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Abstract

Fuzzy multivariate time trajectories are de4ned. For a suitable class, called LR time trajec-
tories, three types of dissimilarity measures are introduced: the instantaneous, the velocity and
the simultaneous measures, respectively. Correspondingly, three di6erent kinds of dynamic fuzzy
clustering models are suggested, based on a generalization of the Bezdek and Yang and Ko
objective functions for fuzzy clustering. The solutions and characteristics of the three models are
then illustrated. A comparative appraisal of their practical meaning is proposed by means of an
application to the time pattern of the subjective judgments expressed by a sample of web navi-
gators on di6erent types of banners. Some indications for future research in this methodological
domain are 4nally provided.
c© 2003 Elsevier Science B.V. All rights reserved.

Keywords: LR fuzzy time arrays; LR fuzzy time trajectories; Dynamic fuzzy clustering; Cross sectional
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1. Introduction

Fuzzy clustering was 4rstly introduced, in a two-way framework, by Bezdek (1974,
1981) and Dunn (1974). Successively, many proposals have been made in this connec-
tion (see, e.g., Roubens, 1978; Windham, 1985; Trauwaert, 1987; Hathaway and Bezdek,
1988; Hathaway et al., 1989; Bobrowski and Bezdek, 1991; Jajuga, 1991; Miyamoto
and Agusta, 1995; Rousseeuw et al., 1995, 1996; Miyamoto and Umayahara, 1998).
In these works, the various authors suggest fuzzy clustering methods in order to clas-
sify numerical data (hard or crisp data). Recently, some interesting contributions have
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been made concerning interval data, by considering fuzzy (Yang and Ko, 1996; Yang
and Liu, 1999; Sato and Sato, 1995), symbolic (Ichino and Yaguchi, 1994; Ravi
and Gowda, 1999) or mixed (fuzzy and symbolic) (El-Sonbaty and Ismail, 1998)
approaches.

In this paper, we focus our attention on the three-way fuzzy clustering problem, in
which the occasions are linked by an ordinal structure. Also in this respect some re-
cent works have been presented (KoIsmelj, 1986; KoIsmelj and Batagelj, 1990; Saporta
and Lavallard, 1996; Sato and Sato, 1994, 1998; D’Urso, 2001). In particular, here
we propose three fuzzy clustering models for a general class of multivariate fuzzy
time trajectories: the so-called LR fuzzy time trajectories. Notice that our fuzzy clus-
tering models are three-way extensions of the fuzzy models suggested by Yang and
Ko (1996), when the third way is described by time occasions.

Within an “informational approach” (Coppi and D’Urso, 2002), we may state that
our models can cope with a twofold typology of fuzziness: fuzzy theoretical information
(the method is fuzzy) and fuzzy empirical or observational information (the data are
fuzzy).

The structure of the paper is characterized as follows: in Section 2 we de4ne the LR
fuzzy time arrays and successively (Sections 3 and 4) the LR fuzzy multivariate time
trajectories and the dissimilarity measures allowing the comparison among these trajec-
tories. The fuzzy clustering models are proposed in Section 5. A suggestive application
to time data concerning web-advertising is also shown.

2. LR fuzzy time arrays

Following the approach adopted in literature for dealing with fuzzy clustering of
(nondynamic) fuzzy data (Yang and Ko, 1996; Yang and Liu, 1999), we distinguish
two types of LR fuzzy data time arrays: the LR1 fuzzy time array (or LR fuzzy numbers
time array) and the LR2 fuzzy time array (or LR fuzzy intervals time array). These
are the time three-way extensions of the LR fuzzy data de4ned, for instance, in Dubois
and Prade (1988) and Zimmermann (1996).

De�nition 1. An LR1 fuzzy data time array (same units × same (fuzzy) variables ×
times) is de4ned as follows:

X ≡ {xijt = (cijt ; lijt ; rijt)LR: i = 1; I ; j = 1; J ; t = 1; T};
where i; j and t denote the units, variables and times, respectively; xijt =(cijt ; lijt ; rijt)LR
represents the LR1 fuzzy variable j observed on the ith unit at time t, where cijt denotes
the center and lijt and rijt the left and right spread, respectively, with the following
membership function:

�(ũ ijt) =




L
(
cijt − ũ ijt

lijt

)
; ũ ijt6 cijt (lijt ¿ 0);

R
(
ũ ijt − cijt

rijt

)
; ũ ijt¿ cijt (rijt ¿ 0);
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where L (and R) is a decreasing “shape” function from R+ to [0; 1] with L(0) =
1;L(zijt)¡ 1 for all zijt ¿ 0; ∀i; j; t;L(zijt)¿ 0 for all zijt ¡ 1 ∀i; j; t; L(1) = 0 (or
L(zijt)¿ 0 for all zijt and L(+∞) = 0).

Moreover, an LR2 fuzzy data time array is de4ned as follows:

X ≡ {xijt = (c1ijt ; c2ijt ; lijt ; rijt)LR: i = 1; I ; j = 1; J ; t = 1; T};
where xijt = (c1ijt ; c2ijt ; lijt ; rijt)LR represents the LR2 fuzzy variable j observed on the
ith unit at time t; c1ijt and c2ijt denote, respectively, the left and right “center” and lijt
and rijt the left and right spread, respectively, with the following membership function:

�(ũ ijt) =




L
(
c1ijt − ũ ijt

lijt

)
; ũ ijt6 c1ijt (lijt ¿ 0);

1; c1ijt6 ũ ijt6 c2ijt ;

R
(
ũ ijt − c2ijt

rijt

)
; ũ ijt¿ c2ijt (rijt ¿ 0):

Notice that the concept of membership function belongs to the framework of “fuzzy
logic”, which is an extension of Boolean logic where the concepts of true and false are
replaced by that of partial truth. Boolean logic can be represented by set theory, and
in an analogous manner fuzzy logic is represented by fuzzy set theory. This approach
was originally developed for the description of natural language (Dubois and Prade,
1988; Everitt et al., 2001; Ruspini et al., 1998; Zadeh, 1965; Zimmermann, 1996).

A particular case of LR1 fuzzy data time array is the triangular one (with triangular
membership function).

In fact, for an LR1 fuzzy time data array

X ≡ {xijt = (cijt ; lijt ; rijt)LR: i = 1; I ; j = 1; J ; t = 1; T};
if L and R are of the form

L(z) = R(z) =

{
1 − z; 06 z6 1;

0 otherwise;
(2.1)

then X is a triangular fuzzy time array, with membership function (see Fig. 1):

�(ũ ijt) =




1 − cijt − ũ ijt

lijt
; ũ ijt6 cijt (lijt ¿ 0);

1 − ũ ijt − cijt
rijt

; ũ ijt¿ cijt (rijt ¿ 0):

A particular case of LR2 fuzzy time data array is the trapezoidal one (with trapezoidal
membership function).

In fact, for an LR2 fuzzy time data array

X ≡ {xijt = (c1ijt ; c2ijt ; lijt ; rijt)LR: i = 1; I ; j = 1; J ; t = 1; T};
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Fig. 1. Triangular and trapezoidal membership functions at time t.

if L and R are of the form

L(z) = R(z) =

{
1 − z; 06 z6 1;

0 otherwise;
(2.2)

then X is a trapezoidal fuzzy time array, with membership function (see Fig. 1):

�(ũ ijt) =




1 − c1ijt − ũ ijt

lijt
; ũ ijt6 c1ijt (lijt ¿ 0);

1; c1ijt6 ũ ijt6 c2ijt ;

1 − ũ ijt − c2ijt

rijt
; ũ ijt¿ c2ijt (rijt ¿ 0):

Other particular cases of LR1 and LR2 fuzzy time data arrays can be obtained (e.g.
with normal or parabolic membership functions) (see Zimmermann, 1996).

