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Abstract

Generalised Procrustes analysis (GPA) is a much-used method for analysing sensory profile data. In this paper, hierarchical
clustering using the Procrustes distance is proposed for situations where the data profiles are believed to come from a non-homo-
geneous group. This new approach to sensory panel analysis may be used at an exploratory stage, in combination with GPA, to
gain insight into the structures of the data set. It can help the researcher detect outliers and subgroups, help him/her make decisions
regarding further analysis, and reduce the risk of erroneous inference about the data.
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1. Introduction

In descriptive sensory analysis it is important to be
able to define meaningful “average” profiles for the
sensory panel to be used either for direct interpretation
or for further statistical analyses of the data. The easiest
way of doing this is to use the regular raw averages, but
there are some obvious problems with this approach:

e there may be confusion about the use of terms
(for instance saltiness and bitterness);

e there may be differences in the scaling used by the
assessors; and

e the signal to noise ratios may be different.

Generalised Procrustes Analysis (GPA) is a technique
frequently used to handle some of these problems. It is
based on standardising profiles with respect to rotation/
reflection, isotropic scaling and translation, in order
to provide a better average, a so-called consensus
configuration (Arnold & Williams, 1985).
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Procrustes methods were first introduced in psycho-
metrics, an important branch of multivariate statistical
analysis. Useful references include Cliff (1966), Gower
(1975), Green (1952), Gruvaeus (1970), Kristof and
Wingersky (1971), Langron and Collins (1985), Mosier
(1939), Schenemann (1966, 1968), Schenemann and
Carroll (1970), Sibson (1978, 1979) and ten Berge
(1977). Since the middle of the 1980s the method has
been used as a standard tool in sensory analysis, due to
important contributions by Arnold and Williams
(1985), Dijksterhuis (1996), Qannari, MacFie, and
Courcoux (1999), Qannari, Vigneau, Luscan, Lefebvre,
and Vey (1997), Wakeling, Raats, and MacFie (1992)
and Wu, Guo, deJong, and Massert (2002) among oth-
ers. Procrustes methods have also found useful applica-
tions in another completely different branch of statistics,
namely statistical shape analysis (see Dryden & Mardia,
1997; Goodall, 1991; Kendall, 1984, 1989). In this area,
several interesting results have been developed, one
of them being a new distance measure known as the
Procrustes distance.

Even though Procrustes analysis can be a very useful
tool, it has some shortcomings. Fig. 1 illustrates a sit-
uation where the Procrustes transformation is not very
meaningful. Working with two or three-dimensional
data, such problems can sometimes be spotted by simple
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Fig. 1. An illustration of two configurations whose difference does not fit to a Procrustes model, i.e a model with translation, isotropic scaling and
rotation. In (a) is presented two different configurations before tranformation and in (b) after transformation. The solid line in (b) is the consensus.

plotting techniques, but for higher dimensions, other
techniques may be required. The present paper proposes
a method inspired by Procrustes analysis that can be
used to handle such problems. The method is based on
grouping the assessors into clusters using a combination
of hierarchical cluster analysis (HCA) and the Pro-
crustes distance mentioned above. Using this approach,
one can check the adequacy of the Procrustes model,
detect possible groups of assessors and also obtain
diagnostic information about assessors who are totally
different from the rest. HCA with the Procrustes dis-
tance is primarily intended to be used in an informal
and explorative way, at an ecarly stage of an investiga-
tion. Questions such as determining the number of
clusters have been considered by other authors (see e.g.
Gordon, 1999), but will not be central in this paper. For
other ideas concerning clustering for three-way data, see
Carroll and Arabie (1983), Gordon and Vichi (1999),
Krieger and Green (1999) and Vichi (1999).

