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Abstract. Multivariate calibration techniques for use 
in multicomponent kinetic-based determinations are 
reviewed. Multivariate calibration is a chemometric 
tool that continues to grow in popularity among ana- 
lytical chemists. Multicomponent kinetic methods 
depend on differences in rates of reactions or processes 
to distinguish among the components. Kinetic profiles 
or a combination of kinetic profiles and spectra are 
commonly used. Because of their ability to process 
large quantities of data, multivariate calibration tech- 
niques are well suited for kinetic-based determinations. 
The concepts and principles of multivariate calibration 
are discussed first. Classical least squares regression, 
principal component regression, partial least squares 
regression and artificial neural networks are the multi- 
variate calibration techniques considered here in detail. 
Recent examples of the application of these techni- 
ques to multicomponent kinetic determinations are 
reviewed. Both single and multiwavelength kinetic 
data are considered. 
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1. Introduction to Multicomponent Kinetic 
Determinations 

In recent years, kinetic methods for multicomponent 
determinations have become more popular. Several 
reviews of the principles and applications of kinetic 
methods can be found [1--7]. Multicomponent kinetic 
methods involve similar species reacting with a 
common reagent or undergoing a common process. 
Differences in the reaction or process kinetics are 
used to distinguish among the components without 
any physical separation. The major limitation of many 
conventional techniques for processing kinetic data is 
their reliance on an accurate model of the kinetics of 
the system under study. Such techniques require that 
the analyst have knowledge of the reaction order and 
rate constants for each of the reactions in the chemical 
system. 

It is becoming increasingly clear that perhaps the 
most useful chemometric techniques for handling 
kinetic data are those that do not assume a kinetic 
model. In particular, multivariate calibration techni- 
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ques have shown great promise. Recent publications 
have demonstrated the use of partial least squares 
regression, principal component regression and clas- 

sical least squares regression. Artificial neural net- 
works have also proved promising. 

In the sections of this review to follow, we first 

describe multivariate calibration in general terms. We 
then discuss multivariate calibration from a purely 

functional viewpoint, and consider the mathematical 
inner workings of various multivariate calibration 
techniques. Finally, we present the results of kinetics 
experiments, both simulated and real, in which 
multivariate calibration has been used. 

2. Generalities of Multivariate Calibration 

The generalities of multivariate calibration techniques 
are first discussed, and a "black box" approach is 
used to illustrate the functional use of multivariate 
calibration, i.e., the nature of the inputs and outputs. 
This overview is followed by a more complete 
mathematical description of the inner workings of 
some of the more common multivariate calibration 
techniques. For further information about multivariate 
calibration and multivariate calibration techniques, 
references [8-10] should be consulted. 

a. Multivariate Calibration as a "Black Box" 

Multivariate calibration techniques can be easily 
described by a simple "black box" model, as 
illustrated in Fig. 1. A calibration set is input to the 
algorithm. This calibration set consists of a data 
matrix and a weighting (or concentration) matrix. The 
algorithm finds some mathematical relationship 

Input Algorithm 

Fig. 1. "Black box" functional description of multivariate calibra- 
tion techniques 

between these two matrices and forms a calibration 
model. This model is then applied to an unknown data 
matrix, and the concentration matrix of the unknown 

is estimated in a regression step. 

b. Inner Workings of Various Multivariate Calibration 
Techniques 

i. Nomenclature and conventions. In this document, 
matrices, vectors and scalars are written as follows. 
Matrix A, vector a, and scalar a are written as shown. 
The transpose of matrix A and vector a are written as 
A T and a T , respectively. All vectors are assumed to be 

column vectors unless written as a transpose. In data 
matrices it is assumed that rows represent samples or 
observations and that columns represent variables. 
Often, for simplicity, the example shown presumes 
that each row is a sample and each column is a 
measurement at a discrete time point. 

ii. Classical least squares regression. Classical least 
squares regression (CLSR) is the most commonly used 
multiple linear regression (MLR) technique. It is the 
only such technique that is discussed here. Classical 

least squares regression assumes a linear relationship 
between observed data (e.g., kinetic profiles) and a 
matrix of weighting factors (e.g., initial concentra- 
tions) [11] 

x = pS 

where x is the vector of measured data, S is the matrix 
of calculated pure component responses (kinetic 
profiles) and p is the vector of weights (initial 
concentrations). If S has already been calculated from 

known x and p [11] 