For each kind (LR1 and LR2) of fuzzy time data array, we can consider the following
component-arrays:

LR1 case:

C ≡ {cijt : i = 1; I ; j = 1; J ; t = 1; T} (time array of the centers);

L ≡ {lijt : i = 1; I ; j = 1; J ; t = 1; T} (time array of the left spreads);

R ≡ {rijt : i = 1; I ; j = 1; J ; t = 1; T} (time array of the right spreads):

By combining the indices I; J and T , we can obtain from X the following stacked
fuzzy matrices: X ≡ {Xi}i=1; I ; X ≡ {Xt}t=1;T ; X ≡ {Xj}j=1; J , with Xi ≡ {xijt : j =
1; J ; t = 1; T}; Xt ≡ {xijt : i = 1; I ; j = 1; J};Xj ≡ {xijt : i = 1; I ; t = 1; T}.

LR2 case:

C1 ≡ {c1ijt : i = 1; I ; j = 1; J ; t = 1; T} (time array of the left “centers”);

C2 ≡ {c2ijt : i = 1; I ; j = 1; J ; t = 1; T} (time array of the right “centers”);

L and R have the same algebraic form of the time arrays of the left and right spreads
de4ned in the LR1 case.
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3. LR fuzzy multivariate time trajectories

Let RJ+1 be the vectorial space (space of units), where the axes are referred to the
J variables and time. In this space we represent each unit i by means of the following
vectors, for each t:

cyit = (ci1t ; : : : ; cijt ; : : : ; ciJt ; t)′; lyit = (li1t ; : : : ; lijt ; : : : ; liJt ; t)′;

ryit = (ri1t ; : : : ; rijt ; : : : ; riJt ; t)′ (LR1 case);

c1yit = (c1i1t ; : : : ; c1ijt ; : : : ; c1iJt ; t)′; c2yit = (c2i1t ; : : : ; c2ijt ; : : : ; c2iJt ; t)′

lyit = (li1t ; : : : ; lijt ; : : : ; liJt ; t)′; ryit = (ri1t ; : : : ; rijt ; : : : ; riJt ; t)′ (LR2 case):

Thus the two following cases can be considered.

1. By 4xing t, the scatters

fNI (t) ≡ {(cyit‖lyit‖ryit)}i=1; I (LR1 case);

fNI (t) ≡ {(c1yit‖c2yit‖lyit‖ryit)}i=1; I (LR2 case)

represent the matrix Xt . Letting t vary within its range, the scatters fNI (t) are placed
on T hyperplanes parallel to the sub-space RJ .

2. By 4xing i,

fNT (i) ≡ {(cyit‖lyit‖ryit)}t=1;T (LR1 case);

fNT (i) ≡ {(c1yit‖c2yit‖lyit‖ryit)}t=1;T (LR2 case)

represent the matrix Xi. Each scatter describes the LR1 (LR2) fuzzy multivariate
time trajectories of object i across the time and

{fNT (i) ≡ {(cyit‖lyit‖ryit)}t=1;T}i=1; I (LR1 case);

{fNT (i) ≡ {(c1yit‖c2yit‖lyit‖ryit)}t=1;T}i=1; I (LR2 case)

represent, respectively, the set of the LR1 and LR2 fuzzy multivariate time tra-
jectories. Each LR1 (LR2) fuzzy time trajectory fNT (i) crosses the T hyperplanes
parallel to RJ .
A geometrical representation of the triangular version of the previous situations is
shown in Coppi and D’Urso (2002).

4. Dissimilarity measures for LR fuzzy multivariate time trajectories

In literature, several geometrical measures and topological aspects have been gener-
alized to the fuzzy framework (Diamond and Kloeden, 1994; Goetshel and Voxman,
1983; Rosenfeld, 1979). By restricting our discussion to suitable distance measures
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between fuzzy data, we can start by considering the Hausdor6-metric:

dH(A; B) = max
{

sup
a∈A

inf
b∈B

‖a− b‖; sup
b∈B

inf
a∈A

‖a− b‖
}
;

where A; B ⊆ Rd denote crisp sets (Diamond and Kloeden, 1994; NSather, 2000;
Zadeh, 1965; Zimmermann, 1996). By taking into account the so-called �-cuts the
Hausdor6-metric dH can be generalized to fuzzy numbers F;G, where F(or G) : R →
[0; 1]:

dq(F;G) =




[∫ 1

0
(dH(F�; G�))q d�

]1=q

; q∈ [1;∞);

sup
�∈[0;1]

dH(F�; G�); q = ∞;

where the crisp set F� ≡ {x∈Rd: F(x)¿ �}; �∈ (0; 1], is called the �-cut of F (NSather,
2000; Yang and Ko, 1996; Zadeh, 1965).

Another kind of distance measures can be de4ned via support functions (NSather,
2000).

Then, by considering LR1 and LR2 fuzzy data at time t (see De4nition 1) di6erent
distances can be derived. In particular, we consider the squared Euclidean distances
described in the following de4nition.

De�nition 2. With reference to the fuzzy time array X, we introduce, for each type
of X, the following (squared) distances, which are extensions of Yang-Ko’s (squared)
distance (Yang and Ko, 1996):

LR1 case:

1d2
ii′t( ; !) = ‖cit − ci′t‖2 + ‖(cit −  lit) − (ci′t −  li′t)‖2

+‖(cit + !rit) − (ci′t + !ri′t)‖2; (4.1)

2d2
ii′t( ; !) =

‖(cit − cit−1) − (ci′t − ci′t−1)‖2

+‖[(cit −  lit) − (cit−1 −  lit−1)] − [(ci′t −  li′t) − (ci′t−1 −  li′t−1)]‖2

+‖[(cit + !rit) − (cit−1 + !rit−1)] − [(ci′t + !ri′t) − (ci′t−1 + !ri′t−1)]‖2

=‖cvit −c vi′t‖2 + ‖(cvit −  lvit) − (cvi′t −  lvi′t)‖2

+‖(cvit + !rvit) − (cvi′t + !rvi′t)‖2; (4.2)

where

 =
∫ 1

0
L−1(!) d!; ! =

∫ 1

0
R−1(!) d!; cit = (ci1t ; : : : ; cijt ; : : : ; ciJt)′;

ci′t = (ci′1t ; : : : ; ci′jt ; : : : ; ci′Jt)′; lit = (li1t ; : : : ; lijt ; : : : ; liJt)′;
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li′t = (li′1t ; : : : ; li′jt ; : : : ; li′Jt)′; rit = (ri1t ; : : : ; rijt ; : : : ; riJt)′;

ri′t = (ri′1t ; : : : ; ri′jt ; : : : ; ri′Jt)′;

cvit = (cit − cit−1); cvi′t = (ci′t − ci′t−1);

lvit = (lit − lit−1); lvi′t = (li′t − li′t−1);

rvit = (rit − rit−1); rvi′t = (ri′t − ri′t−1)

are, respectively, the vectors of the so-called velocities of the centers and left and right
spreads pertaining to the fuzzy time trajectory of the ith and i′th units.

