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The analytical performances of two algorithms, the re-
cently introduced bilinear least-squares (BLLS) and the
popular parallel factor analysis (PARAFAC), are compared
as regards second-order fluorescence data recorded for
the determination of the fluoroquinolone antibiotic cipro-
floxacin in human urine samples. The applied chemo-
metric methodologies employ different strategies for
exploiting the so-called second-order advantage, which
allows one to obtain individual concentrations of cali-
brated analytes in the presence of any number of uncali-
brated (urine) components. Analysis of a spiked urine test
set (in the analyte concentration range 0-200 mg L-1)
showed that BLLS provides results of slightly better
quality than PARAFAC. Satisfactory results have been
obtained on comparing the concentrations predicted for
a series of real urine samples with those furnished by
liquid chromatography. The limit of detection of the
fluorescence-based methods is ∼5 mg L-1.

High-order data are particularly suitable for the quantitative
analysis of complex multicomponent samples.1 In recent years,
three-way data following the trilinear model, such as excitation-
emission fluorescence matrices (EEM), have been gaining wide-
spread analytical acceptance. Pertinent examples are the deter-
mination of therapeutic drugs in biological fluids,2-5 pesticides,6

and chlorophylls and pheopigments.7 The recording of this type
of data conveys certain advantages: the measurements are carried
out on a single instrument, the signals are selective and sensitive,
and the obtained models are trilinear. There are, however, other
methods for generating high-order data: UV-visible spectropho-

tometry coupled to pH or kinetic changes8,9 and hyphenated
techniques such as chromatography coupled to mass spectrometry
detection.10

In the context of three-way fluorescence analysis, the parallel
factor (PARAFAC) model is being increasingly used for data
processing,11,12 because it achieves decomposition of three-
dimensional arrays in a unique manner, allowing relative concen-
trations and spectral profiles of individual sample components to
be extracted directly. The term second-order advantage has been
coined to describe this property, which holds an immense
potentiality in the analysis of complex samples.1 From the
analytical point of view, other important characteristics of the
PARAFAC methodology are as follows: (1) it avoids the construc-
tion of the large training sets needed for the application of first-
order multivariate methodologies to complex biological samples
(see, for example, the PLS-1 determinations of theophylline,13

tetracycline,14 and glucose15 in human serum) and (2) it handles
multiple calibration standards with a pseudounivariate regression
plot, in contrast to methods such as generalized rank annihilation
(GRAM).16 It should be noted that the popular multidimensional
variant of partial least-squares regression (N-PLS)17 does not show
the second-order advantage, because it is unable to model the
occurrence of uncalibrated components in an unknown sample.

Recently, bilinear least squares (BLLS) has been introduced
as an appealing second-order chemometric technique, based on
a completely different philosophy as compared to PARAFAC and
showing the important characteristics of handling multiple stan-
dard samples and exploiting the second-order advantage.18,19 It
has been tested using simulated data sets and relatively simple
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experimental examples and claimed to give results of at least the
same quality as PARAFAC.19,20 To the best of our knowledge,
however, BLLS has not been seriously tested against real samples
of high complexity, such as those of biological origin.

In the present report, both BLLS and PARAFAC are employed
to predict the concentration of the antibiotic ciprofloxacin in
human urine samples from second-order fluorescence data.
Ciprofloxacin [1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazi-
nyl)quinolone-3-carboxylic acid, Figure 1] is a synthetic fluoro-
quinolone derivative which has Gram (+) and Gram (-) antibac-
terial activity21 and is widely used in the treatment of several
bacterial infections in humans and animals.22,23 Its main excretion
pathway is urinary,24 with usual concentrations in the range 100-
200 mg L-1. Following early recommendations,25 the U.S. Food
and Drug Administration (FDA) has approved ciprofloxacin for
postexposure inhalational anthrax. High-performance liquid chro-
matography (HPLC) is regularly employed for routine determi-
nation of ciprofloxacin in biological fluids,26,27 although lumines-
cence techniques coupled to lanthanide sensitization,28 solid-phase
measurements,29 and multivariate calibration2 are modern analyti-
cal alternatives. Other less employed methods are spectropho-
tometry,30 capillary electrophoresis,31 and conductimetry.32 Moni-
toring in body fluids is especially important in children: despite
some contraindications, infants and children with multi-drug-
resistant infections, cystic fibrosis, or immunological compromise
have been successfully treated with ciprofloxacin.33

Ciprofloxacin is a weak diprotic acid, which may exist in
solution in several prototropic forms.34 In the present work,
fluorescence measurements have been conducted under two
different pH conditions: in one case a single acid-base form exists
in solution, whereas in the second one an equilibrium occurs
between two forms having distinct fluorescent properties. In the
former case, the spectral profiles extracted by both of the
employed chemometric methods are similar, but in the latter one,
there are fundamental differences between PARAFAC and BLLS.
This provides an interesting test field where these algorithms can
be compared, as regards their model interpretabilities and predic-
tive capabilities toward analytes that are embedded in a complex
biological background.