S = ( p T p ) - l p T x  

An unknown Punk can be determined from a vector of 
data Xu.k 

Punk = Xunk S+ 

where S + is the pseudo inverse of S and is defined as: 

S + = s T ( s s T )  -1 

The major limitation of this technique is that the pure 
component responses must be linearly independent for 
S + to be defined [11]. 

iii. Principal component regression. Principal compo- 
nent regression (PCR) is, in actuality, a two step 
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process. In the first step, principal component analysis 
(PCA), a data matrix is decomposed into a set of 
principal components. Given a data matrix X of size 
m x n (m samples and n variables) the covariance 
matrix can be defined as [11] 

XTX 
coy(X) - m -  1 

PCA decomposes X as 

X = tl �9 pT + t2 �9 pT 2 + . . . + t k . p r + E  

where k is less than or equal to the smaller of the 
number of variables (n) and number of samples (m) 
and E is the residuals (error) matrix. The orthogonal ti 
vectors (the scores) contain information about inter- 
sample relationships. The Pi vectors (the loadings) are 
the orthonormal eigenvectors of the covariance 
matrix, 

COV(X)Pi = /~i Pi 

where )`i is the eigenvalue corresponding to eigen- 
vector Pi. Thus, the scores are the projections of the 
data matrix onto the loadings vector [1 l] 

X ' P i  = ti 

The eigenvalues are arranged in order of magnitude. 
The first eigenvalue, ),1, is the largest and is associated 
with the pair (h,  Pl). This first principal component 
contains more information about the system than any 
other [11]. By examining the eigenvectors it is 
possible to determine how many principal compo- 
nents must be used to describe the data adequately. 
Most often, the number of principal components is 
much smaller than the number of variables. Indeed, 
one of the main advantages of PCA/PCR is this 
reduction in dimensionality. In addition, principal 
components generated by PCA are often useful as 
descriptors of a chemical system. They are often more 
robust than measured experimental variables because 
of the averaging inherent in PCA. Some artificial 
neural network applications use PCA scores rather 
than experimental data as inputs. 

Figure 2 illustrates the application of PCA to a 
system described by three experimental measure- 
ments. Plotting the data derived from these measure- 
ments reveals that all the data points lie in a plane. 
Using PCA the three variables can be consolidated 
into two principal components (PCs) that correspond 
to two axes in this plane and so the dimensionality of 
the system can be reduced. The first PC describes the 
main source of variation. The second PC corresponds 
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Fig. 2. Three dimensional data reduced in dimensionality by PCA 

to the next greatest source of variation in the data. 
Used in this context, a component that is a major 
source of variation in the data is one that has a large 
effect on the measured data (X). Again, only PCs that 
have significant effects on the data are used in 
modeling the system. 

The second step of principal component regression 
involves using the principal components calculated 
with PCA to create a calibration matrix. Similar to 
CLSR, the pseudo inverse, X +, can be calculated as 
[11] 

X + = p ( T T T ) - I T  T 

such that 

Punk = XunkX + 

The major difference between the two methods is that 
in PCR the data are regressed on the scores of 
principal components rather than on measured values. 
This reduction in dimensionality serves to eliminate 
some noise and provides well conditioned (orthogo- 
nal) data for regression [11]. If all the available PCs 
are used, there is no reduction in dimensionality and 
PCR converges to CLSR. The proper number of PCs 
to use in the regression can be determined in a variety 
of ways. The most obvious, and therefore the most 
common criterion for choosing the number of 
principal components, is the percentage of the total 
variation that is described by a set of selected PCs. 
Generally, the minimum number of PCs that combine 
to describe a desired fraction (usually 80-90%) of the 
variation in the data set is chosen [12]. 

Graphical methods for determining the number of 
principal components are also very popular. A scree 
graph, shown in Fig. 3, is a plot of the eigenvalue 
associated with each PC [12]. The reading of a scree 
graph is not an exact science, but rather relies heavily 
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Fig. 3. Example of a scree graph 

on the common sense and intuition of the analyst. In 
general, the "elbow point" where the graph begins to 
have a nearly zero slope is the last significant PC. In 
Fig. 3, it occurs at the second component, and so two 
PCs should be included in the model of the system. 
Often, the location of this elbow point is not as clear 
as that shown and is thus subject to interpretation. 