LR2 case:

1d
2
ii′t( ; !) = ‖c1it − c1i′t‖2 + ‖c2it − c2i′t‖2 + ‖(c1it −  lit) − (c1i′t −  li′t)‖2

+‖(c2it + !rit) − (c2i′t + !ri′t)‖2; (4.3)

2d2
ii′t( ; !) = ‖c1vit −c1 vi′t‖2 + ‖c2vit −c2 vi′t‖2 + ‖(c1vit −  lvit) − (c1vi′t −  lvi′t)‖2

+‖(c2vit + !rvit) − (c2vi′t + !rvi′t)‖2; (4.4)

where

c1it = (c1i1t ; : : : ; c1ijt ; : : : ; c1iJt)′; c2it = (c2i1t ; : : : ; c2ijt ; : : : ; c2iJt)′;

c1i′t = (c1i′1t ; : : : ; c1i′jt ; : : : ; c1i′Jt)′; c2i′t = (c2i′1t ; : : : ; c2i′jt ; : : : ; c2i′Jt)′;

c1vit = (c1it − c1it−1); c2vit = (c2it − c2it−1);

c1vi′t = (c1i′t − c1i′t−1); c2vi′t = (c2i′t − c2i′t−1):

Notice that the concept of “velocity” can be de4ned in the following way. By consid-
ering the ith time trajectory of the centers, the velocity, in the time interval [t−1; t], is
cvit=(cit−cit−1)=(t−(t−1))=(cit−cit−1). Then, for each variable j; cvijt can be greater
(less) than zero according to whether the ith unit presents an increasing (decreasing)
rate of change of its position in the time interval [t − 1; t]; cvijt = 0 if the unit does
not change position from t − 1 to t. Moreover, note that, for any “component” time
trajectory (“center” time trajectory, “lower bound” time trajectory, “upper bound” time
trajectory) the velocity pertaining to each pair of successive time points represents the
slope of the straight line passing through them: if the velocity is negative (positive) the
slope will be negative (positive) and the angle made by each segment of the trajectory
with the positive direction of the t-axis will be obtuse (acute) (Coppi and D’Urso,
2000, 2002).

The squared Euclidean distances (4.1) and (4.3) compare, respectively, the positions
at time t of the centers (LR1 case) and left and right “centers” (LR2 case) and of the
lower and upper bounds (center − left spread and center + right spread) (LR1 and
LR2 cases) between each pair of fuzzy time trajectories.

The squared Euclidean distances (4.2) and (4.4) compare, respectively, the slopes
(velocities) in each time interval [t − 1; t] of the segments of each “component” time
trajectory concerning the ith unit with the corresponding slopes of the i′th unit.
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Notice that, the previous (squared) distances summarize the fuzziness embodied in
each elementary observation of the fuzzy time array X, through three parameters (cen-
ter, left spread, and right spread for the LR1 case) or four parameters (left and right
“centers”, left spread, and right spread for the LR2 case) and the shape of the corre-
sponding membership functions (involving suitable values for the shape-parameters  
and !).

On the basis of the above distances we may de4ne appropriate dissimilarity measures
between fuzzy multivariate time trajectories, in the following way.

De�nition 3. The following dissimilarity measures between LR1(LR2) fuzzy multivari-
ate time trajectories are de4ned:

T∑
t=1

(1wt1dii′t( ; !))2 (instantaneous dissimilarity measure); (4.5)

T∑
t=2

(2wt2dii′t( ; !))2 (velocity dissimilarity measure); (4.6)

2∑
s=1

∑
t

(swtsdii′t( ; !))2 (simultaneous dissimilarity measure); (4.7)

where 1wt; 2wt; swt are suitable weights to be computed in each case (see Section 5).
In particular, dissimilarity (4.5) takes into account, for the LR1 and LR2 cases, the

(squared) instantaneous distances (4.1) and (4.3), by considering the whole set of the
T time occasions. Each occasion is weighted by means of 1wt . This weight can be
suitably determined in an objective way, as shown in Section 5.

The dissimilarity (4.6) considers, for all time intervals [t−1; t]; t=2; T , the (squared)
velocity distances (4.2) (LR1 case) and (4.4) (LR2 case). To each interval a weight
2wt is associated, whose value is computed in an objective manner (see Section 5).

Finally, the dissimilarity measure (4.7) represents, in the observed time domain, a
compromise between the (squared) instantaneous and velocity distances. The corre-
sponding weighting system swt , which is determined within the appropriate clustering
procedure (see Section 5), takes simultaneously into account the e6ects of the single
time occasions and time intervals and of the two types of distances (instantaneous and
velocity distances).

Concerning the above dissimilarity measures, it is useful to underline the following
points:

(1) Attention should be paid to problems of heterogeneity, with particular reference
to the variables (di6erent variances and/or units of measurement). An appropriate
pre-processing of the data may be required, such as normalization/standardization.
In this connection, we can consider di6erent types of pre-processing procedures
(Kiers, 2000; Harshman and Lundy, 1984) for centers and (left and right)
spreads.
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• Centering of the centers, by taking into account the average of the centers. For
instance, for the LR1 case, we can use the following transforms:

c̃ijt = cijt − Uc:jt ;

c̃ijt = cijt − Uc::t ;

where the subscript dot is used to indicate the mean across i = 1; I( Uc:jt) and
across i = 1; I and j = 1; J ( Uc::t).

• Normalization of the centers, by dividing the centers, for instance cijt (LR1

case), by the normalization factor Uc:j:. In this case, we obtain

˜̃cijt =
cijt
Uc:j:

:

• Standardization of the centers, by using, for instance,

c∗ijt =
c̃ijt

1=I
√∑I

i=1 c̃2
ijt

:

• Normalization of the spreads, by setting, for example,

l̃ijt =
lijt
Ul:j:

; r̃ijt =
rijt
Ur:j:

:

Normalization of the centers and spreads, as illustrated above, is particularly indi-
cated for coping with problems of heterogeneity of units of measurement and/or of
size of the variables. In fact, by means of the suggested transform of the data we
get a sort of index numbers which allow us to keep the information due to the vari-
ability of the di6erent variables (within and across the occasions), while getting rid
of possible di6erences in their overall mean value or in their type of measurement.
In any case, when choosing a speci4c transform of the original data, we should
consider the particular informational features we would like to keep in or elimi-
nating from the analysis.

(2) By considering (2.1), (2.2),  =
∫ 1

0 L−1(!) d!; ! =
∫ 1

0 R−1(!) d! we obtain, for
both the triangular and trapezoidal cases,  =!= 1

2 . Then, by substituting  =!= 1
2 in

dissimilarities (4.1), (4.2) and (4.3), in the LR1 or LR2 cases, we get, respectively,
the triangular and trapezoidal versions of the considered dissimilarity measures.

Particular cases of the previous distance and dissimilarity measures (4.1)–(4.7) for
fuzzy time trajectories with triangular membership functions have been studied by
Coppi and D’Urso (2002). These measures are extensions of the Diamond’s distance
(Diamond, 1988).

Notice that, other distance measures between fuzzy time trajectories can be obtained
by generalizing the measures comparing the respective membership functions. In the
static (non dynamic) case, these distances, can be classi4ed according to di6erent ap-
proaches (Bloch, 1999; Zwich et al., 1987): the “functional approach”, in which the
membership functions are compared by means of Minkowski and Canberra distances
extended to the fuzzy case (Dubois and Prade, 1983; Kaufman, 1973; Lowen and
Peeters, 1998; Pappis and Karacapilidis, 1993); the “information theoretic approach”,
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based on the de4nition of fuzzy entropy (De Luca and Termini, 1972) and the “set
theoretic approach”, based on the concepts of fuzzy union and intersection (Chen
et al., 1995; Pappis and Karacapilidis, 1993; Wang, 1997; Wang et al., 1995; Zwich
et al., 1987).

In the present work, we prefer using the measures (4.1)–(4.7), for the following
reasons:

(1) They take into account, simultaneously, the shape of the membership function
(through the corresponding parameters  and !) and the component parameters
characterizing the examined fuzzy data (centers (LR1 case), left and right “centers”
(LR2 case), left and right spreads (LR1 and LR2 cases)).

