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An introduction to independent component analysis
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SUMMARY

This paper is an introduction to the concept of independent component analysis (ICA) which has recently been
developed in the area of signal processing. ICA is a variant of principal component analysis (PCA) in which the
components are assumed to be mutually statistically independent instead of merely uncorrelated. The stronger
condition allows one to remove the rotational invariance of PCA, i.e. ICA provides a meaningful unique bilinear
decomposition of two-way data that can be considered as a linear mixture of a number of independent source
signals. The discipline of multilinear algebra offers some means to solve the ICA problem. In this paper we
briefly discuss four orthogonal tensor decompositions that can be interpreted in terms of higher-order
generalizations of the symmetric eigenvalue decomposition. Copyric®@00 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is intended to provide an introduction to a fundamental issue that has received an
increasing amount of attention from the signal-processing research community in the last decade,
namely the concept of independent component analysis (ICA), also known as blind source separation
(BSS). Disciplines involved are statistics, neural networks, pattern recognition, information theory,
system identification, etc. [1,2]. In this contribution we have to limit ourselves to the algebraic
approach: in a natural way, ICA poses the question of generalizations of matrix algebraic techniques
to multilinear algebra, i.e. the algebra of ‘multiway matrices’ or ‘higher-order tensors’. A second
objective of the paper is to give a brief overview of a class of orthogonal tensor decompositions that
can be interpreted as higher-order counterparts of the symmetric matrix eigenvalue decomposition
(EVD). Like e.g. the EVD and the singular value decomposition (SVD) of matrices, these
decompositions can be considered as tools useful for a wide range of applications.

In a nutshell, the goal of ICA is the decomposition of a set of multisensor data & miori
unknown linear mixture o priori unknown source signals, relying on the assumption that the source
signals are mutually statistically independent. This concept is in fact a fine-tuning of the well-known
principal component analysis (PCA), where one aims at the decomposition in a linear mixture of
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uncorrehted conponents—iie weaker condtion resuting in a rotationd indeterninacy of the
solution.To overcone thisindeterminag, the crudal obsevationis thatstaistical independece not
only imposes constaints on the covaiance of the sources,but also involves their highe-order
statistcs (HOS) the concet of HOSwasintroducedin Reference [3,4]. ICA andPCA arenot only
relatedfrom astatistical pointof view, butalsofrom acomputationalperspedve, astheybothrely on
an EVD-type decompotiion, in linearandmultilinear algebrarespectively.

Fromanalgarithmic point of view, threeapprachesarepossble: (i) firstaPCAis carriedout and
subsegentlytheremahing degreeof freedomis fixed by resating to HOS; (i) thesoluionis directly
obtainal from the HOSwhile avoiding the useof secoml-order statistics;or (iii) secoml- andhigher-
orderstatistcs areexploitedin a combinel way. Each apprachhasits prosandcons;the main point
of differenceis thatworking with HOS hasthe advanagethat Gaussiamoisecanbe suppessedo
some extent, but on the other hand it requres longer data sets than neede for second-ader
calculations.A secoml obsevationis that,at presentthethreemethodsof working havenotyet been
studiedto the samedepth. For this paperwe chooseto focus on the first type of procedure. For
bibliographicpointess relatedto the otherappracheswe referto Referencd?2].

We begi with a brief expositionof the required preliminary mateial of multilinear algebraand
HOS in Secton 2. Section3 discusse ICA in conceptulterms. Subsequentiywe give a formal
problem definition, analze the mechamnsm of PCA-based ICA routines, discussthe issue of
identifiability, provide somemeasues of performane and makea comparisonbetwea@ PCA and
ICA. Section4 illustratesthe ideas with a concetual exampk. Subseqgantly, Secton 5 briefly
discusse four algebraic algarithms. Their performane is illustrated by meansof a number of
numertcal experimentsat the end of the section.

Let us finally enurnrerate sone notationalconvenions. Vectors are written as bold lower-case
letters, matrices as bold capitalsand tensrs of order higherthan two as bold script letters. The
transpos of a matrix A will bewritten asA" andits Moore—Penreepseudinverse[5] asA'. E{ [}
denoteghestatistical expectan.R'* * 'z * - * Wjs thevectorspaceof real-valuedl, x I, x ... x Iy
tensors

2. BASIC DEFINITIONS

In this secton we introduce sonme elementary notdions and definitions neede in the further
developnents.Section2.1 dealswith somebasicconceptsof multilinearalgéora; Section2.2 deals
with HOS.

2.1. Multilinear algebra

First the definition of an outerproductgeneglizesexpressios of thetypeab' in which a andb are
vectors

Definition 1 (outer produa)

The oute productsd o B O R * 12X = xlexdhixdzx .. xJo of 5 tengr of DR > '2* - ** anda
tensord® O R * %2 < - > Je js definedby

def . b
i1i2...ipjaj2...jo T a|1lz---lp 11)2--JQ

(s o B);
for all valuesof theindices.
For exampb the enties of an Nth-order tensor s{ equal to the outer product of N vecibrs
u®, u®, .., u™ aregiven by a;, i, = uu? .. u

IN °
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I I I

Figurel. A 4 x 4 x 4tensorconsiderecdisa setof columnvectorsrow vectorsandmode-3vectorsrespectively.

