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Abstract

Measurements collected from batch processes naturally produce a third-order or three-dimensional data form. The same
structure also results when multiple samples are measured using hyphenated analysis techniques such as liquid chromatogra-

Ž .phy with diode array detection. Analysis of third-order data by principal components analysis PCA is achieved by a
nonunique rearrangement that produces a two-dimensional array. This preferentially models only one of the three orders pre-

Ž .sent. In contrast, methods such as parallel factor analysis PARAFAC apply a particular decomposition that accounts for all
three orders explicitly. The results from either approach should be related if data are to be interpreted reliably for applica-
tions to batch processes such as on-line monitoring and control. This work compares these two approaches from an applied
point of view. To accomplish this objective, exemplary methods are selected from each type of analysis, parallel factor anal-

Ž . Ž .ysis PARAFAC and multiway principal components analysis MPCA . These are employed to analyze data obtained dur-
ing the manufacture of a condensation polymer in an industrial batch reactor. q 1999 Elsevier Science B.V. All rights re-
served.
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1. Introduction

Extracting greater value from the extensive in-
vestment in process control technology is one of the
challenges facing the manufacturing organizations of
many modernized industries. Hardware and software
used to gather, process, and store signals have not
only become affordable, they have also increased in

Žpower and capacity cf. the cost and sophistication of
.a desktop PC . With the size of the collected database

growing nonlinearly, efficient methods must be found
to analyze data and information. In addition, these
methods and tools should yield results in real time if
effective use is to made of them in a manufacturing
environment.

Batch and semi-batch processes are used widely in
the chemical, pharmaceutical and agricultural indus-
tries. Their flexibility to produce high-value products
during short manufacturing campaigns accounts for
their extensive use. The manufacture of a typical
batch involves charging ingredients to the vessel,
processing them under controlled conditions, and
discharging the completed product. Consistency of
the product is the implicit goal in repetitive opera-
tion, so minimizing batch-to-batch variability is im-
perative. At present, this is controlled through a
plethora of simple methods, such as basic servocon-
trol of intrinsic measurements, to the more advanced,
programmable logic controllers which enable precise
sequencing of the operational steps.

Even with a high degree of automation, control of
a batch process is quite challenging. This is at-
tributed to the combination of their finite duration,
nonlinear behavior, their natural nonstationarity, and
multiobjective criteria. To confound the problem, in-
sufficient in-line instrumentation is the norm rather

than the exception, thus crucial information about the
progress of the batch is not known in a timely man-
ner. Feedback control of the product composition in
the same sense as continuous processes is not possi-

Ž .ble dynamic compensation , thus some form of sta-
Žtistical quality control is practised steady-state com-

.pensation which may or may not reduce batch-to-
batch variability consistently and reliably.

Methods and tools for extracting information from
Ždata using multivariate statistical analysis e.g.,

.chemometrics have grown rapidly in number and
capability over the past decade. For batch processes,
these tools include multiway principal components

w xanalysis or MPCA 1,2 and multiway partial least
w xsquares or MPLS 3 . As an example, Kosanovich et

w xal. 4 used MPCA to analyze batch process data
variability that resulted from heat transfer limita-
tions. Compared to MPCA and MPLS, other bilinear
and trilinear methods that are used routinely to con-
vert data from hyphenated analytical instruments to

Žanalyte concentrations e.g., for liquid chromatogra-
phy with UV–visible diode array detection, or LC-

. w xDAD can produce seemingly similar analyses 5 .
A comparison of two methods for analyzing

third-order data, MPCA and PARAFAC, is presented
in this work. Our goal is to determine whether these
methods can be used reliably in a manufacturing en-
vironment. We have chosen an application approach
for this comparison. The specific application consid-
ers a homologous set of temperatures obtained dur-
ing manufacture of a condensation polymer in a batch
reactor. Thus, these data are a close analogue to the
form of spectral data to which decomposition meth-
ods like PARAFAC have been applied. This is not

Žintended to be an exhaustive comparison e.g., direct
comparison of computational speeds for the two
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.methods is not addressed explicitly , so the conclu-
sions reached here should not be viewed as defini-
tive. The paper is organized as follows. First, the as-
sumptions upon which the methods were developed
are presented; next the problem to which the meth-
ods are applied is introduced in sufficient detail to
demonstrate that there is no bias intended to cause the
analysis from one method to be favored over the
other. Following this, results of applying the meth-
ods are discussed and conclusions are drawn where
possible. Lastly, recommendations are offered con-
cerning the use of the resulting models in the vital
activities of detection, monitoring, and control of
real-time operations.

2. Methods

When two analytical techniques are combined or
linked to measure a sample they create a second-order

w xinstrument 6,7 . An advantage to this approach is
improved detection and quantification of desired ana-
lytes in the presence of components not accounted for
in the instrument’s calibration model. The measure-
ments obtained from a single sample form a two-di-
mensional matrix, with each method contributing to
the final signal. Using coupled LC-DAD as an exam-
ple, the chromatography column changes the quan-
tity of each analyte seen by the diode array detector
over time, yielding new measurements at each chan-

Ž .nel wavelength at each sample time. Let the
columns of the two-dimensional data array represent
elution times and the rows successive channels
Ž .wavelengths in the instrument’s data matrix. Thus,
each column in the matrix is the spectrum of the
eluted material at a specific time while each row is
the elution time profile at a specific wavelength. A
similar representation can be made for process data
Ž .sensor measurements from a single batch. Each
column in this matrix contains the measured values
from all sensors at a specific sampling time and each
row holds the temporal information from each sensor
over the time required to produce the batch.

