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Abstract

We present a three-way data analysis method adapted to compare multispectral images such as those acquired by

fluorescence microscopy. Spectral images are multivariate and can be considered as sets of pixels for which different spectral

intensities have been measured. The algorithm proposed is based on the simultaneous decomposition of the covariance matrices

calculated, in the present work, for fluorescence variables. This method allows the extraction of components common to each

image and reveals their specificities by means of specific weights. The technique is illustrated by the analysis of microscopic

image sequences acquired for five varieties of wheat and barley grains in 19 fluorescence conditions. The method made it

possible to compare the fluorescence behaviors observed in the images and the strong similarities of the external tissues for the

five cereals were highlighted. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The development of computerised image-process-

ing techniques makes it possible to describe objects

using multivariate images. In the microscopy domain,

acquiring multivariate images may be a means of

identifying the different constituents or phases in com-

plex samples. Such an approach can be developed in

the domain of fluorescence microscopy. Fluorescence

is a spectral phenomenon that occurs when light is

absorbed by a substance and is re-emitted in the form of

longer wavelength radiation. The fluorescence condi-

tions are thus defined by a pair of wavelengths: the

excitation (kexc) and emission wavelengths (kem). Flu-
orescence microscopy makes use of both naturally

occurring fluorescent samples and specific fluoro-

chrome dyes to visualise the components of interest.

In multicomponent samples, each individual compo-

nent is likely to exhibit a unique fluorescence behavior,

though in a single image several components may

fluoresce at the same time. The analysis of a sequence

of spectral images, acquired by varying the fluores-
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cence spectral conditions kexc and kem, makes it possi-

ble to identify and segment the different constituents of

a sample. This approach has been proved capable of

labelling the biochemical constituents in cereal grain

cell walls in which autofluorescent compounds such as

lignin and phenolic acids are found [1,2].

Spectral images are basically multivariate and can

be regarded as a three-way data structure. They can be

interpreted both as a stack of images or as one image of

pixel vectors. Considering pixels as vectors of spectral

data independently of the spatial relationships occur-

ring in the image scene is equivalent to unfolding each

image into a single vector, and therefore the three-way

multivariate image into a usual two-way data matrix

[3]. Multivariate data analysis techniques can be

applied to the resulting data matrix for the purposes

of exploratory analysis, pattern recognition or segmen-

tation. This image analysis approach is called multi-

variate image analysis (MIA), the principles of which

are described in Geladi and Grahn [4]. In this context,

principal component analysis (PCA) of three-way

images may be considered as the basic technique [5].

Principal component regression (PCR) or partial least

squares (PLS) regression can also be applied in order to

relate features extracted from the stack of images to

external information [6,7]. Classification and discrim-

ination techniques have also been proposed to identify

the homogeneous region in complex samples [8–10].

For the time being, most methods have been

designed to analyse individual multivariate images

and few papers relate the simultaneous analysis of

several three-way images [11]. Four-way data struc-

tures are obtained when the time evolution of an object

is observed or when different scenes have to be com-

pared from multivariate images. In the present work,

the objective was to compare the tissues observed in

different cereal grains on the basis of their fluorescence

properties as measured in microscopic images. The

purpose was essentially descriptive and data treatments

were sought to reveal the tissues common to different

grains as well as to exhibit tissues specific to one or

several samples. Common and specific fluorescent

pixel behaviors, therefore, had to be noted from differ-

ent sets of three-way images. Each image could be

separately analysed by means of PCA, the components

extracted being in some way related. This would turn

the problem into the description of the relationships

between the feature vectors in order to show the latent

variables common to the different scenes analysed.

Another approach would consist of concatenating all

the images to be compared and applying a global PCA

on the resulting concatenated array. This approach

would have the advantage of directly exhibiting com-

mon fluorescent features but would not take into

account the structure inside each scene.

