
        

SHORT COMMUNICATION
REGRESSION COEFFICIENTS IN MULTILINEAR PLS

SIJMEN DE JONG*
Unilever Research Laboratorium, PO Box 114, NL-3130 A C Vlaardingen, Netherlands

SUMMARY

Three alternative approaches are discussed for finding the final calibration model (regression coefficients) in PLS
regression of k-way Y on N-way X. The simplest approach is to skip the deflation of the X-data. From the
observation that the specific deflation used in multiway PLS is inconsequential, it also follows that Bro’s tri-PLS
is equivalent to Ståhle’s linear three-way decomposition (LTD). © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, Bro1 introduced multilinear PLS (NPLS), generalizing PLS regression of k-way Y (PLSk,
k=1 or 2) on two-way X to regression of k-way Y (k=1, 2, . . .) on N-way X (N=2, 3, . . .). Bro showed
how to estimate the weights defining the model and Smilde2 gave a closed expression for computing
regression coefficients from these. This communication describes alternative ways for the latter. We
will adopt the notation in References 1 and 2.

The results below are given for a single (univariate) response vector y. Implicitly, it also covers the
case of multivariate Y, treating the columns of the two-way matrix Y (which may be the unfolded two-
way equivalent of a higher-way array Y) separately. This is allowed since ordinary least squares (OLS)
regression of multivariate Y on PLS components T is tantamount to the collection of all univariate
OLS regressions. Thus there is no essential difference between univariate y and two-way Y (or higher-
way Y) when it comes to computing the regression coefficient vector(s), given a set of weight and
loading vectors. Of course, for the computation of weights and loadings it does matter whether the
response is a one-way, two-way or higher-way array.1

2. THREE WAYS OF OBTAINING THE REGRESSION COEFFICIENTS

2.1. Method 1

Smilde2 effectively transforms weights W (P3A), the ath column applying to a corresponding
(unfolded) residual matrix X(a21), into weights W* (P3A), all columns now applying to the original
(unfolded) X(0) =X (I3P):

W*=[w1|(IP 2w1w
T
1 )w2|. . .|(IP 2w1w

T
1 )(IP 2w2w

T
2 ). . .(IP 2wA21w

T
A21 )wA ] (1)
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Having obtained W* allows us to express the scores in T (I3A) directly in terms of the X-columns:

T=XW* (2)

Regressing y (I31) on the component scores T gives

ŷ=Tb (3)

with

b= (TTT)21TTy (4)

Combining (2) and (3) yields

ŷ=XW*b (5)

Hence the regression coefficients bNPLS (P31) needed to predict y from (future) X are obtained as

bNPLS =W*b (6)

Reference 3 (Appendix 1) provides efficient Matlab code for obtaining bNPLS in multilinear PLS, given
weight vectors W and b (A31) and using equations (1) and (6). The algorithm avoids the construction
and multiplication of the large projection matrices IP 2waw

T
a (P3P) that occur in equation (1). For

example, the second column of W* is calculated as w2 2 (wT
1w2 )w1 . An alternative approach to

calculating bNPLS that avoids the computation of W* from W is Method 2.

2.2. Method 2

We first make a digression to the general topic of subspace-based regression. In subspace-based
regression one replaces the regression of univariate y on two-way X by OLS regression of y on T, the
collection of a few (A<rank(X)) linear combinations ta of X:

T=XV (7)

The weights in non-singular V (P3A) depend on the particular regression method (e.g. principal
components regression (METHOD=PCR), partial least squares regression (METHOD=PLS),
variable subset selection (METHOD=VSS)). Combining (3) and (7) gives

ŷ=XVb=XbMETHOD (8)

Hence

bMETHOD =Vb (9)

or, in more detail,

bMETHOD =V(VTXTXV)21VTXTy (10)

The solution is invariant under any non-singular transformation of V, the only thing of interest being
the range of V. This determines the range of T=XV, i.e. the subspace of the columns of X onto which
y is projected. Orthogonality of V (or T) is not an issue. The above result is general, hence it holds
true for, among others, all variants of two-way PLS regression (e.g. non-orthogonal PLS4, orthogonal
PLS4, SIMPLS5 ).

Let us return to Bro’s N-way PLS. The results of the subspace-based regression approach also hold
for NPLS if the understanding is that X (I3P) is a properly unfolded two-way form of N-way X
(P=JKL . . .). Method 1 (Section 2.1) essentially implements equation (9) or (10) with METH-
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OD=NPLS and V=W*. It is apparent from equation (1) that range(W*)=range(W). By consequence,
one may just as well use equation (10) with V=W. This in turn is equivalent to using modified PLS
components T*:

T*=XW (11)

Regressing y on T* yields

b*= (T*TT*)21T*Ty (12)

and, finally,

bNPLS =Wb* (13)

Thus a second way to obtain bNPLS is directly from W using modified b* (A31) obtained via
equations (11) and (12). However, when X and W are huge, e.g. as in CoMFA (P≈25 000),3 obtaining
the modified scores T* (equation (11)) is a computationally intensive step. One may avoid this step
and compute b* in an alternative fashion as follows. let D (A3A) be the non-singular matrix
transforming W* into W (or T into T*):

W=W*D (14)

Then, using equations (6), (13) and (14),

bNPLS =W*b=Wb*=W*Db* (15)

Hence b=Db* or

b*=D21b (16)