When different samples are measured on the LC-
DAD instrument, or measurements from new batches
are sampled, the pooled information forms a three-

Ž .dimensional array see Fig. 1 . Methods such as
MPCA and PARAFAC differ in their basic form of

Fig. 1. Examples of third-order data arrays from a second-order
Ž .analytical method e.g., LC-DAD and a batch process. Each sam-

ple measured by the analytical method yields a two-dimensional
data matrix of absorbance readings modulated by elution time.
Each batch produced yields a data matrix of process sensors’ read-
ings at discrete intervals over the course of the batch. The third or-
der is obtained by considering data from multiple samples or mul-
tiple batches during the modeling process.

analysis and development of the model for these 3-D
arrays.

Although different terminology has been used to
refer to the axes of the 3-D array, the term ‘orders’
will be used in this work. Additional notations used
are as follows. A 3-D array composed of 2-D matri-
ces is denoted in bold, underlined upper case letters;
2-D matrices are denoted by bold upper case letters;
vectors are bold lower case letters and by convention

ŽX.are column vectors; row vectors are the transpose
of column vectors; and scalars are italicized letters,
with i, j, and k reserved as running indices along in-
dividual orders.

2.1. MPCA

Ž .Multiway PCA and multiway PLS rearranges the
3-D array into a 2-D matrix that can be modeled us-
ing the conventional principal components analysis

Ž .method or partial least squares method . Two of the
three orders are not modeled independently as a re-
sult, so these methods have been termed ‘weakly

w xmultiway’ 8 . The array is rearranged by taking 2-D
Ž .slices along one of the orders Fig. 2 . Order 1 is ref-

Ž .erenced by index i is1, 2, . . . , I , order 2 by in-
Ž . Ždex j js1, 2, . . . , J , and order 3 by index k k

.s1, 2, . . . , K . Fig. 2 shows a rearrangement in
which slices are taken along order 3 and arranged to
have order 1 modeled independently of the other two.
This is not the only way to order 1 independently:
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Fig. 2. Rearranging the third-order data array into a two-dimen-
sional form for analysis by MPCA. Readings from all columns
along the variable order at each interval along the process time or-
der are considered as a blocks. These two-dimensional blocks are
laid out, one after another, to form an extended two-dimensional
matrix. With I batches, J variables and K times in the array, the

Ž .matrix has dimensions of I = JK .

slices can be taken along order 2 also. Overall, there
are six possible rearrangements of the 3-D array into
2-D forms. To analyze batch-to-batch variability, or-
der 2 represents process sensor values and order 3
their temporal profiles, leaving order 1 allocated to

w xindividual batches 1,2 . Thus, the 3-D array is con-
verted to a 2-D matrix that is I=JK in size, as illus-
trated in Fig. 2.

Ž .For principal components analysis PCA to be an
effective data analysis tool, two crucial assumptions
about the character of the data have to be satisfied.
The first is that if the data contain high frequency
components then some prefiltering is necessary so
that low frequency information is retained. The sec-
ond is that since MPCA and its variants are linear
methods, data with a significant amount of nonlinear
information must be pretreated to eliminate or reduce
this effect. This is accomplished by a centering oper-
ation about the mean of each of the JK columns in
the 2-D matrix.

The resulting array, X, is decomposed as sums of
the products of scores and loadings for each compo-

Ž .nent in the model u and V , respectively and ofm m

the array of residual errors, E, not accounted for by
the M components in the model:

Xsu mV qu mV q . . . qu mV qE, 1Ž .1 1 2 2 M M

where m denotes the Kronecker product of u withm

V . Fig. 3, top, shows the terms of this equation inm
Ž w x.graphical form Smilde 11 . The interdependence of

orders 2 and 3 is represented by the loadings’ matri-
ces, V , while the independence of order 1 is shownm

as the scores’ vectors, u .m

It is important to recognize that the J=K ele-
ments in each loadings matrix V are obtained via them

PCA computation as a loadings Õector of dimension
JK=1. For an MPCA model that includes two or
more components, these loadings vectors are orthog-
onal to each other. When a loadings vector is rear-
ranged into a matrix of dimension J=K , each row
represents one sensor over the time span of a batch
and each column covers all sensors at a single time
during manufacture of the batch. These columns and
rows can be compared among themselves for each
component and between components. This permits
both qualitative and quantitative assessments of how
the variations among the different sensors’ data con-
tribute as a group to the individual directions of vari-

w xability 4 . Note, however, that any single column or
row from one components’ loadings matrix V is notm

orthogonal to its corresponding column or row in an-
other components’ loadings matrix. That is to say,
loadings extracted either by variable order or by time
order are not necessarily orthogonal, but the scores
vectors corresponding to the batch order are. The
reason for pointing out this distinction will become

Ž .Fig. 3. Graphical representations of the MPCA unfolded PCA and
Ž w x.PARAFAC models after Smilde 11 . Readings in the X array

have already been centered in this example. The size of the circles
Ž .located at the junction of the vector and matrix for each dyad top

Ž .and the three vectors that comprise each triad bottom represent
the relative magnitudes of the successive factors.
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clear when results from the PARAFAC models are
presented.

2.2. PARAFAC

An extensive body of literature describes the de-
velopment and evolution of three-way factor analysis
and three-way generalizations of PCA and regres-

w xsion. Papers in the book edited by Law et al. 9 dis-
cuss these topics from the perspective of the psycho-

w x w xmetrics school. Geladi 10 , Smilde 11 , and Hen-
w xrion 12 provide useful reviews of the differences

betw een the M PCA procedure and that of
w xPARAFAC. Bro 13 has provided a tutorial on the

w xlatter method. Leurgans and Ross 14 applied the
PARAFAC model in a spectroscopic context where
an underlying chemical and physical basis could be

Žassigned to the form of the obtained model i.e., their
.model was ‘hard’ . The essential features of the

PARAFAC model as discussed here reflect the work
w xof Geladi 10 .

