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Abstract

Fuzzy multivariate time trajectories are defined. For a suitable class, called LR time trajec-
tories, three types of dissimilarity measures are introduced: the instantaneous, the velocity and
the simultaneous measures, respectively. Correspondingly, three different kinds of dynamic fuzzy
clustering models are suggested, based on a generalization of the Bezdek and Yang and Ko
objective functions for fuzzy clustering. The solutions and characteristics of the three models are
then illustrated. A comparative appraisal of their practical meaning is proposed by means of an
application to the time pattern of the subjective judgments expressed by a sample of web navi-
gators on different types of banners. Some indications for future research in this methodological
domain are finally provided.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fuzzy clustering was firstly introduced, in a two-way framework, by Bezdek (1974,
1981) and Dunn (1974). Successively, many proposals have been made in this connec-
tion (see, e.g., Roubens, 1978; Windham, 1985; Trauwaert, 1987; Hathaway and Bezdek,
1988; Hathaway et al., 1989; Bobrowski and Bezdek, 1991; Jajuga, 1991; Miyamoto
and Agusta, 1995; Rousseeuw et al., 1995, 1996; Miyamoto and Umayahara, 1998).
In these works, the various authors suggest fuzzy clustering methods in order to clas-
sify numerical data (hard or crisp data). Recently, some interesting contributions have
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been made concerning interval data, by considering fuzzy (Yang and Ko, 1996; Yang
and Liu, 1999; Sato and Sato, 1995), symbolic (Ichino and Yaguchi, 1994; Ravi
and Gowda, 1999) or mixed (fuzzy and symbolic) (El-Sonbaty and Ismail, 1998)
approaches.

In this paper, we focus our attention on the three-way fuzzy clustering problem, in
which the occasions are linked by an ordinal structure. Also in this respect some re-
cent works have been presented (KoSmelj, 1986; Kosmelj and Batagelj, 1990; Saporta
and Lavallard, 1996; Sato and Sato, 1994, 1998; D’Urso, 2001). In particular, here
we propose three fuzzy clustering models for a general class of multivariate fuzzy
time trajectories: the so-called LR fuzzy time trajectories. Notice that our fuzzy clus-
tering models are three-way extensions of the fuzzy models suggested by Yang and
Ko (1996), when the third way is described by time occasions.

Within an “informational approach” (Coppi and D’Urso, 2002), we may state that
our models can cope with a twofold typology of fuzziness: fuzzy theoretical information
(the method is fuzzy) and fuzzy empirical or observational information (the data are
fuzzy).

The structure of the paper is characterized as follows: in Section 2 we define the LR
fuzzy time arrays and successively (Sections 3 and 4) the LR fuzzy multivariate time
trajectories and the dissimilarity measures allowing the comparison among these trajec-
tories. The fuzzy clustering models are proposed in Section 5. A suggestive application
to time data concerning web-advertising is also shown.

2. LR fuzzy time arrays

Following the approach adopted in literature for dealing with fuzzy clustering of
(nondynamic) fuzzy data (Yang and Ko, 1996; Yang and Liu, 1999), we distinguish
two types of LR fuzzy data time arrays: the LR fuzzy time array (or LR fuzzy numbers
time array) and the LR, fuzzy time array (or LR fuzzy intervals time array). These
are the time three-way extensions of the LR fuzzy data defined, for instance, in Dubois
and Prade (1988) and Zimmermann (1996).

Definition 1. An LR, fuzzy data time array (same units x same (fuzzy) variables x
times) is defined as follows:

X = {xi = (ciji, Liji rij)er: i = 1,1, =1,J;t =1,T},

where i,j and ¢ denote the units, variables and times, respectively; x;;; = (Ciji, Liji ¥ije )Lr
represents the LR fuzzy variable j observed on the ith unit at time ¢, where c;;; denotes
the center and /;; and r;; the left and right spread, respectively, with the following
membership function:

Cije — Uije ~

L\ ———— |, iy <cy (Liy>0),
. Lije

:u(uijt) = i c

ijt — Cijt .

R () , Ui = cip (rije > 0),
Vijt
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where L (and R) is a decreasing “shape” function from Rt to [0,1] with L(0) =
1;L(zij;) <1 for all zj >0, Vi,jt;L(z;;) >0 for all z;; <1 Vi, j,t; L(1) =0 (or
L(z;j) > 0 for all z;;; and L(+00) = 0).

Moreover, an LR, fuzzy data time array is defined as follows:

X = {xiji = (Crijis aijes Lijis rij g 1= 1,15 j = 1,J5t =1, T},

where x;;; = (c1iji, €2ije> lije» Yije )Lr represents the LR, fuzzy variable j observed on the
ith unit at time ¢, cy;;; and cy;;; denote, respectively, the left and right “center” and /;;
and 7;;; the left and right spread, respectively, with the following membership function:

Clijt — ﬁijt -
L (l , Ui < e (L > 0),

ijt

u(@) =41, Clije < Uijr < Caijes

R (W) , Uy = e (i > 0).
Vijt

Notice that the concept of membership function belongs to the framework of “fuzzy
logic”, which is an extension of Boolean logic where the concepts of true and false are
replaced by that of partial truth. Boolean logic can be represented by set theory, and
in an analogous manner fuzzy logic is represented by fuzzy set theory. This approach
was originally developed for the description of natural language (Dubois and Prade,
1988; Everitt et al., 2001; Ruspini et al., 1998; Zadeh, 1965; Zimmermann, 1996).

A particular case of LR fuzzy data time array is the triangular one (with triangular
membership function).

In fact, for an LR fuzzy time data array

X = {xijt = (cijnlijtsrijt)LR: i= I,I;j: I,J;l: I,T},
if L and R are of the form

11—z, 0<z<1,

L(z)=R(z) = { 2.1)

0 otherwise,

then X is a triangular fuzzy time array, with membership function (see Fig. 1):

Cijt — ﬁijx ~
1— 5 i < cije (Lijp > 0),
L ijt
Wi yj) = i c
ijt — Cijt ~
1 — ————, dy = ciy (ryje > 0).
Vijt

A particular case of LR, fuzzy time data array is the trapezoidal one (with trapezoidal
membership function).
In fact, for an LR, fuzzy time data array

X = {xijr = (crij- Coijes it rijedr: i = 1,1 j=1,J;t=1,T},
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A A

Cijt Ujje Cuijt Caijt Ujj

(triangular case) (trapezoidal case)

Fig. 1. Triangular and trapezoidal membership functions at time ¢.

if L and R are of the form
1—z 0<z<l1,

L(z)=R(z) = { (2.2)

0 otherwise,

then X is a trapezoidal fuzzy time array, with membership function (see Fig. 1):

Clijt — ﬁijt -
1 - . i < ey (L > 0),
ijt
u(@i) =14 1, Clije < Ujjr < Caijes
ﬁijz — C2ijt N
1 - o M = ¢y (rije > 0).
ijt

Other particular cases of LR; and LR, fuzzy time data arrays can be obtained (e.g.
with normal or parabolic membership functions) (see Zimmermann, 1996).

