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The Analysis of Free-Sorting Data: 
Beyond Pairwise Cooccurrences 

John  T. D a w s  

New York University 

Abstract: Free-sorting data are obtained when subjects are given a set of objects 
and are asked to divide them into subsets. Such data are usually reduced by count- 
ing, for each pair of objects, how many subjects placed both of them into the same 
subset. The present study examines the utility of a group of additional statistics, 
the cooccurrences of sets of three objects. Because there are dependencies among 
the pair and triple cooccurrences, adjusted triple similarity statistics are developed. 
Multidimensional scaling and cluster analysis - -  which usually use pair similarities 
as their input data - -  can be modified to operate on three-way similarities to create 
representations of the set of objects. Such methods are applied to a set of empirical 
sorting data: Rosenberg and Kim's (1975) fifteen kinship terms. 
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1. The Method of Free Sorting 

A c o m m o n l y  u sed  d a t a - c o l l e c t i o n  t echn ique  is the  m e t h o d  o f  f ree  sor t -  

ing.  In the  m o s t  gene ra l  case ,  a g roup  o f  n sub jec t s  are  p r e sen t ed  wi th  a set  o f  

N ob j ec t s  and  are  a s k e d  to p l a c e  " s i m i l a r "  ob jec t s  t oge the r  and  to sepa ra t e  

" d i s s i m i l a r "  ones .  T h e  co l l ec t i on  o f  exha us t i ve  and d i s jo in t  subse ts  p ro -  

d u c e d  b y  each  sub jec t  wi l l  be  ca l l ed  a sorting or  a partition. 
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The method of free sorting has been widely used as a data collection 
strategy for several reasons. The task is simple and relatively easy for sub- 
jects to carry out. Researchers (e.g., Best and Ornstein 1986) have been able 
to use it with children as young as four. The method is cognitively engaging 
(Miller 1969), and subjects report enjoying the task. The method can be a 
quicker and less taxing way of collecting relational data than, for example, 
the method of pairwise comparisons, in which all distinct pairs of the objects 
are presented to subjects who are asked to rate the pairs on similarity. As 
Rosenberg (1982) noted, the advantage for sorting is greater with a larger set 
of objects, as the number of pairs increases with the square of the number of 
objects. 

Free-sorting data can be aggregated in one of two ways: over subjects 
or over objects. Researchers who aggregate over objects may be interested 
either in the similarities among subjects with respect to how they partition the 
objects, or in the similarity of each subject' s partition to some target partition 
of the objects. Such researchers would use partition comparison techniques 
(Hubert and Arabie 1985; Hubert and Levin 1976), which are not the topic of 
this paper. The researcher whose interest is in the relationships among the 
objects would aggregate the data over subjects. It is with this type of analysis 
that this paper is concerned. 

1.1 Pairwise Cooccurrences 

When data are aggregated over subjects, it is most common that they 
are reduced by counting the number of subjects who place each pair of 
objects into the same subset. The more frequently a pair of objects is sorted 
together, the more similar those two objects are taken to be. These pairwise 
cooccurrences provide well behaved information about the objects being 
sorted because their complements (the frequencies with which the pairs are 
not  sorted together) satisfy the metric axioms of minimality, symmetry, and 
the triangle inequality (Miller 1969). 

Clearly, information about the subjects' sorting responses is lost when 
sorting data are reduced to pairwise cooccurrences, relative to the much 
greater detail available in a frequency distribution of the possible partitions 
(Arabie and Boorman 1973). This type of loss is illustrated in the upper part 
of Table 1. There, two different groups of hypothetical subjects have sorted a 
set of four hypothetical objects in two quite different ways, yet the pairwise 
cooccurrences are identical for the two groups. A researcher who uses only 
the pairwise cooccurrences would be asserting, in effect, that there are no 
differences between these two groups of subjects. Any analysis based on the 
pairwise cooccurrences alone would produce identical results for Group 1 and 
Group 2, the differences between them notwithstanding. 
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Table 1 

Results of Two Simulated Free-Sorting Experiments: 

Partition Frequencies and Summary Statistics 

Group 1 Group 2 

Frequency 

Vectors 

(F) 

ABCD 0 ABCD 0 

ABC-D 5 ABC-D 1 

ABD-C 0 ABD-C 0 

ACD-B 0 ACD-B 0 

A-BCD 1 A-BCD 2 

AB-CD 0 AB-CD 1 

AC-BD 1 AC-BD 2 

AD-BC 0 AD-BC 0 

AB-C-D 1 AB-C-D 4 

AC-B-D 0 AC-B-D 3 

A-BC-D 1 A-BC-D 4 

AD-B-C 0 AD-B-C 0 

A-BD-C 2 A-BD-C 0 

A-B-CD 2 A-B-CD 0 

A-B-C-D 5 A-B-C-D 1 

Pairwise AB 6 AB 6 

Cooccurrences AC 6 AC 6 

(S2) BC 7 8C 7 

AD 0 AD 0 

BD 4 BD 4 

CD 3 CD 3 

Triples ABC 5 ABC 1 

Cooccurrences ABD 0 ABD 0 

(S3) ACD 0 ACD 0 

BCD 1 BCD 2 

Adjusted ABC -1.33 ABC -5.33 

Triple ABD -3.33 ABD -3.33 

Similarities ACD -3.00 ACD -3.00 

($3) BCD - .67 BCD -2.67 

Pairwise AB 

Similarities AC 

Based on the BC 

Adjusted Triple AD 

Similarities BD 

(S2) CD 

-4.67 AB -8.67 

-4.33 AC -8.33 

-2.00 BC -8.00 

-6.33 AD -6.33 

-4.00 BD -6.00 

-3.67 CD -5.67 
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1.2 Alternatives to Pairwise Cooccurrences 