(2) A di6erent weighting system is provided for the centers and for the spreads.
In particular, as it is reasonable to think, the weights of the centers are larger
than those pertaining to the spreads. The stronger contribution of the centers
is immediately perceivable when considering, for instance, the symmetric trian-
gular and trapezoidal cases of the squared distances (4.1) and (4.3) (by 4xing
 = ! = 1

2 ; lit = rit ; li′t = ri′t). In fact, since (4.1) and (4.3) can be rewritten as
follows:

1d2
ii′t( ; !)

=




3(cit − ci′t)′(cit − ci′t) − 2 (cit − ci′t)′(lit − li′t)

+ 2(lit − li′t)′(lit − li′t) + 2!(cit − ci′t)′(rit − ri′t)

+!2(rit − ri′t)′(rit − ri′t) (LR1 case)

2(c1it − c1i′t)′(c1it − c1i′t) − 2(c2it − c2i′t)′(c2it − c2i′t)

−2 (c1it − c1i′t)′(lit − li′t) +  2(lit − li′t)′(lit − li′t)

+2!(c2it − c2i′t)′(rit − ri′t) + !2(rit − ri′t)′(rit − ri′t) (LR2 case);

we get, by 4xing sit ≡ lit = rit and si′t ≡ li′t = ri′t :

1d2
ii′t

(
1
2
;
1
2

)

=




3(cit − ci′t)′(cit − ci′t) + 1
2 (sit − si′t)′(sit − si′t)

(symmetric triangular case);
(4.8)

2(c1it − c1i′t)′(c1it − c1i′t) + 2(c2it − c2i′t)′(c2it − c2i′t)

+1
2 (sit − si′t)′(sit − si′t) (symmetric trapezoidal case):

(4.9)

Formulae (4.8) and (4.9) emphasize, immediately, the stronger contribution of the
centers. Analogous considerations can be extended to (4.2), (4.4), (4.5), (4.6) and
(4.7).
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(3) The proposed measures can be applied to a wide family of fuzzy time data (LR
fuzzy time arrays).

(4) The (squared) distances (4.1)–(4.4) are well adapted to dynamic situations. In fact,
by means of them we may set up appropriate dissimilarity measures (4.5)–(4.7)
taking into account the relevant features of the trajectories (namely the location
and variation aspects) which could not be captured had we used, instead, other
types of distances (e.g., those based on membership functions).

(5) The suggested measures allow an easy implementation of the di6erent dynamic
fuzzy clustering algorithms.

In correspondence with the previous dissimilarity measures (4.5), (4.6), (4.7), we pro-
pose three di6erent kinds of dynamic fuzzy clustering models:

(1) instantaneous (positional) LR fuzzy clustering model,
(2) velocity (slope) LR fuzzy clustering model,
(3) simultaneous (instantaneous—velocity) LR fuzzy clustering model.

These clustering models can classify a set of fuzzy time trajectories, belonging to the
LR family, de4ning fuzzy partitions that take into account the instantaneous (positional)
and/or the velocity characteristics of the trajectories.

5. Dynamic three-way LR fuzzy clustering models

In several real situations, there are many cases in which the data involve subjec-
tive or linguistic vagueness (for instance, data based on human perceptions). These
data embody a certain degree of fuzziness (fuzzy data). They are nonprecise data or
data a6ected by a source of uncertainty which is not due to randomness (Ruspini
et al., 1998). In this section, we analyze the problem of clustering objects for which
fuzzy data have been observed over a time period. In addition, we consider a clus-
tering model which is fuzzy too. In the “informational” perspective, we are assum-
ing that both the theoretical information (the model) and the empirical information
(the data) are fuzzy. Concerning the fuzzy theoretical information, we observe that
“in fuzzy clustering, objects are not assigned to a particular cluster: they possess a
membership function indicating the strength of membership in all or some of the
clusters” in opposition to the traditional (nonfuzzy) or, in fuzzy clustering jargon,
crisp or hard clustering techniques in which “strength of membership has been either
0 or 1”. Moreover, “fuzzy clustering has two main advantages over crisp methods.
Firstly, memberships can be combined with other information. In particular, in the spe-
cial case where memberships are probabilities, results can be combined from di6erent
sources using Bayes’ theorem. Secondly, the memberships for any given object indicate
whether there is a ‘second best’ cluster that is almost as good as the ‘best’ cluster,
a phenomenon which is often hidden when using other clustering techniques” (Everitt
et al., 2001).

Fuzzy clustering for crisp data has been 4rstly introduced by Bezdek (1974, 1981)
and Dunn (1974). Successively, several models have been set up in this connection
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(e.g., Roubens, 1978; Windham, 1985; Trauwaert, 1987; Hathaway and Bezdek, 1988;
Hathaway et al., 1989; Bobrowski and Bezdek, 1991; Jajuga, 1991; Miyamoto and
Agusta, 1995; Rousseeuw et al., 1995, 1996; Miyamoto and Umayahara, 1998).

The fuzzy clustering problem for fuzzy data not involving time has been analyzed
by di6erent authors (see, for instance, Sato and Sato, 1995; Yang and Ko, 1996). In
particular, Yang and Ko (1996) have extended the fuzzy clustering model proposed by
Bezdek (1974, 1981), and suggested di6erent fuzzy clustering models for classifying
LR fuzzy data.

In particular, the fuzzy clustering problem, in a two-way context, can be formalized
in a general form in the following way:

minimize
(membership degrees; centroids)

I∑
i=1

K∑
k=1

umik d̃
2
ik (5.1)

with the constraints

K∑
k=1

uik = 1; uik¿ 0; (5.2)

where uik denotes the membership degree of the ith unit to the kth cluster and d̃ik is
the Euclidean distance between the ith unit and the centroid which characterizes the
kth cluster.

If d̃ik=crispdik= Euclidean distance between the ith unit and kth centroid computed on
crisp data, then model (5.1)–(5.2) is the fuzzy clustering model suggested by Bezdek
(1974, 1981).

If d̃ik =fuzzy dik= Euclidean distance between the ith unit and the kth centroid calcu-
lated on LR fuzzy data (univariate version of (4.1) and (4.3)), then model (5.1)–(5.2)
coincides with one of the possible fuzzy clustering models for (LR1 and LR2) fuzzy
data proposed by Yang and Ko (1996).

Hence, if d̃ik =crisp dik then the fuzzy clustering model (5.1)–(5.2) de4nes a fuzzy
partition of units based on a crisp data set. If d̃ik =fuzzy dik then the clustering model
(5.1)–(5.2) determines a fuzzy partition of units starting from a fuzzy data set.

In this work we propose, in a three-way framework, di6erent dynamic versions of
the fuzzy clustering models suggested by Yang and Ko (1996). In particular, the new
models enable us to determine a fuzzy partition of fuzzy multivariate time trajectories,
by considering suitable time weighting systems, objectively determined by the clustering
procedures and computing also the center and the (left and right) spreads of the fuzzy
centroid time trajectories.