Three-mode principal component analysis refers to

a family of multivariate statistical techniques allowing

the simultaneous analysis of several two-way data

matrices [12]. In the context of analysing several

multivariate images, the three modes refer to the

pixels, the image being unfolded, the spectral con-

ditions and the objects to be compared. Tucker, who

introduced a procedure for analysing directly a three-

way matrix, has given a general approach. Parameters

are estimated for the three modes by means of alter-

nating least squares. PARAFAC is a commonly used

algorithm for fitting a Tucker model that assumes all

the modes are common to all objects which is not

generally the case with images. Pixels are not homol-

ogous when scenes have to be compared and the

image size may vary from one scene to another.

Alternatively, the parameters for the three modes can

be extracted by simultaneously decomposing the

cross-product matrices of each multivariate image.

In the present work, we propose an algorithm that

performs the decomposition into common compo-

nents and weights specific to each scene.

2. Methods

2.1. Multi-way image analysis

Principal component analysis of a multidimen-

sional image is described in order to introduce the

principle and notations used in multivariate image

analysis. Principal component analysis of a three-

way (I� J�M) array of M (I� J) images of the

same scene leads to its decomposition into score

matrices Ta and loading vectors pa. Using three-way

matrix notations, one can express the multi-way image

analysis of X as

X ¼
XA
a¼1

Ta � pa þ E
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where E is the residual of a rank-truncated PCA of X
and � denotes the Kronecker product.

This decomposition is illustrated in Fig. 1. The

score matrices Ta have dimensions I� J and can be

interpreted as images of the principal components and

are ordered with a decreasing amount of inertia

explained. The loadings pa are vectors of size

M� 1 and express the contributions of the score

images to the raw images.

Such an analysis reveals latent structures under-

lying the different images, the residual array E being

analyzed as the noise part of the decomposition.

This method is equivalent to the principal compo-

nent analysis (PCA) of the unfolded matrix X derived

from X, each row of the two-dimensional array X
corresponding to one of the (I� J) pixels of the

images while the columns refer to the M original

variables (Fig. 2). The score vectors ta issued from a

PCA of X correspond to the unfolding of the score

matrices Ta.

X !unfolding
X ¼

XA
a¼1

tapaVþ E

Though the score vectors ta
� can be reorganised as

score images, it must be noticed that the analysis

does not take into account the spatial position of the

pixels.

The score vectors ta are constrained to be orthog-

onal while the loading vectors pa are orthonormal.

In practice, the dimensions of the matrix X make

the components computation very time consuming

when using the classical singular value decomposition

(SVD) of X. Alternatively, the loading vectors pa can

Fig. 1. Principal component analysis of a three-way table of M images of size I� J. The decomposition results in score images Ta and loading

vectors pa.

Fig. 2. Multivariate image analysis; the unfolded matrix X is decomposed using a principal component analysis into score images ta and loading

vectors pa.
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be derived from the SVD of the cross-product matrix

XVX:

V ¼ XVX ¼ P�PV

where � is the diagonal matrix of eigenvalues. The

score matrices are computed as T =X�P.

2.2. Analysis of several multivariate images

As a generalisation of the latter procedure, the

analysis of several multivariate images can be devel-

oped as the simultaneous decomposition of several

cross-product matrices. The objective is to reveal

common latent components in the collection of multi-

variate images observed for different objects or

scenes. In the present paper, the biochemical constit-

uents common to several grain sections as well as

specific ones are searched for according to their

fluorescent behaviors.

The method is based on the assumption that com-

mon loading vectors exist that can possibly be

weighted differently for each multivariate image. If

we denote X(k) the unfolded matrix derived from the

kst multivariate image, the model is

VðkÞ ¼ XðkÞVXðkÞ ¼ P�ðkÞPV¼
XA
a¼1

kðkÞa papaV

where PVP= IA and �(k) is a diagonal matrix.

The vectors of P are the loadings common to theM

multivariate arrays X(k). The diagonal of the matrix

�(k) contains the specific weights ka
(k) of the latent

dimension a for the kst stack of images. The greater a

salience ka
(k) is, the more the component is present in

the multivariate image.