The ath column of D can be deduced by considering the expression for the ath column of W* as given
by equation (1):

w*a =(IP 2w1w
T
1)(IP 2w2w

T
2) . . . (IP 2wa22w

T
a22)(IP 2wa21w

T
a21)wa

=(IP 2w1w
T
1)(IP 2w2w

T
2) . . . (IP 2wa22w

T
a22)(wa 2wa21(w

T
a21wa))

=2 (wT
a21wa)w*a21+(IP 2w2w

T
1) (Ip 2w2w

T
2) . . . (IP 2wa22w

T
a22)wa (17)

The last term of equation (17) can be worked out in the same way, and so on, repeated application
leading to

w*a=2 (wT
a21wa)w*a21 2 (wT

a22wa)w*a22 2 . . . 2 (wT
2wa)w*2 2 (wT

1wa)w*1 +wa (18)

or

wa=(wT
1wa)w*1 +(wT

2wa)w*2 +. . .+(wT
a21wa)w*a21+w*a (19)

Thus D= (dia), with dia=wT
i wa for i≤a≤A and dia=0 for a<i≤A. In other words, D equals the upper

triangular part of WTW, the matrix of inner products of the weight vectors wa (a=1, 2, . . . , A). D can
be constructed conveniently when building the NPLS model, allowing the computation of bNPLS via
equations (16) and (13). A still more efficient approach, however, is to apply Method 3.

2.3. Method 3

Method 3 does not differ essentially from Method 2, but it involves a slight change of the NPLS
model. By a trivial modification of Bro’s NPLS algorithm, namely by omitting the deflation of the X-
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array (first part of Step 5 in Table 2 of Reference 1), one obtains T* instead of T and b* instead of
b, without affecting the weights wa . One may appreciate the latter result by considering the vector z
of covariances of deflated y, i.e. y(a21), with either the original X or the deflated X, i.e.
X(a21)=X2T[1:a21]W

T
[1:a21]:

z=y(a21)TX(a21)=((II 2T(TTT)21TT )y)T(X2TWT )

=yT(II 2T(TTT)21TT )(X2TWT )=yT(II 2T(TTT)21TT )X=y(a21)TX (20)

where we have omitted the subscripts indicating the current size of T and W. We conclude that
deflating X or not does not affect the weight vector wa , since it depends solely on (unaltered) z. Thus,
by skipping the deflation of X, we not only simplify the NPLS algorithm and increase its speed, but
we also obtain the regression coefficients bNPLS in the simplest possible way, namely from the available
W and b* as bNPLS =Wb* (equation (13)). A drawback of the approach is that no residual X is
available for diagnostic purposes. The resulting algorithm for three-way X and a single response y (tri-
PLS1) is shown in Table 1 as Matlab code.

3. EQUIVALENCE OF Tri-PLS AND TLD

Since the deflation of X is immaterial, as long as it is of the form X(a21)=X2T[1:a21]P
T
[1:a21] , for some

(P3 (a21)) P, one might also deflate using regression loadings P=XTT(TTT)21, as, for example, in
standard orthogonal PLS2. This is the approach adopted by Ståhle in his LTD (linear three-way
decomposition) algorithm.6 It leads to different, orthogonal, score vectors. Another difference between
Bro’s NPLS and Ståhle’s TLD is the way of computing the weight vectors associated with each mode
of Z. Ståhle employs an alternating least squares approach, cycling through all modes of X and Y, as
a simple extension of two-way PLS to the three-way situation. Bro’s algorithm is based on a stringent
extension of the PLS optimization criterion to higher orders using a singular vector decomposition of
Z (or a one-component PARAFAC decomposition with multiway Z). The latter approach has several
advantages: it has an explicit optimization criterion, is numerically more reliable and is usually faster.
The weights found, however, are the same as in TLD, which also maximizes (iteratively) the
covariance. As a result, the score vectors in TLD span the same space as the columns of T in (2) or
T* in (11). The TLD scores can be obtained by Gram–Schmidt orthogonalization of either T or T*.
The fits of Y obtained by the two methods are identical and one arrives at the same calibration model,
i.e. bTLD =bNPLS .

Table 1. Matlab code for tri-PLS1 regression of y (I31) on (centred) X (I3JK)

e=y; % initialize
for lv=1:LV % for each factor

Z=reshape(e9pX,J,K); % vector of covariances→matrix
[wJ, wK]=svd(Z); % find weights maximizing covariance
WJ=[WJ wJ(:,1)]; % save weights J-mode
WK=[WK wK(:,1)]; % save weights K-mode
T=[T Xpkron(wK(:,1),wJ(:,1))]; % save scores I-mode
b=inv(T9pT)pT9py; % y loadings wrt T
e=y2Tpb; % residual y

end
bNPLS=0;
for 1v=1:LV

bNPLS=bNPLS+kron(WK(:,1v),WJ(:,1v))pb(1v); %regression coeffs
end
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4. CONCLUSIONS

Compact expressions have been obtained for computing the regression coefficients bNPLS in predictive
N-way PLSk calibration. A slight modification of Bro’s NPLS algorithm simplifies both the
calculation of the weight vectors wa and the computation of the regression coefficients bNPLS . It has
been shown that Bro’s NPLS algorithm, the modification proposed in Method 3 (Table 1) and Ståhle’s
LTD algorithm find the same estimate of the N-way calibration model.
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