5.1. Instantaneous LR fuzzy clustering models

We classify a set of LR fuzzy multivariate time trajectories taking into account their
instantaneous (positional) features. Distinguishing the LR1 and LR2 cases, we have the
following cross-sectional fuzzy clustering models for LR1 and LR2 multivariate time
trajectories with their respective iterative solutions.
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5.1.1. LR1 case
In this case, the fuzzy clustering problem can be formalized in the following way:

minimize
1uik ;1wt ;
ckt ;lkt ;rkt

I∑
i=1

K∑
k=1

1umik

T∑
t=1

(1wt1dikt( ; !))2

=
I∑

i=1

K∑
k=1

1umik

T∑
t=1

(
1
w2
t (‖cit − ckt‖2 + ‖(cit −  lit) − (ckt −  lkt)‖2

+‖(cit + !rit) − (ckt + !rkt)‖2)
)

K∑
k=1

1uik = 1; 1uik¿ 0;
T∑
t=1

1wt = 1; 1wt¿ 0

(
 =

∫ 1

0
L−1(!) d!; ! =

∫ 1

0
R−1(!) d!

)
;

where 1uik denotes the membership degree of the ith LR1 fuzzy multivariate time
trajectory with respect to the kth cluster; 1wt is an instantaneous weight; m¿ 1 is
a weighting exponent that controls the fuzziness of the obtained fuzzy partition (see
Section 6); ckt ; lkt ; rkt denote, respectively, the vectors of the centers, left and right
spreads of the LR1 fuzzy time trajectory of the kth centroid at time t.

By solving the previous constrained optimization problem (see proof in Appendix A),
we get the following iterative solutions:

1uik =
1

∑K
k′=1

[ ∑T
t=1(1wt1dikt( ; !))2∑T
t=1(1wt1dik′t( ; !))2

]1=(m−1) ;

1wt =
1

∑T
t′=1

[ ∑I
i=1

∑K
k=1 1umik1d2

ikt( ; !)∑I
i=1

∑K
k=1 1umik1d2

ikt′( ; !)

] ;

ckt =
∑I

i=1 1umik [3cit −  (lit − lkt) + !(rit − rkt)]

3
∑I

i=1 1umik
;

lkt =
∑I

i=1 1umik(ckt +  lit − cit)

 
∑I

i=1 1umik
;

rkt =
∑I

i=1 1umik(cit + !rit − ckt)

!
∑I

i=1 1umik
:
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5.1.2. LR2 case
As in the previous case, the fuzzy clustering model for the LR2 time trajectories is

characterized as follows:

minimize
1uik ;1wt ;

c1kt ;c2kt ;lkt ;rkt

I∑
i=1

K∑
k=1

1umik

T∑
t=1

(1wt1dikt( ; !))2

=
I∑

i=1

K∑
k=1

1umik

T∑
t=1

(
1w2

t (‖c1it − c1kt‖2 + ‖c2it − c21t‖2 + ‖(c1it −  lit)

−(c1kt −  lkt)‖2 + ‖(c2it + !rit) − (c2kt + !rkt)‖2)
)

K∑
k=1

1uik = 1; 1uik¿ 0;
T∑
t=1

1wt = 1; 1wt¿ 0

(
 =

∫ 1

0
L−1(!) d!; ! =

∫ 1

0
R−1(!) d!

)
;

where c1kt ; c2kt denote, respectively, the vectors of the left and right “centers” of the
LR2 fuzzy time trajectory of the kth centroid at time t; the other symbols have the
same meaning as in the previous model (LR1 case).

Then, the iterative solutions are (see proof in Appendix B):

1uik =
1

∑K
k′=1

[ ∑T
t=1(1wt1dikt( ; !))2∑T
t=1(1wt1dik′t( ; !))2

]1=(m−1) ;

1wt =
1

∑T
t′=1

[ ∑I
i=1

∑K
k=1 1umik1d2

ikt( ; !)∑I
i=1

∑K
k=1 1umik1d2

ikt′( ; !)

] ;

c1kt =
∑I

i=1 1umik [2c1it −  (lit − lkt)]

2
∑I

i=1 1umik
; c2kt =

∑I
i=1 1umik [2c2it + !(rit − rkt)]

2
∑I

i=1 1umik
;

Ikt =
∑I

i=1 1umik(cikt +  lit − c1it)

 
∑I

i=1 1umik
; rkt =

∑I
i=1 1umik(c2it + !rit − c2kt)

!
∑I

i=1 1umik
:

Notice that the iterative solutions for the LR1 and LR2 cases are the same as to the
membership degrees and the time weights, very similar as to the left and right spreads,
but they di6er with respect to the centers.

5.1.3. Iterative algorithms
The iterative algorithm of the clustering model in the LR1 case is shown below.
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Algorithm (LR1 case).

Step 1: Fix the parameters m¿ 1; K and )¿ 0 () is a small quantity 4xed by the
researcher),  ; ! and choose initial membership degrees 1u

(0)
ik and left and

right spreads l(0)
kt and r(0)

kt (i = 1; I ; k = 1; K ; t = 1; T ).
Step 2: By considering 1u

(0)
ik ; l(0)

kt and r(0)
kt , compute c(0)

kt and 1w
(0)
t .

Step 3: Update 1u
(0)
ik and successively l(0)

kt ; r
(0)
kt and iterate the recursive procedure.

Step 4: By denoting with 1u
(*)
ik the membership degree at the *th iteration, compare 1u

(*)
ik

with 1u
(*+1)
ik using any suitable criterion; for instance, |1u(*+1)

ik −1 u
(*)
ik |¡) (i =

1; I ; k = 1; K). If 1u
(*+1)
ik is suXciently close to 1u

(*)
ik : stop; otherwise, go back

to step 2.

For the LR2 case, we consider c1kt ; c2kt instead of ckt and the iterative algorithm
follows the same line as in the previous case. These algorithms are analogous to the
algorithms utilized for the fuzzy clustering models proposed by Bezdek (1981) (for
crisp data) and Yang and Ko (1996) (for fuzzy data) and the same properties hold
true. In this connection, we notice that for these models the performances (convergence,
etc.) have been suitably investigated by Bezdek (1980), Bezdek et al. (1987) and Yang
(1993). Moreover, experimental studies have shown that the fuzzy clustering algorithm
of Bezdek is an eXcient starting point for the traditional (crisp or hard) clustering
procedure (Heiser and Groenen, 1997). Nonetheless, for our clustering models, we
performed several “tests” and observed that: the values taken by the objective function
in the optimization procedures illustrated in this section decrease monotonically, the
iterative algorithms converge quickly to a local minimum after a reasonable number
of iterations and present a sensibility to starting points similar to the clustering models
suggested by Bezdek (1981) and Yang and Ko (1996) (see also Section 6).

5.2. Velocity fuzzy clustering models

In this case the LR fuzzy time trajectories are clustered according to their longitudinal
features. In particular, since the longitudinal aspect is represented by the “velocity” of
the component time trajectories (center time trajectories and lower and upper bound
time trajectories), we consider this particular feature in the clustering procedure. The
LR1 and LR2 cases of the velocity clustering models are characterized as follows.

5.2.1. LR1 case
In this case, we have the following constrained optimization problem:

minimize
2uik ;2wt ;

cvkt ;lvkt ;rvkt

I∑
i=1

K∑
k=1

2umik

T∑
t=2

(2wt2dikt( ; !))2

=
I∑

i=1

K∑
k=1

2umik

T∑
t=2

(
2w2

t (‖cvit −c vkt‖2 + ‖(cvit −  lvit) − (cvkt −  lvkt)‖2

+‖(cvit − !rvit) − (cvkt + !rvkt)‖2)
)
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K∑
k=1

2uik = 1; 2uik¿ 0;
T∑
t=2

2wt = 1; 2wt¿ 0

(
 =

∫ 1

0
L−1(!) d!; ! =

∫ 1

0
R−1(!) d!

)
;

where wt is a weight pertaining to time interval [t−1; t]; cvkt ; lvkt ; rvkt are the vectors
of the velocity of the centers, left and right spreads of the LR1 fuzzy time trajectory
of the kth centroid in the time interval [t − 1; t].