Nextwe give straightbrwardgeneralzationsof thescalarmproduct,orthogonalty andthe Froberus
norm.

Definition 2 (scdar produa)
The scalarprodud (4, B) of two ten®rs s, [0 R'* > '2* - < In 5 definedas
(d, %)cj:efz Z . Z Bisi..in Qisiz..in
i1 i in

The tensorscalarproductof two vectorsx andy reducego the well-known form y'x.

Definition 3 (orthogmality)

Tensorswhosescalarprodud equak zeroare mutually orthogonal.

Definition 4 (Frobenius norm)

The Frobeniusnorm of atensord is given by

def
154 / (st 58

In ten®r terminology, column vectors,row vecbrs, etc. will be called model vecirs, mode-2
vectors etc In general the moden vectorsof an Nth-orde tensor ¢ [ R'* * '2* - > Iv grethe | -
dimensgonal vecbors obtaina from s by varying the index i,, and keepingthe otherindicesfixed
(Figurel).

The multiplication of a highe-ordertensr with a matrix canbe definedasfollows.

Definition 5

Themoden produd of atensorsd O R'* * 'z -+ * Ny amatrix U O R* * ' denoedby o x , U, is
anly x I, X ... X In_1 X Jy X Ing1 ... X Iy tensordefinedby

(oA xn U)iliz...jn.“iN = Z Qsi...in...in Uinin
in

for all index values.

Themoden produd allows oneto expresghe effectof a basistransformaibn in R'" on thetensor
A.

By way of illustration, let uslook atthe matrix produ¢ A = U® (B 1U@" involving matrices B O
R'» 'z y® gR:>'s u@ gR:*'2andA O R™ * % Working with ‘generalzedtransposs’in the
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I

J3

] [1 ' g
= J2
i N U H

A

Figure2. Visualizationof themultlpllcanonof athird-ordertensor® 0 R'* * 'z s with matricesU™® 0O R¥ * '3,
U® OR%> "2 andU® O R» ",

multilinearcase(in which thefact thatmode-1vectorsaretranspose+4feewould not haveaninherent
meaniry) canbe avoidedby observimg thatthe relaionshipsof U® andU® (not U®") with B arein

fact compleely similar: in the sane way as U™ makeslinear combinaions of the rows of B, U®®

makeslinearcombinationsof the columns in the sameway asthe columnsof B aremultiplied by
U, its rows aremultiplied by U®; in the sameway asthe columnsof U areassociateavith the
columnspaceof A, the columnsof U® areassocitedwith therow space This typical relaionshipis

denotedby meansof the x,, symbol:A =B x; U® x, U®.

Figure 2 visualizes the equatian s =% x, UD x, U@ x5 U® for third-orde tenrs s O
R > %2>% and g O R'**'2> ' Unlike the convenional way to visualize second-ader matrix
produds, U® hasnot beentransposedfor reasonof symméry. Multiplication with U® involves
linearcombindionsof the‘horizontalmatrices’ (indexi, fixed)in %B. Statedotherwise, multiplication
of 3 with UY meanghatevery column of & (indicesi, andis fixed) hasto bemultiplied from theleft
with UY. Multiplication with U® andU®® canbe expresse in a similar way.

2.2. Higher-order statistics

The bast quantities of HOS are higher-ader momens and highe-order cumulants. First, moment
tensorsof areal stochadt vectoraredefinedasfollows.

Definition 6 (moment)

The Nth-orde momenttensoryY) € R""**! of areal stochast vectorx [ R' is definedby the
element-wise equaion

(N = MOM(Xi,, X, s - - -+ %) 2 E{X0,X, - - Xy } (1)

X Jiqip.in

The first-order momentis the meanof the stochadt vector. The second-oder momentis the
correlation matrix (following the definition adopedin e.g.Referencd6], in which the meanis not
subtrated).

On the otha hand,cumulants of a real stochast vecibor aredefinedasfollows.

Definition 7 (cunulant)

The Nth-orde cumulanttensor¢(Y) € R'*'*-*! of areal stochasticvectorx 0 R' is definedby the
element-wise equaion
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(B8 Niiyiyy = CUM(K, X, Xy
def (1)“(K1)!E{Hxi}E{H>ﬁ}~-E{HXi} @
icA; = ieAk

wherethe summatio involves all possibe partitions{ A, A,,...,Ax} (1<K =< N) of the integers
{isio,...,in}. Forareal zero-mearstothasticvectorx the cumulants up to orderfour are explicitly
given by

(c) = Cum(x) E'E{x} (3)
(Cx)iyi, = CUM(%,, %) & E{x,%,} (4)
((€£<3))i1i2i3 = Cum(Xh? Xips Xi3) dzEf E{Xi1Xi2Xi3} (5)

((65(4))i1i2i3i4 = Cum(xilv Xizs Xig Xi4) (j:ef E{Xi1Xi2X53Xi4} - E{Xilxiz}E{XisxiA}
- E{Xilxis}E{xi2Xi4} - E{Xi1Xi4}E{Xi2Xi3} (6)

Forevely componenk; of x thathasa non-zromean x; hasto bereplacel in theseformulae,excep
in Equatons (3) and(2) whenit appliesto a first-order cumulant, by x; — E{x;}.

