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Abstract

A comparative study about advantages and limitations of net analyte signal (NAS)-based methods (NBMs) and partial
least squares (PLS) calibration in kinetic analysis has been performed. The different multivariate calibration methods were
applied to the determination of binary mixtures of amoxycillin and clavulanic acid, by stopped-flow kinetic analysis. The
reactions of oxidation of these compounds with cerium(IV), in sulphuric acid medium, were monitored by following the
changes on the fluorescence of the oxidation products, in stopped-flow mode. The differences on the kinetic profiles obtained
at λex = 256 nm andλem = 351 nm, were used to determine mixtures of both compounds by multivariate calibration of
the kinetic data, using PLS-1, a modification of hybrid linear analysis (HLA) and net analyte pre-processing combined with
classical least squares (NAP/CLS) methods. The NBMs allowed the selection of optimal time data regions by calculating
the minimum error indicator function (EIF), improving the results and making NBMs very convenient for the analysis. In
addition, the use of the net analyte signal concept allows the calculation of the analytical figures of merit, limit of detection
(LOD), sensitivity and selectivity, for each component. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multicomponent analysis is gaining popularity
for the simultaneous determination of mixtures of
compounds in several fields. The main techniques
proposed are based in the use of spectroscopic
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data. With modern instruments, numerous spec-
tral data can be recorded and easily digitized, and
different mathematical approaches have been pro-
posed to deal with these overdetermined systems
[1].

The area of multicomponent determinations is one
of the most promising in the context of kinetic analysis
methods[2,3]. However, only in a few cases, these
multivariate calibration methods have been applied to
the analysis of kinetic data.
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Mixtures of reacting analytes can be resolved from
differences in their rate of reaction, and consequently
kinetic profiles, with a common reagent. In the past,
the method of proportional equations has been com-
monly applied for binary mixtures resolution in first-
or pseudo-first order kinetic reactions[4]. However,
only a small fraction of the kinetic data collected was
used, which led to a poor precision.

Procedures based on least squares fitting[5],
Kalman filtering [6,7] and nonlinear least squares
fitting [8,9] have been also proposed. Multicompo-
nent analysis in time-dependent chemical systems
applying factor analysis based methods, as principal
component regression (PCR) or partial least squares
(PLS), correct the effects of component interactions
in a mixture, but have been scarcely used to date in
connection with kinetic systems[10–20].

Alternatively, second order methods which use
simultaneously two measurements orders, time and
spectra, have been reported. Among them, multiway
data analysis, as PARAFAC[21] or nPLS [22–25]
methods are expected to give improved results in
certain cases, as single wavelength experimental
curves (kinetic curves) may be less informative than
multiwavelength-kinetic data, if differences exist in
the spectra of the analytes of interest.

The analytical application of these multivariate cal-
ibration methods require human decisions, the most
difficult being the number of factors involved. Dif-
ferent criteria, including empirical functions[26–28]
and methods based on theoretical study of experi-
mental errors have been proposed[29–31]. Xu and
Schechter developed a new algorithm for factor anal-
ysis, in order to eliminate the necessity of choosing an
optimum factor number during calibration[32]. The
method is based on the useful concept of net analyte
signal (NAS), previously developed by Lorber[33],
which lead to a new family of multivariate calibration
methods, of interest at the present moment to explore
the possibilities and limitations of these approaches
in general and, more specifically, in kinetic analysis
methods. One of these methods is hybrid linear analy-
sis (HLA) [34], which can be applied provided a very
accurately measured pure spectrum of the analyte is
available.

Two additional NAS-based methods (NBMs) have
been recently introduced, which do not require
the pure spectrum to be known. One of then was

introduced by Goicoechea and Olivieri[35], and it
is known as HLA/GO. Although in its method[32],
denoted as HLA/XS, Xu and Schechter used all the
factors for prediction, in order to build a method
free from optimum factor estimation, Olivieri and
Goicoechea suggested selecting the optimum num-
ber by the cross-validation procedure of Haaland
and Thomas[36]. In this way, the method can be
used even when the number of samples exceeds the
recommend limit of one third the number of sensors.

A final possibility is net analyte pre-processing
combined with classical least squares (NAP/CLS)
[37]. One of the advantages of NBMs is that the pos-
sibility of simultaneous determination can be studied
separately for each component and optimization can
be carried out accordingly.