For each kind (LR and LR;) of fuzzy time data array, we can consider the following
component-arrays:

LR, case:

C={cu:i=11;j=1J;t=1,T} (time array of the centers);
L={lj:i=11j=1J;t=1,T} (time array of the left spreads);
R={ry:i=11;j=1J;t=1,T} (time array of the right spreads).

By combining the indices /,J and 7, we can obtain from X the following stacked
fuzzy matrices: X = {X;}izir, X = {Xehor, X = {Xj} oy, with X = {x0 j =
LJ;t=1T} Xi={xni=LLj=LJ}3 X, ={xc i=1Lt=1T}

LR, case:

Ci={cup i=11j=1J;t=1,T} (time array of the left “centers”);
Co ={cyj: i=1,1;j=1,J;t=1,T} (time array of the right “centers”);

L and R have the same algebraic form of the time arrays of the left and right spreads
defined in the LR, case.
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3. LR fuzzy multivariate time trajectories

Let R/*! be the vectorial space (space of units), where the axes are referred to the
J variables and time. In this space we represent each unit i by means of the following
vectors, for each ¢:

Yir = (Citts o os Cijta e os Cits ) s 1¥ie = (Lings ooy Lijes ooy L 1)

rYit = (Vm,---,rijn---,ruz,t)l (LR case);

a¥it = (Clits - Clijts o> Clis 1) s e Yir = (Cits o5 Cijts - - Couts 1)

1Yi = (Litgy--ns l,*j,, R l‘)/,ry,-t = (Fitgs- - - sFijts -5 Tidts f)/ (LR, case).
Thus the two following cases can be considered.

1. By fixing ¢, the scatters

Ni(t) = {(eyalliyillryie) }i=1r - (LR case),
Ni(t) = {( Yalle, Yielliyiellr¥i) yim1,r - (LR, case)

represent the matrix X,. Letting ¢ vary within its range, the scatters ;N;(¢) are placed
on T hyperplanes parallel to the sub-space R’.
2. By fixing i,

Nr(@) = {CyilloYill-Yi) ye=1,r - (LR case),

sNr(@) = {Ca YielleaYiel¥iell-yi) y=1.7 - (LR, case)

represent the matrix X;. Each scatter describes the LR; (LR;) fuzzy multivariate
time trajectories of object i across the time and

{_fNT(i) = {(CYit”lyit||ryit)}t:1,T}i:1,1 (LR case),
{rNr(@) = {(e,Yulle,Yiel l1yil - ¥Yi) }i=1.7 }im1r - (LR, case)

represent, respectively, the set of the LR; and LR, fuzzy multivariate time tra-
jectories. Each LR; (LR;) fuzzy time trajectory ;Nr(i) crosses the T hyperplanes
parallel to R’.

A geometrical representation of the triangular version of the previous situations is
shown in Coppi and D’Urso (2002).

4. Dissimilarity measures for LR fuzzy multivariate time trajectories

In literature, several geometrical measures and topological aspects have been gener-
alized to the fuzzy framework (Diamond and Kloeden, 1994; Goetshel and Voxman,
1983; Rosenfeld, 1979). By restricting our discussion to suitable distance measures
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between fuzzy data, we can start by considering the Hausdorff-metric:
duy(A4,B) = max < sup inf||la — b||,sup inf|ja — b]| ¢,
acd4 bEB beB a€A

where 4,B C RY denote crisp sets (Diamond and Kloeden, 1994; Nather, 2000;
Zadeh, 1965; Zimmermann, 1996). By taking into account the so-called o-cuts the
Hausdorff-metric dy can be generalized to fuzzy numbers F, G, where F(or G): R —
[0, 17:

1 1/q
[/ (du(Fy, Gy))? da] g€l 00),
dy(F,G)= 0

Sup dH(FO’J GO( )> q = 00,
«€[0,1]

where the crisp set F, = {x € R?: F(x) > a},x € (0,1], is called the a-cut of F (Nither,
2000; Yang and Ko, 1996; Zadeh, 1965).

Another kind of distance measures can be defined via support functions (Nather,
2000).

Then, by considering LR and LR, fuzzy data at time ¢ (see Definition 1) different
distances can be derived. In particular, we consider the squared Euclidean distances
described in the following definition.

Definition 2. With reference to the fuzzy time array X, we introduce, for each type
of X, the following (squared) distances, which are extensions of Yang-Ko’s (squared)
distance (Yang and Ko, 1996):

LR, case:

ld?i/t()up) = ch‘z - ci’tHz + H(cit — i) — (epy — /“i’t)Hz
+|(eir + pric) — (€t + proo)| (4.1)
2 (3o p) =
(i — €ir—1) — (e — €1
HI[Ceir — i) = (€i—1 = Mig—1)] = [(eir = Airy) = (€ri—1 — Ar—D]|?
(e + prio) = (Ci—1 + pri—1)] — [(€r + prire) — (Cinim1 + prin—1)]||?
:”cvit —¢ Vi’tH2 + H(cvit — Avie) = (eVirg — ;LlVi/t)||2
H(Vie + prvie) = (Ve + prvird) | (4.2)
where

1 1
)‘:/ Lil(w)dw’ p:/ Ril(w)dws cil:(cilt"'"Cijt""acift)/a
0 0

/ /
Ciry = (Ct'lz,~~~,Ci'jz,~~-,0isz) N lijta---s L)',



R. Coppi, P. D’Urso! Computational Statistics & Data Analysis 43 (2003) 149177 155

/ /
lir; = (l[’lt:---:l[’jt’---’li’ﬁ) , Iiy= (ri1t7~~~:rijt»~~~»rijl) 5
’.
Iy = (ri’lts---arl/jts~~~:ri/Jt) 5

Vie = (Cir — €Cis—1), Ve = (Ciry — €Ciri—1),
Vi = (liy — 1), Vire = Ly — li’t—l):

WVie =T = Ty—1), Vg =Ty — Tjrp_1)

are, respectively, the vectors of the so-called velocities of the centers and left and right
spreads pertaining to the fuzzy time trajectory of the ith and i'th units.
LR, case:

]d,%-/,()t,P) = Hclit - ClmHz + chn - c2i’t||2 + ||(C1n - /“it) —(erirr — ;hli’t)“z
+[(e2ie + prie) — (€2 + prod)|I, (4.3)
2d,2yt()»,/)) = Hclvit e Vi’tH2 + chvit o Vi’tHz + H(C]Vil — AVig) — (e Vire — )blvi’t)||2

2
(e, Vit + prie) = (ey¥ire + prviesd) ||, (4.4)

where
Clit = (Clitts -+ s Clijes- s Clint) s €2i = (Coutts -+ Coijts - - > Coit)
Clirt = (Clirtts s Clitjts > Clitat) s €2t = (Coittts s Coitjts o5 Coirt) s

aVit = (C1ie — Crir—1), o Vit = (C2it — C2it—1),

aVilt = (crire — cl[’t—l)» o Vilt = (c2irs — CZi’t—1)~

Notice that the concept of “velocity” can be defined in the following way. By consid-
ering the ith time trajectory of the centers, the velocity, in the time interval [ — 1,¢], is
Vie=(ciy —¢;—1)/(t—(t—1))=(¢iy —¢;—1). Then, for each variable j, .v;;; can be greater
(less) than zero according to whether the ith unit presents an increasing (decreasing)
rate of change of its position in the time interval [t — 1,¢];.v;; = O if the unit does
not change position from ¢ — 1 to ¢. Moreover, note that, for any “component” time
trajectory (“center” time trajectory, “lower bound” time trajectory, “upper bound” time
trajectory) the velocity pertaining to each pair of successive time points represents the
slope of the straight line passing through them: if the velocity is negative (positive) the
slope will be negative (positive) and the angle made by each segment of the trajectory
with the positive direction of the f-axis will be obtuse (acute) (Coppi and D’Urso,
2000, 2002).