Let usfirstillustratethemeanirg of Equation(2) by meanf thesecom-ordercasg(Equation(4)).
As thereare two possble partitions of {i,, io}, namely{{ iy, i»}} (the numker of partition classes
K=1)and{{ iy}, {i2}} (K=2), Equaton (2) read as

(CX)iliz = E{Xilxiz} - E{Xil}E{Xiz}

in which x; (%) hasto bereplacel by x, —E{x} (x—E{x}) if % (x) hasa non-zZro mean.Sincethe
seconderm dropsby definition, we obtan the form of Equation (4).

It turnsout that, agan, the first-ordercumulant is the mean of the stochasticvecior. The second
ordercumulantis the covariancematrix. Theinterpretatiorof a cumulant of orderhighe thantwo is
not straightforward, but the powerful propeties listed below will denmonstratethe importanceof the
concept.For the moment it sufficesto stae that cumulants of a set of randan variablesgive an
indication of their mutualstatistichdependencécompletly independat variablesresultingin azero
cumulant), andthathighe-ordercumulantsof a singlerandan variablearesomemeasureof its non
Gaussiarty (cumulntsof a Gaussiarvariabk, for N > 2, beingequalto zerg.

Tablel illustratesthe definitions for two important univariate probaility densityfunctions.

At first sight, higherordermomentspecausef their straightforwad definition, might seemmore
interesing quantties thanhigher-ordercumulans. Howeve, cumulantshavea numberof important
propertes that are not shaed with higherordermomens, suchthatin practicecumulants are more
frequentlyused.We enumerge someof the mod interesting Propeties (without proof) [7,8].

1. Supersymmetry. Momentsand cummulantsare symmetric in their argumets, i.e.

(A/tiN))iliz.“iN = (/‘/tiN))PGﬂZ---iN) i
((GE(N))iﬂzmiN = (C€§<N))P<i1i2~~iN) °

in which P is an arbitrary permugtion of the indices
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Tablel. Momentsandcumulantsup to orderfour, of a Gaussiaranda uniform distribution

Gaussian distribution
" Pa(z) = —— exp(— &)
Dz\T
n m&) Eg
1 0 0
2 o? o?
3 0 0
z 4 30* 0
Uniform distribution
» pa(z) = & (z € [~a,+a])
Pe\T
1 n my) &
2 1 0 0
2 a?/3 a%/3
3 0 0
—a +a 4 3at/5 -2a%/15

Multilinearity. If arealstochast vectorx is transbrmedinto a stochast vector X by a matrix
multiplication& = A [x, with A O R’ *', thenwe have

M){(M _ M)((N)

XlAXQA...XNA (9)

CQ;N):%)((N> XlA X2A...><NA (10)

. Evendistribution. If arealrandam variablex hasanevenprobaility densty function p.(x), i.e.

px(X) is symmaeric aboutthe origin, thenthe odd momens and cumulats of x vanish.

. Partitioning of independat variables If a subsé of | stochadt variablesxy, X5, ..., X IS
independat of the othervariables thenwe have
Cum(Xq, %2,...,%) =0 (11)

This propety doesnothold in geneal for momentge.g.for two mutualy independat randam
variablesx andy we havethatMom(x,x,y,y) = E{x?} CE{y?}, which doesnotvanishunlessone
of thevariablessidentically equalto zero).A conseuenceof thepropery is thatahighe-order
cumuant of a stochast vectorhavingmutually independat componert is a diagonaltensr,
i.e. only the entries of which all the indicesare equalcan be different from zera This very
strongalgebrac condtion is the basisof all the ICA techniquesthatwill be discussd in this
paper To clarify this, let ushavea look at the secom-ordercase.Let us assumea stocastic
vectorx O R' with mutualy independat entriesthatarenot necesarily zeromean.Unlessthe
entries are zero-meanthe correltion matrix (seconderder moment) of x is not a diagonal
matrix, asthe meanof the entries is not subtractedn the definition of amoment. On the other
hand, the covaiance matrix (seconderder cumulan) is a diagonal matrix regadlessof the
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INDEPENDENTCOMPONENTANALYSIS 129

meanof x. Thedefinition of acumulantis suchthatthis propety holdsfor all cumulant orders.
5. Sumofindependenvariables If thestochast variablesxy, X, ..., X, aremutually independem
from the stochasticvariablesys, ys, ..., ¥, thenwe have

Cum(xg + Y1,%2 + Y2, .- -, Xk + Yk) = Cum(xg, Xz, . .., %) + Cum(ys, y2,...,¥%) (12

The cumulant tensorof a sum of independat randan vectorsis the sum of the individual
cumulants. This propertydoesnot hold for momentseither; asa matter of fact, it explairs the
term‘cumulant’. (OnecouldexpandViom(Xq,Y1,X>+Yo, ... X+VYi) asasumoverall possble x/y
combindions,butthecross-tems,contairing x aswell asy entries, donotnecesarily vanish,as
oppose to the cumulant case—seethe previouspropery.)