Other approaches to the same problem can be found
in Wakeling et al. (1992) and in Qannari, Courcuox,
and Vigneau (2001). In the former paper a randomisa-
tion test was proposed for the hypothesis that there is
no clear consensus among the profiles. The P-value of
this randomisation test may give indications about pos-
sible problems with the overall consensus and may then
point to the need for a method like the one proposed
here. The second of the two papers proposes a method
of clustering of data tables based on their agreement on
a one-dimensional representation space. It may be pos-
sible to extend this method to something which is simi-
lar to the procedure presented here.

Two sensory data sets will be used to illustrate the use
of the method proposed here. One of them is based on
sensory analysis of sausages. The data will be manipu-
lated in various ways for the purpose of illustrating

some properties of the method. The other example is
from sensory analysis of green peas and will be studied
as a real life example. For the latter data set, near
infrared (NIR) spectral data are also available and these
will be used for comparison, i.e. for external validation.
To illustrate the gains of this new approach, existing
GPA diagnostics will be computed and compared with
information obtained by the new method.

2. Methodology
2.1. Cluster analysis

The purpose of cluster analysis is to group N objects
into G groups or clusters. The objects in each cluster
should be similar” in some sense, making the clusters
more homogeneous than the full set of data. There are
different approaches to clustering, both hierarchical and
criterion based ones (see e.g. Bezdec, Coray, Gunder-
son, & Watson, 1981). In this paper, the focus will be on
the former. The results from such analyses are usually
presented graphically in tree-structures called dendro-
grams. Even though all objects will, in such a process,
end up in the same group, the grouping process as
visualised by the dendrogram is interesting in itself. For
instance, the length of the edges connecting the nodes,
give information about the degree of dissimilarity
between the clusters.

A hierarchical clustering process is based on distances
or dissimilarities between the objects. In addition to these
basic distances, one will during the clustering process
need a measure of the distance between clusters G; and
G,. This can be constructed in a number of different
ways, depending on the nature of the objects and the
purpose of the clustering. If the objects to be clustered
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are vectors, a frequently used distance function between
two clusters G; and G is

d(Gy, G)) = _min_Ilz—w] Q)

where || || is the Euclidean norm and the z and w are
symbols for members of the two clusters. Using this
distance function leads to so-called single linkage clus-
tering. Other variants will be described in Section 2.4,
together with a distance function for matrices rather
than vectors. For more information on clustering, see
Gordon (1999), Kaufman and Rouseecuw (1990) and
Mardia, Kent, and Bibby (1979).

2.2. Procrustes analysis and the Procrustes distance

If ||.||z denotes the Frobenius norm of a matrix, the
Procrustes transformation for a matrix X; to match
with X, (both Nxp) is found by solving

min | T(X1) = Xaf ;= d(X1, X2) )

with the requirement that the transformation 7 is com-
posed of a rotation/reflection matrix P, (PTP=1)
and an isotropic scaling factor ¢, i.e.

T(X1) = X, cP. (3)

The solution to the transformation problem can be

written as

T
_rY) gy @
X117
where X[ X, = USVT is the singular value decomposi-
tion of X7 X>. This can easily be derived using standard
results from linear algebra (Cliff, 1966 or Mardia et al.,

1979).

The dissimilarity measure d(Xi, X>) measures the
degree of dissimilarity between two matrices after rota-
tional and scaling effects have been removed, i.e. after
they have been made as ‘“‘similar” as possible. It is,
however, not symmetric. Generally

d(Xy, X3) # d(X3, X1) ®)

This makes clustering difficult to interpret. If, however,
the X; and X, are scaled to have the same variance
(after centring), ||X||f¢= K(usually K is set equal to 1),
the distance becomes symmetric. The new distance is
called the full Procrustes distance and can be written as

X X
() i
1x0) il

with the same requirement on 7" as above. A proof for
the symmetry of d can be found in Dryden and Mardia
(1997).

min
T

= dp(X1, X2) (6)
F

Translation is usually applied together with scaling
and rotation. It can be proven that the optimal way of
translating the point-sets is by column-centring the
profiles. Throughout the paper, it is assumed that all
profiles (shapes) are pre-processed in this way.