In addition, the analyst is not only interested in the
final output of the calibration, rather, figures of merit
characterizing the whole calibration process are re-
quired. Lorber[38] presented a generalization that al-
lows estimation of figures of merit for multivariate
data. The estimation of those figures of merit was re-
stricted to the classical calibration model (when the
pure spectra, or concentrations of all components in
the calibration set, are known). Later on[39], NAS cal-
culation was extended to inverse calibration models,
that only require the knowledge of the concentrations
of the analyte of interest in the calibration set. In this
context, one of the most interesting characteristics of
the NAS concept is the possibility of calculation of the
analytical figures of merit and method performance,
error propagation, signal to noise, limit of detection
(LOD), precision, accuracy, sensitivity and selectivity
for each component.

On the other hand, PLS and HLA were introduced
as full-spectrum methods. They provide considerable
improvement in analytical precision and accuracy
as compared to other methods that are restricted to
a small number of data points (e.g. inverse least
squares)[36,40,41]. However, more and more evi-
dence, from simulations and from experiments, shows
that these full-spectrum algorithms could also ben-
efit from wavelength selection[42,43]. It has been
demonstrated that the analytical performance is gov-
erned to a large extend by the uncertainty in the NAS
of a component. The derived function, minimum error
indicator, has been proposed as a criterion for data
selection [44]. Although NAS concepts have been
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initially defined for spectra (multiwavelength deter-
minations), they are easily adapted to any other type
of multivariate signal, as the time-dependent data
used in this study.

In this paper, a comparative study of NBMs and PLS
multivariate calibration has been performed, applied to
the stopped-flow kinetic determination of amoxycillin
and clavulanic acid. The reaction of oxidation of these
compounds with cerium(IV) in sulfuric acid medium
has been previously studied fluorimetrically[45], and
the simultaneous determination of both compounds
has been performed by PLS multivariate calibration
[46].

2. Experimental

2.1. Apparatus and software

An SLM Aminco Bowman Series 2 luminescence
spectrometer connected to a PC microcomputer with
the AB2 software which runs on the OS2 operating
system, was used for fluorescence measurement. The
instrument incorporates the MilliFlow stopped-flow
reactor, allowing the study of changes in luminescence
reactions when two reactants are vigorously forced
through the mixing chamber and suddenly stopped
into the observation cell. The MilliFlow consists of
two fill syringes, two drive syringes, an observation
cell (path length of 2 mm), a stop syringe, a stop block
and an exhaust and fill valve levers. Hamilton gasting
syringes of 2.5 ml (drive syringes) were used to con-
tain the two reactant solutions. The syringes are made
from controlled, inner-diameter borosilicate glass
with precision machined Teflon plunger tips (these
pistons are simultaneously driven by air-operated
plungers). Thermostatic equipment permits a constant
temperature between 10 and 45◦C in the MilliFlow
stopped-flow reactor to be maintained.

All kinetic curves were measured in random order
with respect to analyte concentrations, and those corre-
sponding to the calibration set were recorded in differ-
ent days with respect to the validation set. They were
saved in ASCII format, and transferred to a PC Pen-
tium 450 microcomputer for subsequent manipulation
by either PLS or NAS-based programs. PLS, HLA/GO
and NAP/CLS were applied with the program MUL-
TIVAR, written in Visual Basic 5.0[47] and avail-

able at fttp://fbioyf.unr.edu.ar/cientifico/multivar.exe.
The Sigmaplot 5.0 software was used for regression
analysis and treatment of data. Sensor selection was
carried out by a moving-window strategy: the pre-
dicted error sum of square (PRESS) was minimized for
calibrations[48] and calculation of the minimum er-
ror indicator function (EIF) in unknown samples[35].
Both procedures were implemented with the program
MULTIVAR.

2.2. Reagents

Amoxycillin and clavulanic acid stock solutions
were prepared by weighting the required amount of
the respective compounds (amoxyxillin from Sigma
and lithium clavulanate kindly donated by Smith
Kline Beecham laboratories) and dissolved in purified
water (from a Milli-Q water system of Millipore).
Clavulanic solutions were daily prepared. Cerium sul-
phate (Merck) and sulphuric acid (Suprapur, Merck)
were also used.