6. Non-Gausmnity. If y is a Gawssianvariable with the samemeanand variane@ as a given
stochast variable x, then,for N = 3, it holdsthat

e = M — Y (13)

As a cons@uence higher-order cunulantsof a Gaussan variableare zero (seeTablel). In
combindion with the multilinearity propety, we observethathighe-ordercumulantshavethe
interesing propety of beingblind for addtive Gawssiannoise. Namely, if astocasticvariable
x is corruptedby additive Gaussan nois n, i.e.

X=X-+n
thenwe neverthéesshavethat

e =6 + e =M

X

Generdly speakingjt beconesharde to estimae HOS from sampledataasthe orderincreases,
i.e.longerdatasetsarerequiredto obtan thesameaccuacy[9,10]. Hencein practicetheuseof HOS
is usualy restricedto third- andfourth-orde cumulants For symmetric distribuions, fourth-order
cumulants are used,since the third-order cumulants vanish,asmertionedin Property3.

3. INDEPENDENT COMPONENT ANAL YSIS
3.1. Theproblem

Assune the bast linear stdistical modd
y=Mx+n=9y+n (14)

in whichy O R' is called the observaipn vector, x 0 R’ is the sourcevectorandn [ R' represats
additivenoise § O R' is thesignalpart of theobsevations.M O R' * 7 is calledthe mixing matrix—
its enties my; indicate to what extent the jth sour@ componentcontibutesto the ith observaion
channel(l<i<|I, 1<j <)), i.e.theydetermire how the sourcesare‘mixed’ in the observabns.
The columns{m;} of M arethe mixing vectors its rangeis known asthe sigral subspae.

The conceptof independat componentnalysis cannow be formulated asfollows.

The goal of independentcomponentanalyss (ICA) consiss of the esimation of the mixing
matrix M and/orthecorresponihg realizatiosof the soure vectorx, givenonly realizatonsof
the obsewation vector y, underthe following assumgbns.

Copyright0 2000JohnWiley & Sons,Ltd. J. Chemometcs 2000;14: 123-149
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1. Themixing vectas arelinearly independat.
2. The commnentsof x are mutually statistcally independat, aswell asindependat from
the noise components.

The secondassumgibn is the key ingredientfor ICA. It is avery stronghypothesisbut also quite
naturalin lots of applicationsin practice, mutudly staistically independent’canoftenberephmased
as‘of adifferentnatue’. ICA is therefae of intereste.g.for theseparabn of electromagndt signals
emitted by different usersin mobile communcations; for the extracton of bioelectic signals,
generagd by different orgars, from body surfacepotentials; for the analyss of differentsourcesof
vibration in rotatingmachirery; etc. Fromanalgebrac point of view it doesnot only meanthatthe
covariance of x is a diagonal matrix, but also that all the higher-order cumulants of x are diagonal
tensors Using the propeties discussd in Section2.2, we havethat

CyZCXX]_M ><2M +Cn (15)
<€,§IN>:(€)<(N>><1M XzM...XNM—f—(@r(-,N) (16)

in which C, and¢") arediagonaland¢\) vanishesf the noiseis Gaussian.

Thefirst assumgbn is, for the classof algarithmsthatwill bedisaussedn this paper required for
reasonf idertifiability. It holdsin a genericsensewhen | = J (regardessof the fact that anill-
conditionedmixing matrix canmakethelCA problemheavierfrom anumericalpointof view, aswill
beillustratedby the numericalexpeimentsin Secton 5.5). Howeve, the identifiablity constaintis
not inherentto ICA assuch.Undersmoothe condtions it is evenpossibe to identify the mixing
matrix in the situatian in which thereare more sour@sthansensaes [11]; this is a topic of current
investigaions.

In the following subsetionswe will explain how the two assumpgbns abovecanbe exploitedto
obtainanestimae M of themixing matrix. However,merel resoring to thesetwo assunptions, it is
impossble to distinguishbetweenthe signalandthe noise termin Equaton (14). Hencethe sour@
signalswill beestimatedfrom theobservaibnsby meanf asimplematrix multiplicationasfollows:

x=WTy (17)

WT cane.g.taketheform of M. More generaly, variousbeamfoming straegies[12] canbeappled
(seealsoSection3.4).

ThelCA problemis also addressein theliteratureunderthelabelsblind soure sepaation (BSS),
signal copy,waveformpresening esimation, etc. Howeve, the assumgbns on which the solution
strategésare basedmay sometinesdiffer from paperto paper.