Several researchers (including Burton 1975; Donderi 1988; Rosenberg 
and Kim 1975; and Takane 1980, 1984) have proposed other pairwise similar- 
ity measures for free-sorting data which are alternatives to the pairwise cooc- 
currence frequencies. Hojo's (1986) method for the analysis of sorting data 
does not reduce the data to cooccurrence frequencies at all, although the 
method is reportedly impractical with more than eight objects. 

This paper describes a new approach to the analysis of sorting data 

which retains information about the cooccurrences of the ( ~ )  sets of three 
l k T  

objects in addition to the ( ~ )  sets of pairs of objects. Just as a pairwise cooc- 

currence is used as a measure of the similarity of a pair of objects, the cooc- 
currence of three objects can be used as a measure of the similarity of those 
three objects. 

2. Three-Way Proximity 

In Tucker's (1964; Carroll and Arabie 1980) terminology, the cooc- 
currence frequencies of triples of objects are three-way, one-mode data (the 
single mode being objects). There has been some work extending the concept 
of distance to such data, although none of it has explicitly considered free- 
sorting data. 

Hayashi (1972) addressed the problem of representing a set of three- 
way proximities (eijk) by a set of points located in a two-dimensional 
Euclidean space. The configuration sought is the one that maximizes the sum 
of cross-products between eijk and the squared area of the triangle formed by 
the three points in the space representing objects i, j, and k. The eij k are 
assumed to be symmetric over all six permutations of the objects, to be posi- 
tive, and to increase in some way with the dissimilarity of the three objects. 
The problem is analogous to classical multidimensional scaling (Torgerson 
1958). 

Cox, Cox, and Branco (1991) extended nonmetric multidimensional 
scaling to the case of three-way proximities. The objects are to be 
represented by a configuration of points in multidimensional Euclidean space, 
in which the distance function for each set of three points is defined as 

dijk = ( d }  + + , 

where dij is the Euclidean distance between points i and j in the space. The 
configuration sought is the one for which the dijt have the best monotonic 
relationship with the proximity data 8ijk. The badness of fit between data and 
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configuration is measured by a straighforward generalization of Kruskal's 
(1964) stress statistic, in which dijk and dijk replace dij and dij, respectively. 

Joly and Le Calv6 (1995) describe three-way distances, tijk, using five 
axioms generalized from the familiar metric axioms for two-way distance 
measures. The authors discuss several alternative definitions of three-way 
distances: (a) the semi-perimeter (one-half of the sum of the lengths of the 
sides) of the triangle formed by three points in space, (b) the sum of the 
lengths of the paths from each of three points to some fourth point in the 
space (called the star distance), (c) the sum of the three squared Euclidean 
distances between the three pairs of points (i.e., the square of the Cox et al. 
1991 measure), and (d) an ultrametric distance in which tijk is the height of 
the lowest node on a dendrogram at which objects i, j, and k join. Joly and Le 
Calv6 also discuss how these various distance relations may be represented in 
spatial configurations, dendrograms, or spanning trees. 

It should be noted that the method of triads (M. W. Richardson 1938; 
Coombs 1964) has only a superficial connection to three-way proximity. In 
that method, although the objects are presented three at a time, the subjects 
are asked to judge the similarities of pairs of the objects. The subjects do not 
judge the three-way similarity of the objects. 

3. Two- and Three-Way Similarity Measures in Free Sorting 

The results of a free-sorting experiment can be summarized (with no 
loss of information) as a list of all possible partitions of a set of N objects, and 
the frequencies with which those partitions were generated by the n subjects. 
The number of possible partitions of a set of N objects is known as the Bell 
number (Moser and Wyman 1955) and will be denoted as TN. 

3.1 The Simple Cooccurrence Frequencies 

The pairwise cooccurrences. The cooccurrence frequency of any two 
objects is the sum of the frequencies for all partitions in which the two 
objects appear in the same subset, If we consider the partition frequencies as 

a TN-element column vector, F, then the (g)-element vector of pairwise 
~ , T  

cooccurrences, $2, can be defined as 

$2 = Q2 F ,  

Q2 is a TN by (2  N) binary indicator matrix, in which the (i,j) entry is where 1 
if in the i-th partition the j-th pair of objects is sorted together, and zero other- 
wise. The individual elements of the $2 vector will be referred to as Sab, for 
example, where the two subscripts identify the two objects. 
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Table 2 

Bell Number (TN) and Constant of Adjustment (CN) 
for Various Numbers of Objects 

z N c~ 
1 -c N 

CN 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i0 

11 

12 

13 

14 

15 

20 

25 

30 

35 

40 

45 

50 

1 . . . .  