The results are indicative that ciprofloxacin analysis can be
conveniently performed in urine samples by second-order fluo-
rescence measurements and that the newly introduced BLLS
method is able to yield results that are of a better quality than
PARAFAC. In this respect, BLLS deserves a status similar to other
well-established second-order calibration methodologies. For
comparison, N-PLS results are also included and shown to be
unsatisfactory for the presently studied samples.

EXPERIMENTAL SECTION
Equipment. All fluorescence measurements were carried out

on an Aminco Bowman Series 2 spectrofluorophotometer, equipped
with a 150-W Xe lamp, and connected to a microcomputer running
under OS/2 (through a GPIB IEEE-488 interface). Data acquisition
was performed by the use of AB2 software. In all cases, 1.00-cm
quartz cells were used. EEMs were registered in the ranges λem

) 370-478 nm each 3 nm and λexc ) 250-320 nm each 5 nm,
making a total of 37 × 15 ) 555 data points per sample matrix.
The excitation and emission slit widths were both 4 nm, and the
scan rate was 10 nm min-1.

HPLC was performed using a Waters liquid chromatograph
equipped with a 515 Waters high-pressure pump, a Rheodyne
injector, and an UV-visible detector. Relevant parameters were
as follows: column, Zorbax SB C18 4.6 × 150 mm (5-µm particle
size); mobile phase, an 87:13 mixture of acetonitrile and H3PO4

0.025 M (adjusted to pH 3.0 ( 0.1 with triethanolamine); flow rate,
1 mL min-1; temperature, 25 ( 1 °C; retention time, 10.5 ( 0.1
min. Detection proceeded by absorbance measurements at 280
nm.

Solutions. A stock 53.5 mg L-1 solution of analytical grade
ciprofloxacin (Sigma) was prepared by dissolving the compound
in a 50:50 mixture of ethanol and doubly distilled water, sonicating
for at least 30 min. and storing in the dark at 4 °C. Working
solutions were prepared by dilution of the stock solution with
either a sodium acetate buffer (pH 4.0) or with doubly distilled
water (pH ∼6). The degree of dilution was such that the maximum
proportion of ethanol in the final solutions was less than 0.2%.

Calibration Samples. The linear fluorescence-concentration
range for ciprofloxacin was previously checked to have an upper
limit of 260 µg L-1. Calibration was thus performed with five
aqueous solutions of ciprofloxacin, having equally spaced con-
centrations in the range 0-200 µg L-1. They were prepared by
appropriate dilution of the analyte stock solution. Two different
calibration sets were prepared, one kept at pH 4.0 by means of
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Figure 1. Structures of the two prototropic forms of ciprofloxacin
coexisting at pH 6 in aqueous solution.
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an acetate buffer and a second one at pH 6 (provided by a
significant dilution with doubly distilled water). The range of
calibration concentrations corresponds to values between 0 and
200 mg L-1 when converted to undiluted urine samples (see
below). EEM recording was performed in random order with
respect to the sample number.

Spiked Test Samples. Four different urine samples, taken
from healthy individuals, were used to generate 14 spiked test
samples. Each urine sample was added to the analyte in order to
obtain a final concentration of ciprofloxacin, which was selected
at random from the corresponding calibration range. Addition of
the four urine blanks to this set led to an 18-test sample set for
analyzing the method’s performance (see concentrations in Table
1). Ciprofloxacin was added to the urines from the working
solution (as required) and diluted (1:1000). In one set, the pH
was maintained at 4.0 (dilution was made with an acetate buffer),
and in a separate set, the pH was ∼6 (dilution was made with
doubly distilled water). EEM recording was performed in random
order with respect to sample number and on different days (i.e.,
samples were divided into three subsets, and EEM for samples
in each subset were run in three consecutive days).

Urine Samples. Real urine samples were taken from patients
administered with ciprofloxacin and obtained at a regional hospital.
They were diluted (1:1000) with the acetate buffer of pH 4.0 or
with water, to bring the concentration of the analyte into the
calibration range, and the EEMs were read. The multivariate
strategies PARAFAC and BLLS were applied at both pH values.
Samples were also studied using the HPLC technique for
comparison with the fluorescent methodologies.

Chromatographic Procedure. It is based on the method
described in the United States Pharmacopeia.35 A standard solution
of ciprofloxacin (180 mg L-1) was prepared by dissolving the
compound in the mobile phase (see above). Real urine samples

were diluted (1:2) with mobile phase in order to obtain concentra-
tions in the range 80-120 mg L-1. In all cases, triplicate analysis
was performed.