The iterative solutions are:

2uik =
1

∑K
k′=1

[ ∑T
t=2(2wt2dikt( ; !))2∑T
t=2(2wt2dik′t( ; !))2

]1=(m−1) ;

2wt =
1

∑T
t′=2

[ ∑I
i=1

∑K
k=1 2umik2d2

ikt( ; !)∑I
i=1

∑K
k=1 2umik2d2

ikt′( ; !)

] ;

cvkt =
∑I

i=1 2umik [3cvit −  (lvit −l vkt) + !(rvit −r vkt)]

3
∑I

i=1 2umik
;

lvkt =
∑I

i=1 2umik(cvkt +  lvit −c vit)

 
∑I

i=1 2umik
; rvkt =

∑I
i=1 2umik(cvit + !rvit −c vkt)

!
∑I

i=1 2umik
:

5.2.2. LR2 case
The clustering model is

minimize
2uik ;2wt ;

c1 vkt ;c2 vkt ;lvkt ;rvkt

I∑
i=1

K∑
k=1

2umik

T∑
t=2

(2wt2dikt( ; !))2

=
I∑

i=1

K∑
k=1

2umik

T∑
t=2

(
2w

2
t (‖c1vit −c1 vkt‖2 + ‖c2vit −c2 vkt‖2 + ‖(c1vit −  lvit)

−(c1vkt −  lvkt)‖2 + ‖(c2vit + !rvit) − (c2vkt + !rvkt)‖2)
)

K∑
k=1

2uik = 1; 2uik¿ 0;
T∑
t=2

2wt = 1; 2wt¿ 0

(
 =

∫ 1

0
L−1(!) d!; ! =

∫ 1

0
R−1(!) d!

)
;
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where c1vkt ; c2vkt are the vectors of the velocity of the left and right “centers” of the
LR2 fuzzy time trajectory of the kth centroid in the time interval [t − 1; t]; the other
symbols are the same as in the LR1 case.

In this case the iterative solutions are:

2uik =
1

∑K
k′=1

[ ∑T
t=2(2wt2dikt( ; !))2∑T
t=2(2wt2dik′t( ; !))2

]1=(m−1) ;

2wt =
1

∑T
t′=2

[ ∑I
i=1

∑K
k=1 2umik2d2

ikt( ; !)∑I
i=1

∑K
k=1 2umik2d2

ikt′( ; !)

] ;

c1vkt =
∑I

i=1 2umik [2c1vit− (lvit−l vkt)]

2
∑I

i=1 2umik
; c2vkt =

∑I
i=1 2umik [2c2vit+!(rvit−r vkt)]

2
∑I

i=1 2umik
;

lvkt =
∑I

i=1 2umik(c1vkt +  lvit −c1 vit)

 
∑I

i=1 2umik
; rvkt =

∑I
i=1 2umik(c2vit + !rvit −c2 vkt)

!
∑I

i=1 2umik
:

The iterative algorithms for the velocity fuzzy clustering models for LR1 and LR2

fuzzy time trajectories are analogous to those illustrated in the instantaneous models
(see Section 5.1). Also the performances are the same.

5.3. Simultaneous fuzzy clustering models

By considering simultaneously the instantaneous (positional) and velocity (slope) as-
pects of the LR fuzzy time trajectories, we de4ne the following two kinds of clustering
models.

5.3.1. LR1 case
The simultaneous fuzzy clustering model for the LR1 case is

minimize
I∑

i=1

K∑
k=1

umik

2∑
s=1

∑
t

(swtsdikt( ; !))2

K∑
k=1

uik = 1; uik¿ 0;
∑
t

swt = 1; swt¿ 0:

Notice that, in this case, the parameters with respect to which the function has to be
minimized are uik ; swt ; ckt ; lkt ; rkt ; cvkt ; lvkt ; rvkt .
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For this model the iterative solutions are:

uik =
1

∑K
k′=1

[ ∑2
s=1

∑
t(swtsdikt( ; !))2∑2

s=1

∑
t(swtsdik′t( ; !))2

]1=(m−1) ;

swt =
1

∑
t′

[ ∑I
i=1

∑K
k=1 umik sd

2
ikt( ; !)∑I

i=1

∑K
k=1 umik sd

2
ikt′( ; !)

] ;

ckt =
∑I

i=1 umik [3cit− (lit−lkt) + !(rit−rkt)]

3
∑I

i=1 umik
; lkt =

∑I
i=1 umik(ckt+ lit−cit)

 
∑I

i=1 umik
;

rkt =
∑I

i=1 umik(cit + !rit − ckt)

!
∑I

i=1 umik

(s = 1);

cvkt =
∑I

i=1 umik [3cvit −  (lvit −l vkt) + !(rvit −r vkt)]

3
∑I

i=1 umik
;

lvkt =
∑I

i=1 umik(cvkt +  lvit −c vit)

 
∑I

i=1 umik
; rvkt =

∑I
i=1 umik(cvit + !rvit −c vkt)

!
∑I

i=1 umik

(s = 2):

5.3.2. LR2 case
In this case, we have

minimize
I∑

i=1

K∑
k=1

umik

2∑
s=1

∑
t

(swtsdikt( ; !))2

K∑
k=1

uik = 1; uik¿ 0;
∑
t

swt = 1; swt¿ 0:

Here, the parameters with respect to which the functions have to be minimized are
uik ; swt ; c1kt ; c2kt ; lkt ; rkt ; c1vkt ; c2vkt ; lvkt ; rvkt .

The iterative solutions are:

uik =
1

∑K
k′=1

[ ∑2
s=1

∑
t(swtsdikt( ; !))2∑2

s=1

∑
t(swtsdik′t( ; !))2

]1=(m−1) ;

swt =
1

∑
t′

[ ∑I
i=1

∑K
k=1 umik sd

2
ikt( ; !)∑I

i=1

∑K
k=1 umik sd

2
ikt′( ; !)

] ;
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c1kt =
∑I

i=1 umik [2c1it −  (lit − lkt)]

2
∑I

i=1 umik
; c2kt =

∑I
i=1 umik [2c2it + !(rit − rkt)]

2
∑I

i=1 umik
;

lkt =
∑I

i=1 umik(c1kt +  lit − c1it)

 
∑I

i=1 umik
; rkt =

∑I
i=1 umik(c2it + !rit − c2kt)

!
∑I

i=1 umik
(s = 1);

c1vkt =
∑I

i=1 umik [2c1vit −  (lvit −l vkt)]

2
∑I

i=1 umik
; c2vkt =

∑I
i=1 umik [2c2vit + !(rvit −r vkt)]

2
∑I

i=1 umik
;

lvkt =
∑I

i=1 umik(c1vkt +  lvit −c1 vit)

 
∑I

i=1 umik
; rvkt =

∑I
i=1 umik(c2vit + !rvit −c2 vkt)

!
∑I

i=1 umik
(s = 2):

5.4. Some remarks

We observe that:

• the iterative solutions for the longitudinal and simultaneous LR1 and LR2 fuzzy
clustering models are obtained analogously to the respective cross-sectional models;

• by setting in the respective cases (LR1 and LR2)  =!= 1
2 , we obtain the triangular

and trapezoidal versions of the di6erent dynamic fuzzy clustering models;
• also for the simultaneous models the iterative algorithms perform similarly to the

instantaneous and velocity models.