2 . . . .  

5 . . . .  

15 .3333 2.00 

52 .3000 2.33 

203 .2703 2.70 

877 .2450 3.08 

4,140 .2240 3.46 

21,147 .2066 3.84 

115,975 .1919 4.21 

678,570 .1793 4.58 

4,213,597 .1686 4.93 

27,644,437 .1591 5.28 

190,899,322 .1509 5.63 

1,382,958,545 .1435 5.97 

51,724,158,235,372 .1163 7.59 

4,638,590,332,229,999,353 .0987 9.13 

846,749,014,511,809,332,450,147 .0861 10.60 

281,600,203,019,560,266,563 • i0 9 .0767 12.03 

157,450,588,391,204,931,289 • 10 15 .0694 13.40 

139,258,505,266,263,669,602 x 10 21 .0635 14.75 

185,724,268,771,078,270,438 • 10 27 .0586 16.08 
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M 
The triple cooccurrences. Similarly, the ( '~)-element vector of triple 

cooccurrences is 

$3 = Q3 F ,  

Q3 is a T N by (N) binary indicator matrix, in which the (i , j)  entry is 1 where 

if the i-th partition contains the j-th triple, and zero otherwise. The elements 
of the $3 vector will be referred to as Sabc, for example. The number of sub- 
scripts distinguishes the pair statistics from the triple statistics. 

The complements of the $3 statistics (the numbers of subjects who do 
not sort the object triples together) form a three-way distance metric, accord- 
ing to the Joly and Le Calv6 (1995) definition. 

3.2 The Adjusted Triple Similarity Measure 

In free-sorting data, the cooccurrence of any triple of objects is related 
to the three pairwise cooccurrences of those three objects. The pair cooc- 
currences set both upper and lower bounds on the triple cooccurrence: 

�89 (sij + si~ + sjk - n) <_ sijk <- min (Sij,Sik,sj~). 

In many cases, this lower bound will be negativel and therefore of no conse- 
quence. 

To obtain a measure of triple similarity that is not predictable from the 
pairwise relationships, a new statistic can be defined that describes the simi- 
larity of each triple, corrected for the similarities of the three corresponding 
pairs. This statistic, called the adjusted triple similarity, is 

S~bc = Sab c --C N (Sab + Sac + Sbc) , 

where 

TN_ 2 - TN_ 3 
c N - 

TN_ 1 - TN_ 2 

Why this statistic takes this form will be explained below. For now, 
note that the adjusted triple similarity measure is the simple triple frequency 
(Sabc), minus a fraction of the sum of the three corresponding pair frequencies 
(Sab, Sac, and Sbc). As N increases, CN decreases, as shown in Table 2. 

An adjusted triple similarity statistic will be large when the three 
objects are frequently sorted all together, with few subjects sorting two of 
them together without including the third. The maximum value of (1 - 3CN) n 
is reached when all n subjects sort all three objects together. An adjusted tri- 
ple similarity statistic will be small when the objects are frequently sorted 
together in pairs but rarely or never sorted all together. The minimum value, 
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- c  N n, is obtained when no subjects sort the three objects together, but all 
subjects sort exactly two of the three objects together. 

Just as the simple pairwise and triple statistics can be defined as the 
product of a Q matrix and the F vector, the adjusted triple similarities can be 
defined as the product 

S~ *" =Q3 F ,  

Q3 is a TN by (/~) matrix in which the (i,j) entry is (1 - 3cU) if the i-th where 

partition contains the j-th triple, - Cu if the i-th partition contains exactly one 
of the pairs corresponding to the j-th triple, or zero if the three objects in the 
j-th triple are sorted into three different subsets. 

3.3 Sampling Distributions Under a Null Model 

We will assume there are n subjects, each of whom contributes exactly 
one partition of the N objects. The Tu-element vector of partition frequen- 
cies, F, can be defined as the sum of n independently and identically distri- 
buted random vectors, each vector containing a single one and TN - 1 zeroes. 
Thus F has a multinomial distribution, with parameters n and P, where P is a 
Tu-element vector containing the probabilities of the various partitions. The 
covariance matrix of F is 

ZF = n [ diag (P) - P P" ] ,  

where diag (P) is the diagonal matrix whose (i,i) element is Pi, the probability 
that any one of the n subjects will produce the i-th partition. 

To choose the P vector is to choose a null model. There are various 
possibilities. In the most general type of null model, all partitions having the 
same number of subsets and the same numbers of objects in each subset 
would be equally likely. For example, the partitions abc-de, abe-cd, 
ae-bcd, and all other partitions of five objects into subsets of size two and 
three would occur with equal probability. In such a model, the objects are 
mutually substitutable. Whatever is true for one object is true for all the other 
objects, whatever is true for one pair is true for all other pairs, and so on. 