THEORY
PARAFAC. Second-order data are obtained when a given

sample produces a J × K data matrix or second-order array, where
J and K denote the number of data points in the first and second
dimensions, respectively (in EEM fluorescence measurements, J
is the number of digitized emission wavelengths and K is the
number of excitation wavelengths). If the I training matrices and
the unknown sample matrix are stacked, a three-way data array
X is obtained, whose dimensions are [(I + 1) × J × K]. Provided
X follows the trilinear PARAFAC model, it can be written as a
sum of Kronecker products of three vectors for each responsive
component: an, bn, and cn, which collect the relative concentra-
tions or scores [(I + 1) × 1], the emission profiles (J × 1), and
the excitation profiles (K × 1) for component n, respectively. The
specific expression is thus36

where X indicates the well-known Kronecker product, N is the
total number of responsive components, and E is a residual error
term of the same dimensions as X. The column vectors an, bn,
and cn are usually collected into the loading matrices A, B, and
C, respectively.

The model described by eq 1 defines a decomposition of X,
which provides access to spectral profiles (B and C) and relative
concentrations (A) of individual components in the (I + 1)
mixtures, whether they are chemically known or not, constituting
the basis of the second-order advantage. The decomposition is
accomplished by PARAFAC through an alternating least-squares
minimization.12,37

Issues relevant to the application of the PARAFAC model to
three-way fluorescent data are as follows: (1) initializing and/or
constraining the algorithm, (2) establishing the number of fluoro-
phores and the reliability of the model, (3) identifying specific
fluorescent components from the information provided by the
model, and (4) calibrating the model in order to obtain absolute
concentrations for a particular component in an unknown sample.

Initialization of the least-squares fit can be carried out with
profiles obtained by several procedures. The most usual one is
direct trilinear decomposition,38 but in certain instances, special
procedures are required.39 Furthermore, depending on the char-
acteristics of the studied system, constraints should be applied
to the PARAFAC loadings in order to obtain physically meaningful
information.

The number of responsive components (N) can be estimated
by several methods. A useful technique is the consideration of
the PARAFAC internal parameter known as core consistency:
typically, the latter one is computed for a number of trial

(35) United States Pharmacopeia XXIV, United States Pharmacopeial Conven-
tion: Rockville, MD, 2000; pp 417-420.
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Table 1. N-PLS, PARAFAC, and BLLS Prediction
Results on the Spiked Urine Test Seta

PARAFAC BLLS N-PLSb

sample nominal pH 4.0 pH 6c pH 4.0 pH 6 pH 4.0 pH 6

T1 190 203 173 194 214 203 208
T2 87 96 80 94 86 100 107
T3 23 33 26 32 29 43 46
T4 13 14 6 15 14 27 28
T5 38 34 19 36 28 48 50
T6 150 153 142 154 145 165 160
T7 26 32 33 34 16 48 47
T8 58 63 67 65 60 77 80
T9 125 131 146 132 126 143 146
T10 65 62 63 64 67 77 75
T11 90 85 89 87 92 101 120
T12 160 158 158 158 172 173 174
T13 48 48 41 47 52 58 61
T14 75 79 64 76 68 88 92
T15 0 -1 10 -1 11 13 26
T16 0 -1 5 -1 8 16 21
T17 0 2 3 0 7 15 30
T18 0 -4 11 -3 7 14 27

a All results are expressed in µg L-1, corresponding to values 1000
times larger in the original urines. b The N-PLS model was built with
a single factor at both pH values, as obtained from leave-one-out cross-
validation. c Values were computed using data for the most sensitive
prototropic H2(CIP)+ form.

X ) ∑
n)1

N

an X bn X cn+ E (1)
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components, and N is set as one less the number for which the
core consistency drops from ∼100 to less than 50.39 An intuitive
alternative method is based on the pseudounivariate calibration
line, which is obtained by regressing the PARAFAC relative con-
centration values for the training samples against their standard
concentrations.4 The correct value of N is easily located when the
linear fit regression error stabilizes as a function of a number of
trial components: when the correct number of constituents is
reached, the PARAFAC relative concentrations for a given
component are linearly related to its nominal concentrations.
Introducing more components should lead to a similar (or possibly
worse) fit. A PARAFAC model constructed with the correct
number of components is deemed to be correct if a reasonably
low number of least-squares errors, i.e., elements of E in eq 1,
are obtained in comparison with the instrumental noise level.

Identification of the chemical constituent under investigation
is done with the aid of the spectral profiles B and C, as extracted
by PARAFAC, and comparing them with those for a standard
solution of the analyte of interest. This is required since the
components obtained by decomposition of X are sorted according
to their contribution to the overall spectral variance, and this order
is not necessarily maintained when the unknown sample is
changed.

Absolute analyte concentrations are obtained after proper
calibration, since only relative values (A) are provided by
decomposing the three-way data array. Experimentally, this is
done by preparing a set of standards of known composition and
regressing the first I elements of column an against known
standard concentrations y of analyte n:

where “+” implies taking the pseudoinverse.
Finally, conversion of relative to absolute concentration of n

in the unknown is achieved from the last element of column an

[a(I+1)n] and the slope of the calibration graph k:

In sum, the most salient point of the PARAFAC philosophy is
the construction of a joint model that includes the data matrices
for the I calibration samples together with that for the unknown
sample, before concentration information is introduced in a
separate pseudounivariate regression step.