2.3. Commercial samples

2.3.1. Pharmaceuticals
Augmentine (per packet: 250 mg of amoxycillin tri-

hydrated, 62.5 mg of clavulanic acid, 2.5 g of sucrose
and excipients) from Smith Kline Beecham S.A.;
Pangamox (per packet: 875 mg of amoxycillin trihy-
drated, 125 mg of clavulanic acid, 2.5 g of sucrose and
excipients) from Alonga, Clamoxyl (per injection:
500 mg of amoxycillin), and Euplecanic (per pill:
500 mg of amoxycillin trihydrated, 125 mg of clavu-
lanic acid and excipients) from Uriach-Biophorm,
were acquired in a local pharmacy.

2.4. Methodology

One-drive syringe was filled with a solution contain-
ing amoxycillin and clavulanic acid in concentrations
between 0.7 and 4.0�g ml−1 in 0.1 M sulphuric acid.
The other syringe was filled with a solution contain-
ing 8 × 10−5 M cerium(IV) in 0.1 M sulphuric acid.
The stopped-flow reactor was prepared for the acqui-
sition of the kinetic curve. The instrument was set up
as follow:λex = 256 nm andλem = 351 nm (bandpass
4 nm), detector voltage 750 V. The kinetic curve was
scanned up to 100 s, with a resolution of 30 ms. Three

fttp://fbioyf.unr.edu.ar/cientifico/multivar.exe
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Table 1
Composition of the calibration set for applying PLS-1, HLA/GO
and NAP/CLS methods

Number of
calibration sample

Amoxycillin
(mg l−1)

Clavulanic
acid (mg l−1)

1 0.00 0.00
2 0.00 0.76
3 2.28 0.00
4 4.00 2.40
5 0.70 2.60
6 2.60 0.70
7 2.28 0.76
8 2.40 0.40
9 2.40 2.40

10 1.00 1.00
11 1.00 4.00
12 4.00 0.00
13 4.00 0.00
14 2.00 3.00
15 3.00 1.00

replicates were recorded for each concentration. The
optimized calibration models, calculated by applica-
tion of PLS-1, HLA/GO and NAP/CLS, were applied
to analyze the spectra of the samples, and calculate the
concentrations of amoxycillin and clavulanic acid in
their mixtures or in the pharmaceutical formulations
assayed.

2.5. Calibration and validation sets

To resolve the mixture of amoxycillin and clavu-
lanic acid, a calibration set was constructed by prepar-
ing 15 randomized calibration samples.Table 1shows
the composition of the binary mixtures used in the cal-
ibration set (the concentrations values are refereed to
the concentrations in the syringes).

Similarly, a validation set with 15 randomized vali-
dation samples was prepared, with the concentrations
of amoxycillin and clavulanic acid reported inTable 3.

3. Theory

3.1. Notation

The following matrices and vectors will be used
throughout the present work: anI × J data matrixR
composed of the calibration responses ofI samples atJ
sensors, aJ ×1 vectorsk containing the pure spectrum

of analytek at unit concentration and anI × 1 vector
ck of calibration concentrations of analytek.

3.2. Net analyte signal

The NAS for analytek (r∗
k) is defined as the part of

its spectrum which is orthogonal to the space spanned
by the spectra of all other analytes[38,39]. In gen-
eral, for inverse calibration methods, it is given by the
following equation:

r∗
k = [I − R−k(R−k)

+]r = PNAS,kr (1)

wherer is the spectrum of a given sample (whenr is
the spectrumsk of purek at unit concentration,Eq. (1)
becomess∗k = PNAS,ksk), I a J × J unitary matrix,
R−k anJ ×A column space spanned by the spectra of
all other analytes exceptk (R+

−k is the pseudoinverse
of R−k andA is the number of spectral factors used
to build the model), andPNAS,k is aJ × J projection
matrix which projects a given vector onto the NAS
space. In factor based methods, such as PCR, PLS
and NBMs, this latter statement is true only to the
extent that the selected factors are representative of
the spectra of all other analytes.

3.3. NAS-based methodologies

Although the PLS algorithm is well known, the
recently introduced NBMs[32,34,35] deserve some
comments. There are several NBMs that may be con-
sidered:

(1) The HLA technique [34] involves construct-
ing a blank data matrixR−k = [R − ck(sk)

T],
and using the first significantA eigenvectors of
((R−k)

TR−k) in order to define the projection
matrix PNAS,k. The concentration of component
k in an unknown sample is obtained from its
spectrumr as

ck = (sk)
TPr

(sk)TPsk
= (sk)

TPPr

(sk)TPPsk
= (s∗k)

Tr∗
k

||s∗k ||2
(2)

which is the basis of the prediction step in NBMs.
The optimum number of factorsA can be ob-

tained by the well known cross-validation proce-
dure. It should be noticed that HLA can be applied
provided a very accurately measured spectrum of
pure k is available, and thus, it cannot be used
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when interactions among sample components oc-
cur, or whensk is unknown.