3.2. Prewhteningbased CA

ThelCA problemis mog oftensolvedby atwo-gagealgorithmconsistingof a seconl- andahigher-
order step. In this subsectionwe will explain the technique in geneal terms. An outline of the
procedurds presengd asAlgorithm 1.

Algorithm1 (PCA-bagdICA)

Given: T samples{y}1=t=tofy=Mx +n(y,nOR' x OR’M OR' * 7). Call A, = [y1,y2,....y1]-
1. Prewhteningstag (PCA).
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e Compue samplemeanry, from A,. Define Ay =[y:s —mMyy2 —My,....yr —My)/VT - L
e Truncaed SVD of A,: A,=U 0S OVT, with U O R'*” andV O R" *” column-wise

orthonomal andS O R' * 7 postive definite anddiagonal
e If n is spatially white and Gaussan, with varian@ o2, replacethe diagonalentriesof S by

s —o2(1<j=<J).
(Section3.2.1.)
2. Higher-oder stage.

e Comput samplecumulant €{" from A.
® 6V =@M x1 (ST-UT) x2 (S UT) x5 (S"-UT) x4 (S"-UT).
e (Approximate) diagonaization:

@Y =@ x VT xo VT xg VT x4 VT

in which V is orthogon& A classof algebréc algorithms:

HOEVD (Section 5.1);
MD (Sectbn 5.2);
JADE (Section5.3);
STOTD (Sectbn 5.4).
(Section3.2.2.)

Resultsmixing matrix estimaeM = U [$V"; soure sepaationby meaisof MVDR, LCMV, ...,
beamforning.

3.2.1. Step1l: prewhitening. The prewhtening step amountsto a principal componentanalysis
(PCA) of the observabns. Briefly, the goal is to transbrm the obsewation vecbor y into another
stochasti vecor z having unit covaiance. This involves the multiplication of y with the inverse
of the squae root of its covariance matrix Cy. When J <1, a projection of y onto the signal
subspacés carriedout.

Let usnow discusghe prewhieningprocedureén more detail. Firstwe observehatthe covariance
matrix C, takesthe form (for the momentthe noisetermin Equation(14) is neglectedfor clarity)

Cy=M -Cy-MT (18)

in which the covaianceC, of x is diagonal, sincethe sourcesigralsareuncorrelaéd. Assumingthat
thesoure signalshaveunit variane (without lossof geneality, aswe mayapprgriately rescak the
mixing vectorsaswell), we have

Cy=M-MT (19)

A first observaibn is thatthe numberof sourcesanbe deducedrom therankof C,. Substitution
of the SVD of themixing matrixM = USV' showsthatthe EVD of theobsewvedcovaianceallows us
to estimae the componentsU and S whilst the factorV remains unknown:

Cy=U-F-U"=(US) (U9 (20)
Hencethe signalsubspaceanbe estimaed from the secoml-order statistcs of the observationsbut

the actualmixing matrix remainsunknownup to an orthogoné factor.
The effect of the additive noise term n can be neutralizd by replacingC,, by the noise-free
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132 L. DE LATHAUWER, B. DE MOOR AND J. VANDEWALLE

covariance C, — C,,. In the caseof spatially white noise (i.e. the noise componentsare mutualy

uncorretedandall havethe samevariance) C,, takestheform 421, in which 02 is thevariane of the

noiseon eachdatachanné In amore-sens-than-sourcs set-up o2 canbeestimatedasthe meanof

the‘noiseeigenvalies’,i.e.thesmallest — Jeigenvaluespf C,. The numkber of sourcess estimated

asthe numkber of sigrificant eigenvaliesof C,; for adetaled procedurewe referto Refeence[13].
Whenthe outputcovaianceis estimaed from the dataas

C, =A/A] (21)

in which Ay isanl x T matrix consistingof T realizatimsofy, dividedby /T — 1 aftersubtration of
the sanple mean thenit is preferableto computethe factors U and S without explicit calculation of
the produd (21); insteadthey canbe obtéaned directly from the truncatedSVD of A

A, =uUsVT (22)

In this way the squamng of the singularvaluesof Ay, which may causea lossof numeical accuacy
[14], canbe avoided.
After computdion of U andS, a standardied randan vecbr z canbe definedas

2% gyt -y (23)

3.2.2. Step2: fixing the rotational degree of freedomusing HOS. Here we will explain how the
remainirg unknown i.e. the right singular matrix V of the mixing matrix M, canbe esimated.As
we have already exploited the information contined in the second-ader statistics of the
observabns, we now resat to the HOS.