The squared Euclidean distances (4.1) and (4.3) compare, respectively, the positions
at time ¢ of the centers (LR, case) and left and right “centers” (LR, case) and of the
lower and upper bounds (center — left spread and center + right spread) (LR; and
LR, cases) between each pair of fuzzy time trajectories.

The squared Euclidean distances (4.2) and (4.4) compare, respectively, the slopes
(velocities) in each time interval [t — 1,¢] of the segments of each “component” time
trajectory concerning the ith unit with the corresponding slopes of the i’th unit.
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Notice that, the previous (squared) distances summarize the fuzziness embodied in
each elementary observation of the fuzzy time array X, through three parameters (cen-
ter, left spread, and right spread for the LR; case) or four parameters (left and right
“centers”, left spread, and right spread for the LR, case) and the shape of the corre-
sponding membership functions (involving suitable values for the shape-parameters A
and p).

On the basis of the above distances we may define appropriate dissimilarity measures
between fuzzy multivariate time trajectories, in the following way.

Definition 3. The following dissimilarity measures between LR(LR,) fuzzy multivari-
ate time trajectories are defined:

T
Z(lwtldi,-/,(/l, p))* (instantaneous dissimilarity measure), (4.5)
t=1

T
Z(zwtzd,»,-/t(/l, p))2 (velocity dissimilarity measure), (4.6)
=2

2
Z Z(Swtsdi,-/t()v, p))?  (simultaneous dissimilarity measure), 4.7)
s=1

where (w;, 2wy, ¢w, are suitable weights to be computed in each case (see Section 5).

In particular, dissimilarity (4.5) takes into account, for the LR; and LR, cases, the
(squared) instantaneous distances (4.1) and (4.3), by considering the whole set of the
T time occasions. Each occasion is weighted by means of ;w;. This weight can be
suitably determined in an objective way, as shown in Section 5.

The dissimilarity (4.6) considers, for all time intervals [¢—1,¢],t=2, T, the (squared)
velocity distances (4.2) (LR; case) and (4.4) (LR, case). To each interval a weight
ow; is associated, whose value is computed in an objective manner (see Section 5).

Finally, the dissimilarity measure (4.7) represents, in the observed time domain, a
compromise between the (squared) instantaneous and velocity distances. The corre-
sponding weighting system  w,, which is determined within the appropriate clustering
procedure (see Section 5), takes simultaneously into account the effects of the single
time occasions and time intervals and of the two types of distances (instantaneous and
velocity distances).

Concerning the above dissimilarity measures, it is useful to underline the following
points:

(1) Attention should be paid to problems of heterogeneity, with particular reference
to the variables (different variances and/or units of measurement). An appropriate
pre-processing of the data may be required, such as normalization/standardization.
In this connection, we can consider different types of pre-processing procedures
(Kiers, 2000; Harshman and Lundy, 1984) for centers and (left and right)
spreads.
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e Centering of the centers, by taking into account the average of the centers. For
instance, for the LR case, we can use the following transforms:
Cijt = Cijt — C.jts
Cijt = Cijt — C.ts
where the subscript dot is used to indicate the mean across i = 1,/(c;) and
across i = 1,7 and j=1,J(c).
e Normalization of the centers, by dividing the centers, for instance c;; (LR;
case), by the normalization factor ¢ ;. In this case, we obtain

z Cijt
Cijt = =

C
.
e Standardization of the centers, by using, for instance,

Cijt

VLS, &,

e Normalization of the spreads, by setting, for example,

* —
Cijr =

13
~

it s Fijt

liit— l_j, Fijt = fj
Normalization of the centers and spreads, as illustrated above, is particularly indi-
cated for coping with problems of heterogeneity of units of measurement and/or of
size of the variables. In fact, by means of the suggested transform of the data we
get a sort of index numbers which allow us to keep the information due to the vari-
ability of the different variables (within and across the occasions), while getting rid
of possible differences in their overall mean value or in their type of measurement.
In any case, when choosing a specific transform of the original data, we should
consider the particular informational features we would like to keep in or elimi-
nating from the analysis.

(2) By considering (2.1), (2.2), 4= [, L™ (w)dw,p = [} R™'(w)dw we obtain, for
both the triangular and trapezoidal cases, A= p:%. Then, by substituting A= p:% in
dissimilarities (4.1), (4.2) and (4.3), in the LR or LR, cases, we get, respectively,
the triangular and trapezoidal versions of the considered dissimilarity measures.

Particular cases of the previous distance and dissimilarity measures (4.1)—(4.7) for
fuzzy time trajectories with triangular membership functions have been studied by
Coppi and D’Urso (2002). These measures are extensions of the Diamond’s distance
(Diamond, 1988).

Notice that, other distance measures between fuzzy time trajectories can be obtained
by generalizing the measures comparing the respective membership functions. In the
static (non dynamic) case, these distances, can be classified according to different ap-
proaches (Bloch, 1999; Zwich et al., 1987): the “functional approach”, in which the
membership functions are compared by means of Minkowski and Canberra distances
extended to the fuzzy case (Dubois and Prade, 1983; Kaufman, 1973; Lowen and
Peeters, 1998; Pappis and Karacapilidis, 1993); the “information theoretic approach”,
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based on the definition of fuzzy entropy (De Luca and Termini, 1972) and the “set
theoretic approach”, based on the concepts of fuzzy union and intersection (Chen
et al., 1995; Pappis and Karacapilidis, 1993; Wang, 1997; Wang et al., 1995; Zwich
et al., 1987).

In the present work, we prefer using the measures (4.1)—(4.7), for the following
reasons:

(1) They take into account, simultaneously, the shape of the membership function
(through the corresponding parameters A and p) and the component parameters
characterizing the examined fuzzy data (centers (LR case), left and right “centers”
(LR, case), left and right spreads (LR; and LR, cases)).