(2) The method developed by Xu and Schechter[32]
is another recently introduced NBM, which does
not require the pure spectrumsk to be known.
The following procedure is carried out in or-
der to obtain the matrixR−k. Each calibration
spectrum is divided by its concentration of ana-
lyte k, cik (excluding those samples in whichk
is absent to avoid a division by zero), and then
the average of the resulting spectra is calculated
as

s̄cal = 1

I ′

I∑
i=1

ri,cal

cik
(3)

whereI ′ is the number of calibration samples for
which cik 
= 0. The contribution of the average
spectrums̄cal is subtracted from the data matrix
by the following operation:

R−k = R − ck(s̄cal)
T (4)

The least squares approximation tosk is subse-
quently used for the calculation ofs∗k :

s∗k = PNAS,ksk,LS = PNAS,k

[
RTck

(ck)Tck

]
(5)

whereck should be mean centered.
Notice thatEq. (5) will approximates∗k even

if the least squares fitsk,LS contains contribu-
tions from the spectra of other analytes, provided
the matrix PNAS,k is able to cancel out these
latter contributions. Although Xu and Schechter
suggest using all theI factors of R−k for pre-
diction, in order to build a method free from
optimum factor estimation, one can select the
optimum numberA by cross-validation[35],
then the method is HLA/XS. It works in a
similar manner to HLA and can be used even
when the number of samples exceeds the recom-
mended limit of one third the number of sensors
[32].

(3) The third variant of NBMs was described by
Goicoechea and co-workers (HLA/GO) and
showed excellent results when analyzing complex
pharmaceutical mixtures[35,48]. In this variant,
the mean (uncentered) calibration spectrum is

first obtained:

r̄cal = 1

I

I∑
i=1

ri,cal (6)

whereri,cal is the spectrum for theith calibration
sample. Then the contribution of analytek is sub-
tracted from the data matrixR in the following
way:

R−k = R − ck(r̄cal)
T

c̄k,cal
(7)

where c̄k,cal is the mean (uncentered) calibration
concentration of analytek. The calculation ofs∗k
is then carried out with the following equation:

s∗k = PNAS,k

[
(r̄cal)

T

c̄k,cal

]
(8)

(4) NAP/CLS[37,47]. This variant involves using the
least squares approximationsk,LS both to obtain
the matrixR−k throughEq. (9) ands∗k through
Eq. (5):

R−k = R = cksk,LS (9)

This method can be shown to consist of the
following steps: (a) pre-processing the raw data
matrix R by projecting it onto the space orthogo-
nal to that spanned by all analytes exceptk, lead-
ing to the net analyte data matrixR∗

k (i.e. R∗
k =

PNAS,kR), and (b) correlating this latter matrix to
the analyte concentrationsck through a CLS pro-
cedure[37,47].

3.4. Figures of merit

Selectivity, sensitivity and LOD can be calculated
and used for method comparison or to study the qual-
ity of a given analytical technique. The LOD is not
strictly necessary in the present case, but only for the
analysis of impurities[49]. The selectivity is usually
defined in multivariate calibration by resorting to NAS
calculations[50,51]:

SEL = ||s∗k ||
||sk|| (10)

Details on the calculations of the NAS in PLS and
other multivariate methods are given in[35]. On the
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other hand, the sensitivity is given by

SEN= 1

||bk|| (11)

wherebk is the vector of final regression coefficients
appropriate for componentk, which can be obtained
by any multivariate method.

The LOD in multivariate calibration has been cal-
culated according to the following expression[50]:

LOD = 3||ε||||bk|| (12)

where||ε|| is a measure of the instrumental noise and
may be estimated, in turn, by registering several spec-
tra for blank samples, calculating the norm of the NAS
for each sample and the corresponding S.D. The latter
can be taken as an approximation to||ε||.

Another parameter, that may be useful for method
comparison, is the analytical sensitivityγ [35,52]. It
may be defined, in analogy to univariate calibration,
as the quotient:

γ = SEN

||ε|| (13)

and allows one to compare analytical methods regard-
less of the specific technique, equipment, and scale

Fig. 1. Emission (λem = 351 nm) and excitation (λex = 256 nm) spectra for the following systems: curves 1 and 1′, amoxycillin–cerium(IV);
curves 2 and 2′, clavulanic acid-cerium(IV). [H2SO4] = 0.1 mol l−1; [clavulanic acid] = 10�g ml−1; [amoxycillin] = 10�g ml−1;
[cerium(IV )] = 3.2 × 10−5 mol l−1; T a = 60◦C.

employed and establishes the minimum concentration
difference (γ −1) which is statistically discernible by
the method across the dynamic range where it is ap-
plicable.