The 2-D matrix that consists of sampled measure-
ments per batch is an order 2 tensor. This tensor can
be decomposed into the outer products of two vec-
tors, or dyads:

Xs t pX q t pX q . . . qt pX qEsTPX qE. 2Ž .1 1 2 2 R R

The outer product of vectors t and pX , a row vector,r r

is the dyad, t pX . The minimum number of dyads thatr r

can represent an order 2 tensor is its tensor rank or
simply, rank, which is the minimum of the indepen-

w xdent rows or columns 10 . Here, R is the rank of X
when E, the matrix of residuals, is not the zero ma-
trix.

A 3-D data array, X, is an order 3 tensor. By anal-
ogy, an order 3 tensor can be defined in terms of a
sum of triads, or Kronecker products of three vec-
tors:

Xsa mb mc qa mb mc q . . .1 1 1 2 2 2

qa mb mc qE. 3Ž .R R R

X is I=J=K , as is E, which is the array of residu-
als not accounted for by the R triads of the trilinear
model. The tensor rank of X is the minimum number
of triads, R, necessary to describe it. Fig. 3, bottom,

Ž . w xshows the terms of Eq. 3 in graphic form 11 . The

independence of all three orders is shown by the vec-
tors a , b , and c .r r r

The results obtained by PARAFAC’s direct de-
composition of X possess the intrinsic axis property
w x15 : the obtained axes are uniquely oriented relative
to the configuration of the original data. For any PCA
solution XsTPX, there exists a large class of non-

X X Žsingular matrices A such that XsTA A P heren n n
.X is the unfolded, 2-D form of X . Each member of

A represents a linear transformation of the originaln

solution, TPX. Each of these transformed solutions has
the same fitted values and residuals. A PARAFAC
model of the same data yields a unique orientation of
the factor axes, thus eliminating the need for addi-

w xtional factor rotation processes 16 . In fact, rotating
w xa PARAFAC solution leads to loss of fit 13 . A data

set that can be modeled adequately with PARAFAC
can also be modeled with two-way PCA. The

ŽPARAFAC model requires fewer parameters: IqJ
. Ž .qK for each factor as compared with IqJ=K

w xfor each component in two-way PCA 13 .
Direct decomposition to represent a 3-D data ar-

ray by PARAFAC may encounter two-factor degen-
w xeracies 17 . Large positive or negative correlations,

with magnitudes of 0.9 or greater, are sometimes seen
between some columns of the PARAFAC loading
matrices. Characteristics for two-factor degeneracies

w xmentioned by Kruskal et al. 17 include:
Ø high correlations between the two factors in all

three orders,
Ø signs for the three correlations that are either all

negative or have two positive values and one neg-
ative value, and

Ø magnitudes of the two factors that are almost equal
and are very large.

w xMitchell and Burdick 18,19 examined the con-
nection between the presence of two-factor degen-
eracies and slowed progress toward a converged so-
lution by the PARAFAC method. When a two-factor
degeneracy is encountered, they advocate using an
eigenanalysis-based procedure to choose different
starting estimates for the PARAFAC computation and
adjusting the convergence criterion to see whether a
nondegenerate solution can be found. Even with these
practices, 7 out of 64 arrays of fluorescence excita-
tion and emission profiles that they studied did not

w xreach a nondegenerate PARAFAC solution 19 .
While not discussing two-factor degeneracy per se,
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w xHarshman and Lundy 16 cite the practice of run-
ning a PARAFAC computation several times using
different random starting values to start the algo-
rithm. This practice can be useful for establishing
whether a particular initial choice falls into a local
minimum. It appears that no preanalysis can say con-
clusively whether there will be a two-factor degener-
acy or not. Sensitivity to initial conditions may imply
that the data to be modeled may not be trilinear or that
the problem is ill-posed.

As is the case for MPCA, effective analysis of data
by PARAFAC requires that the data be as linear and

Ž .as static low frequency as possible. Additional cen-
Ž .tering along individual orders additive adjustment or

Ž .scaling to unit variance multiplicative adjustment
w xshould be done on a case-by-case basis 13,15 . Scal-

ing, in particular, will affect the form and informa-
tion content of the results for multivariate models
w x20–22 . Preprocessing of the batch data by mean
centering is all that is necessary for this comparative
study. Finally, a point regarding nomenclature: in
PARAFAC, preference is not given to any one order
in the development of the model. Thus, rather than
single out any order by referring to its weights as
scores, the weights for all orders are referred to as

w xloadings 16 .
Having presented the bases for MPCA and

PARAFAC, it is important to note that both methods
are used in this study to obtain parsimonious descrip-
tions of the batch reactor’s temperature data. In con-

w xtrast to the work of Leurgans and Ross 14 , the
PARAFAC models obtained here are ‘soft’: no
chemical or physical model is assumed prior to the
use of the method. The purpose behind both meth-
ods’ use is to be able to identify underlying phenom-
ena responsible for features in the data and to see how
these phenomena appeared in their models’ results.
Based on the PARAFAC solutions not only being ro-
tationally invariant but also explicitly modeling each
of the three orders, this approach could be expected
to provide more unambiguous information than
MPCA for the data studied here.

3. Process description

The autoclave in this chemical process converts
the aqueous effluent from an upstream evaporator into

a polymer product. At least half of the cycle time is
required to vaporize the incoming water from the
charge, so the reactor is designed to maximize heat
transfer from the heating fluid through both an exter-
nal jacket and internal coils. Because mixing occurs
naturally once boiling takes place throughout the au-
toclave, no mechanical agitation is used.

The feed to the reactor is an aqueous salt mixture
whose water content is approximately 20% by weight.
The temperature of the feed is considerably lower
than that of the reactor, because the latter is hotter
from having just completed the previous batch. This
can be seen as the difference between temperatures,
T , at minutes 1 and 7 in the example operating pro-pc

file shown in Fig. 4. The reactor operates in the first
stage of its complete cycle as a closed pressure ves-
sel until the pressure vent is opened to release steam,

Žstarting its second stage i.e., see P at 10 min, ap-rb
.proximately, in Fig. 4 . Steam is the primary product

of the boiling phase and a by-product of the conden-
sation polymerization.

