these varieties have been computed by the preceding technique, but are not
reported here for reasons of space. This allows to classify all the possible orbits of a polynomial
of degree 3 in 3 variables by considering all possible forms of decomposition up to a linear change
of coordinates:

o A polynomial of the orbit of #$ is in £, and any polynomial of £; is in this (closed) orbit.
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A polynomial of the orbit of 3 4 3 is in L.

A polynomial of the orbit of p = 3 + 23 + (ax1 + bzs)? also satisfy the equations of L.
In this case the variety of IP"~! defined by p = H3 (cv;z1 + Biza) is the the union of 3

i=1 s
“parallel” hyperplanes. In other words, these polynomials lie in L5 N L3.

A polynomial of the orbit of 3 4 #3 4+ 23 is in £3. Tts Hessian is a product of 3 linear
forms.

A polynomial of the orbit of 23 + 23 + 23 + (a 21 + bxs + c23)® (with (a,b,¢c) # (0,0,0))
is a generic polynomial, thus of width 4.

e The other polynomials are of width 5, and are in the orbit of 4 (1 22 + 23), according to
[21]. These polynomials are in L3, which means that L5 C Ls.

Other cases such as 2% + 23 + (axy + bxg)® + (¢’ 21 + b’ 25)3 can be reduced to sums of less
powers and do not appear in this list. In the previous case for example, a sum of 4 powers in
two variables can be rewritten as a sum of at most 3 powers.

Given a homogeneous polynomial p of degree 3 in 3 variables, we proceed as follows to
determine its width.

1. If its coefficients satisfy the equations of £, then p is the cube of a linear form.

2. Else if they satisfy the equations of Lo, then p can be factorized in a product of 3 dependent
linear forms: p = L1 X Ls X L3.

(a) either the linear forms Ly, L, L3 are distinct and p is in the orbit of z1 s (21 + 22)
which admits a decomposition in a sum of 2 cubes. The width of p is 2.

(b) or two linear forms coincide and p is in the orbit of x5 (with a,b # 0). The width
of pis 3.

3. Else if the coefficients of p satisfy the equation of L3, then

(a) either the Hessian of p is a product of 3 independent linear forms and p is in the orbit
of 23 + x3 + 23,
b) or its Hessian is a cube (in £1), the Hessian of z1 (21 22 + £3) being —8 23, and the
3 g 1
polynomial p is of maximal width 5.

4. The remaining cases corresponds to generic polynomials of width 4.

More generally, for any dimension and degree the number of orbits £, will be related to the
possible relative configurations of r linear forms in a space of dimension n and this classification
of orbits remains a hard algebraic open problem.

Ezample. Consider for instance,
p=4 235 +18 25200+ 12 25221 +28 2312436 32021 +12 2321 2+ 15 29°+28 29221 +18 2oz 2 +4 21>
which factors through 3 distinct linear forms:

(T=Dz1+2—-D2ze+(1—Das) (1 4+1) 21+ 24+1) 22+ (1 +1)23) (221 + 322+ 2 23)
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So, we are in the case (2.a) and p has the following approximated decomposition

0.9811252246 (1.26794919221 + 1.53589838525 + 1.2679491921‘3)3
+  0.0188747754 (4.73205080821 + 8.46410161622 + 4.732050808:v3)3

which has been computed using the algorithm on binary forms.
Ezample. Consider now

p= 223729+ 23721 + 823207 + 2232921 + 323217 + 6297 + 522721 + wox? + 2243
which does not satisfy the equations of L1 nor L5 but is in £5. Its Hessian is

—128 x5 — 384 3% 7y — 384 x5°w, — 384 2315
—768 237571 — 384 x3712 — 128 25> — 384 25221 — 384 ox1” — 128 24>

which factors through
—128 (1‘1 + xo + .1‘3)3

Consequently, we are in the case (3.b) and p is a sum of 5 linear forms.

5 Concluding remarks

In this paper, some results of invariant theory have been surveyed. In particular, we emphasized
the (perhaps surprising) fact that a symmetric tensor has generally a width larger than its
dimension. This is to be compared to matrices, that cannot have a rank larger than their
dimension. Another even more striking fact is that the generic width is difficult to compute in
some cases, and that the maximal achievable width is known only through upper bounds in most
cases.