4. Results and discussion

4.1. Kinetic curves

Amoxycillin or clavulanic acid (non fluorescent it-
self) react with cerium(IV) in sulphuric acid medium
to give a fluorescent product, when heating the so-
lutions. The fluorescent products have been reported
to be the complexes formed between the oxidation
product of amoxycillin or clavulanic acid, and the
cerium(III). In previous papers, the physico-chemical
conditions for the development of the reaction have
been investigated[45,46]. The oxidation products in
both cases present excitation and emission maxima
at 256 and 351 nm, respectively which are the same
as the excitation and emission maxima of cerium(III)
(Fig. 1). An optimum temperature of 43◦C has been
chosen for the development of the reaction. A 0.1 M
sulphuric acid concentration was chosen to prepare the
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Fig. 2. Kinetic curves obtained for: (a) amoxycillin
(11.70�g ml−1); (b) clavulanic acid (7.69�g ml−1).

solutions of the analytes and cerium(IV), from which
the syringes are filled, been 8× 10−5 M the optimum
cerium concentration.

Fig. 2 shows the kinetic curves of the products
of reaction of amoxycillin and clavulanic acid with
cerium(IV) in the selected conditions. The reaction of
oxidation of amoxycillin is completed in 10 s. For the
clavulanic acid, the reaction is slower and in 100 s,
the fluorescence is still increasing. It proves the high
overlapping of the analytical signals.

Table 2
Optimum number of factors, calibration statistical parameters and figures of merit when applying PLS-1, HLA/GO and NAP/CLS methods

Component Statistical parameters and figures of merit Multivariate method

PLS-1 HLA/GO NAP/CLS

Amoxycillin Sensor range (s) 0–31.5 0–31.5 0–31.5
Factors 3 2 2
RMSD (mg l−1) 0.212 0.209 0.211
REP (%) 9.80 9.64 9.75
R2 0.9708 0.9717 0.9711
Selectivity 0.102 0.106 0.099
Sensitivity 4.22 4.36 4.08
Analytical sensitivity (γ −1, mg l−1) 0.036 0.034 0.037
LOD (mg l−1) 0.23 0.23 0.25

Clavulanic acid Sensor range (s) 1–78.3 1–78.3 1–78.3
Factors 3 2 2
RMSD (mg l−1) 0.205 0.328 0.204
REP (%) 12.14 20.28 12.07
R2 0.9786 0.9431 0.9788
Selectivity 0.154 0.135 0.143
Sensitivity 10.7 9.35 9.89
Analytical sensitivity (γ −1, mg l−1) 0.014 0.016 0.015
LOD (mg l−1) 0.09 0.11 0.10

4.2. Optimization of the PLS-1, HLA/GO and
NAP/CLS models

A popular multivariate method for resolving the
present task, which has become a routine in pharma-
ceutical analyses, is PLS. An alternative approach in-
volves the use of any of the available (NBMs, see the
following sections).

Kinetic curves for the samples corresponding to the
calibration set (shown inTable 1) were recorded in the
range 0–100 s (112 points), and subjected to PLS-1,
HLA/GO and NAP/CLS analyses. The optimum num-
ber of factors to be used within the PLS-1 and NBMs
algorithms is an important parameter to achieve better
performance in prediction. This allows one to model
the system with the optimum amount of information,
avoiding overfitting. The cross-validation procedure
was applied, consisting of systematically removing
one of the training samples in turn, and using only the
remaining ones for construction of the latent factors
and regression[40]. The optimum numbers of factors
are shown inTable 2. This latter table also gives the
values of the optimal kinetic data regions used for all
the multivariate methods in the corresponding cali-
brations, as well as other important statistical param-
eters and figures of merit such as the square of the
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Fig. 3. (A) Three-dimensional plot of the calculated values of PLS-1 calibration PRESS corresponding to amoxycillin, as a function of first
sensor and window width. The values of PRESS were calculated using the optimum number of calibration clavulanic acid–cerium(IV);
factors in each spectral region. (B) Two-dimensional contour plot of the top figure, showing the minimum PRESS at sensor 1 with a
window of 36 sensors (corresponding to the spectral range 0–31.5 s).