BLLS. The original BLLS formulation is discussed in detail
in the relevant references.18,19 A brief description is presented here,
illustrating a general scheme (appropriate for several calibrated
analytes) in order to compare with literature information, with
the corresponding changes for a single calibrated analyte intro-
duced as required.

In contrast to PARAFAC, concentration information is intro-
duced into the BLLS calibration step (without including data for
the unknown sample), to obtain approximations to pure analyte
matrices at unit concentration. For this purpose, the concentration
product matrix D and Ncal concentration-weighted Tn matrices are
first obtained (Ncal is the number of calibrated analytes), employing
data from the I training matrices Xi,cal and the calibrated analyte
concentrations contained in the I × Ncal matrix Y:

The required Sn matrices for analyte n at unit concentration
are then obtained as

Notice that in the presently studied analytical problem, a single
calibrated analyte occurs. Hence, Ncal ) 1, n ) 1, and Tn should
be replaced by T1, Y by the vector y of known standard
concentrations, as used above for PARAFAC, D by the scalar
quantity D, and Sn by S1:

The J × K matrices Sn (S1 in our case) allow one to estimate
the calibrated analyte spectral profiles. Two procedures have been
discussed for this purpose: the BLLS profile estimator and the
singular value decomposition (SVD) profile estimator; the most
reliable and simple seems to be the single-component SVD of each
of the Sn (SVD1):18,19

where bn and cn are the emission (J × 1) and excitation (K × 1)
profiles. In the present case eq 10 reduces to

In general, where more than one analyte is calibrated, the
profiles provided by eq 10 are joined into the calibration Bcal and
Ccal loading matrices, similar to those described above for
PARAFAC, except that they do not include possible unexpected
components that may appear in the unknown sample. In our case,
however, Bcal ) b1 and Ccal ) c1. It should be noted that the
identification of calibrated components is not required in BLLS,
since this is automatically performed by the algorithm.

If the calibration model is exact, Bcal and Ccal can be employed
to estimate the analyte concentrations in the unknown. As
previously discussed,18,19 there are two procedures for this
prupose, a so-called naive predictor and a least-squares predictor.
The latter one has been shown to be more reliable and leads to
the following prediction equation:18,19

k ) y+ × [a1n | ... | aIn ] (2)

yu ) a(I+1)n/k (3)

Tn ) ∑
i)1

I

YinXi,cal (4)

D ) YT Y (5)

Sn ) ∑
n′)1

N

(D-1)nn′Tn′ (6)

T1 ) ∑
i)1

I

yiXi,cal (7)

D ) yT y (8)

S1 ) ∑
n′)1

N

D-1T1 (9)

bngncn
T ) SVD1(Sn) (10)

b1g1c1
T ) SVD1(S1) (11)

yu ) [(Bcal
TBcal) * (Ccal

TCcal)]-1 Diag(Bcal
TXuCcal) (12)
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where yu is an Ncal × 1 vector containing the predicted concentra-
tions of the calibrated Ncal analytes, * indicates the elementwise
product operation, Xu is the unknown data matrix, and Diag
converts the main diagonal of the Ncal × Ncal matrix (Bcal

TXuCcal)
into an Ncal × 1 vector. Applied to the presently studied problem,
eq 12 thus provides the single analyte concentration yu in the
unknown:

The occurrence of unmodeled compounds in an unknown
sample is investigated by comparing the residuals of the prediction
least-squares fit with the instrumental noise level (the latter is
easily assessed by blank replication measurements). If unexpected
components indeed occur, the situation is handled by a separate
iterative procedure called residual bilinearization (RBL),18,19 which
in a general case would be carried out according to the following
steps:

(1) Set Nint ) 1 as a trial number of interfering components
contained in the unknown sample.

(2) Calculate yu with eq 14 and the matrix Eu of positive
residuals for the prediction step with eq 15 (the first time this
RBL procedure is used, set B ) Bcal and C ) Ccal):

where Yu is a diagonal matrix whose diagonal elements are those
of yu and the remaining ones are zeros.

(3) Perform SVD with Nint components on the matrix Eu and
obtain the profiles for the interference(s):

(4) Expand the profiles to include Bint and Cint:

(5) Return to step 2 and continue until convergence.
(6) If the residuals are still significantly larger than the noise

level, return to step 1 and increase the number of interferences
by one. Notice that the final value of N in BLLS is given by Ncal

+ Nint.
The above procedure, as adapted to the present problem with

a single calibrated analyte, requires the replacement of Bcal by
b1, Ccal by c1, and both yu and Yu by yu.

The prevailing idea within BLLS is a two-step calibration-
prediction mode, where concentration prediction is guided by a
least-squares minimization. The second-order advantage is left for
a subsequent stage, in which the matrix residuals are bilinearized
in order to estimate the interference profiles. The latter serve to
expand the loadings and to correctly estimate the analyte

concentrations, even in the presence of unexpected constituents.
Notice that no initialization or constraining procedures are
required.