Assuning thatthe noiseis Gauwssian,higherordercumulants of the standrdizedrandan vectorz
definedin Equaton (23) aregiven by

€N =@M 5, VT x, VT xy VT (24)
(cf. Equation(16) with z=V"x). This tensa is relatedto the Nth-order output curulant by the
multilinearity propety:

N = €N x1 (US)T x5 (US)' ... xy (US)! (25)

The key observationis that the sourcecumulant %&N) is theaeticaly a diagonaltensor,sincethe
sourcesigralsarenotonly uncorelatedbut alsohigher-orderindependemn Hence Equaton (24)isin

fact a symmeric EVD-like tensr decomposion. This decompotiion is unique if at most one
diagonalelement of <€§N> equak zerg aswill beexplainedin Section3.3.Howeve, simply couning

thedegree®f freedomin thedeconpositionmodelshowsthatin geneal ahigher-ordertensorcannot
be diagonaized by means of orthogonétransformationsthe supesymmeric tensorﬂ%g\') contairsin

principle JJ+1)...J+ N —1)/N! independat entries, whilst the decompogion allows only

J(J + 1)/2 (orthoganalfactorV) + J (diagona of ¢{")) degreesf freedom.This meansthatif € is

not perfectly known (owing to a finite data length, non-Gausian additive noise, etc.), the
approxmating tensor cannotbe fully diagonaizedin geneal. Theway in which the estmationerror

is deat with allows usto distingushdifferentsolutionstrateges.Four differentalgebrac appraches
will briefly be disaussedn Secton 5.
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It is worth mentionng that(24) is in facta CANDECOMP/PARAFAC modelof <€§N) [15]. If we
represet therowsof V' by {vi} andthe sourcecumulantsby { sy} (1 <] < J), thenEquaton (24)
canberewrittenas

anj ov o. VJ-T (26)

This is indeedan expansiorof ¢\ asa linear commbination of rank-1tensrs (i.e. tensorsthat are
given by an oute produd of vectorg. The rank-1termshave the specialpropeaty that they are
supersymetricandmutually orthogonal.Again, there maynot be a completematchof both sidesof
Equation(26) in the casewhere ¢\ is not perfectly known.

3.3. Identifiability

In this subsetionwe will explainto wha extert theICA solutionis inherentl unique,apat fromthe
concree algaithm that one might wart to use.

Firstwe obsewe thatit is imposgble to determire the normof the columnsof M in Equation(14),
sincea rescalingof thesevecibrs can be compensatedy the inversescalirg of the soure sigral
values;the sameholdsfor their sign Similary the ordering of the soure signals having no physical
meaniry, cannotbe idertified. For non-Gausiansour@s,theseindeterninacies arethe only way in
which an ICA soluion is not unique[16—-18. Formaly, for soure vectorsof which at mostone
componenis Gawssian,we canapply the following theaem (seeReferencd18], pp. 127-128).

Theorem 1

Let the Nth-ordersupersymmetric tenor € 0 R? * 7> - *J be given by
%:®X1QX2Q...XNQ (27)

in which@ O R’ * 7 * - * Jis diagona contairing atmostonezeroon thediagmal,andQ 0O R’ >~
is orthogona 6 canbe decomposd by the samemodd in termsof &' and Q" iff:

® Q' =QAP, in which A is a diagonal matrix whoseentriesare +1 andP is a permutaion; and
e U’ isrelatedto & in theinverseway

D' =D x1 (PTA) x2 (PTA) ... xn (PTA) (28)

The highe-ordercumulantsof Gaussiarcomponerg vanish;hencethes componerg cannotbe
separatedh anessentidy unique way. By claiming thatboththe covariaacematricesof y andx are
diagona) it is easyto provethe theaemthat makesexplicit the indeterninacy [16].

Theorem 2

Letx beaJ-dimersionalGauwssianrandan vector.LetM O R' * ? havelinearlyindependemcolumns,
andconsidery = Mx. Thenthecomponergy; aremutuallyindependatiff M = A;QA,, with A; and
A diagonalandQ orthogona

The fact that we assumethat the sourcesare non-Gaussians lessrestrictve thanit may seem.
Many signals of interest are non-Gaussian(e.g. modulated electomagndic signalsin mobile
commurications, rotation-indiwced vibrations in machire testing, reflectel signals in seisnic
prospedbn, etc., to quote but a few exanples in sigral processig). On the other hand, the
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assumpbn of Gaussianity often appliesto the noiseterm. Consequetly, non-Gausianity may be
seenasa propety thatdiscriminatesbetwea the sigrals of interest andthe noise.

In sum we canstatethatICA doesnotallow usto estimatethetransermatrix M assuch,butthat,
for sourcevectbrs of which at most one componentis Gaussan, it allow us to determire the
appropiate restclassof the quotientsetdefinedby the equivakncerelationM ~ M’ < M’ =MAP.
Genericaly auniquerepresatative of thisrestclasscanbe obtanedby normalizing the solutionsuch
thate.g.

® the sour@ componentshaveunit variane;
o the mixing vectorsare ordeed by decreasingFrobernus norm;
e for eachmixing vectorthe entry which is largestin absolué value is positive.

3.4. Measuresof perfornance

In this subsectionwe will explainhowonecanevaluatethe quality of anestimage of the ICA solution.
Actually, it isimpossibleto quantifythe quality, asquality maybeperceivedagainsta backgroundf
differentcriteria. Namely,thegoalof theICA proceduremayconsstof anoptimal mutualseparabn
of the soure signals or an optimal recovery of the soure signalsfrom the noise,or an optimal
estimaton of themixing matrix. Foreachof theseviewpointswe will disaussappropria¢ measuesof
performane.