A. Muñoz de la Peña et al. / Analytica Chimica Acta 463 (2002) 75–88 83

correlation coefficient (R2), the root mean square dif-
ference (RMSD), the relative error of prediction (REP
(%)), the sensitivity (SEN), the selectivity (SEL), the
analytical sensitivity (γ −1) and the LOD.

The region of sensors to be selected is a critical
step for increasing the predictive ability of multivari-
ate analysis, and should ideally eliminate both unin-
formative and/or highly correlated data. In the present
report, we have applied a moving-window strategy to
the calibration set itself, in order to find the most in-
formative range in the time profile by localization of
the minimum PRESS[43]. Fig. 3A shows an example
for amoxycillin using PLS-1 calibration, in the form
of a three-dimensional plot of the calculated values

Table 3
Validation results when applying PLS-1, HLA/GO and NAP/CLS on the validation set

Sample Added (mg l−1) PLS-1 HLA/GO NAP/CLS

Found (mg l−1) Recovery (%) Found (mg l−1) Recovery (%) Found (mg l−1) Recovery (%)

Amoxycillin
1 0.80 0.70 87.3 0.65 81.3 0.69 86.7
2 2.40 2.13 88.7 2.20 91.7 2.10 87.5
3 2.40 2.75 114.7 2.70 112.4 2.79 116.2
4 2.00 1.92 96.1 1.98 99.0 1.88 93.9
5 4.00 4.25 106.3 4.21 105.2 4.31 107.7
6 4.00 3.83 95.9 3.85 96.4 3.85 96.4
7 1.00 1.08 107.8 0.98 97.9 1.09 109.2
8 1.00 1.05 105.2 1.11 111.1 1.00 100.0
9 4.00 4.00 100.0 4.01 100.2 4.04 101.1

10 4.00 3.98 99.4 3.97 99.3 4.01 100.3
11 4.00 3.99 99.7 4.11 102.6 3.99 99.7
12 2.00 1.81 90.6 1.85 92.5 1.79 89.3
13 2.00 1.82 91.1 1.88 93.9 1.79 89.7
14 3.00 3.15 104.9 3.10 103.3 3.18 105.0
15 3.00 3.02 100.7 3.01 100.4 3.04 101.4

Clavulanic acid
1 0.76 0.63 83.5 0.89 117.1 0.64 84.9
2 4.00 3.89 97.2 3.77 94.2 3.92 98.0
3 0.00 0.02 – −0.02 – −0.03 –
4 4.00 2.98 74.6 2.71 67.9 3.05 76.3
5 0.70 0.71 101.7 0.47 67.9 0.62 89.1
6 2.80 2.46 87.8 2.15 76.9 2.43 86.8
7 1.00 1.03 103.4 1.39 139.0 1.02 101.8
8 4.00 3.98 99.4 4.01 100.1 4.04 100.9
9 1.00 0.98 98.0 0.68 68.4 0.92 91.8

10 1.00 0.98 98.2 0.65 65.5 0.92 92.4
11 0.00 0.58 – −0.14 – 0.57 –
12 2.00 2.16 108.1 2.03 101.6 2.21 110.2
13 2.00 2.08 104.1 1.91 95.7 2.13 106.4
14 1.00 0.89 89.0 0.76 76.3 0.84 84.0
15 1.00 0.90 90.1 0.73 72.6 0.86 86.3

of PRESS for the calibration set as a function of first
sensor and window width. The values of PRESS were
calculated using the optimum number of calibration
factors in each time profile region.Fig. 3B is the cor-
responding two-dimensional contour plot ofFig. 3A.
A visual inspection of both figures indicates that the
smaller PRESS is located in the time region starting
at sensor 1 (0 s) with a window of 36 sensors (i.e. in
the range 0–31.5 s).