One batch takes approximately 120 min to com-
plete the cycle from introduction of the salt mixture
through discharge of the polymer product. The recipe
specifies reactor and heat source pressure trajectories
through five stages. The pressure profiles during the
first two stages are chosen to minimize loss of a
volatile reactant. The pressure reduction during the

Fig. 4. Representative process trajectories from a typical batch.
P : heat source supply pressure, T : autoclave center tempera-hs pc

ture, and P : autoclave body pressure. Transition points betweenrb

stages are evident in the trajectory of autoclave body pressure at
10, 55, 75 and 95 min, approximately.
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Fig. 5. Schematic diagram of the commercial autoclave showing
locations of thermowells from which temperatures were obtained
in this study. Sensors 1 through 6 were distributed within the ther-
mowell near the vessel’s inner wall and reported liquid phase tem-
peratures only. Sensors 7 through 15 were located in a thermowell
that spanned only the vapor phase near the center axis. Sensors 16
through 23 were arranged in another thermowell near the center
axis and sampled both the vapor and liquid phases.

third stage is gradual to allow bubbles to disengage
Žsmoothly from the high viscosity melt see P be-rb

.tween 55 and 75 min, approximately, in Fig. 4 . Close
temperature control of the reacting mass is necessary
to assure a high degree of polymerization. This also
avoids thermally induced side reactions which de-
grade the polymer.

ŽKey process checkpoints e.g., attaining a specific
.pressure or temperature within a given time deter-

mine when one processing stage ends and the next
one begins. In the first two stages of the batch cycle
Ž .i.e., between 1 and 55 min, approximately, in Fig. 4 ,
heat is supplied initially to concentrate the reactants
by removing as much of the water as possible and to
provide the activation energy to start the polymeriza-
tion reactions. Heating is stopped once polymer-for-
ming reactions are self-sustaining after minute 75,
approximately, in Fig. 4. For the fourth and fifth

Ž .stages i.e., after minute 75 in Fig. 4 , the system op-
erates adiabatically. Heating medium vapors in the
external jacket and internal coils continue to facili-
tate heat transfer, either to the reactor or from it. This
nonregulated action adds an important source of
variability.

The polymer is discharged in the fifth stage by
Žpressurizing the reactor refer to P starting at minuterb

.95, approximately, in Fig. 4 . Full discharge typi-
cally is complete after 15 min. Polymerization is
quenched by cooling the extruded polymer as it is cut
into small pellets.

To minimize data preprocessing, a homologous set
of measurements comprised of only temperatures
measured inside the autoclave are used in this analy-
sis. Had pressure readings available been included,
for example, it would have been necessary to scale the
data to unit variance after mean centering due to the
different measurement scales between the tempera-
tures and pressures. Temperatures are measured in
three separate thermowells inside the autoclave,
shown schematically in Fig. 5. Twenty-three temper-
ature measurements of the liquid and vapor phases
constitute the data set. From operating experience, the
locations of the sensors reported on phenomena that
occur in distinct zones along the autoclave’s vertical
axis. Assignments of sensors to the four zones: lower
liquid, upper liquid, lower vapor, and upper vapor, are

Žlisted in Table 1. Readings from six locations num-
.bers 1, 16, 17, 18, 21, and 22 are averages over the

1-min sampling interval between recorded readings.

Table 1
The twenty-three temperature sensors studied mapped to the four
vertical zones in the autoclave

Sensor zone Thermowell

Side Center a1 Center a2

Upper vapor 23 15
14

22) 13
12
11
10
9
8

Lower vapor 21) 7
Upper liquid 6

5 20
19

4 18)

Lower liquid 3
1) and 2 16) and 17)

Columns on the right represent the three thermowells in which the
sensors were located. Sensors located at nearly the same distance
along the vertical axis are shown in the same row. Sensors num-
bered 16 and 17 were two different devices located at the bottom
of one center thermowell. Readings for locations 1 and 2 were ob-
tained from the same sensor, but recorded using two different
sampling methods. Readings from locations marked with an aster-
isk were averaged over the 1-min interval between stored values.
All other readings were the instantaneous values present at each
minute-to-minute interval.
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All other readings are the instantaneous values ob-
tained at each sampling interval.

4. Results and discussion

Temperature data are obtained from 39 batches of
the same polymer recipe. Readings are taken at 1-min
intervals for each batch and span 109 min. Fig. 6
shows the mean temperatures for all twenty-three
sensors over all the batches. Three distinct features
are present. The first is that the temperature trajecto-

Žries are nonlinear or would require high-order poly-
.nomials to approximate them . Next is the diver-

gence among the temperatures in the four zones dur-
ing pressurization of the autoclave in stage 1 and the

Ž .early part of stage 2 i.e., through minute 30 . The fi-
nal feature is that temperatures in the two liquid zones
converge near the 55 min mark. They remain this way
until stage 5, when the temperatures in the upper liq-

uid increase as sensors become uncovered when the
molten polymer is expelled from the reactor.

A box and whisker plot of the residuals after cen-
tering the temperature readings to remove nonlinear-
ity for all 23 sensors is shown in Fig. 7. It is impor-
tant to recognize that this operation removes infor-
mation regarding temperature differences from loca-
tion to location that are apparent in Fig. 6. In their
place, variations around each sensor’s mean trajec-
tory become the analyzed quantities. Readings for
sensors in the vapor zones span larger ranges than
those in the liquid zones. Process knowledge sug-
gests that greater turbulence in the vapor phase is the
likely cause for this difference.