Cross-validation methods for determining the 
number of PCs can be more computationally intense 
than the two methods mentioned above [12]. They 
usually involve splitting the calibration data into two 
parts. The first is decomposed into PCs. These PCs are 
then used to perform a prediction on the other set. The 
number of PCs that provide the best prediction is then 
chosen. Most often the process is repeated numerous 
times so that each sample is used in both a calibration 
and a validation set. An excellent discussion of 
various methods for choosing the proper number of 
PCs can be found in ref. [12]. 

iv. Partial least squares regression. Partial least 
squares regression (PLSR) can perhaps best be thought 
of as a compromise between CLSR and PCR. Classical 
least squares regression finds a single factor that 
correlates data (e.g., kinetic profiles) with weightings 
(initial concentrations). Principal component regres- 
sion finds factors that best describe the trends (var- 
iance) in the data. PLS attempts to find factors that 
describe the variance in the data and correlate weight- 
ings to the data. PLS is thus less susceptible to error 
arising from variables that fluctuate significantly, but 
are unrelated to the weights. 

Given a data matrix (e.g., kinetic profiles), X, and a 
matrix of predicted variables (e.g., initial concentra- 
tions), Y, PLS decomposes X and Y as [11]: 

X = T . p  T 

y = U . Q  T 

where T is the matrix of scores for the data, P is the 
matrix containing the loadings for the data, U is the 
matrix of scores for the dependent variables, and Q is 
the matrix containing the loadings for the dependent 
variables. In addition, a vector of weights w that relate 
U to X and a vector b that relates U and T are created. 
The pseudo inverse used in calibration is then defined 
as [11]: 

X + = w ( p T w )  -1 (TTT) - IT  T 

Then as in CLSR and PCR, 

Punk = Xunk x +  

Again, if all the available latent variables are used in 
the prediction PLSR converges to CLSR [11]. Similar 
cross validation rechniques are used in both PCR and 
PLSR. 

v. Artificial neural networks. Artificial neural net- 
works (ANNs) are a powerful new tool in the arsenal 
of analytical chemists [13]. The primary element of an 
ANN is the neuron. These neurons are arranged in 
input and output layers sandwiching one or more 
"hidden" processing layers. Neurons can be thought 
of as weighted transfer functions. Neurons can have 
single or multiple inputs. The processing neurons 
apply a weighted sum of their inputs and transfer 
the result to the output. Often the transfer function 
is non-linear (sigmoidal functions have been most 
often used) [14]. A diagram of a neuron is shown in 
Fig. 4. Here Ii is an input, wi is the weighting associated 
with input I, b is the bias introduced into the summa- 
tion, n is the output of the weighted sum and a is the 
output of the transfer function (F); i.e., [14] 

a = F(wI + b) 

During the training or calibration phase the weight- 
ings are adjusted to accurately fit the calibration data. 
Often PCs are used as inputs to the network instead of 
experimental variables [15]. This reduces the neces- 
sary number of neurons immensely. 
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Fig. 4. Schematic description of a neuron [14] 
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It has been shown that in many cases ANNs give 
results similar to PLSR and PCR [15,16]. Neural 

networks have the disadvantage, however, of requiring 
more calibration samples for proper training. This 
inconvenience has proved to be worth suffering in 
cases where ANNs' superior ability to handle non- 
linear systems can be exploited. 

3. First Order Calibration of Kinetic Data 

Booksh and Kowalski [17], in their theory of 
analytical chemistry, define zero, first, and second 
order calibration. Zero order calibration is performed 
on zero order data, i.e., when a single data point per 
sample is collected. First order calibration is, as can 
be expected, performed on first order data. First order 
data are measured as a function of a dependent 
variable. Examples of first order data include UV- 
Visible or IR spectra, chromatograms, and kinetic 
profiles (the subject of this review). Second order data 
are acquired as a function of two dependent variables. 
Examples of second order data include chromato- 
grams with multiwavelength detection, excitation/ 
emission fluorescence spectra, and multiwavelength 
kinetic profiles. More simply, zero order data can be 
described by a scalar, first order data by a vector, and 
second order data by a matrix. Higher order calibra- 
tion is also possible, although no uses of third or 
higher order calibration methods have been reported 
for kinetic applications. 