(2) A different weighting system is provided for the centers and for the spreads.
In particular, as it is reasonable to think, the weights of the centers are larger
than those pertaining to the spreads. The stronger contribution of the centers
is immediately perceivable when considering, for instance, the symmetric trian-
gular and trapezoidal cases of the squared distances (4.1) and (4.3) (by fixing
A=p= %, l; =ry, li; =r1y). In fact, since (4.1) and (4.3) can be rewritten as
follows:

1d5,(Zp)
3(cir — i) (i — i) — 22(€ir — €ir) (g — Liry)

+22Uir = Vir) (g =Yg + 2p(€ip — €)' (X5 — ¥ry)

+02(xi — ¥ir) (X — Xirg) (LR; case)
2(e1ir — €1irt) (€1ir — €1i7) — 2(€2ir — €2ir1) (€2ir — €211/

=22(erir — 1) (g = ) + 22N = VoY (i — Vi)

+2p(C2ir — €20 ) (Kt — ¥ire) + p*(Xig — ¥ir)' (i — ¥i;) (LR, case),

we get, by fixing s; =1, =1 and s, = 1y, =104

11
ldlz[/[ <2’ 2>

3(eir — eir) (e — €r0) + %(Sit —s1) (Si — Siry) (4.8)
(symmetric triangular case), .
2(c1ir — €1i0) (€1 — €1irt) + 2(€2ir — €217 (€21 — C211/) 49)
+%(s,~, —si7:) (siy —si7;)  (symmetric trapezoidal case). .

Formulae (4.8) and (4.9) emphasize, immediately, the stronger contribution of the
centers. Analogous considerations can be extended to (4.2), (4.4), (4.5), (4.6) and
4.7).
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(3) The proposed measures can be applied to a wide family of fuzzy time data (LR
fuzzy time arrays).

(4) The (squared) distances (4.1)—(4.4) are well adapted to dynamic situations. In fact,
by means of them we may set up appropriate dissimilarity measures (4.5)—(4.7)
taking into account the relevant features of the trajectories (namely the location
and variation aspects) which could not be captured had we used, instead, other
types of distances (e.g., those based on membership functions).

(5) The suggested measures allow an easy implementation of the different dynamic
fuzzy clustering algorithms.

In correspondence with the previous dissimilarity measures (4.5), (4.6), (4.7), we pro-
pose three different kinds of dynamic fuzzy clustering models:

(1) instantaneous (positional) LR fuzzy clustering model,
(2) velocity (slope) LR fuzzy clustering model,
(3) simultaneous (instantaneous—velocity) LR fuzzy clustering model.

These clustering models can classify a set of fuzzy time trajectories, belonging to the
LR family, defining fuzzy partitions that take into account the instantaneous (positional)
and/or the velocity characteristics of the trajectories.

5. Dynamic three-way LR fuzzy clustering models

In several real situations, there are many cases in which the data involve subjec-
tive or linguistic vagueness (for instance, data based on human perceptions). These
data embody a certain degree of fuzziness (fuzzy data). They are nonprecise data or
data affected by a source of uncertainty which is not due to randomness (Ruspini
et al.,, 1998). In this section, we analyze the problem of clustering objects for which
fuzzy data have been observed over a time period. In addition, we consider a clus-
tering model which is fuzzy too. In the “informational” perspective, we are assum-
ing that both the theoretical information (the model) and the empirical information
(the data) are fuzzy. Concerning the fuzzy theoretical information, we observe that
“in fuzzy clustering, objects are not assigned to a particular cluster: they possess a
membership function indicating the strength of membership in all or some of the
clusters” in opposition to the traditional (nonfuzzy) or, in fuzzy clustering jargon,
crisp or hard clustering techniques in which “strength of membership has been either
0 or 1”. Moreover, “fuzzy clustering has two main advantages over crisp methods.
Firstly, memberships can be combined with other information. In particular, in the spe-
cial case where memberships are probabilities, results can be combined from different
sources using Bayes’ theorem. Secondly, the memberships for any given object indicate
whether there is a ‘second best’ cluster that is almost as good as the ‘best’ cluster,
a phenomenon which is often hidden when using other clustering techniques” (Everitt
et al., 2001).

Fuzzy clustering for crisp data has been firstly introduced by Bezdek (1974, 1981)
and Dunn (1974). Successively, several models have been set up in this connection



160 R. Coppi, P. D'Urso/! Computational Statistics & Data Analysis 43 (2003) 149177

(e.g., Roubens, 1978; Windham, 1985; Trauwaert, 1987; Hathaway and Bezdek, 1988;
Hathaway et al., 1989; Bobrowski and Bezdek, 1991; Jajuga, 1991; Miyamoto and
Agusta, 1995; Rousseeuw et al., 1995, 1996; Miyamoto and Umayahara, 1998).

The fuzzy clustering problem for fuzzy data not involving time has been analyzed
by different authors (see, for instance, Sato and Sato, 1995; Yang and Ko, 1996). In
particular, Yang and Ko (1996) have extended the fuzzy clustering model proposed by
Bezdek (1974, 1981), and suggested different fuzzy clustering models for classifying
LR fuzzy data.

In particular, the fuzzy clustering problem, in a two-way context, can be formalized
in a general form in the following way:

1

K
minimize Z Z und?, (5.1)
k=1

(membership degrees, centroids) < ;
i=

with the constraints
K
S ug=1, ux =0, (5.2)
k=1

where u; denotes the membership degree of the ith unit to the kth cluster and dy is
the Euclidean distance between the ith unit and the centroid which characterizes the
kth cluster.

Ifd ir=crispdit= Euclidean distance between the ith unit and kth centroid computed on
crisp data, then model (5.1)—(5.2) is the fuzzy clustering model suggested by Bezdek
(1974, 1981).

If dy =fuzzy dix= Buclidean distance between the ith unit and the kth centroid calcu-
lated on LR fuzzy data (univariate version of (4.1) and (4.3)), then model (5.1)—(5.2)
coincides with one of the possible fuzzy clustering models for (LR; and LR,) fuzzy
data proposed by Yang and Ko (1996).

Hence, if J,-k =crisp dix then the fuzzy clustering model (5.1)—(5.2) defines a fuzzy
partition of units based on a crisp data set. If di =fuzzy dir then the clustering model
(5.1)—(5.2) determines a fuzzy partition of units starting from a fuzzy data set.

In this work we propose, in a three-way framework, different dynamic versions of
the fuzzy clustering models suggested by Yang and Ko (1996). In particular, the new
models enable us to determine a fuzzy partition of fuzzy multivariate time trajectories,
by considering suitable time weighting systems, objectively determined by the clustering
procedures and computing also the center and the (left and right) spreads of the fuzzy
centroid time trajectories.