2.3. Generalized Procrustes analysis

Generalised Procrustes analysis (GPA) does more or
less the same for several matrices as Procrustes Analysis
does for two. It is based on computing an iteratively
updated average or consensus Z, and provides together
with the consensus Z, a set of rotated matrices as similar
with Z as possible (Gower, 1975).

If T; denotes the optimal (and implicitly defined)
transformation of the ith profile X;, the GPA is formally
defined as minimisation of

Y
g(Xl’Xz""XQ)ZZ”Ti(Xi)—Z”i )
i1

with respect to Z and transformations 7;. The Q is here
the number of matrices.

2.4. HCA with the Procrustes distance

If the profile matrices (X....,Xp) are different in a
way that can not be accounted for by scaling, transla-
tion and rotation, it is difficult to justify the use of GPA
and the consensus Z as a natural representation of all
the data (see Fig. 1). There is obviously a need for
diagnostic tools that can help obtaining this type of
insight. Simple and obvious candidates for this are the
individual contributions to the sum in (7), i.e.

g=|Tx)-Z2|3 i=1,...0. ®)

Scatter plots of the different rotated assessors along
principal components of the consensus can also be
envisioned as potentially useful tools: There are, how-
ever, some intrinsic problems related to these methods.

e If for instance one profile is an outlier, it has
already been allowed to influence the consensus
Z when g; is calculated. Thus, an outlier will seem
less of an outlier after the iterative procedure.

e If there are several groups of profiles that are
homogeneous within but not between groups, the
g; diagnostics may all be comparable in size and
an uninteresting consensus may pass unnoticed.

e If regular two-dimensional plots of all profiles
(after rotation and scaling) are used for a large
number of assessors (for instance about 10) and
objects (for instance 30), there will be very many
points to represent and interpretation may be
quite difficult.
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As will be shown below, cluster analysis with the use
of the Procrustes distance, is an important and simple
helping tool for revealing group structures as well as
detecting individuals who do not fit well with others.
Visualisation by the use of dendrograms can help the
researcher to detect when the averaging process “‘breaks
down” due to the influence of profiles very different
from the rest, as well as situations where subgroups of
profiles differ substantially from one another. In the
following we will describe in some more detail four dif-
ferent clustering strategies that will be tested below.
Three of them have a common structure and will be
discussed first.

2.4.1. Single, complete, average linkage

Let the sensory profile matrices Xj,....Xp be the
objects to be grouped in a cluster analysis. At each step
in the clustering process, each cluster G; contains one or
more objects (assessors). When there are more than one
object/assessor in a cluster, it is as mentioned above not
obvious how to define a distance from the object to the
cluster. The following three candidates are much used in
practice.

dS (Gl’, G]) = Xeg,»l,i)l’leG/dF(X’ Y) (9)
de(Gi. G)) = | max _de(X., Y) (10)
du(Gi, G)) = }?:gr;afegg.dp(X, Y) (11)

They correspond to single, complete and average link-
age respectively. From these three distances, three dif-
ferent HCA variants are derived.

Let {G], e, GQ} = {X], R XQ} be the initial
clusters. A distance matrix D = {d;}, where d;=
d(G;, G)) is used as a starting point. The minimum
element value d;; of the matrix D is identified and the
corresponding two matrices are joined to a cluster.
The distance from each matrix to the new cluster is
formed using one of the three distances above. The
procedure is repeated until there is only one cluster
left, or until a stopping criterion determines the end
of the process.

2.4.2. Centroid linkage and GPA

Centroid linkage reflects some intrinsic ideas of
GPA more clearly than the other three methods.
Rather than computing distances (minimum, max-
imum or average) between elements or clusters, each
cluster can be represented by an average element, and
the distance between clusters can be measured in
terms of the full Procrustes distance between the
average eclements. A natural choice of average cle-
ment could be the GPA consensus Z; of the matrices
in each cluster Gj,

diy = dr(Z:. Z)) (12)

At the final step, this process is equivalent to GPA,
because all matrices are members of the same cluster,
and the average matrix computed for this cluster is the
ordinary GPA consensus.