Figures of Merit. Figures of merit are regularly employed
for method comparison. They are best understood by resorting
to the useful concept of net analyte signal (NAS), first developed
by Lorber.40 In multivariate calibration, the NAS usually takes the
following form:

where xn
* is the NAS vector, PNAS is a JK × JK projection matrix,

and vec is an operator that unfolds the matrix Xu columnwise into
a vector. There appears to be conflicting reports as how the NAS
projection should be computed for higher order methodologies.41-44

An equation that seems to be appropriate for cases where the
second-order advantage operates is43

where I is an appropriately dimensioned unit matrix and B-n and
C-n are the B and C matrices from which the columns corre-
sponding to analyte n have been removed. The sensitivity can then
be defined as the scalar NAS at unit concentration:43

where yu is the predicted concentration for a given analyte in the
sample and Tr indicates taking the trace of a matrix. Equation 21
is equivalent to45

where k is an appropriate scaling factor. In PARAFAC, k is the
parameter converting scores to concentrations (eq 2), while in
BLLS it can be obtained by regressing the g1 values (eq 11) against
y.

The selectivity (SEL), in turn, is the ratio between the
sensitivity and the total signal, and can be estimated as45

Note that when the second-order advantage is employed, eqs
22 and 23 imply that SEN and SEL are sample-specific and cannot
be defined for the multivariate method as a whole. In such cases,
average values for a set of samples can be estimated and reported.

A further figure of merit is the standard error in the predicted
concentrations, an area of active research in the second-order

(40) Lorber, A. Anal. Chem. 1986, 58, 1167-1172.
(41) Messick, N. J.; Kalivas J. H.; Lang, P. M. Anal. Chem. 1996, 68, 1572-

1579.
(42) Wang, Y.; Borgen, O. S.; Kowalski, B. R.; Gu M.; Turecek, F. J. Chemom.

1993, 7, 117-130.
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(44) Ho, C.-N.; Christian G. D.; Davidson, E. R. Anal. Chem. 1980, 52, 1071-

1079.
(45) Faber, N. M. J. Chemom. 2001, 15, 743-748.

yu ) [(b1
Tb1) * (c1

Tc1)]-1 Diag(b1
TXuc1) (13)

yu ) [(BTB)-1 * (CTC)-1] Diag(BTXuC) (14)

Eu ) | Xu - BYuC
T | (15)

BintGintCint
T ) SVDNint(Eu) (16)

B ) [Bcal | Bint] (17)

C ) [Ccal | Cint] (18)

xn
* ) PNAS vec(Xu) (19)

PNAS ) [I - B-n(B-n)+] X [I - C-n(C-n)+] (20)

SEN ) [Tr(xn
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*)]1/2/yu (21)
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calibration scenario. Mathematical expressions for sample-specific
prediction uncertainties take proper account of the propagation
of different error sources. They are available for PARAFAC46 and
BLLS,19 although for cases not exploiting the second-order
advantage, and hence, they are not applicable to the present
example. A useful alternative is to resort to mean prediction errors
for a set of test samples, to obtain an average concentration error,
useful for method comparison (see below). Further insight into
the accuracy and precision of the method is gained by linearly
regressing predicted versus nominal concentration values in the
test sample set and finding the so-called elliptical joint region
(EJCR) for the regression slope and intercept.47 If the theoretical
point (i.e., slope 1, intercept 0) is included into the EJCR, the
method is considered to be accurate, while the size of the ellipse
gives an idea of the precision.47

Finally, the limit of detection (LOD) should be considered.
This figure of merit has been recently discussed for several first-
and second-order multivariate techniques, using a rigorous ap-
proach that takes into account false positive and false negative
errors.48,49 In the case of PARAFAC, a recent work has discussed
the estimation of the LOD, but only in situations where the second-
order advantage is not operating, i.e., when all components present
in unknown samples have been calibrated.46 Thus, the latter
approach is not strictly applicable to the present problem. An
approximation to the LOD can still be gathered from the
expression46

where sr is the instrumental noise level. Equation 24 stems from
the consideration of a signal-to-noise ratio equal to 3 but does not
account for calibration uncertainties, and thus, it generally
provides overoptimistic values. Inasmuch as SEN is given as an
average value over a test sample set, LOD is also reported as an
average figure.

Software. All calculations were done using MATLAB 6.0.50

Appropriate routines for applying PARAFAC and N-PLS, developed
by Bro, are available on the Internet,51 although a useful MATLAB
graphical interface was developed in our laboratory for its
implementation, of the type already described for first-order
multivariate calibration.52 It also implements the BLLS method,
in this case following the algorithm described in refs 18 and 19.
The interface provides a simple means of loading the data matrices
into the MATLAB working space, selecting appropriate working
spectral regions, and plotting spectral profiles and pseudounivari-
ate calibration graphs. The analytically relevant results are
conveniently shown in terms of predicted concentration and
figures of merit. This MATLAB interface code is available from
the authors on request.