The middle column in Table 2 shows the ranges
over which transitions from one stage to the next oc-
cur in the 39 batches. All batches are aligned with the
start of pressurization at times0. The widths of these
ranges increase from 1 min for the stage 1 to 2 tran-
sition to 7 min for the transition from stage 4 to 5. In

Fig. 6. Mean temperatures in the commercial autoclave from 23 temperature sensors located in four different zones. All batches were aligned
Ž .to have the start of vessel pressurization as the reference point times0 and then normalized by time stages. The different vertical zones in

which the sensors are located are marked using different line types. The vertical lines mark the transition times from one stage to the next.
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Fig. 7. Box and whisker plot showing the distribution of temperature residuals after centering, grouped by the four process zones. Each box
has lines along the horizontal axis at the lower quartile, median, and upper quartile values. The whiskers are lines extending from each end
of the box by 2.5 times the range between the upper and lower quartile to show the extent of the rest of the data. Outliers are data with
values beyond the ends of the whiskers and are marked with a q symbol. The dashed horizontal lines delineate bounds between the zones.
The numbers for sensors in each zone, ordered from bottom to top, are listed along the vertical axis.

routine operations, the duration of each stage varies
from batch-to-batch for several reasons. Prominent
ones include delays in loading or unloading an auto-
clave and changes in stage times called for by the
product quality control scheme. This shifting in the
time order for process data is similar conceptually to

Ž .retention time variations shifts in chromatographic
methods, a phenomenon that has posed significant
problems when constructing calibration models for

w xhyphenated analytical methods such as LC-DAD 23 .
ŽShifts along the variable order for the process data
will not occur unless a sensor’s location in the ther-

.mowell changes, an extremely rare event.
One way to correct for time shifting is to normal-

ize the time intervals for each process stage. The du-
ration of each stage is known for each batch, so a
representative standard time can be selected for each
stage. On a batch-by-batch basis, data are first inter-
polated and then resampled to populate the standard

w xinterval for each stage 5 . Times for transitions be-

tween respective stages after this normalization of the
process data are shown in Table 2. Fig. 8 is an exam-
ple that shows how normalizing the time intervals
impacts the results from models. The first component
loadings from MPCA models of the nine sensors in
the upper vapor zone are shown for centered data as

Ž . Ž .obtained top and after normalization bottom . Less

Table 2
Starting and ending times, in minutes, at which transitions oc-
curred between process stages in the data before and after normal-
ization by time stages

Ž .Transition between Readings min
stages ‘As received’ Normalized

by stages

1´2 13.5–14.5 13.5
2´3 50.5–55.5 52.5
3´4 69.5–75.5 71.5
4´5 92.5–99.5 94.5
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Ž .Fig. 8. Loadings for a one component MPCA model of the nine sensors in the upper vapor zone using data as received top . The paired
vertical lines mark the starting and ending times for the four transitions between process stages. Compared to loadings for a MPCA model

Ž .with one component using data normalized by time stages bottom , additional features beyond the evident peak between 15 and 20 min
were more prominent at later times when the data were not normalized.

prominent features evident in the model of the data
that has not been normalized are reduced signifi-
cantly by normalizing to standard time intervals.
These secondary features occur near the start and end
points of the ranges for stage-to-stage transitions. The
chief effect of the normalization focuses attention on
the large loadings shortly after the start of stage 2.

The normalized and mean centered process data
are modeled using routines written in MATLABw

Ž .The MathWorks, Natick, MA, USA . The PCA rou-
w Žtine from the PLS Toolbox Eigenvector Technolo-

.gies, Manson, WA, USA is used to synthesize the
MPCA models. The relevant MATLABw routines
obtained from the shareware page 2 of the Royal
Veterinary and Agricultural University’s Department
of Dairy and Food Science, Food Technology web-
site are used to construct the PARAFAC models.

2 http:rrnewton.foodsci.kvl.dkr.

Cross validation to establish the maximum number of
components to include in the MPCA model is per-

w Žformed using The Unscrambler software CAMO
.ASA, Oslo, Norway . Eight components are selected

based on the goodness-of-fit statistics from cross-
Ž .validation leaving one batch out each time in the

PCA model of the 2-D rearrangement of data used in
the MPCA method. Since the objective is to compare
the information content of the models developed us-
ing PARAFAC and MPCA, particularly along the
time and variable orders, models containing up to

Ž . Ž . Žeight 8 components MPCA or factors PARA-
.FAC are synthesized. Procedurally, note that ran-

dom values are used to seed the loadings for the
PARAFAC algorithm, the practice recommended by

w xHarshman and Lundy 16 .
Percent variability explained by each principal

component from the PCA model of the two-dimen-
sional form of X and by the cumulative number of
factors used in corresponding PARAFAC models are
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Table 3
Percent variance captured for the two-dimensional form of the time
normalized and mean centered process data by components for the
PCA model and by unconstrained PARAFAC models having the
same number of factors

Component or Percent variance captured
factor number MPCA PARAFAC

1 45.6 33.4
2 67.6 53.3

Ž .3 75.7 61.2
Ž .4 81.4 66.5
Ž .5 85.5 71.9
Ž .6 88.3 75.6
Ž .7 90.2 79.3
Ž .8 91.4 82.1

Ž.Percent captured variance values in parentheses in the
PARAFAC models’ column indicate that a two-factor degeneracy
was present in the model.

listed in Table 3. Differences in the percent variabil-
ity explained between the MPCA and PARAFAC

methods reflect the objectives for the two methods.
MPCA seeks to maximize the amount of variance
explained with each new component used. Note that
all PARAFAC models using three or more factors
encountered two-factor degeneracies. Constraining
the PARAFAC solution has been used elsewhere to
assist interpretability or to improve its stability. A
common method used is to require that loadings for
one of the three orders be orthogonal across all fac-

w xtors in the model 13 . PARAFAC models con-
strained to be orthogonal along each one of the three
orders—the batch, variable, and time—were exam-
ined in this study. However, results from these will
not be presented since no objective basis could be es-
tablished for selecting one order to be orthogonal over
any other order.