The main drawback with this so-called centroid
method is that it fails to preserve a basic clustering
property, the continuous increase of distance levels
through the stages of the clustering process. Let
denote the distance function used to group the two
clusters when there are (g—s) clusters left. We should
expect that

d'<d*<d®... <d’! (13)

This property can easily be derived for single, complete
and average linkage. But see Fig. 2c, for an example
where the centroid method fails to fulfil (13). This is
commonly called “inversion” in hierarchical cluster
analysis, and is typical when centroid linkage is used.

2.4.3. Ward’s method

Another important clustering rule is Wards method.
Two variants of Wards method can be envisioned in the
setting of GPA and the Procrustes Distance, which are
otherwise equivalent for Euclidean distances.

2.4.3.1. Distances between profiles and the GPA average.
When two clusters A and B are considered for joining,
the criterion used for this method is whether the average
squared distance between the points in the common
cluster (A,B) and their average element is larger than for
another coupling, say (A,C). This average distance can
be written as

_l . AB AB)\2
E—n;dF(Xi L YAP) (14)

where X/B, YAB denote the members and the GPA
average of the common cluster (A,B) respectively and n

is the number of elements in the common cluster (A,B).

2.4.3.2. Distances between individual profile pairs. In the
other approach the average distance between any two
members of the joined cluster (A,B) is used as criterion,
ie.

1 n n 2
E= ;ZX;dF(XiAB’ X].AB) (15)

i=1 j=

It is well known from multivariate analysis that the
squared sum of distances to the mean is proportional to
the squared sum of distances between the individual
pairs. However, this only applies when the mean can be
defined in a straightforward manner, e.g. by taking the
normal average.
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Fig. 2. The dendrograms (for all the four clustering methods) for basic study of the sausage data. No manipulated data points.

3. Example 1: detecting group structure and outliers in
sausage data

The first data set considered is based on testing sen-
sory properties of a number of different sausages made
from different recipes (based on an experimental
design). The original data are described in (Baardseth et
al., 1992) and contain measurements on N = 60 different
sausages made by Q=28 assessors using p =S8 sensory
attributes (whiteness, colour intensity, smokiness, off-
taste, rancidity, firmness, fatness and stickiness). Each
individual matrix was column-centred and scaled to
have unit variance (or unit Frobenius norm) before
analysis. For the purpose of the present paper the data
set was manipulated in various ways in order to high-
light important properties of the method proposed.

3.1. Basic study

The four clustering variants were first tested on the
original profiles Xi,...,Xg as they are. The resulting
dendrograms can be found in Fig. 2. As can be seen,
the different methods give very similar results. Some of
the observed features are related to basic properties of
the different algorithms, for instance:

e The complete linkage tends to have longer edges
in the tree than the others. This is because it joins
cluster elements of maximum distance, and thus
takes longer before connecting single objects with
large clusters. The chance that one object in a big
cluster is far away from a single object outside
the cluster is usually large. Rather than grouping
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objects quickly, it tends to pair up objects, then e The average linkage seems, not surprisingly, to
pairs of pairs, and so on. be an in-between solution of single and complete

e The single linkage method, on the contrary, linkage.
easily allocates new (single) objects to clusters e Both variants of Wards method produce tighter
with many members. It is here much easier to clusters, which is in accordance with the known
find one within-cluster object close to the new properties of this clustering rule.
object.

e The centroid method has the “inversion’, which As can be seen, the complete linkage method differs
is typical for centroid methods, and to be from the others in that it connects object 2 and 8§ at an
expected. This is due to the calculation of a early stage. From the figures, one can also see that asses-
cluster representative (centroid) which does not sors 4, 6, 3 and 7 are very similar to each others and there
conform with the principle of an increasing is an indication that assessor 1 is different from most of
sequence of distances. the other assessors in some way. The GPA distances are