The parameters of this model can be estimated

using a method described by Qannari et al. [13] and

applied in the context of the sensory analysis. The

algorithm allows the estimation of the common com-

ponents and specific weights described in the

INDSCAL model [14] decomposing simultaneously

several inner-products matrices X(k)X(k)V. The same

strategy can be applied to the cross-products X(k)VX(k)

to focus on the common and specific parts of a set of

covariance matrices.

In this case, the common loading vectors and the

specific weights are defined in order to minimise the

following loss function

L ¼
XK
k¼1

NXðkÞVXðkÞ �
XA
a¼1

kðkÞa papaVN
2 ð1Þ

The algorithm solves this minimisation problem

iteratively; the first, second, . . ., sets of parameters

corresponding to the different latent variables being

estimated step by step. For a given dimension a, the

common loading vector pa and the specific weights

ka
(k) are computed using an alternate least squares

technique.

At the first step, the loss function to be minimised is

L1 ¼
XK
k¼1

NXðkÞVXðkÞ � kðkÞ1 p1p1VN
2

Assuming we have provisional estimates of the

weights k1
(k), the first common loading vector p1 is

Table 1

Fluorescence conditions

Image

number

Excitation

wavelength (nm)

Emission

wavelengths (nm)

1 633 (red laser) >665

2 543 (green laser) >570

3 543 575–640

4 543 >665

5 488 (blue laser) >515

6 488 510–525

7 488 515–565

8 488 >570

9 488 575–640

10 488 RG 665

11 364 (UV laser) >397

12 364 400–435

13 364 450–490

14 364 >515

15 364 510–525

16 364 515–565

17 364 >570

18 364 575–640

19 364 RG 665

Fig. 3. Examples of microscopic images for the five cereal grains: wm: wheat Market; wr: wheat Recital; ws: wheat Soissons; bc: barley Clarine;

bp: barley Prisma. First column: green laser (image 2), second column: blue laser (image 5), third column: UV laser (image 11).
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estimated by computing the first eigenvector of the

weighted sum of the individual covariance matrices

XK
k¼1

kðkÞ1 XðkÞVXðkÞ ð2Þ

The weights minimising the loss function L1 are

then set by

kðkÞ1 ¼ p1VX
ðkÞVXðkÞp1 ð3Þ

These estimations of p1 and k1
(k) are repeated

iteratively until no substantial change is observed in

the loss function.

When convergence is reached for the first dimen-

sion, the procedure is repeated on the residual matri-

ces X̃2
(k) =X(k)(I� p1p1V) to compute the second set of

parameters.

The matrix of common loadings is constructed by

merging the different vectors pa in a matrix P and the

computation of the score images is achieved by using

the formula

TðkÞ ¼ XðkÞP ð4Þ

The columns of T(k) are the score images according

to the common dimensions and can be visualized after

reorganization. It is worth noting that the score images

are not orthogonal as it is not possible to impose the

simultaneous constraints of orthogonality on loadings

and components when using three-way analysis.

An obvious advantage of the algorithm is that

configurations are nested, i.e. the solution with A

dimensions contains the solution with A� 1 dimen-

sions. The decreasing of the loss function can help the

user to choose the number of dimensions to incorpo-

rate in his model.

This model can be compared to the common

principal components model [15] which is a general-

isation of principal components analysis to several

groups of individuals. The main assumption is that the

principal component transformations are identical

in all the groups while the variances of these compo-

nents may be specific to each group. The model can

be interpreted as a simultaneous spectral decomposi-

tion of several covariance matrices. Flury and Gautshi

[16] proposed an algorithm for the maximum likeli-

hood estimation of the common principal components

and the specific weights which is a generalisation of

the Jacobi method for computing characteristic vec-

tors and root of a symmetric matrix. The main differ-

ence with our approach is that the dimension of the

solution has to be a priori chosen; therefore estima-

tions with different dimensions are not nested and a

test of the dimensionality of the solution has to be

performed.