RESULTS AND DISCUSSION
Excitation-Emission Fluorescence Matrices. As explained

above, to test the performances of PARAFAC and BLLS under
different conditions, measurements have been made at pH 4.0,
where the analyte is mainly present in the protonated form H2-
(CIP)+, and also at pH 6, where an acid-base equilibrium occurs
between H2(CIP)+ and the neutral form H(CIP) (most probably
a zwitterion), because the relevant ionization pKa is 5.90 (see
Figure 1).34 Both H2(CIP)+ and H(CIP) are fluorescent but display
different excitation and emission profiles. It should be noted that
ciprofloxacin is also able to exist in a further protonated form H3-
(CIP)2+ in a strongly acid medium, and in the fully deprotonated
form (CIP)- in strongly alkaline media.34 These latter species,
however, display low fluorescence intensities and therefore they
are not suitable for the analyte determination.

Figure 2 shows the superimposed contour plots corresponding
to the EEM for one of the training samples (containing ciprof-
loxacin 100 µg L-1) and for a typical human urine, both recorded
in wide spectral excitation and emission ranges: 230-380 and
350-550 nm, respectively. The presence of both Rayleigh and
Raman scatterings is observed, as well as a second harmonic from
the diffraction grating, which should be avoided because they are
uncorrelated with the target concentrations of the studied analyte.
Therefore, for calibration and prediction purposes, the EEMs were
subsequently recorded in the sensibly restricted excitation and
emission ranges shown as a gray rectangle in Figure 2, which
includes the analyte fluorescence peak of highest intensity. This
range corresponds to emission from 370 to 478 nm at 3-nm
intervals (J ) 37 data points) and excitation from 250 to 320 nm
at 5-nm intervals (K ) 15 data points), making a total of 555
spectral points per sample matrix. Figure 2 also highlights the

(46) Olivieri, A. C.; Faber, N. M. Chemom. Intell. Lab. Syst. 2004, 70, 75-82.
(47) González, A. G.; Herrador, M. A.; Asuero, A. G. Talanta 1999, 48, 729-

736.
(48) Boqué, R.; Larrechi, M. S.; Rius, F. X. Chemom. Intell. Lab. Syst. 1999, 45,

397-408.
(49) Boqué, R.; Ferré, J.; Faber, N. M.; Rius, F. X. Anal. Chim. Acta 2002, 451,

313-321.
(50) MATLAB 6.0, The MathWorks Inc., Natick, MA, 2000.
(51) http://www.models.kvl.dk/source/
(52) Goicoechea, H. C.; Iñon, F. A.; Olivieri, A. C. Chemom. Intell. Lab. Syst. In

press.

LOD ) 3 sr/SEN (24)

Figure 2. Contour plot of the EEM for an aqueous solution of
ciprofloxacin 100.0 µg L-1 (narrow lines) and a typical human urine
sample diluted 1:1000 (thick lines), showing the presence of a
diffraction grating harmonics (H) and Rayleigh (Rh) and Raman (Rn)
scatterings, as indicated. The gray rectangle illustrates the spectral
excitation and emission ranges selected for calibration with PARAFAC
and BLLS.
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fact that a significant overlapping occurs between the analyte and
the urine background of this particular sample across the
examined spectral ranges. It should be noticed that the intensity
and spectral shapes of urine vary among different individuals,
making if difficult to employ first-order multivariate techniques
for ciprofloxacin monitoring, because they are sensitive to un-
modeled components. The overlapping situation at pH 6 (not
shown) is similar to that described above.

Test Samples. Profile Estimation. The set of 18 test urine
samples (14 were spiked with random concentrations of cipro-
floxacin and 4 were left as blanks) was investigated with the aid
of PARAFAC at pH 4.0. Initialization was performed by direct
trilinear decomposition of the three-way array composed by the
five training samples and each of the unknown ones, and
unconstrained least-squares fit was then carried out. In all cases,
core consistency analysis allowed to establish that the appropriate
number of fluorophores was two (see Figure 3 for sample T1):
one corresponding to ciprofloxacin and the remaining one to the
urine background. The use of the pseudounivariate regression
criterion led to similar results concerning the number of fluoro-
phores. The fact the urine is modeled with a single component
by the algorithm may imply that a major, highly fluorescent
component dominates the urine background. Increasing the
number of fluorophores does not improve the model fit and leads
to poorly defined spectral profiles for the extra components.

The obtained emission and excitation profiles of the two-
component model (see Figure 4) nicely match those expected
for a pure analyte standard at the working pH value.34 In all cases,
residual least-squares errors were comparable to the instrumental
noise, indicating a good fit to the proposed PARAFAC model.
BLLS was then applied to the same set. In all samples, the study
of the prediction residuals led to the conclusion that further
components (in addition to ciprofloxacin) were required to
improve the fit. Thus, to apply the RBL procedure, replication of
blank samples was performed to obtain an average instrumental
noise level of ∼0.02 (arbitrary fluorescence units). Figure 3 shows
that the BLLS fit error in the case of sample T1 stabilizes at two
constituents, in agreement with the PARAFAC results. Further-
more, the spectral profiles provided by RBL for the analyte and
for the urine background (Figure 4) are also similar to those
furnished by PARAFAC. This result allows one to conclude that
BLLS is successful in obtaining profiles for exploiting the second-
order advantage.