Table 1
GPA distances for the basic study of the sausage data (eight assessors) (normalised by dividing each value on the largest)
Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 Assessor 7 Assessor 8
1.00 0.96 0.89 0.89 0.96 0.91 0.90 0.92
(a) Complete Linkage (b) Single Linkage
1
1
0.95}
09 0.9}
0.85}
08 0.8+
0.75}
0.7 0.7¢
4 6 3 5 1 2 8 7 4 6 3 2 8 5 1 7
(c) Centroid Linkage (d) Average Linkage

0.9 0.9t |
0.8 I 0.8
0.7 07l

4 6 3 8 2 5 1 7 4 6 3 2 8 5 1 7

(e) Wards method (f) Wards method - ind. distances
0.45 0.7+
0.4
0.6

0.35
03 | 05/
0.25 0.4
0.2

il [] 03l | |

3 6 8 2 1 4 5 7 4 6 5 1 3 2 8 7

Fig. 3. The dendrograms (for all the four clustering methods) for the sausage data. Assessor 7 manipulated to be an outlier.
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given in Table 1. They are quite similar in size and there is
no particular feature to comment further on.

3.2. Outlier detection

The next step is to illustrate the method’s ability to
detect outliers in the data. The data matrix for
assessor number 7 was turned into an outlier by
replacing his/her scores by random noise in the same
interval as the original measurements. The resulting
dendrograms are found in Fig. 3. As can be seen, all
variants of the clustering methods, except Ward’s
method based on the individual distances, correctly

identify the outlier, but the complete and average link-
age are less clear than the centroid and single linkage.
This corresponds well with general properties of the
methods (see basic study above). The problem with the
Ward’s method here could be its tendency to produce
tight clusters—it joins the outlier with another single
object, rather than grouping existing clusters (pairs) into
larger clusters.

For comparison we also computed the individual
GPA values g;. Each element was divided by the largest
element giving the maximum value equal to 1. From
Table 2 it is clear that these values give no indication of
any problem with assessor 7.

Table 2
GPA distances for the sausage data with one manipulated outlier (eight assessors, assessor 7 is an outlier) (normalised by dividing each value on the
largest)
Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 Assessor 7 Assessor 8
0.97 0.98 1.00 1.00 0.98 0.99 0.94 0.99
(a) Complete Linkage (b) Single Linkage
0.95
1+
0.9
0.9+ 0.85+
0.8}
0.8+
0.75+
o7l 0.7
3 4 1 2 5 6 7 8 3 4 2 1 5 6 7 8
(c) Centroid Linkage (d) Average Linkage
0.95: 1
0.95+
0.9
0.9+
0.85+
0.85+
0.8+
0.8
0.75+ 0.75"
0.7 - 0.7+
3 4 2 1 5 6 7 8 3 4 2 1 5 6 7 8
(e) Wards method (f) Wards method - ind. distances
07! 0.8
06. 0.7+
0.6+
0.5
0.5}
0.4
0.4+
0.3-
3 4

1 2 5 8 6 7

3 4 1 2 5 6 7 8

Fig. 4. The dendrograms (for all the four clustering methods) for the sausage data. Here four assessors ar manipulated in order to create two distinct

groups. The groups are (1, 2, 3, 4) and (5, 6, 7, 8).
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3.3. Detecting two distinct classes

In order to illustrate what happens in a situation with
two clearly distinct subgroups, the original data were
manipulated the following way: The original profiles
were first transformed according to regular generalised
Procrustes analysis. Then, the singular values for the
two first components of the consensus profile were
switched. New matrices for four of the assessors (5, 6, 7,
8) were then created by using the same transformation
matrix as used for switching the singular values of the
consensus. The other four were kept as they are. See the
Appendix for details.

Table 3

T. Dahl, T. Nes | Food Quality and Preference 15 (2004) 195-208

The clustering results from the analysis of these data
can be seen in Fig. 4. The two groups of assessors are
clearly visible in the dendrogram for each of the clus-
tering methods, except for the Ward’s method based on
distances to the centre.