There is a special case of this null model in which all of the TN possible 
partitions are equally likely. This special case will be called the random- 
partitioning model. All elements of P are 1/TN. Each of the T u elements of 
the F vector has expected value of n / T  u (i.e., the expected frequency of any 
partition is the number of subjects divided by the number of partitions) and 
variance n(TN-  1)/T 2. The covariance between any two elements is n / T  2. 

The $2, $3, and S~ statistics are different linear combinations of the F 
vector, where the linear combinations are given by the columns of the Q2, 
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Q3, and Q~ matrices. Thus the expectation of each S vector is the product of 
the appropriate Q matrix and the expectation of the F vector, and their covari- 
ance matrices are produced by pre- and post-multiplying the covariance 
matrix of F by the appropriate Q matrix or matrices. 

The pairwise cooceurrenees. Under the random-partitioning null 
model, the expected value of each of the $2 statistics is n TN-1/TN. Their 
variances are n ( T s T s _ l -  T2_z ) / T  2. The covariance between any two $2 
statistics is n(TNTN-2 - T2_l ) / T  2. This covariance is the same for all pairs 
of S2 statistics regardless of whether the two pairs have an object in common. 
For example, cov (Sab,S~c) = cov (S,,b,Scd). 

The triple eooecurrences. Under the random-partitioning null model, 
each of the $3 statistics has an expected value of n TN-2/TN and a variance of 
n(TNTN_2-T2N_2)/T 2. The covariance between two $3 statistics does 
depend on whether they involve a common pair of objects. If the two statis- 
tics have a common pair (as for Sabc and S,,bd), the covariance is 
n ( T N T N _  3 - T2_2)/T 2. If there is no pair in common (as for Sab c and Sade, or 
sab c and Sdef), the covariance is n(TNTN-4 - T2_2 ) / T  2. 

The covariance between an $2 statistic and an S 3 statistic similarly 
depends on whether the triple includes the pair (as, for example, S,,b and S,,bc) 
or not (as for Sab and Sac d, or Sab and Scde). In the former case, the covariance 
is n(TNTN-2 - Tu-i TN-2)/T2; in the latter case, it is 
n(TNTN_ 3 - TN_ 1TN_2/T 2. Thus, because TN-2 is greater than TN_3, 

COV (Sab,Sabc) > COV (Sab,Sacd) = COV (Sab,Scde). 

The inequality of these covariances motivated the development of the 
adjusted triple similarity statistics. 

The adjusted triple similarity statistics. A triple similarity statistic 
was sought which would adjust the triple cooccurrences to remove pairwise 
similarity effects and have, under the random-partitioning null model, con- 
stant covariances with all the $2 statistics. The new statistic was desired to 
be of the form 

Sab c = Sab c + f (Sab,SaoSbc)  , 

where f is some symmetric function on the pairwise cooccurrences, selected 
so that 

COV (Sab,Sabc) = COV (Sab,Sacd) = COV (Sab,Scde)- 

The equality of these three covariances, along with the property of substituta- 
bility of the objects, would imply that all the entries of the covariance matrix 
of $2 and S~ are equal. 

If we restrict the search for f to weighted sums of the three pair cooc- 
currences, then the problem is to find a weight, w, that implies equality for the 
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three types of covariance. We can solve for w algebraically and find that 

w - 
TN_  3 - T N _  2 

- c N , 

T N _  1 - T N _  2 

which gives us the S~ statistics as defined above. 
Each of the adjusted triple similarity statistics has expected value 

n(TN_2 - 3CN TN-I ) /TN and variance ~ [(TNTN-2 -T2N-2 ) 

2 - 6CN(TNTN-2 - TN-1TN-2) + 3CN(TNTN-I + 2TNTN-2 - 3T2-1 )]. The covari- 
ance of any S 3 statistic with any $2 statistic is 

n 
- -  [ ( T N T N _  3 - T N _  1 T N - 2 )  -- 3 C N ( T N T N _  2 -- T 2 _ I  )]. 

By design, this covariance does not depend on the particular objects involved 
but is constant over all pair-triple combinations. 

3.4 Sampling Distributions Under a Hierarchical Model 

Another way of understanding the adjusted triple similarity statistics is 
to see how they behave under a non-null model. The particular non-null 
model to be used here is a hierarchical one, in which the only partitions which 
have nonzero probabilities of occurring are those consistent with a certain 
hierarchical structure of the objects. For example, the set of partitions abcd, 
ab-cd ,  a b - c - d ,  and a - b - c - d  would form a hierarchically consistent set. A 
psychological interpretation of this model is that the subjects share a common 
hierarchical arrangement of the objects. Each subject will sort the objects 
into one of the hierarchically consistent partitions, depending on which level 
of the hierarchy is most salient to him or her. 

The pairwise cooccurrences. From Martin (1970), we know that 
under such conditions the pairwise cooccurrences will be ultrametric. That 
is, for any set of three objects i, j, and k, the two smaller pair similarities will 
be equal: 

sij > min (sik,sjk) . 