In conclusion, we make the following points:

(1) For each of the above illustrated clustering models (shown in Sections 5.1, 5.2
and 5.3) a speci4c choice is made as to the type of membership function and the
values of their parameters. The former choice is in fact an assumption, analogous
to the model setup in traditional statistical inference. The latter one, concerning
the spreads, may either derive from observation (e.g., min and max temperatures
registered in a given day) or be made by the researcher on the basis of empirical
or theoretical considerations (see also the application in Section 6). It should
be noted, in this connection, that the proposed clustering procedures appear to be
suXciently robust with respect to these choices, on the basis of empirical evidence
so far collected (systematic simulation studies are planned, in this respect). Finally,
it must be remarked that the linear and exponential weights (respectively, the swt’s
and m), which appear in the objective functions, are optimally determined within
the computational procedure.

(2) A comparative assessment of the three types (instantaneous, velocity and simul-
taneous) of clustering models should be based on the “informational” perspective
mentioned in the Introduction. In fact, the instantaneous and the velocity cluster-
ing models di6er essentially as to the way they deal with the evolutive aspects
of the trajectories. The former one looks at the instantaneous distances along
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with their time weights, thereby capturing the similarity/dissimilarity between the
locations of the trajectories at the various time occasions. The latter model, based
on the velocity distances, emphasizes the similarity/dissimilarity between the vari-
ations (geometrically, the slopes) observed for each suitably weighted pair of
successive times. Obviously, the above aspects constitute two di6erent pieces of
information embodied in the data set. When both are considered important the
mixed model can be chosen for the clustering task. In this latter model the ve-
locity and instantaneous components are given the same weight. The estimate
of their respective parameters is obviously computed from a global optimization
point of view. The clusters obtained in this way reYect this choice. However, dif-
ferent weights for the two components might be devised, although this may cause
computational diXculties. A 4nal comment refers to the evaluation of the model
4t in the above framework. It should be observed that the traditional approach
(goodness-of-4t tests, and the like) does not apply in this case. Each clustering
model enhances speci4c informational features in the data. The parameters of the
model are then optimally determined (see also Section 6 as to the choice of the
number of clusters and the fuzziness coeXcient m), and the results interpreted
according to the selected informational perspective.

6. An application: web-advertising data

Advertising on Internet is usually done utilizing three di6erent types of banners:
“static” banners (which synthesize in a single image text and graphic), “dynamic”
banners (characterized by a dynamic gif image, i.e., by a set of images visualized in
sequence) and “interactive” banners (which induce the internet-navigators to participate
in polls, interactive games and so on).

In view of classifying a set of 18 Web sites (“Iol.it”, “Kataweb.it”, “Tiscalinet.it”,
“Msn.it”, “Virgilio.it”, “Yahoo.it”, “Altavista.it”, “Excite.it”, “Katamail.com”,
“Altavista.com”, “Inwind.it”, “Smscash.it”, “Ibazar.it”, “Repubblica.it”, “Mediaseton-
line.it”, “Yahoo.com”, “Jumpy.it”), on the basis of the subjective judgments of a sam-
ple of 20 Internet navigators concerning the advertising realized by means of di6erent
kinds of banners during the time, we have applied the dynamic LR fuzzy clustering
models. Note that, for each time, we have considered for the three types of banners of
each Web site the median of the judgments expressed by the sample of navigators.

The fuzzy time data array analyzed is

X ≡ {xijt = (cijt ; lijt ; rijt): i = 1; : : : ; 18; j = 1; 2; 3; t = 1; : : : ; 6};
where the units are the 18 Web sites and the variables are the subjective judgments on
the three kinds (static, dynamic and interactive) of banners observed in six consecutive
periods (every fortnight). We have chosen this observation period, because after this
period the banners usually lose their e6ectiveness, i.e., low click through rates are
obtained (“banner burnout”). Notice that the sample of Internet navigators is the same
for each time (panel data).
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Table 1
Linguistic terms and their corresponding triangular fuzzy numbers

Linguistic variable Fuzzy number

W=Worst (3; 3; 1)
P=Poor (4; 1:5; 1:5)
F=Fair (6; 1; 0:5)
G=Good (8; 1:75; 0:25)
B=Best (10; 2; 0)

0     1      2      3      4      5      6      7      8      9   10 

1 
W                F                G            B P

Fig. 2. Triangular fuzzy representation of the linguistic terms.

To take into account the subjective or linguistic vagueness expressed by the human
perception a fuzzy coding has been considered (see Table 1 and Fig. 2).

The above fuzzi4cation of the categorical assessments is unavoidably subjective
(based on experience or prior observations), although it reYects common sense in in-
terpreting a qualitative scale such as the one considered in Table 1 (see also Liang and
Wang, 1991; Liou and Wang, 1994; Raj and Kumar, 1999 for further considerations
on this topic). Empirical evidence, so far collected (though further simulation studies
are required), supports the assumption of robustness of the fuzzi4cation procedure with
respect to the results of the clustering techniques suggested in the present context. For
this reason, we have implemented in SAS/IML suitable algorithms, for the di6erent
clustering models.

The outputs of our dynamic double fuzzy clustering models are shown in Fig. 3,
in which we report: the weighting systems obtained for the three di6erent clustering
models, the fuzzy partitions and the graphical representations of the fuzzy partitions.
The terminology “double fuzzy” is here utilized with reference to the fuzziness of both
the data and the clustering model.

Notice that, according to the previous assumptions, we have considered dynamic tri-
angular fuzzy clustering models ( =!= 1

2). Moreover, in order to determine the number
of clusters and the fuzziness coeXcient we have suitably extended the cluster-validity
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Fig. 3. Fuzzy partitions.
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Table 2
Cluster validity for dynamic fuzzy parition

V ;!(m;K) =
∑I

i=1
∑K

k=1 1umik
∑T

t=1(1wt1dikt( ; !))2

Imin
k′ ; k

∑T
t=1(1wt1dk′kt( ; !))2

, min
m∈M
K∈-

V ;!(m;K),

Ṽ  ;!(m;K) =
∑I

i=1
∑K

k=1 2umik
∑T

t=1(2wt2dikt( ; !))2

Imin
k′ ; k

∑T
t=1(2wt2dk′kt( ; !))2

, min
m∈M
K∈-

Ṽ  ;!(m;K),

˜̃V ;!(m;K) =
∑I

i=1
∑K

k=1 umik
∑2

s=1
∑

t (swt sdikt( ; !))2

Imin
k′ ; k

∑2
s=1

∑
t(swt sdk′kt( ; !))2

, min
m∈M
K∈-

˜̃V ;!(m;K),

where

1d2
k′kt( ; !) =




‖ckt−ck′t‖2+‖(ckt− lkt)−(ck′t− lk′t)‖2+‖(ckt+!rkt)−(ck′t+!rk′t)‖2 (LR1)

‖cvkt −c vk′t‖2+‖(cvkt −  lvkt) − (cvk′t −  lvk′t)‖2

+‖(cvkt + !rvkt) − (cvk′t + !rvk′t)‖2 (LR2);

1d2
k′kt( ; !) =




‖c1kt − c1k′t‖2 + ‖c2kt − c2k′t‖2 + ‖(c1kt −  lkt) − (c1k′t −  lk′t)‖2

+‖(c2kt + !rkt) − (c2k′t + !rk′t)‖2 (LR1)

‖c1vkt −c1 vk′t‖2 + ‖c2vkt −c2 vkt‖2 + ‖(c1vkt −  lvkt) − (c1vk′t −  lvk′t)‖2

+‖(c2vkt + !rvkt) − (c2vk′t + !rvk′t)‖2 (LR2);

M = set of possible values of m,
- = set of possible values of K .
Note: Obviously, for the triangular case we consider only the LR1 case, with  = ! = 1

2 .

criterion proposed by Xie and Beni (1991) (see Table 2), obtaining for each of the
three cases the same number of clusters (K = 3) and fuzziness coeXcient (m = 1:35).