The Procrustes fits are given in Table 3. As above, no
indication is given on the clustering into two groups.
The other classical tool mentioned above for possible
detection of outliers and group structures was also tes-
ted here; a plot of the projections of all rotated assessors
onto the two first components of the consensus matrix is
presented in Fig. 5. As can be seen, it is impossible to
see any tendencies or structures in the data.

GPA distances for the sausage data with two distinct groups [eight assessors in two groups (1, 2, 3, 4) and (5, 6, 7, 8)] (normalised by dividing each

value on the largest)

Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 Assessor 7 Assessor 8
0.89 0.91 0.93 1.00 0.94 0.94 0.97 0.94
T T T T T T T T T
02 .
34D
015 b
01r h
) 21D 2361
20D 1780FREkA ",
0.05F _ 60 .
§ 4
o ]
-0.05+- .
0.1F vt .
0151 .
0.2 -
1 1 1 1 1 1 1 1 1
02 -0.15 01 -0.05 0 0.05 0.1 0.15 02

Fig. 5. Projections of all rotated assessors onto the first two components of the consensus matrix. The same data as used for Fig. 4 with two
manipulated groups of assessors. Symbols 1-60 represent samples and A—H represent assessors.
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3.4. Detecting two distinct classes and one outlier

Finally, the two situations above were combined.
From the results in Fig. 6 we see that the clustering
methods single linkage, centroid linkage and the aver-
age linkage were able to detect the essential structure in
the data. The complete linkage failed to detect the outlier.
The two variants of the Ward’s method also failed, but in
different ways. The “individual distances” Ward’s
method fails in the same way as it did in Fig. 3 whereas
the other one commits a less serious error: It joins the
outlier with one of the clusters before the final step where

(a) Complete Linkage

0.9

0.8

0.7

3 4 1 2 7 5 6 8
(c) Centroid Linkage

0.9

0.8

0.7

3 4 2 1 5 6 8 7
(e) Wards method

0.7

0.6

0.5

0.4

o cF

1 3 4 2 7 5 8 6

all clusters are joined. Note that the two clusters should
have more in common (e.g. the principal directions) than
an outlier should have with any of them.

Again the regular GPA method (Table 4) was unable
to detect the essential structure of the data.

4. Example 2: analysis of descriptive sensory data
from peas

The pea data used for this example have previously
been analysed by Neas and Kowalski (1989) and the

(b) Single Linkage

0.8
0.7+
5 6

3 4 2 1

8 7
(d) Average Linkage

0.9t
0.8t
0.7+
3 4 2 1 6 6 8 7
(f) Wards method - ind. distances
0.8+t

0.7}
0.6}
0.5}
0.4}

3 4 2 8 1 7 5 6

Fig. 6. The dendrograms (for all the four clustering methods) for the sausage data. In this case, ther is one manipulated outlier (assessor 7) and two

manipulated distinct groups (1, 2, 3, 4) and (5, 6, 8).

Table 4

GPA distances for the sausage data with one outlier and two distinct groups [eight assessors, assessor 8 is an outlier, the two groups are (1, 2, 3, 4)

and (5, 6, 8)] (normalised by dividing each value on the largest)

Assessor 1 Assessor 2 Assessor 3 Assessor 4

Assessor 5 Assessor 6 Assessor 7 Assessor 8

0.84 0.88 0.89 1.00

0.85 0.85 0.68 0.85
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Fig. 7. The dendrograms for the pea data (single linkage).
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Fig. 8. MSEP curves (as functions of the number of principal components) for prediction of sensory data from NIR data. Each curve corresponds
to an individual assessor.
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reader is referred to that paper for details. The data
contain sensory measurements made by Q = 10 assessors
for N=060 different samples of peas (different varieties
and different degree of maturity). 10 sensory attributes
were measured, but in this paper we only consider p=4
of them (pea flavour, sweetness, off-flavour and mea-
liness). There were two replicates for each sample and
these were averaged before statistical analysis. For
each sample, a near infrared (NIR) spectrum was
also available. The NIR data in this case contained
absorbance readings at 116 different wavelengths.
Below we will relate these Near Infrared (NIR) spec-
tra to the sensory data for comparison. These com-
putations will also illustrate the use of external
information for validation.