a. Simulation Studies 

It is often desirable to determine the effect of a wide 
array of experimental variables on the quality of a 
calibration or prediction. Because it can be difficult or 
impossible to find chemical systems with a wide range 
of rate constant ratios, spectral overlap, and other 
properties to test, many researchers perform these 
experiments using simulated data. The major advan- 
tage inherent in using simulated data lies in the ability 
of the analyst to specify the exact conditions under 
which the simulated experiment is performed. Many 
researchers have taken advantage of this ability and 
have studied the effects of a wide variety of 
experimental parameters on most of the common 
multivariate calibration techniques. In general, the 
magnitude and direction of the effects is much the 
same for most of the techniques. In some cases, 
artificial neural networks were found to be superior to 

factor-based techniques. These special cases are 

discussed in more detail later; here the reader can 
assume that the effects and trends described are 
applicable to all of the mentioned techniques. Some of 
the findings are intuitive; others are more surprising. 

Many researchers have found, not surprisingly, that 
the amount of instrumental noise can have a profound 
effect on the quality of a regression [15, 16, 18-21]. 
Increasing levels of instrumental noise result in 
increasing error in the calibration. The amount of 
instrumental noise that will allow a calibration with 
an acceptable error (< 10%) is dependent on the 
levels of many of the other experimental variables. In 
general, instrumental noise levels of less than 1% 
usually allow a satisfactory calibration. 

One of the major difficulties in performing kinetic 
determinations has always been the dependence of 
kinetic rate constants on a variety of experimental 
parameters. Rate constants can be affected by tem- 
perature, pH, ionic strength, and a host of other 
variables that can fluctuate over the course of a 
determination. Some researchers have modeled these 
fluctuations as Gaussian noise added directly to the 
rate constants [18, 19, 21]. In general, they have found 
that these fluctuations have a small, but measurable, 
effect on the accuracy of a calibration. 

A common descriptor of a multicomponent kinetic 
system is the ratio of the rate constants of the 
individual components. Thus, a measure of the 
efficacy of a data processing technique is the lowest 
rate constant ratio for which it is able to resolve two 
components. A rate constant ratio of 1:1 of course, 
can never be resolved by kinetics alone. Several 
researchers have shown that using multivariate 
calibration techniques, it is possible to resolve 
mixtures with rate constant ratios as low as 1.1:1 
[19, 21], depending on the amount of instrumental 
noise and rate constant fluctuation that is present. 
Even with moderately high levels of instrumental 
noise and rate constant fluctuations, mixtures with 
ratios as low as 1.5:1 can routinely be resolved [19, 
21]. This compares very favorably with model-based 
techniques such as Ka][man filtering [1]. Most 
researchers have found that multivariate calibration 
techniques perform best when the rate constant ratio is 
near 2:1 [15, 19, 21]. Higher (as well as lower) ratios 
result in less accurate calibrations. 

Recent studies have investigated the effect of 
varying the time for which the reaction is monitored 
[21]. In order to allow for varying rate constants, the 
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fraction of the slowest reacting component that has 
reacted is varied. Previous workers have reported a 
need to sample at least 50% of the slowest reaction 

when employing model-based techniques [22]. Some 
preliminary studies in our laboratory have suggested 

that only 15-20% of the slowest reaction need be 
sampled when multivariate calibration techniques are 

employed [21]. This may be an unpredicted advantage 
of non-model based calibration techniques. 

Several workers have investigated the effect of 
analyte concentration ratios on the quality of multi- 
variate calibrations [16, 21]. In general, they found 

that these ratios have a small, but real effect on the 
calibration. Higher ratios (large concentration differ- 

ences) result in greater error. This effect probably 
results from the minor component making a small 

contribution to the analytical signal. I f  the minor 
component is also the slowest reacting component, or 

has a smaller response factor (e.g., lower molar 
absorptivity or fluorescence quantum efficiency), the 

effect should be even more exaggerated. 
There has been some interest in how multivariate 

calibration techniques will respond to non-linear 
kinetic data. Synergistic effects and the non-additivity 

of rate constants associated with them can seriously 
compromise the results of kinetic determinations. In 

order to investigate this effect Blanco and coworkers 

[15, 19] have simulated non-linear data by incorpor- 
ating a non-linear synergy constant into the rate 
equation. They have shown that PLSR and PCR can 

be used to compensate for synergistic effects. 