Concerning the results (see Fig. 3), we note that, for the three di6erent kinds of
dynamic fuzzy clustering, very similar fuzzy partitions have been obtained. In fact,
many Internet Sites present trajectories with similar instantaneous locations and/or
velocities.

In particular, by considering the instantaneous fuzzy partition, we notice that the
following Web-sites belong to the 4rst class (characterized by interactive banners with
medium-good judgment during time) with a high membership degree: Yahoo.it (0.87),
Excite.it (0.81), Ibazar.it (0.89), Repubblica.it (0.89). In the second cluster (mainly
represented by Web-sites with dynamic banner showing an “alternating” behavior) we
record: Iol.it (0.94), Msn.it (0.73), Mediasetonline.it (0.77) and Yahoo.com (0.77).
Finally, in the third cluster (characterized, chieYy, by Web-sites with static banner with
medium-good judgment over the time) the highest membership degrees are obtained
for Kataweb.it (0.90), Tiscalinet.it (0.76), Altavista.com (0.86), Inwind.it (0.89) and
Smscash.it (0.78).
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The previous results are substantially con4rmed in the velocity fuzzy partition, though
with a smaller degree of fuzziness.

We notice that the simultaneous fuzzy partition summarizes properly the results
obtained by taking into account the instantaneous (positional) and velocity (shape)
features of the examined time trajectories. Moreover, in the simultaneous case the
ordinal structure of the weighting system is essentially equivalent to those obtained
in the previous two models. This is essentially due to the above-mentioned similarity
between the location and variation aspects of the observed trajectories. Finally, by
considering the Web-advertising data set, we tested the computational performances
of the suggested fuzzy clustering models, 4xing m = 1:35; K = 3;  = ! = 1

2 and
) = 0:0001. In order to perform the algorithm, the starting points have been generated
randomly by a uniform distribution and the following stopping rules have been adopted:
|1u(*+1)

ik −1 u
(*)
ik |¡) (instantaneous model), |2u(*+1)

ik −2 u
(*)
ik |¡) (velocity model) and

|u(*+1)
ik − u(*)

ik |¡) (simultaneous model). In Fig. 4, for each of the three models, we
show di6erent graphics, in which we represent, respectively:

• the variations of the number of iterations needed to reach a local minimum solution
for di6erent values of the weighting exponent m (that controls the fuzziness of the
fuzzy partition);

• the value of the objective function for di6erent values of m;
• the value of the objective function for di6erent starting points (for m = 1:35) (we

have tried 20 starting points have been tried and a continuous representation has
been utilized for an easier visualization);

• the value of the objective function for di6erent iteration cycles (for m = 1:35) (in
order to show that the objective function decreases monotonically).

The results shown in Fig. 4 con4rm substantially the computational characteristics
indicated in Section 5. In particular, for each of the considered models, the value of
the objective function decreases monotonically with increasing m and with increasing
number of cycles (for m = 1:35). Instead, it remains constant over di6erent starting
points (for m=1:35). Moreover, we note that the number of iterations, for all models,
is reasonably small.

7. Concluding remarks

A highly Yexible approach to clustering multivariate time trajectories has been de-
scribed. The main features of this approach are as follows:

(1) The explicit recognition of the common informational nature of the ingredients
of the data analytic procedure (and of the uncertainty associated with them, here
treated according to a fuzzy perspective): the data and the clustering
model.

(2) The adoption of a suitable class of membership functions representing the fuzzi-
ness of the observed trajectories (i.e., the LR functions).
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(3) The construction of appropriate dissimilarity measures between fuzzy trajectories,
taking into account various features such as instantaneous location and dynamic
evolution.

(4) The extensive use of a generalized Bezdek criterion as the basis for the clustering
process.

(5) The possibility of applying the proposed clustering models in various observational
settings, including the case where qualitative data are collected (such as subjective
judgments, ordinal categories, mixed data). Obviously, this requires an adequate
fuzzi4cation of the qualitative data, as illustrated in Section 6.

One or more of the above mentioned features can be suitably modi4ed in view of
improving the performance of the proposed class of clustering models (e.g., the dis-
similarity measures or the clustering criterion). This is the subject of future work in
this 4eld of methodological research.
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Appendix A. Proof of the iterative solutions for the cross-sectional LR1 fuzzy clustering
model

Let us 4x the values of ckt ; lkt ; rkt and 1wt . By considering the Lagrangian function

L(m;  ; !) =
I∑

i=1

K∑
k=1

1umik

T∑
t=1

(1wt1dikt( ; !))2 − .

(
K∑

k=1

1uik − 1

)

(where . is the Lagrange multiplier) and setting the 4rst derivatives with respect to
1uik and . equal to zero, we get, respectively, m1um−1

i′k′
∑T

t=1(1wt1di′k′t( ; !))2 − . = 0
and

∑K
k=1 1uik − 1 = 0 and then we obtain 1uik .

Analogously, let us 4x 1uik and ckt ; lkt ; rkt . By considering the Lagrangian function

L̃(m;  ; !) =
I∑

i=1

K∑
k=1

1umik

T∑
t=1

(1wtdikt( ; !))2 − /

(
T∑
t=1

1wt − 1

)

(where / is the Lagrange multiplier) and setting the 4rst derivatives with respect to 1wt

and / equal to zero we have: 21wt′
∑I

i=1

∑K
k=1 1umik1d2

ikt′( ; !)− /= 0 and
∑T

t=1 1wt −
1 = 0 and then 1wt can be derived.

Finally, in order to obtain ckt ; lkt and rkt , we solve the following unconstrained
optimization (minimization) problem with respect to ckt ; lkt and rkt :

minimize
ckt ;lkt ;rkt

I∑
i=1

K∑
k=1

umik

T∑
t=1

(1wt1dikt( ; !))2
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=
K∑

k=1

T∑
t=1

1w2
t

[
minimize
ckt ;lkt ;rkt

I∑
i=1

umik1d2
ikt( ; !)

]

=
K∑

k=1

T∑
t=1

1w2
t

[
minimize
ckt ;lkt ;rkt

Fkt(m;  ; !)
]
; (A.1)

where

Fkt(m;  ; !) =
I∑

i=1

umik1d2
ikt( ; !);

1d2
ikt( ; !) = ‖cit−ckt‖2+‖(cit− lit)−(ckt− lkt)‖2+‖(cit+!rit)−(ckt+!rkt)‖2

= 3(cit−ckt)′(cit−ckt)−2 (cit−ckt)′(lit−lkt)+ 2(lit−lkt)′(lit−lkt)

+ 2!(cit − ckt)′(rit − rkt) + !2(rit − rkt)′(rit − rkt):

Then, setting the 4rst derivatives of Fkt(m;  ; !) with respect to ckt ; lkt ; rkt equal to zero,
we get the iterative solutions for ckt ; lkt and rkt .

Appendix B. Proof of the iterative solutions for the cross-sectional LR2 fuzzy clustering
model

The membership degrees 1uik and the time weights 1wt are obtained analogously
to LR1. Also c1kt ; c2kt ; lkt and rkt are obtained as in the LR1 case, by solving the
minimization problem (A.1), in which

1d2
ikt( ; !) = ‖c1it − c1kt‖2 + ‖c2it − c21t‖2 + ‖(c1it −  lit) − (c1kt −  lkt)‖2

+‖(c2it + !rit) − (c2kt + !rkt)‖2

= 2(c1it − c1kt)′(c1it − c1kt) + 2(c2it − c21t)′(c2it − c21t)

−2 (c1it − c1kt)′(lit − lkt) +  2(lit − lkt)′(lit − lkt)

+ 2!(c2it − c21t)′(rit − rkt) + !2(rit − rkt)′(rit − rkt):
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