For this data set we confine ourselves to single linkage
only. The dendrogram for the pea data using this tech-
nique is shown in Fig. 7. It gives a clear idea about the
similarity and differences among the assessors. First of
all, there is a clear group of 6 assessors, 1,2,4,7,9, and 10,
who are very similar to each other. The (full) Procrustes

Table 5

distance (vertical axis) between assessor 1 and 4 is only
slightly smaller than between 1 and 7, which is the last
one joined to this cluster. The next assessor to be joined
is number 3, which is considerably further away. Asses-
sor number 6 seems quite different from the rest in this
study.

In order to verify these conclusions, the sensory pro-
files were related to principal components of the NIR
data. First of all, each individual assessor was con-
sidered separately (Fig. 8). As can be seen, after 4-5
principal components of the NIR data the prediction
ability is reasonably good for some of the assessors.
The prediction error is here defined as the sum of the
prediction errors (MSEPs) of all the attributes. In all
cases the sensory variables are scaled using the Fro-
benius norm before computations. It is also clear that
the assessors in the group that was determined to be
rather homogeneous (1,2,4,7,9 and 10), are the ones
that are easiest to predict. Assessor number 6 is
clearly the one with the least clear relationship
between sensory and NIR data. The assessor 3,5 and

GPA distance for the pea data (ten assessors) (normalised by dividing each value on the largest)

Assessor 1 Assessor 2 Assessor 3 Assessor 4

Assessor 5 Assessor 6

Assessor 7 Assessor 8 Assessor 9 Assessor 10

0.39 0.54 0.61 0.47 0.79

1.00 0.55 0.78 0.50 0.49

08

0.7

06

0.5

0.4

‘‘‘‘‘

03r

Assessor 6

Raw average _

0.2 | | | |
1 2 3 4 5

6 7 8 9 10

Fig. 9. MSEP curves (as functions of the number of principal components) for prediction of sensory data from NIR data. The lower line correspond

to the consensus for the assessors 1, 2, 4, 7, 9 and 10.
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8 come in an intermediate position. Fig. 9 presents
similar prediction results for the consensus of the six
similar assessors, for the full panel and for the raw
average of the profiles. Scaling was done as above.
Assessor 6 is also plotted for comparison. The results
show that the consensus from the six similar ones is
clearly easier to relate to the NIR data than the full
consensus and the raw average.

These results together clearly indicate that assessors 1,
2,4,7,9 and 10 are similar and have a simpler and more
predictable relationship to NIR than the other four.
Then there is a gap to the next group 3, 5, 8 before a
new gap separates assessor 6 from the rest. A possible
and quite tempting explanation for this is that 1, 2, 4, 7,
9 and 10 are simply more reliable than the rest of the
assessors in this case.

The GPA fit results are given in Table 5. For this case,
it was quite clear that the assessor number 6 fits less well
to the consensus than the others and that the assessors 5
and 8 were also less easy to fit. No clear indication is,
however, given for assessor 3.

5. Discussion
5.1. Other distance functions

One of the main criticisms against GPA is the fact
that it uses only rigid transformations (rotation, iso-
tropic scaling and translation) to compensate for sys-
tematic differences between judges. However, there is no
clear reason to believe that there does not exist any
more subtle difference among assessors. There are
methods that handle such differences better than
GPA, for instance generalised canonical analysis
(GCA), Tucker-2, Tucker-3 (Tucker, 1966) or PAR-
AFAC (Harshman & Lundy, 1984). Since the new
method does not actually carry out a regular GPA,
one could group the objects in more flexible ways by
using alternative dissimilarity measures. These could
be constructed to detect similarity with respect to
specific non-rigid transformations, such as for instance
affine transformations, or thin plate splines for shape
analysis. It might also be possible to design dissimilarity
measures based on entropy measures (from information
theory). In this case, the dissimilarity between two matri-
ces would be determined from their joint entropy. In that
case, one does not need to find an optimal mapping from
one profile to another, it suffices to measure the degree of
common information, which helps determining whether
there is an optimal, possibly non-linear mapping (see
e.g. Hyvérinen, 1999).