5.1. Instantaneous LR fuzzy clustering models

We classify a set of LR fuzzy multivariate time trajectories taking into account their
instantaneous (positional) features. Distinguishing the LR; and LR, cases, we have the
following cross-sectional fuzzy clustering models for LR; and LR, multivariate time
trajectories with their respective iterative solutions.
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5.1.1. LR, case
In this case, the fuzzy clustering problem can be formalized in the following way:

1 K T
minimize Z Z uuﬁiz Gwaida(2,p))
1Uik>1 Wes -
[UTR PR % i=1 k=1 =1
K
2 2 T
:ZZ ol Z (1 wy(lleir — exe||” + [[(eir — i) — (e — Alie)||
i=1 k=1 =1

+||(cit + pry) — (Cy + pl‘k,)Hz) )

K T
D=1, quyg =0 dw=1, w =0
k=1

1 1
_ -1 _ —1
<i—/0 L™ (w)dw, p—/o R (w)dw) ,

where u; denotes the membership degree of the ith LR, fuzzy multivariate time
trajectory with respect to the kth cluster; w; is an instantaneous weight; m > 1 is
a weighting exponent that controls the fuzziness of the obtained fuzzy partition (see
Section 6); ¢, lir, Ty denote, respectively, the vectors of the centers, left and right
spreads of the LR, fuzzy time trajectory of the kth centroid at time ¢.

By solving the previous constrained optimization problem (see proof in Appendix A),
we get the following iterative solutions:

1
ZzT:1(th1dikt()»aP))2 v
Zz_l(lwtldfk/z(iap))Z]

o — 1
o ZIY::I lzlz['_l 21?:1 luﬁld%kt(/tp) 1 ,
Doict 2k luf’lild,zkﬂ(’hp)

S Ber — Al — ) + p(ra — 140)]

Ui =

Cir =

1 2
32 i U
I \
1L — Zi:l g (er + Alip — ¢;)
kt — 1 Z] " 5
i=1 1%
I
. D iy (e + prig — ¢x)
kt — .

1 m
P D iy 1
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5.1.2. LR, case

As in the previous case, the fuzzy clustering model for the LR, time trajectories is
characterized as follows:

1 K
minimize Y Y 1uf Y (wadie(2 p))
1 Uik 51 Wiy N
cunaudry 1K= =
1 K T
:ZZ uly Z ( 1Wt2(||C1it - Clkt”2 + |le2ir — c2lt||2 + |(erir — i)
i=1 k=1 t=1

—(e1er — )| + [|(€2 + pric) — (€are + pric)||?) )

K T
Zl”ikzla 1 = 05 lezzl, 1w =0
=1

t=1

1 1
_ -1 _ -1
(l—/o L™ (w)dw, p—/o R (w)dw) ,

where ¢, ¢, denote, respectively, the vectors of the left and right “centers” of the
LR, fuzzy time trajectory of the kth centroid at time #; the other symbols have the
same meaning as in the previous model (LR, case).

Then, the iterative solutions are (see proof in Appendix B):

1

ik = r RERICENE
ZK thl(lwtldikt()»ap))
k= -
1 EtT:1(1Wt1dik/z(/t,P))2
1
IWr = 7 Ve P s
ZT l Doict Dpe 141 d, (4 p) 1
r—=1 - -
l Zz{:l Zf:l 1 d, (2, p)
ey — S 20 = A = W)] S (26 4 p(ti — 1)
W = , = ’

1 m [ m
2 2> iy

Vi Vi
I Yooy (e + Ay — eiir) . D iy 1l (e 4 pri — Copr)
kt — 7 ) kt — Vi
Aoy Uy P D iy U
Notice that the iterative solutions for the LR; and LR, cases are the same as to the

membership degrees and the time weights, very similar as to the left and right spreads,
but they differ with respect to the centers.

5.1.3. Iterative algorithms
The iterative algorithm of the clustering model in the LR case is shown below.
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Algorithm (LR case).

Step 1: Fix the parameters m > 1, K and ¢ >0 (¢ is a small quantitgl fixed by the
0

researcher), 4, p and choose initial membership degrees lugk and left and

right spreads l,({?) and r,({?) (i=1I, k=1,K;t=1,T).
Step 2: By considering Iug,?), l,E?) and rfg), compute c,(c(t)) and 1W§O).
Step 3: Update 1u§,?) and successively l;c(t)),rg) and iterate the recursive procedure.
Step 4: By denoting with 1”5/[;) the membership degree at the vth iteration, compare 1”1('/?)
with 1u{/"") using any suitable criterion; for instance, |;u,"" — u})| <& (i=
,I;k=1,K). If 1uf}(’+1) is sufficiently close to lufz) : stop; otherwise, go back

to step 2.

For the LR, case, we consider c¢jy,cy, instead of ¢; and the iterative algorithm
follows the same line as in the previous case. These algorithms are analogous to the
algorithms utilized for the fuzzy clustering models proposed by Bezdek (1981) (for
crisp data) and Yang and Ko (1996) (for fuzzy data) and the same properties hold
true. In this connection, we notice that for these models the performances (convergence,
etc.) have been suitably investigated by Bezdek (1980), Bezdek et al. (1987) and Yang
(1993). Moreover, experimental studies have shown that the fuzzy clustering algorithm
of Bezdek is an efficient starting point for the traditional (crisp or hard) clustering
procedure (Heiser and Groenen, 1997). Nonetheless, for our clustering models, we
performed several “tests” and observed that: the values taken by the objective function
in the optimization procedures illustrated in this section decrease monotonically, the
iterative algorithms converge quickly to a local minimum after a reasonable number
of iterations and present a sensibility to starting points similar to the clustering models
suggested by Bezdek (1981) and Yang and Ko (1996) (see also Section 6).

5.2. Velocity fuzzy clustering models

In this case the LR fuzzy time trajectories are clustered according to their longitudinal
features. In particular, since the longitudinal aspect is represented by the “velocity” of
the component time trajectories (center time trajectories and lower and upper bound
time trajectories), we consider this particular feature in the clustering procedure. The
LR, and LR; cases of the velocity clustering models are characterized as follows.

5.2.1. LR, case
In this case, we have the following constrained optimization problem:

I K T
minimize Z Z 2Ujp Z Gwidi(4p))

2Uik 2 Wi, -
Vit s1 Vit o+ Vit i=1 k=1 =2
X T
=3l S (awEllevie = vall? + v = 20vi0) = (v — 2w
i=1 k=1 =2

+[(¥ie = prvie) = (Vi + prVie)|*) )
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K
Zzuik =1, Luyp =0 Zzwz =1, w =0
=1

1 1
_ -1 _ -1
(i—/o L (co)dw,p—/o R (w)dw),

where w;, is a weight pertaining to time interval [# —1,¢]; Vi, Vi, Vi are the vectors
of the velocity of the centers, left and right spreads of the LR fuzzy time trajectory
of the kth centroid in the time interval [¢ — 1,¢].