The triple cooccurrences. To describe the implications of a hierarchi- 
cal model on a three-way similarity measure, we must consider subsets of 
four objects. Furthermore, there are two possible cases which must be con- 
sidered. (See Table 3.) In the first case, the objects agglomerate one at a 
time. In the second, the objects agglomerate into two clusters of two objects 
each before forming the global cluster. 
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Table 3 

Relationships Among the Adjusted Triple Similarity Statistics 
Under a Hierarchical Non-Null Model 

Case 1 Case 2 

A B C D A B C D 

S2 

S3 

ABCD f�91 I f21 
ABC-D f12 0 
ABD-C 0 0 
ACD-B 0 0 
A-BCD 0 0 

AB-CD 0 f22 
AC-BD 0 0 
AD-BC 0 0 
AB-C-D f13 f23 
AC-B-D 0 0 
A-BC-D 0 0 
AD-B-C 0 0 
A-BD-C 0 0 
A-B-CD 0 0 
A-B-C-D f14 f24 

AB 
AC 
BC 
AD 
BD 
CD 

ABC 
ABD 
ACD 
BCD 

S 3 ABC 
ABD 
ACD 
BCD 

SUMMARY 

fll+fl2+fl3 
fll+fl2 
fll+fl2 
fll 
fll 

fll 

fll+fl2 
fl l  
f l l  
f l l  

fll+fl2-CN(3fll+3fl2+fl3) 
fl I-CN ( 3fl l +f12+f13 ) 
fll-CN(3fll+fl2) 
f l l - C N (  3 f  ll + f  l2) 

S ab c > S ab d 

Sac d = Sbc d ~ S a ~  

f21 +f22+f23 
f21 
f21 
f21 
f21 
f21 + f22 

f21 
f21 
f21 
f21 

f21-CN ( 3f 21+f 22+f 23 ) 
f21-CN ( 3f21+f22+f23 ) 
f21-CN ( 3 f21 +f22) 
f21-CN ( 3f21 +f22 ) 

Sacd=Sbcd >- Sabc=Sabd 

In Case 1, the objects can be labeled so that the four possible partitions 
are abcd, abc-d, ab-c-d, and a-b-c-d. The pair similarities will have the 
relation 
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Sab >-- Sac = Sbc >_ Sad = Sbd = Scd , 

and the three smaller triple similarities (the ones involving object d, the last to 
join the cluster) will be equal to each other: 

Sab c >-- Sab d = Sac d = Sbc d �9 

In Case 2, the objects can be labeled so that the four possible partitions 
are abcd, ab-cd, ab-c-d ,  and a - b - c - d .  The pair similarities will have the 
relation 

Sab >-- Scd >-Sac = Sad = Sbc = Sbd , 

and all four of the triple similarities will be equal: 

Sab c = Sab d = Sac d = Sbc d �9 

In both cases, for any set of four objects, at least three of the four triple 
cooccurrences will be equal. The fourth one will be greater than or equal to 
the other three (Joly and Le Calv6 1995). For any labeling of the objects, it 
will always be true that 

Sij  k >- min (SOl , S ik l ,Sjk  l )  . 

The adjusted triple statistics. The relations among the S~ statistics 
under the hierarchical model can be derived from the relations among the 
pairwise and triple cooccurrences. In Case 1, the result is that there are two 
possible patterns for the S~ statistics. Either 

Sab c >- Sacd = Sbc d >-Sabd , 

o r  

Sac d = Sbc d >Sabc  >-Sabd . 

The second relation (in which the largest similarity statistic does not belong 
to the most similar triple) will hold only when objects a and b cooccur much 
more often with each other than they do with object c. Precisely, it holds if 
and only if 

Sab -- Sad 1 -- C N 
> -  

Sac --  Sad CN 

The value of the ratio on the right-hand side (for which there is a colunm in 
Table 2) is always greater than or equal to two, and it increases as N 
increases, making it more difficult for Sabc to be smaller than Sacd and Sbcd 
with larger numbers of objects. 
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In Case 2, the S~ statistics always have the pattern: 

S a c  d = S b c  d - -  S a b  c = S a b  d �9 

The adjusted triple statistics involving both members of the more similar pair 
(here, a and b) will be less than those involving both members of the less 
similar pair (c and d). 

4. Uses of the Adjusted Triple Similarities 

4.1 Methods of Representation 

To extend a pairs-based method of structural representation to handle 
triple proximities, two problems must be solved. One is to modify the fitting 
algorithm, so that it operates on triples instead of (or in addition to) pairs. 
The other is to define how three-way distances are to be recovered from the 
solution. 

Hierarchical clustering. In a hierarchical clustering solution, the 
recovered three-way distance can be defined as the height of the lowest node 
in the hierarchy at which the three objects join. Alternatively, the recovered 
three-way distances could be adjusted for the corresponding recovered pair- 
wise distances by subtracting from each one some function of the three pair 
distances. 