Another formulation of this model is the parallel

factor analysis (PARAFAC). The algorithms are also

based on alternate least squares but assume that the

different arrays have the same individuals; in the

image analysis context, as the different images do

not necessarily have the same length, these techniques

cannot be applied without modification.

3. Experimental

3.1. Samples

Cereal grains from three wheat varieties (Recital,

Soissons and Market) and two barley varieties (Clar-

ine and Prisma) were studied. For each sample, one

grain was cut after hydration for 4 h on wet paper in a

petri box. Transverse sections of 10 Am thick were cut

in the middle of the grains.

3.2. Multivariate images

Images of the natural fluorescence occurring in the

samples were acquired using a confocal laser scanning

microscope Zeiss LSM410. The microscope is equip-

ped with four lasers providing four excitation wave-

lengths: 364 (ultraviolet light), 488 (blue light), 543

(green light) and 633 nm (red light). The light emitted

by fluorescence was collected through nine filters

being either long pass (i.e. collecting all the light

emitted over a certain wavelength) or band pass (i.e.

designed for collecting the light emitted between two

given wavelengths). As fluorescence only occurs at

wavelengths higher than the excitation wavelength,

the microscope can collect sequences of 19 fluores-

cence images. The precise description of the fluores-

cence images is given in Table 1. For example, image

1 was obtained by lighting samples with excitation

wavelength 633 nm and recording the light emitted

over 665 nm, using the long pass filter ‘‘>655’’. Image

P. Courcoux et al. / Chemometrics and Intelligent Laboratory Systems 62 (2002) 103–113108



6 was obtained by lighting samples with excitation

wavelength 488 nm and recording the light emitted

between the two stopping wavelengths of the band

pass filter: 510 and 525 nm. The multivariate images

were acquired with the � 10 magnification objective

allowing the visualisation of about one sixth of the

grain. Each individual image was digitised as

512� 512 pixel tables for which the fluorescence

intensities were coded with 256 grey level values

from 0 (black) to 255 (white). Under these conditions

the images were 1270� 1270 Am large, one pixel

corresponding to 2.48� 2.48 Am. In order to compare

the fluorescence intensities of the five multivariate

images, the contrast and brightness of the images were

fixed at the same level for each excitation laser and for

the five grains studied. The dimensions of the result-

ing data set were 5 grains� 512 lines� 512 colum-

ns� 19 fluorescence conditions.

3.3. Selection of regions of interest

In order to reduce the amount of data for calculat-

ing the model of decomposition of the four-way data

table, regions of interest were selected in the images.

The regions had been chosen by the operator in order

to select pixels from each layers of the grain, includ-

ing a part of the starchy albumen, which was not

Table 2

Loss function and percentage of variance explained by the first

dimensions

Dimension Loss function Percentage of

variance explained

1 0.32 93.60

2 0.108 4.23

3 0.101 0.15

4 0.101 0.01

Fig. 4. Loadings of the 19 images on the first three dimensions (a, b

and c, respectively).

Table 3

Weights for the five tables on the first three dimensions

Grain Dim 1 Dim 2 Dim 3

Wm 0.968 0.188 0.049

Wr 0.972 0.202 0.033

Ws 0.958 0.244 0.032

Bc 0.967 0.248 0.037

Bp 0.971 0.119 0.038
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fluorescent, and a part of the slides around the section

(Fig. 3). This resulted in slightly different sizes of data

table for the five grains varying from 34615 to 43185

pixels.

3.4. Application of common components and specific

weights analysis

Each individual data table X(k) was standardized

prior to the analysis so that the norms of covariances

matrices NX(k)VX(k)N2 were equal to 1. This pretreat-

ment was performed to take into account the different

numbers of pixels and the uncontrolled fluorescence

intensity variations that can be encountered during

image acquisition.

The model of decomposition was assessed from

the data collected for the regions of interest from Eqs.

(2) and (3). In order to calculate the score images

for the complete scene rather than for the region of

interest, Eq. (4) was applied to all the pixels of the

images.