4.1. Batch order

Loadings along the batch order for the four fac-
tors that explain the most variance in the data of the

Ž . Ž .Fig. 9. Loadings along the batch order from the PARAFAC graphs A and B and MPCA graph C models. Eight factors are used in the
PARAFAC model. The high positive correlation between factors 1 and 2 in graph A is due to the two-factor degeneracy in the PARAFAC
model. Some batches are represented by their sequence number. The symbols used correspond to the number of idle time periods experi-

Ž .enced by the batch prior to processing in the autoclave see text with ), =, (, and Ø standing for 7, 4, 1, and no periods, respectively.
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eight-factor PARAFAC model and for the first two
components from the MPCA model are presented in
Fig. 9. A strong correlation exists between loadings

Žfrom factors 1 and 2 in the PARAFAC model Fig.
.9A . This correlation is positive and, in conjunction

with strong correlation between loadings for these
same two factors in the other two orders, will be
shown to be evidence that a two-factor degeneracy is
present.

Observe that batches 3, 36 and 37 are separated
from the remaining batches in Fig. 9B and C. Good-
ness-of-fit statistics for these batches confirmed their
outlier status. Process data show that batch 3’s tem-
perature readings differ significantly from those of the
other batches, especially during the first stage and
first half of the second stage. Reduced temperature
values at locations 7 and 21 in the lower vapor zone

for this batch suggest that a larger quantity of liquid
was present at its start than for other batches. Other
information about these batches reveals that process-
ing of the salt solution discharged from the upstream
evaporator did not begin immediately for these three

Ž .batches and for several others . Operating practices
are adjusted to compensate for these ‘idle time’ peri-
ods. In terms of time periods of constant length, batch

Ž .3 waited through seven 7 such periods, while
Ž .batches 36 and 37 were held through four 4 peri-

ods. Batches 7, 10, 11, 14, 17 and 26 were idled for
Ž .one 1 period. All other batches were processed im-

mediately after discharge from the evaporator.
Using axes based in the space in which the data

were obtained, Fig. 10 illustrates how different
lengths of idle time periods are associated with
batch-to-batch temperature differences during auto-

Fig. 10. Temperature residuals after centering for three out of the twenty-three measured temperatures, plotted at 2-min intervals by batch
Ž . Ž .during process stages 1 and 2 top and stages 3 through 5 bottom . Sensors chosen for the axes were in the lower liquid, lower vapor, and

Ž .upper vapor zones numbers 17, 21, and 22, respectively . The symbols used correspond to the number of idle time periods experienced by
Ž .the batch prior to processing in the autoclave see text with ), =, (, and Ø standing for 7, 4, 1, and no periods, respectively. Points

plotted for idle periods 7 and 4 are from batch 3 and from batches 36 and 37, respectively. Data were plotted from only twelve out of
thirty-six batches having idle periods of 1 or 0 to improve clarity.
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clave operation. Observe that points from batches 3,
36 and 37 are separated from those of the other
batches. The same effect of the idle time periods is
seen in the relative locations of batch 3 and of batches
36 and 37 relative to other batches in the multivari-
ate models’ plots in Fig. 9B and C.

The assembled centered temperature data have a
characteristic form and distribution in the space de-

Žscribed by the original measurements’ axes see Fig.
.10 . Both modeling methods attempt to reconstruct

this using different representations. MPCA is vari-
ance driven, that is, its aim is to account for as much
variability as possible with each new component. The
resulting successive components’ scores and load-
ings are orthogonal to one another. Unconstrained
PARAFAC does not have this aim, so the resulting
factors’ loadings used in the model usually will not
be mutually orthogonal within any order. That is to

say, a PARAFAC model’s representational axes are
oblique rather than orthogonal. Nevertheless, the op-
timization goals for these two methods are similar
enough that the largest contributions to underlying
variation in the original data appear in loadings’ pat-
terns for both multivariate models.

Loadings along the batch order for factors five
through eight of the eight-factor PARAFAC model
and for the third and fourth components from the
MPCA model are presented in Fig. 11. The symbols
= and q mark the two separate clusters evident in
the plot of PARAFAC loadings for factors 7 and 8
Ž .Fig. 11B . If points from batches that had delayed

Ž Ž .starts are ignored i.e., the circled ` symbols and
.batches 3, 36, 37 , the same two clusters are seen in
Ž .the MPCA model Fig. 11C . The phenomenon re-

sponsible for this is identified in the subsequent dis-
cussion of the variable and time orders.

Ž . Ž .Fig. 11. Loadings along the batch order from the PARAFAC graphs A and B and MPCA graph C models. Eight factors are used in the
PARAFAC model. Batch 3 and batches 36 and 37 corresponding to idle periods 7 and 4, respectively, are marked by their number. Circled

Ž .points ` mark batches having idle periods of 1. The symbols = and q mark batches belonging to the two distinct clusters seen in the
Ž . Ž .PARAFAC model graph B . Approximately the same clusters are seen in the MPCA model graph C ; this point is discussed further in the

text.
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4.2. Variable and time orders

Loadings along the variable and time orders from
the eight-factor PARAFAC model are plotted in Figs.
12 and 13. Loadings for the first and second factors
along the variable and time orders show strong corre-
lations with each other, just as they did along the
batch order in Fig. 9A. The correlation is negative for
variables and positive for time in Fig. 12A and B, re-
spectively.

Loadings from the MPCA models, grouped by
process zones, are plotted in Figs. 14–17. The multi-
ple curves in each plot represent loadings from each
sensor vs. time. Loadings which differ visibly from
others in a group are labeled with the corresponding
sensor’s number.

Considered as a whole, loadings along the time
order in Figs. 12–17 usually have their largest mag-
nitudes in process stages 1 and 2. This is true espe-

Ž .cially for the earliest factors Fig. 12B and D and
Ž .components Figs. 14 and 15 . With a requirement to

bring the autoclave pressure up to target value as
Ž .rapidly as possible at the start of a batch see Fig. 4 ,

it is not surprising that variability is high during this
time and that the models captured this phenomenon.