The iterative solutions are:

1
2Mik = V1)’
T
K > Gwidi(Z, p))?
k=1 T
ZI:Z(ZWtZdik/t(;La p))2
1
2Wt = Vi K )
2
ZT Doict g 2Ui2d (2, p)
=2 7 K
Dict ket 2Upady (2 p)
I
. — Yot 2UR[3eVie — AVie =1 Vie) + PG Vie —r Vie)]
cYkt — Vi b
3 i 2w
I I
Zl‘zl 2“%(cvkt + ;blvit ¢ Vit) Z,‘:] Zu:?]i(cvit + Pr¥it —¢ vkt)
lvkt = 7 m ) Vvkt = Vi m .
A iy 2y P Doy 2u
5.2.2. LR, case
The clustering model is
I K T
minimize Y > ouy Y Gwidiu(ssp))’
iks2Wt» -
¢y Vktscy Vit st Vit sr Vit =1 k=1 =2
K T
:Zzﬂ’l?/z Z (2Wt2(||c‘|vit Ta vkt||2 + ”szil o vkl||2 + ”(Clvit - ;“lvit)
i=1 k=1 =2

—(erVie = V)| + (e Vie + pr¥ie) = (Vi + pr¥i)[|P))

K T
Zzuik =1, ouy =0 E wwe=1, w; =0
=1

t=2

1 1
_ -1 _ —1
(2—/0 L (w)dw,p—/0 R (w)dw),
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where ., Vi, ,Vir are the vectors of the velocity of the left and right “centers” of the
LR, fuzzy time trajectory of the kth centroid in the time interval [t — 1,¢]; the other
symbols are the same as in the LR; case.

In this case the iterative solutions are:

1
2Uik = =1
T
K > Gwidi(Z, p))?
k=1 T "
> 12 Gawiadipi(2,p))?
1
2Wr = 7 Ve —— ,
ZT [Zi—l Py Z”ikZdikt(iaP)]
t'=2 Ji K )
Doict 2kt 2Uig2d i, (2, p)
I Vi
Zizl 2“%[2(31"[[_/1(1"[[_1 th)] Z,‘:] 2”;7([202vit+p(rvit —r th)]
o Vit = 7 " s o Ve = 7 - y
23 2uy 23 2uy
1 I
Zi:l 2y (e, Vir + A1Vit = Vir) Zizl 2 (e, Vie + PrVie —¢y Vie)
lvkt - P} rY t — .

1 1 m 1 m
A D iy 2uy p Doy 2uy

The iterative algorithms for the velocity fuzzy clustering models for LR; and LR,
fuzzy time trajectories are analogous to those illustrated in the instantancous models
(see Section 5.1). Also the performances are the same.

5.3. Simultaneous fuzzy clustering models

By considering simultaneously the instantaneous (positional) and velocity (slope) as-
pects of the LR fuzzy time trajectories, we define the following two kinds of clustering
models.

5.3.1. LR, case
The simultaneous fuzzy clustering model for the LR, case is

2

I K
minimize Z Z uly Z Z (Wisdit (2 p))?
t

i=1 k=1 s=1

K
ugp =1, uy =0 ZA‘WI =1, w =0
1

k= t

Notice that, in this case, the parameters with respect to which the function has to be
minimized are wix, sWr, € by Yets Vies 1kt rVie-
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For this model the iterative solutions are:

B 1
Hik = m=T1)°

S 2 (Wesdie (o p)
M2 S (wisdin (e p)

1

sWe = 1 K >
> it Dkt Uisdi (4, p)
t 7 K A
Dict 2kt Uisdi (2 p)
I , I
= Zi:1 u[3¢i — Ay =i ) + p(rie =1 )] 1, = Z,’:l “;Z(ckt‘F)uljt—cit)
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3> i uy A iy Ui
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1
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5.3.2. LR, case
In this case, we have

K
minimize Z Z ulf Z Z (Wisd (2, p))?

i=1 k=1 s=1

t

K
E Uik = 19 Uik = Oa E sWr = 1: sWt = 0.
k=1

Here, the parameters with respect to which the functions have to be minimized are

Uik > sWi5 Clirs €2kt Yty Xt ¢ Vits ¢ Vit IVit> rVie -
The iterative solutions are:

B 1
Hik = =1y

s 22521 > (wisdin (4 )
PO Zt(swtsdik’t()vap))z
1
Zf:l Zszl uipsd (2 p)
Z{:l ZkK:l s (2 P)

sWe =

2
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5.4. Some remarks

We observe that:

e the iterative solutions for the longitudinal and simultaneous LR; and LR, fuzzy
clustering models are obtained analogously to the respective cross-sectional models;

e by setting in the respective cases (LR; and LR,) A=p= %, we obtain the triangular
and trapezoidal versions of the different dynamic fuzzy clustering models;

e also for the simultaneous models the iterative algorithms perform similarly to the
instantaneous and velocity models.

In conclusion, we make the following points:

(1) For each of the above illustrated clustering models (shown in Sections 5.1, 5.2
and 5.3) a specific choice is made as to the type of membership function and the
values of their parameters. The former choice is in fact an assumption, analogous
to the model setup in traditional statistical inference. The latter one, concerning
the spreads, may either derive from observation (e.g., min and max temperatures
registered in a given day) or be made by the researcher on the basis of empirical
or theoretical considerations (see also the application in Section 6). It should
be noted, in this connection, that the proposed clustering procedures appear to be
sufficiently robust with respect to these choices, on the basis of empirical evidence
so far collected (systematic simulation studies are planned, in this respect). Finally,
it must be remarked that the linear and exponential weights (respectively, the jw;’s
and m), which appear in the objective functions, are optimally determined within
the computational procedure.

(2) A comparative assessment of the three types (instantaneous, velocity and simul-
taneous) of clustering models should be based on the “informational” perspective
mentioned in the Introduction. In fact, the instantaneous and the velocity cluster-
ing models differ essentially as to the way they deal with the evolutive aspects
of the trajectories. The former one looks at the instantaneous distances along
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with their time weights, thereby capturing the similarity/dissimilarity between the
locations of the trajectories at the various time occasions. The latter model, based
on the velocity distances, emphasizes the similarity/dissimilarity between the vari-
ations (geometrically, the slopes) observed for each suitably weighted pair of
successive times. Obviously, the above aspects constitute two different pieces of
information embodied in the data set. When both are considered important the
mixed model can be chosen for the clustering task. In this latter model the ve-
locity and instantaneous components are given the same weight. The estimate
of their respective parameters is obviously computed from a global optimization
point of view. The clusters obtained in this way reflect this choice. However, dif-
ferent weights for the two components might be devised, although this may cause
computational difficulties. A final comment refers to the evaluation of the model
fit in the above framework. It should be observed that the traditional approach
(goodness-of-fit tests, and the like) does not apply in this case. Each clustering
model enhances specific informational features in the data. The parameters of the
model are then optimally determined (see also Section 6 as to the choice of the
number of clusters and the fuzziness coefficient m), and the results interpreted
according to the selected informational perspective.

6. An application: web-advertising data

Advertising on Internet is usually done utilizing three different types of banners:
“static” banners (which synthesize in a single image text and graphic), “dynamic”
banners (characterized by a dynamic gif image, i.e., by a set of images visualized in
sequence) and “interactive” banners (which induce the internet-navigators to participate
in polls, interactive games and so on).