3.5. Results and discussion

Fig. 3 shows the different tissues that could be

observed from their natural fluorescence. Using the

green laser, only single layers were fluorescent in

wheat market, barleys Clarine and Prisma, which can

be identified as waxy layers for barley and as the

seminal tegument for wheat. After excitation using the

blue laser, all the external tissues were highlighted

corresponding to pericarps for wheat and to husks (the

most external layer) and pericarps for barley. The

waxy layers were also fluorescent under these con-

ditions. The biochemical compounds responsible for

this fluorescence are still to be found [17]. After

illumination with the UV laser, an additional tissue

corresponding to the aleurone layer became fluores-

cent. This tissue consists of one layer of large cells for

wheat and three layers of small cells for barley.

Ferulic acid is known to be responsible for this

fluorescence. When using the red laser, almost no

fluorescence could be seen (data not shown). The

images in Fig. 3 reveal that several tissues can

fluoresce in a single image, though their fluorescence

behavior may be specific. It was expected that appro-

priate multivariate image data treatments would make

it possible to identify individually the different fluo-

rescence behaviors observed among the images and

therefore provide a tool to highlight the similarities

and specificities of each cereal studied. The technique

of common components and specific weights analysis

was applied for this purpose.

Table 2 reports the evolution of the loss function

for the first four dimensions. This loss function

quantifies the residual variance after each estimation

step, cumulated for all the image data tables. The total

initial variance, measured by the sum of the norms of

X(k)VX(k), was equal to 5. The decreasing of the loss

function expresses the part of this quantity which is

explained by each dimension. In this case, the first

three dimensions explain 97.98% of the total variance.

These first three dimensions were considered suffi-

cient to reveal the structure of the original images.

The weights of the five types of grains for the first

three dimensions are presented in Table 3. They

exhibit the relative abundance of the common struc-

tures in the original images.

The weight ka
(k) corresponds to the variance of the

image score t a
(k):

tðkÞa
VtðkÞa ¼ paVX

ðkÞVXðkÞpa ¼ kðkÞa

They can be used as a diagnostic tool to compare

samples or to detect an abnormal scene. Comparing

different weights on a dimension gives a look on

similarities between samples. These similarities

between objects will depend on the presence of pixels

having the same behavior of fluorescence and their

relative amounts in the different images. For this

application, the definition of the regions of interest

(their positions, sizes and shapes) will modify these

relative proportions and consequently the values of

the weights. For the selected regions of interest, the

weights (Table 3) are very homogeneous for the five

cereals, showing very similar fluorescence behaviors.

Fig. 5. Score images on the first three dimensions. The three columns refer to the dimensions 1, 2 and 3. wm: wheat Market; wr: wheat Recital;

ws: wheat Soissons; bc: barley Clarine; bp: barley Prisma.
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There is also a close link between the loss function

and the weights: at each stage, the decreasing of the loss

function is equal to the sum of the squared weights.

L ¼
XK
k¼1

NXðkÞVXðkÞ �
XA
a¼1

kðkÞa papaVN
2

¼
XK
k¼1

NXðkÞVXðkÞN2 �
XK
k¼1

XA
a¼1

�
kðkÞa

�2

As each dimension a describes a part of the initial

inertia, the importance of this dimension may be

assessed by the percentage of inertia explained by

the component a using the weights ka
(k)

Ia ¼

XK
k¼1

�
kðkÞa

�2

XK
k¼1

NXðkÞVXðkÞN2

Fig. 4 shows the loading vectors computed for the

first three dimensions. The components of loading

vector pa are the coefficients of the linear combina-

tions used to compute the score images for dimension

a. They exhibit the common features of the raw data

tables, the way in which this part is common being

given by the ka
(k); in our case, the loadings express the

common fluorescence behaviors.

On the first dimension, the highest coefficients

were observed for images acquired after excitation

with the blue laser, and to a lesser extent with the UV

laser, corresponding to images with high levels of

fluorescence. The first dimension could therefore be

interpreted as indicating the raw images for which

some fluorescence was observed. The second loading

vector revealed a contrast between the fluorescence

behaviors after excitation with the blue and UV lasers.