5.1.1. Alternative ways of studying profile data
In this paper, iterative averaging (GPA) and HCA with
the Procrustes Distance have been investigated. These

are, however, only two possible ways of exploring profile
data. Another approach is to study profiles from the per-
spective of minimum spanning trees, which is strongly
related to single linkage clustering. This technique is used
in for instance botany (see e¢.g. Dahl, 1982; and Gaus-
laa, 1985) and computer networking. It has recently
been employed to connect multiple PCA and PLS-
models in chemometrics (unpublished work by Martens,
Anderssen, & Hoy, 2000). Minimum spanning trees
generated by the Procrustes distance could be used to
create a map (a graph) to see how judges relate.

6. Conclusions

The computations and simulations presented above
illustrate a number of situations were HCA could be
used in combination with GPA. The single linkage and
the centroid linkage seem to be slightly better suited for
identifying group structures and outliers than the other
methods tested. The centroid variant has two draw-
backs; it has the “inversions’” which are generally con-
sidered inappropriate, and it requires the computation
of a GPA consensus at each step, making it rather
computer-intensive. The Ward’s method did not seem to
have as attractive properties as the other methods.
Based on these results, single linkage HCA, using the
Procrustes distance as dissimilarity measure, seems to be
the method to recommend for sensory analysts. Since
data sets may be quite different in structure, this aspect
has to be studied in more detail before a more definite
conclusion can be drawn. Through simulations, it has
been demonstrated that two-group situations and out-
liers can be detected using this approach. In a real-life
experiment, HCA was demonstrated as a first natural
step when examining the panel data. The method needs
further investigations to explore its more general prop-
erties and ability to detect groups and outliers.

Appendix. Manipulation of profiles to produce group
structures (sausage data)

In order to to test the performance of the proposed
method for group detection, we modified the profiles so
as to produce group tendencies.

One intuitive way of producing groups would be to
reorder the variables in one group, while keeping the
ordering in the other fixed. (e.g. to permute the columns
of some profiles, and not of others). However, this
would not work, since the optimal rotation found by the
Procrustes method would compensate for this reorder-
ing. Thus, a more sophisticated way of manipulation
must be considered.

A common assumption in sensory experiments, is that
there exists some common underlying tasting experi-
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ence, and that this is reflected in the profiles. However,
mapping from the “true underlying variables” to the
observed variables will differ from judge to judge. Thus,
the manipulation should happen at the level of the PCA
model, and not on the level of the observed profiles.

To manipulate the data, we assume that there is an
underlying PCA model. We rotate the profiles to agree-
ment with GPA. Given this average, it is easy to con-
struct a mapping that would reorder the importance of
the two first principal components. We base this on the
SVD of the consensus Y which is a real N by p matrix,

Yy=USrT (A1)

where U (N by p) and V (p by p) are orthogonal matri-
ces of left and right side singular vectors, and S =
diag{o|, 02, ...,0,} is a diagonal matrix containing the
singular values in the descending order. If we construct
a matrix W

w=vDVT (A2)
where

. o) o
D:dlag{a—?,o_—;,ag,...,ap} (A3)

Then, postmultiplying Y by W has the effect of inter-
changing the “‘importance” (associated variance) of the
two top principal components. In other words, this
interchanges the strength of perception associated with
the two leading variables in the underlying PCA model.
However, rather than applying this mapping W to the
consensus Y, we apply it to a subset of the profiles that
are rotated to match one another (and Y) by GPA.
Thus, a group of profiles is created that has a different
ordering of the variables (principal components) in the
underlying PCA model.
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