The rapid increase in the temperatures located in
the vapor zone during pressurization, followed by
their sharp drop once the vent valve is opened and
steam is allowed to leave the vessel, can be expected
to vary considerably due to natural turbulence that
exists in the vapor zone. The magnitudes of MPCA
loadings in the upper vapor zone are large through-

Ž .out stage 1 for the second component Fig. 15 , when
pressurization of the autoclave occurs, and during the
opening minutes of stage 2 in the first component
Ž .Fig. 14 . The first four factors in the PARAFAC
model show the same phenomenon: time order load-
ings for the same four factors in the PARAFAC

Fig. 12. Loadings for the first through fourth factors of the eight-factor PARAFAC model. Variable order loadings are in graphs A and C,
where individual sensors are represented by the numbers. The dashed lines mark the boundary between sensors in the upper vapor zone and
all other zones. Time order loadings are in graphs B and D, in which the vertical lines mark transition points between stages of the batch

Ž .process. The high correlation between factors 1 and 2 negative in graph A and positive in graph B is due to the two-factor degeneracy in
the PARAFAC model.
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Fig. 13. Loadings for the fifth through eighth factors of the eight-factor PARAFAC model. Variable order loadings are in graphs A and C,
where individual sensors are represented by the numbers. Time order loadings are in graphs B and D, in which the vertical lines mark transi-
tion points between stages of the batch process.

model have their largest magnitudes during process
Ž .stage 1 and the start of stage 2 see Fig. 12B and D .

Upper vapor zone temperature sensors are separated
Ž .from those in the other zones see Fig. 12A and C .

The exception is at location a8, which is the upper
vapor zone sensor that is located closest to the lower
vapor zone.

The two sensors located in the lower vapor zone
are distinguished from others by the fifth factor in the
PARAFAC model. Here, a separation occurs along
the variable order in conjunction with large loadings

Žduring process stage 1 along the time order see Fig.
.13A and B . The third component of the MPCA

Ž .model captures this phenomenon Fig. 16 . The
probable reason for this behavior at the outset of the
batch process is that the liquid level fluctuates in the
autoclave as boiling begins during pressurization. By
covering and uncovering the lower vapor zone’s sen-
sors, these level changes contribute to variability of
signals from batch to batch.

Uneven heating in the large volume of liquid mass
will contribute to greater variation during the early
portion of each batch. Uniform boiling throughout the
liquid is established only after approximately 35 min
have elapsed. Loadings’ magnitudes for the MPCA
model are large in both zones of the liquid during

Ž .process stages 1 and 2 see Figs. 14 and 15 . By pro-
cess stage 3 and lasting through the end of the batch,
MPCA loadings in the liquid zones for all four com-

Ž .ponents shown are much smaller Figs. 14–17 . This
reflects the effect of the regulatory control scheme to
minimize temperature variations during the develop-

Ž .ment of polymer chains molecular weight . Factor 6
of the PARAFAC model is associated with the sepa-
ration of lower liquid zone sensors from all others that

Žoccurs predominantly in process stage 2 see Fig. 13A
.and B .

Significant nonzero loadings during stage 4 are
evident in the first through fourth components of the

Ž .MPCA model in the upper vapor zone Figs. 14–17 .
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Fig. 14. Loadings for component 1 of the MPCA model, arranged by process zones. The labeled curves mark sensors whose loadings differ
noticeably from others in the same zone. The vertical lines mark transition points between stages of the batch process. Loadings’ magnitudes
are greatest just after the stage 1 to stage 2 transition.

The liquid level apparently rose in response to the
lower pressure in the autoclave during this process

Ž .stage see Fig. 6 .
Interesting differences for MPCA loadings for all

Žthree orders are seen in the fourth component Figs.
.17 and 11C and for factor 8 of the PARAFAC model

Ž .Figs. 13C, D and 11B . The six referenced loadings
curves in Fig. 17 correspond to those sensors whose
readings are averages obtained between intervals due
to the process historian’s sampling method. Five of
the same six locations—1, 16, 17, 18 and 22—
account for the spreading of the PARAFAC model’s
loadings for factor 8 in Fig. 13C. Differences in
loadings between the these sensors and all others
Ž .which are sampled instantaneously are prominent
during process stages 1 and 2. Features of the respec-
tive signals were investigated to determine why this
phenomenon occurred. As expected, rounding the
averaged sensors’ readings to the nearest whole unit

Ždid not eliminate the differences the averaged read-

ings had been recorded to the nearest hundredth of a
.degree . Auto-covariance analyses of the averaged

signals against themselves and cross-covariance
analyses with those of other sensors show that prior
to averaging, the signal from these sensors had been
filtered, thereby imposing an autocorrelation struc-
ture not seen in the instantaneous sensors.

Characteristics of two-factor degeneracies were
discussed in Section 2.2. For the unconstrained
PARAFAC model presented here, high correlations
between loadings of factors 1 and 2 are found for all

Ž .three orders see Fig. 9A, Fig. 12A and B . The signs
of the correlations are consistent with a two-factor
degeneracy: two are positive and one is negative. Fi-
nally, magnitudes of the two factors’ loadings in all
orders are large and nearly equal, as required for such
degeneracies.

In an effort to understand better the origin of the
two-factor degeneracies, unconstrained PARAFAC
models are developed to represent not only individ-
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Fig. 15. Loadings for component 2 of the MPCA model, arranged by process zones. The labeled curves mark sensors whose loadings differ
noticeably from others in the same zone. The vertical lines mark transition points between stages of the batch process. Loadings’ magnitudes
are greatest around the stage 1 to stage 2 transition for all zones.

ual stages of the process, but also adjacent stages.
These models used from one to four factors. Table 4
shows the increases in explained variance as more
factors are included for six different cases modeled by
PARAFAC. Four of these are specific to process
stages 1 through 4, considered individually. Only the
four-factor stage 2 model and the three-factor stage 3
model encountered two-factor degeneracies. Of the
two cases where data from adjacent stages are com-
bined, PARAFAC models for stages 1 and 2 contain-
ing two or more factors encountered two-factor de-
generacies. The presence of such degeneracies in
PARAFAC models obtained by joining smaller sub-
sets of data cannot be predicted from their presence
or absence in PARAFAC models of the individual
subsets.