Increasing synergy constants require increasing num- 
bers of PCs to adequately model non-linear systems. 
Both PLSR and PCR were shown to give nearly 

identical results that were worse than the results 
obtained by an artificial neural network. Non-linear 

systems are modeled with PCR and PLSR only with 
difficulty, but artificial neural networks do not seem to 

be adversely affected by non-linear effects. Hence, 
artificial neural networks, which are themselves 
inherently non-linear, may prove most useful for 
handling non-linear kinetic data. The effect of 
increasing synergy constants on the accuracy of a 
prediction can be seen in Table 1 [19]. Recently non- 
linear forms of PLSR algorithms have become 
available [11]. Work must still be done in order to 
determine the potential of  these new techniques for 
dealing with non-linear kinetic data. In addition, 
partial least squares/artificial neural network hybrids 
have also been developed recently [11]. These 

Table 1. Relative standard error of prediction (RSEP) as a function 
of rate constant ratio, ks (synergy constant), and instrumental noise 
[191 

kA/kB k~ % RSEP without % RSEP with 
instrumental noise instrumental noise 

1.10 1.00 0.07 23.18 
10.00 0.29 28.25 
50.00 0.29 33.53 

100.00 0.45 45.74 

1 . 5 0  0.01 - 0.99 
0.10 - 1.90 
1.00 0.02 6.94 

10.00 0.07 9.09 
50.00 0.08 11.25 

100.00 0.13 12.31 

3.00 0.10 - 0.48 
1.00 0.00 2.27 

10.00 0.01 3.30 
50.00 0.01 2.85 

100.00 0.01 3.16 

5.00 0.10 - 0.37 
1 . 0 0  - 1 . 4 6  

10.00 - 1.70 
50.00 - 2.09 

100.00 - 2.23 

algorithms are essentially PLS routines with ANN 
inner-workings. Again, work remains to be done to 

determine the applicability of these algorithms to non- 
linear kinetic data. 

b. Application of Multivariate Calibration to 
Chemical Systems 

Some progress has been made toward the successful 

application of multivariate calibration techniques to 
first order kinetic data. In one paper, PLSR was 
applied to a complicated kinetic system [19]. 

Hydrazine and hydroxylamine can both react with 2- 

hydroxybenzaldehyde azine (2-OH-BAA) in alkaline 
solution to produce the corresponding fluorescent 2- 

hydroxybenzaldehyde hydrazone (2-OH-BAH). The 
formation of 2-OH-BAH was monitored by observing 
the fluorescence at 465 nm after excitation at 355 nm. 
The reaction system studied was quite non-linear; the 
reagent was not in large excess, and so pseudo-first 
order conditions did not exist. The reaction has an 

induction period. The 2-OH-BAA reagent can also 
hydrolyze to form 2-OH-BAH. Finally, hydroxyla- 
mine and hydrazine interact in a complex manner that 
is dependent on their relative concentrations. In spite 
of these non-linear effects, hydroxylamine and 
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Table 2. Relative % error for chlorophenols as a function of concentration ratio [16] 

ANN error (%) Kalman filtering error (%) 

[2-C1Ph]/[3-C1Ph] 2-C1Ph 3-C1Ph 2-C1Ph 3-C1Ph 

9:1 2.41 -10.87 -2.50 39.5 
5:1 -3.45 5.52 - - 
4:1 -4.06 6.96 -3.25 13.0 
3:1 --1.35 4.65 2.00 -6.83 
2:1 1.91 4.31 0.00 1.25 
1:1 -0.96 2.82 -2.00 -4.00 
1:2 -0.79 0.81 2.37 -3.50 
1:3 -1.91 -2.74 8.66 -9.78 
1:4 - 1.27 2.96 8.75 -6.06 
1:5 2.27 -2.25 - - 
1:6 -4.67 4.32 - - 
1:7 -9.92 2.61 - - 
1:9 -10.23 2.31 21.5 -5.66 

hydrazine were determined with good accuracy. The 
average relative percent error was 13.2% [19]. 