Four new algorithms have been proposed, that solve (yet only very partially) the problem.
In section 3.2, an incremental algorithm is suggested for computing the generic width; in section
3.4.3, an algorithm is described that 1s able to compute explicitly the decomposition of a binary
polynomial of any degree; in section 3.4.4, the technique described allows to find the width
of a non generic polynomial; lastly in section 4, an iterative algorithm allows to compute the
corresponding decomposition explicitly.

Applications have been pointed out in section 2.4. The fact that tensors can have a width
larger than their dimension is a richness that can be exploited in array processing to detect and
identify more sources than sensors. However, difficulties remain to be overcome before higher
order decompositions become feasible in really useful situations, and several directions of research
are worth mentioning. The first is to handle optimally more than n forms, since they would not
define a partition anymore. Second, it is wished to define decompositions where forms can be
sorted by decreasing importance, in order to cope with noise, as we suggested in the binary case.
Third, efficient numerical algorithms are still lacking, even for moderate degrees, in particular
for cubics or quartics. Fourth, it is also possible to decompose quantics into sums of powers of
quadrics (instead of linear forms). All these directions are being currently investigated.
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6

3 3 4 4 5

' 10 12 15
10 | 14 | 22 30 42
5126 | 42 66 929
10 |22 |42 | 77 | 132 | 215
12 1 30 | 66 | 132 | 246 | 429
15 | 42 | 99 | 215 | 429 | 805

2
4
5
8

Table 1: Generic width g(n;d) of polynomials of degree d in n variables.
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Table 2: Generic dimension of the fiber of solutions.

(Togop | 16 [ 4 [ 3 [ 2 [ 1]
W 0.0000 | 0.0000 | 0.0001 | 0.0045 | 0.0377
Ho 0.0000 | 0.0001 | 0.0008 | 0.0087 | 0.0904
o 0 0.0001 | 0.0024 | 0.0260 | 0.2254
oo 0 0.0002 | 0.0019 | 0.0180 | 0.2042
W 0.0000 | 0.0001 | 0.0012 | 0.0128 | 0.1090
Ho 0.0000 | 0.0002 | 0.0016 | 0.0178 | 0.1550
o 0 0.0003 | 0.0080 | 0.0729 | 0.8553
oo 0 0.0005 | 0.0065 | 0.0612 | 0.5909

Table 3: median p (resp. pg) of reconstruction error p—p (resp. p— pg), and standard deviation
o (resp. og) with respect to p (resp. po), over 61 trials of additive noise. Top: uniform noise.
Bottom: Gaussian noise.
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function [mu,Q]=binarydec2(p)
% Decomposition of a generic binary polynomial p
% into the sum of N dth powers of linear forms
% mu: vector of N coefficients
% Q: N by 2 matrix whose rows are the sought forms
s=1;r=0;d=length(p)-1;eta=1.e-4;
fd=facto(d) ;c=ones(1,d+1);
for i=1:d-1,c(i+1)=fd/facto(i)/facto(d-i) ;end;
pO=p;p=p./c;v=[1;
while s>eta&r<d-r+2, r=r+1;
M=hankel (p(1:d-r+1) ,p(d-r+1:d+1));
[U,8,V]=svd(M);
J=find(diag(8)<eta);
if length(J)>0,s=8(J,J);;J=J(1);
elseif r+1>d-r+1,s=0;J=r+1;
end;
end;
v=V(:,J);q=roots(v);
Q=[q,ones(length(q),1)];
mu=convd (Q,d) >\p0’;
sol=(mu’*convd(Q,d)) ;W=diag(ones(1,d+1)./c);
% Output of the reconstruction error
err=sqrt ((sol-p0) *Wx(s0l-p0)’)

function P=convd(q,d)
% Raising of a polynomial q to the dth power
[a,b]l=size(q) ;P=[1;
for i=1:a,
pd=q(i,:);for t=1:d-1,pd=conv(pd,q(i,:));end;
P=[P;pdl;
end;

Figure 1: MATLAB code of the algorithm proposed in the binary case.

115



1 0.8

Figure 2: Projection of the approxmation on the plane of the 2 first coordinates. This illustrates
the trajectory of the algorithm in a particular case.
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