5. Summary and recommendations

Based on the data set used, both the MPCA and
PARAFAC models were able to resolve combina-

tions of locations and times where significant varia-
tion occurred in the measured process temperatures.
Both methods found more variability at the start of
each batch, a finding that reflects the product’s con-
trol goals. This was also consistent with process op-
erations’ knowledge, since the requirement to reach
the autoclave pressure setpoint as quickly as possible
almost always resulted in vigorous heating of the
contents at the start of a batch.

The PARAFAC models’ results along the variable
order were striking: loadings were clustered dis-
tinctly for three of the four different process zones.
Such classification is helpful in off-line analyses as
were performed here, particularly when combined
with process knowledge. While they reflected the
same phenomenon, the assignment of locations to
zones used for the MPCA loadings plots were first

Žimposed from a priori process knowledge i.e., the
.differences in mean trajectories evident in Fig. 6 . For

both models, the selection of some sensors by their
sampling method pointed out the importance of
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Fig. 16. Loadings for component 3 of the MPCA model, arranged by process zones. The labeled curves mark sensors whose loadings differ
noticeably from others in the same zone. The vertical lines mark transition points between stages of the batch process. Loading magnitudes
are greater in the vapor phase than in the liquid phase.

knowing what pretreatment occurs to process signals
prior to their collection and storage. In this instance,
process knowledge suggested that this phenomenon
was not due to sensor location, so less obvious rea-
sons for the differences needed to be found.

Normalization of the process data by time stages
was shown to be necessary to avoid generating erro-
neous, large loadings in the models. Such loadings
reflected the asynchronous operations from batch to
batch rather than actual variation in the process at
those times, judging by their diminished presence in

Žthe models after the data were normalized see Fig.
.8 . Since it appears that normalization of the data is

crucial for either modeling method to be effective
Ž .i.e., sensitive to true process variability , application

Žof such models and their product quality property-
.predictive counterparts for monitoring or control

must reflect this requirement. This imposes a limita-
tion for real-time applications of these methods since
all the data for an entire stage are required a priori for
the normalization process. One means of circumvent-

ing this is to develop an approximate dynamic model
of the process to predict the relevant batch data in
time. With these data, the normalization process is it-
erative. That is, the predictions from the model are
updated at each sample time; the normalization pro-
ceeds with the updated information to improve the
predictions, and the MPCA and PARAFAC model
development is repeated with these new normalized
data. As a consequence, the monitoring and control
activities are always improving as the batch pro-
ceeds.

From literature accounts, the occurrence of two-
factor degeneracies is a difficult problem to resolve
in the PARAFAC models. Whether using a trilinear
model to describe the data in this study is not appro-
priate or whether a two-factor degeneracy cannot be
avoided for a particular data set when three or more
factors are used are questions that need to be ad-
dressed. However, their effect to complicate interpre-
tations for this exploratory data analysis was less
troublesome than their typical effect to lengthen the
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Fig. 17. Loadings for component 4 of the MPCA model, arranged by process zones. The labeled curves, whose appearances differ from
Ž .others in each zone, are from sensors whose sampling method differed from that of all others see text . The vertical lines mark transition

points between stages of the batch process.

time dramatically for the method to converge to a so-
lution. This increased time and the potential ambigu-
ity introduced by two-factor degeneracies offset any
advantage that PARAFAC attained from using fewer
parameters to reconstruct the data. The suggestions of

w xMitchell and Burdick 19 to experiment with eigen-
analysis-based procedures to obtain different starting
points and to terminate the computations and start

with new initial estimates when a two-factor degen-
eracy is encountered provide a useful guide for fur-
ther work to apply PARAFAC methods on process
data correctly.

The industrial community’s manufacturing sector
is interested in having data analysis tools be avail-
able that can condense and summarize the vast quan-
tity of data it generates throughout its operations. To

Table 4
Percent variance captured by factors of PARAFAC models of different process stages for the time normalized and mean centered process
data

Factor number Percent variance captured

Stage 1 Stage 2 Stages 1 and 2 Stage 3 Stage 4 Stages 3 and 4

1 48.9 59.6 37.2 59.6 33.3 33.3
Ž .2 65.1 72.2 58.8 67.3 49.3 50.4
Ž . Ž .3 74.3 80.7 65.3 72.2 59.1 60.3

Ž . Ž .4 86.5 85.0 72.4 76.5 64.1 64.2
Initial sum of squared error 105,960 170,300 276,260 9146 15,112 24,258

Ž.No constraints were applied in the models. Percent captured variance values in parentheses mark models in which there were two degen-
erate factors. The initial sum of squared error values are from the residuals obtained after mean centering.
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be applied broadly and used to good advantage, such
tools must be robust in operation and should mini-
mize ambiguity of interpretation. A tool that is
robust will produce a model that can accommo-
date on-line data that may include missing values,
out-of-calibration sensors, and other common
data-gathering problems and produce meaningful in-
formation. Or, failing in that, it will offer diagnostic
information which will assist plant personnel to lo-
cate and fix conditions not previously encountered.
By keeping ambiguity to a minimum, the data analy-
sis tool will hasten the process of separating opera-
tional fact from experiential hearsay. Of the two
methods compared here, MPCA is further down the
path toward these goals than PARAFAC, due to it
having been tested sooner in the manufacturing envi-
ronment. Both warrant further study using data from
actual operations so that ultimately they can be tested
on-line and, it is hoped, be found useful to keep there.
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