The extension of a hierarchical clustering algorithm from a pair-based 
(e.g., S. C. Johnson 1967) to a triples-based procedure mirrors the generaliza- 
tion of graphs to hypergraphs (Berge 1973). Where graphs comprise a set of 
nodes (i.e., objects) and a set of edges (i.e., relations) between pairs of nodes, 
hypergraphs comprise a set of nodes and a set of relations among groups of 
more than two nodes. We will use what are called uniform hypergraphs of 
rank three, hypergraphs in which the relations are defined on sets of exactly 
three nodes. The relation in this case is the similarity of three objects. A 

group of M nodes for which all ( l ~ )  possible edges are present is called a 

complete sub-hypergraph. 
A complete-link hierarchical clustering algorithm for three-way simi- 

larities creates clusters which correspond to complete sub-hypergraphs. (For 
example, to create a cluster containing the four objects, a, b, c, and d, the four 
similarities Sabc, sabd, Saca, and Sbca must all be large.) The first step in the 
clustering process is to form a cluster of the three most similar objects. Each 
subsequent step would either (a) form a new cluster of the next most similar 
three objects, (b) add a new object to an existing cluster if there is such an 
object with sufficiently high similarities, or (c) merge two existing clusters. 
The algorithm continues until there is but one cluster containing all N objects. 
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A single-link hierarchical clustering algorithm for three-way similari- 
ties creates clusters which correspond to connected sub-hypergraphs. There 
are two different ways to define connectivity for rank-three uniform hyper- 
graphs. One could require that nodes be connected via edges which have two 
nodes in common, or it could be sufficient that the edges have only one node 
in common. Under either definition, a four-object cluster, abcd,  could be 
created if Sab c and Sab d were large, even if Sac d and Sbc d were not. Under the 
one-node definition of connectivity (but not under the two-node definition), 
the five-object cluster abcde  could be created if both Sabc and Sade were large. 

These three hierarchical clustering algorithms (complete-link, two- 
node single-link, and one-node single-link) will successfully recover a den- 
drogram from a set of triple cooccurrence frequencies (the S 3), if those fre- 
quencies are obtained from a set of partitions all consistent with that dendro- 
gram. For any arbitrary set of four objects, either (a) all four triple cooc- 
currences are equal, in which case the objects join at the same level of the 
dendrogram, or (b) three of the triple cooccurrences are equal and the fourth 
is larger, in which case the three objects with the larger cooccurrence form a 
cluster without the fourth object. 

For the adjusted triple statistics (the S~), however, these algorithms 
might fail to recover the correct dendrogram from a set of error-free data, 
because the largest adjusted triple similarity does not necessarily belong to 
the three most similar objects in each set of four. It would be possible to dev- 
ise an algorithm which could always recover the correct dendrogram from 
error-free S~ data, but - -  because it would have to rely on equalities as well 
as inequalities among the statistics - -  such an algorithm is unlikely to be at 
all robust when used with less-than-perfect data. Instead, we recommend 
using one of the three-way algorithms for the hierarchical clustering of 
adjusted triple similarities. The anomalous case in which the largest of a set 
of four $3 statistics does not belong to the three most similar objects should 
be relatively rare, especially if N is large. 

With empirical data, the three algorithms could produce different den- 
drograms, just as S. C. Johnson's (1967) two-way single- and complete-link 
algorithms can. The single-link methods, especially the one-node method, 
would tend to agglomerate objects much more quickly than would the 
complete-link method. The gulf between completeness and connectivity is 
wider for rank-three hypergraphs than for ordinary (rank-two) graphs. 

An alternative to the single- and complete-link algorithms is a 
modification of De Soete's (1984) least-squares algorithm for directly fitting a 
hierarchical tree to a set of proximity data. This algorithm searches for the 
dendrogram from which the recovered interobject distances account for as 
much of the variance in the input dissimilarities as possible. 
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A method of hierarchical clustering of triple similarities, different from 
the ones described here, has been developed by Joly and Le Calv6 (1995). 

Multidimensional scaling. The multidimensional scaling methods 
developed by Hayashi (1972) or by Cox et al. (1991) can be used to analyze 
either the triple cooccurrences or the adjusted triple similarities. Other tech- 
niques, such as R. M. Johnson's (1973) pairwise multidimensional scaling, 
could also be adapted for three-way proximity data. 

Three distance functions which have been used or proposed for multidi- 
mensional scaling are the squared area of the triangle formed by the three 
points which represent the three objects in space (Hayashi 1972), the square 
root of the sum of the squared lengths of the sides of that triangle (Cox et al. 
1991), and the semi-perimeter (Joly and Le Calv6 1995). 

One would expect these three distance functions to be related to each 
other, because all three measure the separation of three points in space. The 
functions would diverge for triangles in which two of the vertices were close 
but the third was farther away. Such triangles would have small area, but 
large semi-perimeter and large sum of squared sides. Thus, the area 
definition of three-way distance implies that if two objects are very similar 
(i.e., are located very close to each other in space), then all triples containing 
those two objects must also be similar, all but disregarding the location of the 
third object in the space. For the semi-perimeter and sum of squared sides 
definitions, conversely, the dissimilarity of a triple must be at least as great as 
the dissimilarity of the two most dissimilar pair of objects; a triple containing 
two dissimilar objects cannot itself have a high similarity. It must be the 
researcher's responsibility to choose a three-way distance function that is 
appropriate for the data being scaled. 