The third loading showed variations observed after

excitation with the blue laser alone between the long

pass filters >515 and >570 nm and the other filters.

The model of decomposition of the multivariate

images assessed from the region of interest was

applied to all the pixels of the images. The score

images were reconstituted by folding the score vectors

and the first three dimensions are shown in Fig. 5. In

these images, the grey level intensities were arbitrary

and set independently for all the images. As a con-

sequence, they must be interpreted as revealing the

tissues contrasted by the method, i.e. black and white

corresponding respectively to the negative and pos-

itive coefficients of the loading vectors.

The first score images were very similar to the

images obtained after excitation with the blue laser,

the aleurone layer being slightly visible in grey. As

indicated by the first loading vector, the areas for

which fluorescence occurred were highlighted in the

score images. Thus, the pericarp, husks and waxy

layers were overall the most fluorescent tissues con-

sidering all the conditions used in this experiment.

The second score images mainly exhibited the aleur-

one layers in white for the five cereals as expected

from the UV images and the second loading vector. In

addition, the husks were found to have a similar

fluorescent behavior to the aleurone layer. The peri-

carp was slightly white for the three wheat samples

and almost grey in the barley images. The external

waxy layers were found contrasted in black corre-

sponding to their intense fluorescence observed after

excitation with the blue laser. The fluorescence in the

UV range is known to be attributed to ferulic acids

[18]. Regarding the second score images, ferulic acid

could be found in the aleurone layer, the husk and the

wheat pericarp. The waxy external layers were high-

lighted in white for the two barley samples in the third

score images together with the seminal tegument of

wheat Market, in contrast with the pericarps and husks

in black. This contrast was obtained by considering

the fluorescence using the blue laser light. The score

images showed strong similarities in the tissue of the

five grains studied. Three main fluorescence behav-

iors can be pointed out found in (i) the aleurone layer

and the husks, (ii) the pericarps and the husks, (iii) the

waxy layers and seminal tegument. As already men-

tioned, the fluorescence of the aleurone layers is

caused by ferulic acid. Fincher and Stone [19] have

reported some studies indicating the presence of

phenolic acids in barley husks that can explain the

fluorescence found in husks. The third score images

revealed the fluorescence common to pericarp and

husk for barley and wheat. The differences observed

between the wheat and barley pericarp in the second

score images cannot be interpreted straightforwardly

because only relative grey levels are represented on

the images. The third score images also revealed the
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fluorescence common to the external waxy layers and

the seminal tegument, the trace of which is found in

wheats Soissons and Recital. The study therefore

shows that at least three fluorescent compounds are

responsible for autofluorescence in wheat and barley,

the score images showing their localisation in situ in

the grains.

4. Conclusion

The simultaneous decomposition of cross-product

matrices using common component and specific

weight analysis made it possible to compare different

stacks of fluorescence images obtained by varying the

conditions of acquisition. The method was applied to

the comparison of wheat and barley varieties and

made it possible to identify the different fluorescence

behaviors in the global set of images and to reveal the

localisation of common fluorescence in the five cere-

als studied.

The procedure for extracting the common and

specific parts of the images is based on an alternating

least square algorithm that can be seen as a simple

way to achieve simultaneous principal component

analyses on different multivariate images. The model

proposed allows the original data tables to be of

different sizes, which is generally the case in image

analysis. This aspect is an obvious advantage over the

PARAFAC algorithm. In addition, the fact that sol-

utions are nested leads to a relatively easy interpreta-

tion of the decomposition. The examination of the

decreasing of the loss function provides the practi-

tioner with a useful tool to discard the dimensions

reflecting noise in a similar way than to the examina-

tion of the decreasing of eigenvalues in principal

component analysis. As a consequence, the decom-

position by common component and specific weights

analysis also acts as a data reduction technique.
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