The obtained values for the present calibrations
show that HLA/GO and NAP/CLS yields slightly
better results for both analytes, in comparison with
PLS-1, but the observed differences are not statisti-
cally significant.
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4.3. Predictions for the validation set

The optimal PLS-1, HLA/GO and NAP/CLS cali-
brations found in the manner described previously for
each analyte were then applied to the prediction of the
concentrations of the components in the 15 synthetic
samples corresponding to the validation set, with the

Fig. 4. EJCR for the slope and intercept for the validation data set (including 15 values), as calculated from determination of: (A)
amoxycillin and (B) clavulanic acid. Both by using PLS-1 (circle), HLA/GO (triangle) and NAP/CLS (square) analysis. The cross mark
indicates the theoretical point (1, 0).

results collected inTable 3. As can be seen, the recov-
eries are reasonably good, although the worst results
are obtained when applying HLA/GO for clavulanic
acid. A convenient way to establish if bias is ab-
sent for the determination of both components when
using PLS-1 or NBMs is to draw the elliptic joint
confidence region (EJCR) for the slope and intercept
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when plotting cpred versuscact. Conventional indi-
vidual confidence intervals for these parameters can
lead to erroneous conclusions when carried out in-
dependently of each other, because this ignores their
strong mutual correlation[53]. Fig. 4A and Bshow
these regions for the determination of amoxycillin and
clavulanic acid, respectively. As can be seen, all the
ellipses contain the theoretically expected value of (1,
0) for the first component, although the corresponding
one to HLA/GO presents a reduced size, indicating a
lower dispersion. Regarding the second component,
only the ellipse corresponding to NAP/CLS contains
the value (1, 0). This statistical test allows us to detect
an improvement in the predictive ability of HLA/GO
for amoxycillin and of NAP/CLS for clavulanic acid,
as compared to PLS-1.

With the purpose of studying the performance of the
proposed multivariate methods under controlled con-
ditions, simulated data were produced in the following
way. Kinetic profiles at unit concentration for each an-
alyte were calculated by smoothing the corresponding
time-dependent experimental data. A 16 sample cal-
ibration set was then produced with a four-level full
factorial design (the concentrations were in the range
0–4 mg l−1 for both analytes), and a 50 sample vali-

Table 4
Comparative study of the influence of noise in kinetic profiles when applying PLS-1, HLA/GO and NAP/CLS methods to simulated
calibration and validation dataa

Method

PLS-1 HLA/GO NAP/CLS

1 2 1 2 1 2

Amoxycillin
Calibration Factors 2 3 1 2 1 2

RMSECV 0.052 0.449 0.052 0.430 0.052 0.422
REP (%) 1.25 11.1 1.24 10.7 1.24 10.4

Validation RMSEP 0.056 0.510 0.056 0.451 0.056 0.477
REP (%) 1.21 11.3 1.21 9.90 1.21 10.5

Clavulanic acid
Calibration Factors 2 3 1 2 1 2

RMSECV 0.018 0.47 0.018 0.49 0.018 0.46
REP (%) 0.40 11.1 0.39 11.6 0.40 10.9

Validation RMSEP 0.021 0.57 0.021 0.61 0.021 0.55
REP (%) 0.43 13.1 0.43 14.2 0.43 12.6

a Noise level 1 corresponds to adding very low Gaussian random noise to all kinetic profiles (typically on the order of 1% of the
maximum signal). Noise level 2 corresponds to adding sufficient Gaussian random noise in order to mimic the experimental results (ca.
10% of the maximum signal).

dation set was produced with random concentrations
within the range employed for calibration. Random
Gaussian noise and random base line drifts were added
to all profiles in order to mimic the experimentally
obtained data. All these calculations were done using
suitable Matlab 5.3 routines.

Table 4shows the results obtained by applying the
different multivariate methods to the simulated data.
As can be seen, if the added Gaussian noise is very
low, then comparably good results are obtained for
both analytes with all methods. In particular, the num-
ber of calibration factors is consistent with the dimen-
sionality of the model in terms of number of chemical
constituents. As expected, when the noise added to the
kinetic profiles is comparable to that experimentally
observed, the results match those found in the real
cases herein studied. The number of required spectral
components is also increased, indicating that profile
overlapping and/or noise are responsible for the ex-
perimental results.

4.4. Predictions for commercial samples

Table 5shows the results obtained for four commer-
cial samples that were analyzed with the optimized
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Table 5
Results obtained when analyzing commercial samples by applying PLS-1, HLA/GO and NAP/CLS

Commercial sample Reported PLS-1 HLA/GO NAP/CLS

Found Recovery (%) Found Recovery (%) Found Recovery (%)

Amoxycillin (mg l−1)
Augmentine 2.50 2.72 108.8 2.65 106.0 2.77 110.7

3.75 3.82 101.9 3.75 100.0 3.87 103.3

Pangamox 3.71 2.94 79.3 2.98 80.5 2.98 80.5
4.45 3.56 80.0 3.57 80.2 3.57 80.2

Eupeclanic 3.82 3.14 82.2 3.20 83.7 3.14 82.2
Clamoxyl 3.00 2.72 90.2 2.76 91.9 2.70 90.1