There is a fundamental problem in representing three-way proximity in 
a geometric model. In Euclidean space, the relationship among any three 
points is completely specified by the distances between the three pairs of 
points: To know the lengths of the three sides of a triangle is to know every- 
thing about the triangle except orientation. Implicit in the use of triples in 
psychological models, however, is the expectation that the triple relationships 
are - -  or at least can be - -  something over and above the three pair relation- 
ships. One would want to use the three-way similarities because one 
expected them to carry information which the two-way similarities do not. 
One might have, for example, a set of three objects for which the three-way 
similarity is low but the two-way similarities are high. It will be difficult if 
not impossible to represent those objects as points in a spatial configuration. 
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4.2 Reduction of the Adjusted Triples Measure to Pair Statistics 

It may be useful to define a pairwise similarity measure from the 
adjusted triple similarities. This pairwise measure would summarize the dis- 
tribution of the S~ values for the N - 2 different triples which contain the pair 
in question. One advantage of having a pairwise similarity measure is that it 
permits the immediate use of any of the standard pairwise similarity scaling 
techniques. 

There are several ways in which such a measure could be defined. It 
could be defined as the maximum (or as the minimum) of the corresponding 
S 3 statistics. Another possibility, the one which will be used here, is to define 
the pair similarity as the sum of the N -  2 different $3 measures which 

involve the given pair. This measure will be called S~, with its ( N )  indivi- 

dual elements defined as Sab = ]~ S,bk. If the pair has, on average, large 
k 

adjusted triple similarities with the other objects, then the $2 measure for that 
pair will be large. 

Like the $3 statistics, these $2 statistics have constant covariances with 
the pairwise cooccurrences under the null assumption that the subjects are 
randomly partitioning the objects. For example, 

c o v  (S.b,S.b) = c o v  (S,,b,S.c) = COV (S~b,Scd). 

4.3 Confirmatory Uses 

Because the S~ and the S~ have no particular relationships with the S 2 

under the random-partitioning null model, they can be used in confirmatory 
analyses. If the subjects are partitioning the objects randomly, then whatever 
relationships happen to exist among the $2 tell us nothing about the S~ or the 
$2. Observing, for example, that Sab is one of the larger cooccurrences says 
nothing about the size of Sabc or Sab. If instead, the subjects are partitioning 
the objects nonrandomly, we should expect correspondences between the $2 
and the S 3 or the $2. 

One general strategy in the confirmatory use of the adjusted triple simi- 
larities (following Hubert, Golledge, Kenny, and G. D. Richardson 1981) is 
first to analyze the pairwise cooccurrences, using multidimensional scaling, 
hierarchical clustering, or another technique; then recover some measure of 
three-way similarity from the results of that analysis; and finally correlate 

-,k 

those recovered similarities with the $3 statistics calculated from the same 
data. If this correlation is not significantly greater than zero, it may be true 
that (a) the subjects sorted the objects randomly, (b) the analysis of the $2 is 
faulty (perhaps a poor local minimum was obtained), or (c) the analysis 
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Table 4 

Pairwise Similarity Matrices 

for the Rosenberg and Kim Kinship Data 

S 2 GrF GrM GrS GrD Bro Sis Fat Mot Son Dau Nep Nie Unc Aun 

GrMother 74 

GrSon 47 37 

GrDaughter 37 47 72 

Brother 

Sister 

Father 

Mother 

Son 

Daughter 

Nephew 

Niece 

Uncle 

Aunt 

Cousin 

9 2 12 3 

2 9 3 12 75 

12 3 Ii 2 30 22 

3 12 2 ii 22 30 72 

Ii 2 16 5 33 24 51 42 

2 Ii 5 16 24 33 42 51 71 

7 1 12 5 ii 4 8 2 ii 4 

0 6 6 13 2 9 0 6 4 ii 73 

7 1 6 0 8 2 13 6 6 0 43 36 

1 7 0 6 2 8 6 13 0 6 36 43 75 

1 1 4 3 8 7 1 1 3 2 32 32 46 47 

S 2 GrF GrM GrS GrD Bro Sis Fat Mot Son Dau Nep Nie Unc Aun 

GrMother 4 a 

GrSon 73 52 

GrDaughter 52 73 18 

Brother 

Sister 

Father 

Mother 

Son 

Daughter 

Nephew 

Niece 

Uncle 

Aunt 

Cousin 

60 38 56 34 

38 60 34 55 22 

60 38 51 28 94 73 

38 60 28 51 72 94 49 

53 30 59 37 95 73 95 71 

30 53 37 59 73 95 72 95 52 

51 30 54 32 60 39 45 25 48 26 

25 45 34 56 30 51 16 37 25 46 22 

51 30 41 21 50 30 43 24 35 14 83 59 

30 50 21 41 29 50 23 42 14 35 64 79 34 

39 39 39 38 45 44 30 30 31 30 78 71 59 58 

a To eliminate negative values, a constant of 90 has been added to 

each S 2 value. 
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Figure 1. The two pairwise similarity measures for the Rosenberg and Kim kinship data. The 
pair cooccurrences ($2) are on the horizontal axis; the pair measure based on the adjusted tri- 
ples (S~) is on the vertical. (To eliminate negative values, a constant of 90 has been added to 
each S~ value.) 
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Figure 2. The two three-way similarity measures for the Rosenberg and Kim kinship data. 
The triple cooccurrences (S3) are on the horizontal axis; the adjusted triples measure ($3) is 
on the vertical. 
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represents the pairwise cooccurrences, but does not adequately represent the 
three-way similarities of the objects. An application of this confirmatory 
strategy can be found in Daws (1993). 