The qualty of source separationand recastruction is naturally formulated in terms of
beamfoming performane. In geneal termsthe idea of beamfoming consiss of the constuction
of the matrix W in Equation(17) from an estimae of the mixing matrix in sucha way that the
performane measureof interestis maximized.A detaileddisaussionof beamfomersfalls outsidethe
scopeof this paper we referto Referencd12].

In termsof Equation(14) and(17), andassunmg thatthe sour@sareestimaedin theright order
(for notationalconvernence),we definethe following indicesof performance:

2
def Ui (wim;)

SNR & e (29)
2 (\wims )2
SIR; “:efiag( : ) (30)
U)q (Wi mi)
2 (wim: )2
SINR & 7 (Wi i) (31)

w (Cy — o mim)w;

in which w; is theith columnof W andai is the variane of theith source(formulated for a single
ICA problem;in a seriesof Monte Carlo runs,avermagedvaluesareconsideed). Thefirstindex is the
signal/noseratio (SNR)of theesimateof theith soure. It consistof theratio of the variane of the
actualcontibution of theith sourcein its estimag, overthevariane of the noisecontributionin the
ith soure esimate. The secomnl indexis a signal/nterferene ratio (SIR). It is definedastheratio of
the variane of the actual contribution of the ith sourcein its estimate,over the varianceof the
contributionof thejth sour@ in theestimae of theith soure. Thisindexquantifies the contanination
by the jth sour@ of the ith sourceestimae. Finally, the third index is the signal/inteferen@-plus-
noiseratio (SINR) of theith soure estimatelt consistf theratio of thevarianceof thecontibution
of theith sourcein its esimate, over the variane of all the othe contributions (other sourcesand
noise)to the ith soure@ estimate.Often only the numeator of SIR;, indicaing to what extent wT
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approximaeésM ", is consideredNote thatfor a goodestimae the denomiratoragermimatesunity,
which allows us to defire an approximag interference/ginal ratio (ISR) asISR; = ai (Wiij)z.
The SINR is optimized by a minimumvariancedistortionlessrespmse(MV DR) filter given by

W= ()M (32)

Onthe othe hand,the mutualinterferenceof the sourcesanbe cancdled by implementingalinear
constrainedminimumvariance(LCMV) filter

W = (Cy)"-M (33)

in which Cy is the covarancematrix of the sigral part of the obsewations In pradice, thes filters
will be appraimatedin termsof samplestatsticsandthe estimateof the mixing matrix.

In the casewhere not the sepaation of the sourcesbut the estimaion of the mixing matrix is of
primaryimportane, it is naturalto expresshe ICA performane in termsof the Froberius norm of
the differencebetweenM and its estimateM. We implicitly assumethat the columnsof M are
optimally orderedand scaled.In a Monte Carlo experimentthe root meansquae error (RMSE)

E[M — M|? is consideed.

3.5. PCAverausICA

From the preceding discussionit is clear that ICA is the natual way to ‘fine-tune’ PCA. Both
statisticd techniquesarelinked with the algebraic concepts of EVD andSVD in a remarkableway.

In the ‘classical’ secoml-order statistcal problem of PCA the problemof interestis to removethe
correlationfrom dataobtaned as a linear mixture of independat sourcesignals The key tool to
realize this comesfrom ‘classicd’ linear algebra it is the EVD of the observedcovaiance or,
numericaly, the SVD of the dataset.

In this way the signal subspae, or more precisdy the factorsU andS in the SVD of the mixing
matrix M = USV', canbeidertified. The fact thatthe mixing vectorsandthe soure sigralscanonly
befoundup to anorthogon&transbrmationis knownastherotational invariancepropety of PCA.
Uniqueressis usually obtainal by adding(often artificial) constaints, e.g. mutual orthogonéity of
the columnsof the mixing matrix estmate.

In themorerecentproblemof ICA onealsoaimsattheremovalof higherorderdepengnce which
additionaly involvestheuseof highe-orderstatistics It appeas thatfrom analgebraicpointof view
this leadsto a multilinear EVD. By inverting the mixing matrix, the original sourcesignalscanbe
estimated.

Although any datasetcanbe decorrelatedy a linear transformation,it is not alwayspossibé to
expressit asa linear combination of independat contributiors. This correspadsto the fact that
Equation(24), with %Q\‘) diagmal, is overdeterminel for an arbitrary given supersymmetric highe--
ordertensor WhetherICA is usefuldepend onthecontext,i.e. oneshout havethe prior knowledge
thatthe datasetunderconsideationindeed consstsof linear contibutionsof anindependat natue.
Ontheotherhand thedegreeo whichthecumulanttensorcanbediagonalizedgivesanindicaton to
what extentthe estimaed sourcesigrals canbe regardedasindependat (seePropety 4 of Secton
2.2).