In other work, a scheme that employed an artificial 

neural network that was fed by the results of  principal 

component analysis was used to resolve mixtures of 2- 

and 3-chlorophenol [16]. N,N-diethyl-p-phenylene- 

diamine reacts with both chlorophenol isomers. The 

reaction was monitored at 660 nm. The rate constants 

of 2- and 3-cholorophenol are quite similar (rate 

constant ratio o f  k2-clph/k3-clph = 1.37). Concentra- 
tions were varied between 2 and 18 lxM, resulting in 
concentration ratios between 5:1 and 1:5. The results 

of calibration using an artificial neural network were 

compared with those obtained using Kalman filtering. 

In general, the artificial neural network produced 

more accurate predictions. It was also noted that the 

ANN performed best at concentration ratios close to 

1:1. In samples with higher ratios, the prediction of 
the minor component was severely c,ompromised; the 

major component was largely unaffected by the 

concentration ratio [16]. These results are summarized 

in Table 2. 

4. Second Order Calibration of Kinetic- 
Spectrophotometric Data 

The increasing availability of  diode array detectors 
and charge coupled devices (CCDs) has spurred the 

application of multiwavelength array-type detection 
for kinetic determinations. Several recent papers have 

described the use of  multivariate calibration techni- 
ques with the second order kinetic-spectrophotometric 
data that these experiments produce. Here, second 

order refers to the calibration data and not to the 
kinetic model. 

a. Simulation Studies 

As is true with first order data, when dealing with 

second order data it is often wise to study the effect of 

some experimental parameters using simulated data. 

Blanco et al. [18] report on the use of PLSR and an 
ANN for the resolution of second order kinetic 

spectroscopic data where the kinetics can be described 

as pseudo first order in reagent. In general, both 

algorithms performed well. As would be expected, the 

ANN more accurately models the kinetic non- 

linearity than does PLS. It was found that the 
accuracy of a prediction varies directly with the 

amount of fluctuation in the rate constants. Increasing 

spectral overlap decreased the accuracy of the PLS 

prediction, but had no real effect  on the ANN. These 

results are summarized in Table 3 [18]. 

b. Application of Multivariate Calibration to 
Chemical Systems 

Multivariate calibration techniques have also been 
successfully applied to a wide array of second order 

kinetic-spectrophotometric data. Gallium and alumi- 
num react with 4-(2-pyridylazo) resorcinol (PAR) to 
produce products with very similar spectra [23]. The 
ratio of the rate constants is kA1/k~a = 3.67. Using a 
stopped-flow, flow injection (FI) system with diode 
array detection, Blanco, et al. [23] determined mix- 
tures of Ga and A1 with an error of less than 10%. 



8 T. E Cullen and S. R. Crouch 

Table 3. Relative standard error of prediction (RSEP) as a function of rate constant variance and speclaa[ overlap [18] 

Distance between absorption maxima 

2 nm 10 nm 24 nm 150 nm 

RSDk (%) PLSR ANN PLSR ANN PLSR ANN PLSR ANN 

0 0.44 0.05 0.19 0.05 0.09 0.05 0.13 0.06 
5 0.66 0A6 0.77 0.74 0.58 0.50 0.56 0.49 

In other work, O-O~-bis-(2-aminoethyl) ethylene 

glycol-N,N,NrN,N ~ tetraacetic acid (EGTA) com- 

plexes of Fe(II), Co(II), and Zn(II) were reacted with 

PAR [15]. These metal ions react with similar kinetics 
to form products with very similar kinetic profiles. 

This experiment was performed in a stopped-flow FI 

system with diode array detection. The calibration 

techniques PCR, PLSR and ANN were used to 

determine Fe, Co and Zn successfully. The kinetics 

can be complicated by performing the experiment in 

two steps in a flow system. I f  Co, Fe, and Zn are 
directly injected into the flow system, where they first 

react with EGTA and then with PAR, the kinetics of  

the Co and Zn are essentially the same as for the case 
where the EGTA complexes are directly injected. 

Iron(II), however, reacts slowly with EGTA and thus 

the kinetics associated with the formation of the Fe- 
PAR complex are significantly altered (in a non-linear 

fashion). All three methods (PCR, PLSR, and ANN) 
were used to determine Co, Fe, and Zn using data 

collected in this second manner. Almost identical 

results were obtained with PCR and PLSR. They 

predicted the concentration of Zn and Co with good 

accuracy, but performed less well in determining Fe. 