5. Application to the Rosenberg and Kim Kinship Data 

Rosenberg and Kim (1975) used a free-sorting task with several groups 
of Rutgers undergraduates. The 15 objects to be sorted were the most com- 
mon kinship terms in English: grandfather, grandmother, grandson, grand- 
daughter, brother, sister, father, mother, son, daughter, nephew, niece, uncle, 
aunt, and cousin. The subjects were told to "sort the 15 words into 
categories on the basis of some aspect of meaning" (p. 491). The data used 
here are those from the 85 female subjects in the single-sort condition which 
were published in Rosenberg (1982). 

The pairwise cooccurrences (the $2 statistics) for the 15 objects are 
shown in lower-triangular form in the upper part of Table 4. The pairwise 
measure based on the adjusted triple similarities (the S~) is in the lower part 
of the table. The largest $2 values belong to the seven pairs of relatives who 
differ only in their sex (e.g., grandfather and grandmother). In the $2 matrix, 
however, those seven cross-sex pairs have some of the smallest values, which 
indicates that those relatives were very often sorted together as pairs, but 
were not consistently sorted together with some third object(s). The largest 
$2 statistics belong to same-sex pairs such as grandfather-grandson and 
sister-daughter. The differences between these two matrices are shown 
graphically in Figure 1, a plot of $2 against $2. The seven points at the 
extreme right in this plot represent the cross-sex pairs. The plot also shows 
that the relationship between the two statistics is approximately linear for 
pairs of objects which were infrequently sorted together. 

Figure 2 shows the analogous scatterplot for the triples statistics, $3 
and $3. The relationship is nearly monotonic for the triples which were fre- 
quently sorted together, but not for the infrequent ones. 

5.1 Multidimensional Scaling. 

The two two-way similarity matrices were each analyzed with the 
KYST-2A multidimensional scaling program (Kruskal, Young, and Seery 
1977). For the pairwise cooccurrences, a degenerate solution with zero stress 
was obtained. KYST-2A placed the 15 objects into three discrete groups at 
the vertices of an equilateral triangle: the grand-relatives, the immediate 
family, and the collateral relatives. (See Figure 3.) 
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Figure 5. Results of complete-link hierarchical clustering of the kinship terms. The dendro- 
gram on the left was obtained from the triple cooccurrences ($3); the one on the right, from 
the pair cooccurrences ($2). The numbers are Johnson's (1967) tx values, which indicate the 
minimum within-cluster similarity for each cluster. 

For the S~ matrix, the multidimensional scaling was more informative. 
Using a quasi-metric starting configuration (KYST-2A's TORSCA option), a 
three-dimensional solution with a stress of .098 was found. This solution 
separated the objects by sex on the first dimension (with the ambiguous 
cousin located more centrally than the others) and by genetic closeness on the 
second dimension. The plane of these two dimensions is presented in Figure 
4. The third dimension elevates grandfather, grandmother, grandson, and 
granddaughter, thus separating the relatives into the three groups identified in 
the $2 analysis. (The three groups are visible in the plane of the second and 
third dimensions.) 

Examination of the $2 and the $2 matrices helps reveal why the two 
analyses differ so. The cross-sex pairs have the largest S2 values, but their S~ 
values are among the smallest. For the $2 analysis to produce a sex dimen- 
sion, each of these seven highly similar pairs of relatives would have to be 
separated. In the degenerate solution, each of the seven pairs is represented 
by a pair of coincident points. 
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5.2 Hierarchical Clustering 

Complete-link hierarchical clustering was performed on the $2 and on 
the $3 statistics. The resulting dendrograms are shown in Figure 5, with the 
triples-based one on the left and the pairs-based one on the right. The two 
dendrograms are quite consistent, given that the three-way algorithm cannot 
form two-object clusters. 

6. Discussion 

There is a tradition - -  and indeed a convenience - -  of defining similar- 
ity relationships and distance functions on pairs of objects. This paper has 
shown that, for free-sorting data, useful information about the similarity of 
the objects can be gleaned from the cooccurrences of triples of objects. 

Three-way proximity data can come from sources other than free- 
sorting. Sociometric interaction data, pick any data, brand-switching data, 
confusion data - -  all can yield information about the similarities of sets of 
three objects. A researcher could even ask subjects to make direct judgments 
of how similar or dissimilar a set of three objects appear. In addition to these 
direct  definitions of three-way proximity, there exist various possibilities for 
coefficients of association or correlation which can be used to derive three- 
way proximity from two-way, two-mode objects-by-attributes data (cf. 
Shepard 1972). 

The mathematical and psychological properties of three-way proximity 
certainly merit further study. 
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