In going to pH 6, an entirely different situation arises as regards
profile estimation. Analysis of the spiked urine set using PARAFAC
leads to the conclusion that three responsive components occur
at this pH, based on core consistency values (results for sample
T1 are provided in Figure 3). According to the obtained profiles,
two of them were correctly assigned to H2(CIP)+ and H(CIP)
forms of ciprofloxacin, leaving the remaining one to the urine
background (Figure 5). The profiles for the protonated H2(CIP)+

Figure 3. (A) PARAFAC core consistency values (squares) and
BLLS least-squares error (circles) as a function of the trial number of
components for the analysis of the spiked test sample T1 at pH 4.0.
The solid and dotted lines connecting the points (PARAFAC and
BLLS, respectively) are for the eye guide. (B) As in plot A for the
same test sample studied at pH 6. The horizontal dashed line
indicates the average instrumental noise level. AFU, arbitrary fluo-
rescence units.

Figure 4. (A) Emission profiles, normalized to unit length, as found
by PARAFAC (s) and by BLLS (- -), after processing one the spiked
urine test sample T1 at pH 4.0. (B) Excitation profiles. Both in (A)
and in (B), the profiles for H2(CIP)+ were identified by comparison
with a standard, with the remaining ones corresponding to the urine
background (as indicated).
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form are coincident with those found at pH 4.0 (see Figure 4). It
should be noted that at pH 6 the PARAFAC scores for H2(CIP)+

and H(CIP) components (i.e., the corresponding columns of the
A matrix) are linearly related. Therefore, the least-squares
procedure had to be carried out including a nonnegativity
constrain on the three PARAFAC modes, to obtain physically
meaningful spectral profiles.39

In the case of the application of BLLS, this algorithm yields
excitation and emission profiles for the only calibrated component,
regardless of its acid-base equilibrium forms, and requiring no
particular constrains. The obtained spectral profiles for sample
T1 are compared with those rendered by PARAFAC in Figure 5

and are seen to be population averages of those corresponding
to H2(CIP)+ and H(CIP) forms. This is understandable on the basis
of the details of the BLLS calibration discussed above: the pure
analyte matrix is in this case a compromise between those for
the equilibrating species at pH 6. On the other hand, error analysis
during the prediction step (Figure 3) indicated the need of an
extra component, the urine background. The latter one was found
by applying RBL, leading to the profile shown in Figure 5, in
pleasing agreement with that found by PARAFAC.

Test Samples. Figures of Merit. Prediction results for the
spiked test set are presented in Table 1. In the case of PARAFAC
at pH 6, the calibration scheme leads to two separate pseudounivari-
ate regression plots, based on each of the equilibrating prototropic
forms of the analyte. The analyte concentration was predicted
using data for the most sensitive form H2(CIP)+. On the other
hand, prediction with BLLS is possible using population-averaged
profiles in eq 13. All predictions are seen to be reasonable for
samples of the complexity of human urine. As regards N-PLS,
poor recoveries have been obtained, due to the nonavailability of
the second-order advantage for the latter technique: all predicted
values are in excess over the nominal ones, by an average of 15
and 19 µg L-1 at pH 4.0 and 6, respectively. This is precisely the
kind of effect expected from the existence of an unmodeled
component with an approximately constant spectral profile across
test samples.

The detailed statistical analysis is shown in Table 2 in terms
of average prediction error for both PARAFAC and BLLS and at
both working pH values, including the relevant information
employed for data processing. Inspection of Table 2 seems to
indicate similar predictive abilities for both algorithms. However,
better insight is gained by studying the EJCR of the regression
of predicted versus nominal analyte concentrations. The corre-
sponding plots are shown in Figure 6: all confidence regions
contain the ideal point of unit slope and zero intercept (indicating
accuracy), but the elliptic sizes are apparently different. The
ellipses for pH 4.0 are smaller than for pH 6, suggesting that the
chemometric methodologies show better predictive ability when
the number of species is smaller. However, BLLS displays smaller
EJCR at both working pH as compared to PARAFAC, pointing to
an improved analytical precision of the former. For comparison,
the highly biased elliptical regions for N-PLS are also included in
Figure 6. In this latter case, the region at pH 4.0 is smaller than

Table 2. Figures of Merit for PARAFAC and BLLS at Both Studied pH Valuesa

PARAFAC BLLS

parameter pH 4.0 pH 6 pH 4.0 pH 6

no. of training samples 5
calibration concn range 0-200 µg L-1 (five equally spaced values)
no. of test samples 18
test concn range 0-190 µg L-1 (random design)
data structure one 37 × 15 × 6 three-way

array for each unknown
five training 37 × 15 matrices

and one matrix for the unknown
RMSEPb/µg L-1 6 10 5 9
sensitivityb,c/AFU L µg-1 0.04 0.012 0.04 0.05
selectivityb 0.25 0.11 0.26 0.46
LODb,c/µg L-1 2 5 2 1

a RMSEP, root-mean-square error of prediction; AFU, arbitrary fluorescence units. The relative prediction error is numerically identical to the
RMSEP, since the mean calibration concentration is 100 µg L-1. b In the case of PARAFAC at pH 6, the quoted values were computed using data
for the most sensitive prototropic H2(CIP)+ form. c Average values over the 18-sample test set, assuming sr ) 0.02 AFU.