In view of classifying a set of 18 Web sites (“loLit”, “Kataweb.it”, “Tiscalinet.it”,
“Msn.it”, “Virgilio.it”, “Yahoo.it”, “Altavista.it”, “Excite.it”, “Katamail.com”,
“Altavista.com”, “Inwind.it”, “Smscash.it”, “Ibazar.it”, “Repubblica.it”, “Mediaseton-
line.it”, “Yahoo.com”, “Jumpy.it”), on the basis of the subjective judgments of a sam-
ple of 20 Internet navigators concerning the advertising realized by means of different
kinds of banners during the time, we have applied the dynamic LR fuzzy clustering
models. Note that, for each time, we have considered for the three types of banners of
each Web site the median of the judgments expressed by the sample of navigators.

The fuzzy time data array analyzed is

X = {x[jt :(cijt,l,-j,,rij,): i= 1,,18,_]: 1,2,3;t: 1,...,6},

where the units are the 18 Web sites and the variables are the subjective judgments on
the three kinds (static, dynamic and interactive) of banners observed in six consecutive
periods (every fortnight). We have chosen this observation period, because after this
period the banners usually lose their effectiveness, i.e., low click through rates are
obtained (“banner burnout”). Notice that the sample of Internet navigators is the same
for each time (panel data).
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Table 1

Linguistic terms and their corresponding triangular fuzzy numbers
Linguistic variable Fuzzy number
W=Worst 3,3,1)
P=Poor (4,1.5,1.5)
F=Fair (6,1,0.5)
G=Good (8,1.75,0.25)
B—=Best (10’ 230)

Fig. 2. Triangular fuzzy representation of the linguistic terms.

To take into account the subjective or linguistic vagueness expressed by the human
perception a fuzzy coding has been considered (see Table 1 and Fig. 2).

The above fuzzification of the categorical assessments is unavoidably subjective
(based on experience or prior observations), although it reflects common sense in in-
terpreting a qualitative scale such as the one considered in Table 1 (see also Liang and
Wang, 1991; Liou and Wang, 1994; Raj and Kumar, 1999 for further considerations
on this topic). Empirical evidence, so far collected (though further simulation studies
are required), supports the assumption of robustness of the fuzzification procedure with
respect to the results of the clustering techniques suggested in the present context. For
this reason, we have implemented in SAS/IML suitable algorithms, for the different
clustering models.

The outputs of our dynamic double fuzzy clustering models are shown in Fig. 3,
in which we report: the weighting systems obtained for the three different clustering
models, the fuzzy partitions and the graphical representations of the fuzzy partitions.
The terminology “double fuzzy” is here utilized with reference to the fuzziness of both
the data and the clustering model.

Notice that, according to the previous assumptions, we have considered dynamic tri-
angular fuzzy clustering models (A= p:%). Moreover, in order to determine the number
of clusters and the fuzziness coefficient we have suitably extended the cluster-validity
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Instantaneous double fuzzy clustering model

cluster 8

W, s

cluster 1

cluster 2

Instantaneous fuzzy partition

1.10L.IT 0.02 0.94 0.04
2 .KATAWEB.IT 0.04 0.06 0.90
3.TISCALINET.IT 0.08 0.16 0.76
4.TIN.IT 0.42 0.50 0.08
5.MSN.IT 0.17 0.73 0.10
6.VIRGILIO.IT 0.30  0.45 0.25
7.YAH0O.IT 0.87 0.09 0.04
8.ALTAVISTA.IT 0.36 0.55 0.09
9.EXCITE.IT 0.81 0.14 0.05
10.KATAMAIL .COM 0.45 0.16 0.39
11.ALTAVISTA.COM 0.07 0.07 0.86
12.INWIND.IT 0.04  0.07 0.89
13.SMSCASH.IT 0.06 0.16 0.78
14.IBAZAR.IT 0.89 0.04 0.07
15.REPUBBLICA.IT 0.89  0.05 0.06
16.MEDIASETONLINE.IT 0.05 0.77 0.18
17. YAHOO.COM 0.05 0.77 0.18
18.3UMPY.IT 0.15 0.54 0.31

we'ight'ing system:
58 146, 0.179, 0.135, 0.173, 0.209).
Triangular cas 1/2

Cluster number:
Fuzziness coefficient: m=1.35

Velocity double fuzzy clustering model

velocity fuzzy partition

cluster 3
1.I0L.IT 0.01 0.98 0.01
2.KATAWEB.IT 0.05 0.03 0.92
3.TISCALINET.IT 0.05 0.03 0.92
4.TIN.IT 0.05 0.90 0.05
5.MSN.IT 0.01 0.94 0.04
6.VIRGILIO.IT 0.33 0.37 0.30
7.YAH0O.IT 0.99 0.00 0.01
8.ALTAVISTA.IT 0.45 0.23 0.32
9.EXCITE.IT 0.86 0.05 0.09
10.KATAMAIL .COM 0.89 0.0L 0.10
11.ALTAVISTA.COM 0.06 0.04 0.90
12.INWIND.IT 0.04 0.19 0.77
13.SMSCASH.IT 0.02 0.11 0.87
14.1BAZAR.IT 0.96 0.01 0.03
15.REPUBBLICA.IT 0.96 0.01 0.03
16.MEDIASETONLINE.IT 0.01 0.94 0.05
17. YAH0O.COM 0.00 0.98 0.02
18.JUMPY.IT 0.08 0.18 0.74
weighting system:
(0.201, 0.251, 0.180, 0.170, 0.198)
Triangular case: k- /2
Cluster number:
Fuzziness coeff1c1ent m=1.35
cluster 1 cluster 2
Simultaneous double fuzzy clustering model
cluster 3 Simultaneous fuzzy partition
1.I0L.IT 0.00 0.98 0.02
2.KATAWEB.IT 0.04 0.04 0.92
3.TISCALINET.IT 0.06 0.05 0.89
4.TIN.IT 0.08 0.86 0.06
5.MSN.IT 0.02 0.92 0.06
6.VIRGILIO.IT 0.32  0.40 0.28
7.YAH0O.IT 0.98 0.01 0.01
8.ALTAVISTA.IT 0.47 0.30 0.23
9.EXCITE.IT 0.84 0.08 0.07
10. KATAMAIL . COM 0.83 0.02 0.15
11.ALTAVISTA.COM 0.06 0.04 0.90
12.INWIND.IT 0.04 0.13 0.83
13.SMSCASH.IT 0.04 0.13 0.83
14.IBAZAR.IT 0.95 0.01 0.04
15.REPUBBLICA.IT 0.95 0.02 0.03
16.MEDIASETONLINE.IT 0.01 0.91 0.07
17.YAHOO.COM 0.01 0.96 0.03
18.JUMPY.IT 0.12 0.28 0.60

cluster 1

cluster 2

we-lght'mg system

(0 156, 0 188, 0.137, 0.167, 0.206)
(0.203, 0.242, 0.179, 0.171, 0.205)
Triangular case: =1/2

Cluster number: K:
Fuzziness coefficient: m=1.35

Fig. 3. Fuzzy partitions.
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Table 2
Cluster validity for dynamic fuzzy parition

S ey 1 S wadi (2 p))?
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M = set of possible values of m,
K = set of possible values of XK.
1

Note: Obviously, for the triangular case we consider only the LR case, with 2=p = 3.

criterion proposed by Xie and Beni (1991) (see Table 2), obtaining for each of the
three cases the same number of clusters (K = 3) and fuzziness coefficient (m = 1.35).