Clavulanic acid (mg l−1)
Augmentine 0.65 0.38 58.5 0.33 51.7 0.46 71.5

0.97 0.63 64.7 0.63 65.2 0.63 65.2

Pangamox 0.55 0.54 99.0 0.44 83.2 0.45 83.3
0.65 0.56 85.4 0.59 90.5 0.59 90.5

Eupeclanic 0.99 0.74 74.9 0.79 80.1 0.79 80.1
Clamoxyl 0.00 – – – – – –

models. These are acceptable for the determination
of amoxycillin with both PLS-1 and NBMs, although
in the case of clavulanic acid the recoveries are very
poor. The use of NBMs offers an alternative approach,
which involves the use of a moving-window strategy
in order to alleviate the effect of interferences by se-
lecting optimal kinetic data regions for specific sam-
ples[54].

In the present work, this kinetic data region selec-
tion was performed by calculating an EIF as a function
of a moving window, using information from the NAS
regression plot (NASRP) for each particular sample

Table 6
Results obtained when analyzing clavulanic acid in commercial samples by applying NAP/CLS, selecting the sensor regions with the
minimum error indicator—moving-window criteria

Commercial sample Reported (mg l−1) Region (s) EIF Found (mg l−1) Recovery (%)

Augmentine 0.65 0–88 0.043 0.46 75.5
9–88 0.035 0.77 118.0

0.97 0–88 0.091 0.63 65.2
9–62.1 0.076 0.76 78.3

Pangamox 0.55 0–88 0.069 0.45 83.3
4.5–88 0.020 0.58 106.4

Eupeclanic 0.99 0–88 0.16 0.79 80.1
9–88 0.026 0.93 93.9

[54,55]. The latter is a plot of the elements of the sam-
ple vectorr∗

k versus those ofs∗k . The expression for
EIF used in the present context is

EIF = Var(||r∗
k || − ||r∗

k,true||)1/2

||r∗
k,true||

(14)

where||r∗
k || is the norm of the net analyte profile for

the test sample and||r∗
k,true|| is the latter without errors.

As defined inEq. (14), EIF is an approximation to the
relative error in the determination of||r∗

k ||. Although
||r∗

k,true|| is not known, it has been shown that EIF can
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be reasonably approximated by[54]:

EIF = [s2
fit (1 + (N2s2

fit/4||r∗
k ||2))]1/2

||r∗
k ||

(15)

wheresfit is the S.D. of the best fitted straight line to
the NASRP (in a given region) andN is the number
of points in the latter plot. In this work, the vectorsr∗

k

ands∗k were calculated from NAP/CLS.
Table 6 shows the results obtained when sensor

selection was applied. As can be seen, a substantial
improvement is obtained when the samples are ana-
lyzed in the most convenient kinetic regions, where
the effect of interferences is minimized. This makes
the NBMs more convenient that PLS-1 for analyz-
ing both components in the studied pharmaceutical
samples. However, the application of PLS-1 in the
optimum profile regions selected by the EIF method
gives results which favorably compare to those shown
in Table 6for NAP/CLS.

5. Conclusions

The contents of amoxycillin and clavulanic acid
were simultaneously determined, using kinetic data
from the oxidation reactions of these compounds with
cerium(IV) in sulphuric acid medium. The fast ox-
idation reactions were fluorimetrically monitored in
stopped-flow mode. PLS-1, HLA/GO and NAP/CLS
multivariate calibration methods were applied. A val-
idation set of synthetic mixtures as well as several
commercial pharmaceuticals were studied. The per-
formance of the investigated multivariate methods was
found to be of comparable quality for the experimen-
tal system under study. However, the methods based
on NAS calculation provide a convenient way of se-
lecting variables, in this case the optimal kinetic pro-
file, for calibration and prediction, on the basis of the
search of the minimum EIF, based on the minimization
of the PRESS, calculated as a function of a moving
kinetic data window. This feature selection procedure
allows to build the calibration models using data which
are relevant to the target parameters to be predicted,
improving the results and making NBMs very conve-
nient for the analysis. Its constitutes a clear advantage
over traditional variable selection methods, in which
an easily understandable parameter is minimized, i.e.

the linearity of the plot of NAS as a function of net
analyte sensitivity.
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