Figure 5. (A) Emission profiles, normalized to unit length, as found
by PARAFAC (s) and by BLLS (- -), after processing sample T1 at
pH 6. (B) Excitation profiles. Both in (A) and in (B), the PARAFAC
profiles for H2(CIP)+ and H(CIP) were identified by comparison with
a standard, the BLLS ones correspond to population averages of
those for H2(CIP)+ and H(CIP), and the remaining one is ascribed to
the urine background (as indicated).
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at pH 6; however, the lack of accuracy at both pH values is
apparent for this technique, because the EJCRs do not contain
the ideal (1,0) point.

Average sensitivities and selectivities for PARAFAC and BLLS
over the analyzed test set under the studied conditions are also
listed in Table 2. They are similar for both algorithms at pH 4.0
but significantly differ at pH 6. In the latter case, BLLS shows
considerably better figures than PARAFAC, due to lower spectral
overlapping. This fact may help to explain the BLLS enhanced
predictive ability toward the analyte in the spiked sample set.

The limits of detection computed with the approximate eq 24
are also reported in Table 2. They are probably too optimistic,
because they do not include calibration uncertainties but give an
overall idea of the quality of the presently applied techniques: in
the worst possible scenario, the LOD is ∼5 µg L-1, which can be
translated into an LOD of 5 mg L-1 for the original urine samples
(due to the dilution factor of 1:1000). This latter value is a sensible
estimation of the LOD, given the predicted analyte concentrations
for the blank urines T15-T18 (Table 1).

Real Samples. The analysis of four real samples (R1-R4 in
Table 3) was performed under both working conditions, i.e., by
processing with both algorithms the EEM data recorded at pH
4.0 and also at pH 6. Table 3 shows that the predicted concentra-
tions are statistically comparable to those found by liquid chro-
matography, indicating that second-order fluorescence is a valid
methodology for ciprofloxacin monitoring in urine. The compari-
son is based on a paired-t statistics (Table 3). The PARAFAC
predicted values appear to be closer to those found by HPLC at
pH 4.0 than at pH 6, whereas no definite trend if found in the
BLLS predictions at both pH values.

Method Comparison. In comparing second-order multivariate
methodologies, one should take into account the following
characteristics: (1) analytical performance, (2) model interpret-
ability, and (3) ease and speed of program operation.

Both BLLS and PARAFAC are able to handle the occurrence
of interferences not modeled in the calibration set, a property of
immense utility in the analytical context (notice that the popular
N-PLS algorithm does not provide adequate results for the present
problem, because it does not exploit the second-order advantage).
These two methods also yield spectral properties of useful physical
meaning. The results discussed in the present report indicate that
under certain circumstances, however, the interpretability of
PARAFAC results is of superior quality, providing the correct
spectral profiles for equilibrating acid-base species. However, the
focus of BLLS is on prediction rather than on interpretation, and
from this point of view its analytical performance can be consid-
ered to be better, both in accuracy and precision, at least
concerning the presently studied system.

As regards computer operation, all methods can be pro-
grammed in MATLAB and introduced into a friendly, user-
interface mode, and hence, no significant differences can be
established in this respect. However, BLLS seems to be simpler
as regards constraining options and number and quality of tunable
parameters for program initialization.
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Figure 6. Elliptical joint confidence regions for the slope and
intercept of the regression of predicted concentration vs nominal
values in the test set: (s) PARAFAC, (- -) BLLS, and (‚ ‚ ‚) N-PLS.
The thick lines correspond to the results at pH 4.0, the narrow lines
at pH 6. The solid square marks the ideal (1,0) point.

Table 3. PARAFAC, BLLS and HPLC Results for Real
Urine Samplesa

PARAFAC BLLS

sample pH 4.0 pH 6b pH 4.0 pH 6 HPLC

R1 256 278 265 268 265
R2 214 219 186 205 200
R3 186 185 182 186 196
R4 252 258 237 244 240

a All results are expressed in mg L-1. For a paired t-test comparison
between each of the chemometric methods and HPLC, average
standard error, 8 mg L-1 (obtained by replicate analysis); degrees of
freedom, 2; confidence level, 95%; critical t value, 4.3. Values of (∆/
SE) are all smaller than the critical t (∆ is the difference between the
results under comparison). b Values were computed using data for the
most sensitive prototropic H2(CIP)+ form.
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