The accuracy of the results obtained with ANN was 

comparable to (though slightly better than) that of 

PCR and PLSR for Zn and Co, but much better for Fe 
[15]. This result was not unexpected, since ANNs 

have been found to handle non-linear data better than 

do PCR or PLSR. 
Artificial neural networks have been tested on other 

non-linear kinetic systems [18]. Benzylamine and n- 
butylamine react with salicylaldehyde to produce 

similar products. The reaction was carried out without 
the reagent (salicylaldehyde) being in excess. Under 
these conditions, both benzylamine and n-butylamine 
react according to second order kinetics. The rate 

constant ratio is kBenz/kButl  : 2.9. The experiment 
was monitored over two wavelength ranges. In the 
360-448 nm region the formation of the product is 
followed. The second:region,  280-448 nm, also 

Table 4. Relative standard error of prediction (RSEP) as a function 
of wavelength range [18] 

RSEP(%) 

Benzylamine Butylamine 

Range (nm) PLSR ANN PLSR ANN 

360M48 8.72 5.94 12.04 634 
280--448 6.65 3.15 11.39 4.61 

includes the region of salicylaldehyde absorption. 

Here the formation of the products and the depletion 

of the reagent can be followed. As might be expected, 

calibrations that use the larger wavelength range 
(which gives more information) are more accurate 
[18]. A summary of the results of PLSR and ANN 

calibrations over both wavelength ranges can be found 

in Table 4. 

In other work, Havel and coworkers determined 

vanadium and cobalt by PLSR using kinetic data [20]. 
The reaction studied was that of V and Co with the 

TrAMeR reagent (4-(l~H-Y,21,4r-triazolyl-3~razo)-2 - 

methylresorcinol). The reaction was monitored at 60 s 

intervals for 30 minutes at five wavelengths between 

500 and 540 nm. The average relative percent error 

was 4%. In the same paper, a stopped-flow FI deter- 

mination of Zn, Co, and Fe was described. The 
average error associated with this determination was 

also about 4%. 
Lopez-Cueto and coworkers [24] have described 

the determination of aminophenol isomers. These 
authors used PLSR with kinetic-spectrophotometric 
data that were acquired with a diode array detector. 

The reaction studied was one that required that the 
reagent not be present in excess. Also, the concentra- 
tion of each isomer influenced the reaction rate of the 

others. In spite of  the inherent kinetic non-linearity, 
acceptable results were obtained as shown in Table 5. 

In a very recent publication, Havel and coworkers 
[25] reported on the kinetic-spectrophotometric deter- 
mination of europium, terbium and lanthanum using 
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Table 5. Relative % error associated with determination of ami- 
nophenol mixtures [24] 

o-Aminophenol m-Aminophenol p-Aminophenol 

Mixture Error (%) Error (%) Error (%) 

o-, m- -0 .2  -1.5 - 
o-, p- 4.8 - -1.3 
m-, p- - 7.2 1.0 
o-, m-, p- -2 .0  -1.5 - 

PLSR. Binary mixtures of the metal ions reacted with 
Xylenol Orange to produce similar spectra. Accep- 
table errors were obtained (0.2-4%). The authors 
noted that the PLSR algorithm required at least four 
latent variables for a satisfactory fit. They also 
reported that, while excellent results were obtained 
with binary mixtures, ternary mixtures could not be 
resolved with acceptable error levels. 

5. Conclusions 

Recently, analytical chemists have begun to utilize 
more and more of the data they collect. There is also a 
trend toward the use of higher order (multidimen- 
sional) data. Data processing tools that can deal with 
such large amounts of data, especially first and second 
order data, are in great demand. Multivariate calibra- 
tion is a technique that meets these criteria and is 
finding applications in many areas of analytical 
chemistry. This review has described some of the 
ways in which multivariate calibration techniques 
have been applied to kinetic methods of analysis. The 
use of second order kinetic-spectrophotometric data is 
becoming more and more common as diode array and 
CCD detectors become more widely available and 
chemometric techniques for handling second order 
data become more established. We predict that this 
work will continue and thus multivariate calibration 
and other related chemometric techniques will 
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become widely used for kinetic determinations in the 
future. 
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