Concerning the results (see Fig. 3), we note that, for the three different kinds of
dynamic fuzzy clustering, very similar fuzzy partitions have been obtained. In fact,
many Internet Sites present trajectories with similar instantaneous locations and/or
velocities.

In particular, by considering the instantaneous fuzzy partition, we notice that the
following Web-sites belong to the first class (characterized by interactive banners with
medium-good judgment during time) with a high membership degree: Yahoo.it (0.87),
Excite.it (0.81), Ibazar.it (0.89), Repubblica.it (0.89). In the second cluster (mainly
represented by Web-sites with dynamic banner showing an “alternating” behavior) we
record: ITol.it (0.94), Msn.it (0.73), Mediasetonline.it (0.77) and Yahoo.com (0.77).
Finally, in the third cluster (characterized, chiefly, by Web-sites with static banner with
medium-good judgment over the time) the highest membership degrees are obtained
for Kataweb.it (0.90), Tiscalinet.it (0.76), Altavista.com (0.86), Inwind.it (0.89) and
Smscash.it (0.78).
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The previous results are substantially confirmed in the velocity fuzzy partition, though
with a smaller degree of fuzziness.

We notice that the simultaneous fuzzy partition summarizes properly the results
obtained by taking into account the instantaneous (positional) and velocity (shape)
features of the examined time trajectories. Moreover, in the simultaneous case the
ordinal structure of the weighting system is essentially equivalent to those obtained
in the previous two models. This is essentially due to the above-mentioned similarity
between the location and variation aspects of the observed trajectories. Finally, by
considering the Web-advertising data set, we tested the computational performances
of the suggested fuzzy clustering models, fixing m =135, K =3, 1=p = % and
£ =10.0001. In order to perform the algorithm, the starting points have been generated
randomly by a uniform distribution and the following stopping rules have been adopted:
™D — 4| < & (instantaneous model), |ull™" —; ull’| < & (velocity model) and
g, — uf};)| < ¢ (simultaneous model). In Fig. 4, for each of the three models, we
show different graphics, in which we represent, respectively:

e the variations of the number of iterations needed to reach a local minimum solution
for different values of the weighting exponent m (that controls the fuzziness of the
fuzzy partition);

o the value of the objective function for different values of m;

e the value of the objective function for different starting points (for m = 1.35) (we
have tried 20 starting points have been tried and a continuous representation has
been utilized for an easier visualization);

e the value of the objective function for different iteration cycles (for m = 1.35) (in
order to show that the objective function decreases monotonically).

The results shown in Fig. 4 confirm substantially the computational characteristics
indicated in Section 5. In particular, for each of the considered models, the value of
the objective function decreases monotonically with increasing m and with increasing
number of cycles (for m = 1.35). Instead, it remains constant over different starting
points (for m =1.35). Moreover, we note that the number of iterations, for all models,
is reasonably small.

7. Concluding remarks

A highly flexible approach to clustering multivariate time trajectories has been de-
scribed. The main features of this approach are as follows:

(1) The explicit recognition of the common informational nature of the ingredients
of the data analytic procedure (and of the uncertainty associated with them, here
treated according to a fuzzy perspective): the data and the -clustering
model.

(2) The adoption of a suitable class of membership functions representing the fuzzi-
ness of the observed trajectories (i.e., the LR functions).
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(3) The construction of appropriate dissimilarity measures between fuzzy trajectories,
taking into account various features such as instantaneous location and dynamic
evolution.

(4) The extensive use of a generalized Bezdek criterion as the basis for the clustering
process.

(5) The possibility of applying the proposed clustering models in various observational
settings, including the case where qualitative data are collected (such as subjective
judgments, ordinal categories, mixed data). Obviously, this requires an adequate
fuzzification of the qualitative data, as illustrated in Section 6.

One or more of the above mentioned features can be suitably modified in view of
improving the performance of the proposed class of clustering models (e.g., the dis-
similarity measures or the clustering criterion). This is the subject of future work in
this field of methodological research.
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Appendix A. Proof of the iterative solutions for the cross-sectional LR; fuzzy clustering
model

Let us fix the values of ¢, Iy, 1y and (w,. By considering the Lagrangian function

I K T K
Lim,2,p)=> > 1y (wadi(h,p))* = 6 (Z i — 1)
k=1

i=1 k=1 t=1

(where ¢ is the Lagrange multiplier) and setting the first derivatives with respect to
1 and O equal to zero, we get, respectively, mmj’,’,;l E?zl(lw,ldﬂk:t(i,p))z —-0=0
and Zle 1ix — 1 =0 and then we obtain ju.

Analogously, let us fix ju;; and ¢y, li;, 1. By considering the Lagrangian function

I K T T
Lim, 2op) =YY Y (widia(2sp))* — 7 (Z W — 1)
t=1

i=1 k=1 t=1

(where y is the Lagrange multiplier) and setting the first derivatives with respect to ;w;
and y equal to zero we have: 2w, 20 SO i d3 (A p)—y=0and 3| 1w, —
1 =0 and then ;w, can be derived.
Finally, in order to obtain ¢y, li; and ry, we solve the following unconstrained
optimization (minimization) problem with respect to ¢y, I and ry:
I K

T
minimizez Z uly Z (wadu(2. p))?

[P0 PP ¢
R k=1 =1
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K T
:E E w? mmlmlzeg umdz, (2, p)
Crelie T i
k=1 t=1
K T
= E E w? | minimize Fy,(m, 2, p) | , (A.1)
1 ol e

where
I

Fkl(ma ;“7 p) = Z ”;Zld?kt(i» p)’

i=1
ldlzkt()”a p)= HCn—Ckaz—F ||(ci,—)»l,',)—(ck,—)»lk,)||2+ ||(ci,+pr,-t)—(ck,+prk,)||2
= 3(cir—Cir )/(Ciz — € ) —2M(Ci — i )/(lit —1i) +)v2(lit — i )l(lit —li)
+2p(€i — ) (Xir — i) + P2 (0i — i) (Kig — T

Then, setting the first derivatives of Fy,(m, 4, p) with respect to ¢, Iy, Ii equal to zero,
we get the iterative solutions for ¢y, 1y, and ry,.

Appendix B. Proof of the iterative solutions for the cross-sectional LR, fuzzy clustering
model

The membership degrees ju; and the time weights ;w, are obtained analogously
to LR;. Also ¢, €, Iz and ry are obtained as in the LR; case, by solving the
minimization problem (A.1), in which

1d3,(2 p) = |t — erpe|* + le2ir — ean|* + || (erie — i) — (err — i)
+{I(e2i + pric) — (Catr + pric)|?
=2(¢c1ir — €)' (C1ir — 1) + 2(€2i — €211)' (€20 — €211)
=22(¢1ir — Cue) (Uit — W) + 22Uir — V) (i — Vo)

+2p(e2i — CZIZ)/(rit —TIy)+ Pz(rit - l'kt)l(l'it —Tk).
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