In the schemeof Algorithm 1 the prewhteninghasthe disadvantagecomparel to thehighe-order
step,thatthe calculatons aredirectly affectedby additive Gaussiin noise. It turnsout thatthe error
introducedin the PCA stagecannotbe compensted by the highe-orderstep;it introducesanupper
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boundto the overall performance Writing the SVDs of the true mixing matrix andits estimae as
M =USV" andM = USVT, performanceboundsare given by the following theoremg19,24.
Theoren 3

Assuning two sour@s, the quality of sepaation for the global ICA algorithm is boundedby the
quality of the prewhitening in the following way:

((gt T MY T M))Z

12

The equality sign holdsonly for a perfectreconstuction of the mixing matrix, in which caseboth
sidesvanish.

It canbeprovedthaterrorsin the prewhitening stagecausethe right-handsideof Equation(34) to
be non-vanisling.

Theoren 4

Theaccuracyof themixing matrixestimaeis boundedby theaccuracyof theprewtiteningasfollows
(assunng thatM andM arenormalizdin the sameway):

M — M||2>Z(§zi +§ — 20i) (35

in which o; is theith singularvalueof SUTUS. Theinequality reducego anequalityfor anoptimal
choiceof the orthogonalfactorin the higher-ader ICA step.

It can be proved that the right-hand side of Equation(35) vanishesiff no estimationerror is
introducedin the prewhitening stage.

The boundsgiven by Theoren 3 and 4 can be usedas a reference indicating the ultimate
performane that canbe achieved.

4. EXAMPLE

In this sectian we will illustratethe generalconcep of ICA by meansof anexampék. Becaug thisis
nice for visualization,we constder deterninistic insteal of stochasticsignals. The only differenceis
thatthe expedation operatorE{ ] shouldbe replacedby averagingoverthe interval overwhich the
signalsareconsideed, i.e. the covariancematrix andthe highe-ordercumulant tensorareconputed
by averagim over aninterval insteal of averagng over sample.

We assune thetwo soure sigralsdepictedin Figure 3. Thefirst sourcels a sinewave,the second
oneis a block wave:

x1(t) = V2sint

Xolt) = 1 iff kr<t<kr+mn/2
2(t) = -1 iff kr+n/2<t< (k+1)m keZ

Bothsignalsareconsideedovertheinterval [0, 47]. Theyarezero-mearandtheir covaiancematrix
equalsthe identity (hene the scalirg factor in the definition of x,(t)). The third-orde cumuants
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1.5

1

0.5}» 4

o _

21(t)
22(t)

0 ™ 27 3n 4r 0 7" 27 3r 4

Figure 3. The two sourcesignalsconsideredn the exampleof Section4.

vanish,sincethe signalsaresymmetic aboutthe axisx = 0, which is the deteministic countergrt of
Property3 in Section2.2. In correspon@éncewith Property4, the fourth-orde cumulanttensoris
diagona] it containsthe entries

(4) B 1 4 ) 4 1 47 ) 9 2_ 3
W =), (V2sint) dt—3<47T/O (V2sint) dt) =5
cld — i M X4(t)dt — 3<i /Am Xz(t)dt) 2: -2

" Ar Jo 2 ar Jy ?

Note that the fourth-ordermomenttensoris not diagaal:

4
(M) 1122 = i/ (V2sint)’dt = 1
47 0

In thedefinition (6) of thefourth-ordercumulant, onthe other hand thesametermis subtratedagain.
We assumehe followi ng mixing matrix:

M _411<3_\/1§ _3\5@>

The SVD of this matrix is given by

M:U-S-VT:(%/ZZ —1//512/2)(5 2)(%?2 —1//52/2>

in which U andV areorthogon&dandS is diagonal

The observabns
() = (o)

aredisplayedin Figure 4. Thesesigrals areclearly mixturesof a sineanda block wave.We do not
consideran additive noiseterm, for clarity.
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y1(t)

0 ™ 27 3r 4 0 "" 2m 3 47

Figure4. The observatiorsignalsconsideredn the exampleof Section4.

A PCAvieldsthe two signalsshownin Figure 5. They areuncorelated,i.e.

1 A
— Zl(t)Zz(t)dt =0

471' 0

but far from equalto the origind two sources(t) and xx(t). The problemis that any orthogonal
rotationof Z(t) = (z(t) z(t))" yields signalsthataremutualy uncorrelaed. Statedotherwis, Z(t) is
the resultof an orthogonalrotationof X (t): Z(t) =V OX(t).

The orthogon& factor canbe found from thefourth-ordercurmlant%(z4> , of which the entriesare
given by

((624))1111 = —39/32

((6(24))1112 = 9\@/32

&

( (24)>1122: _21/32
((@4))1222 = _5\/5/32

(%(24))2222 = *31/32

0.08 0.1
0.06 0.08
0.06
0.04
0.04
0.02 0.02

21 (t)
o

z1(t)
(=]

—0.02 -0.02
—0.04
—0.04
-0.06

—0.06 —0.08

—-0.1
™ 2w 3 47 0 7' 2w 3m i

—0.08

Figure5. The PCA component®f the signalsin Figure4.
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Figure6. The ICA component®f the signalsin Figure4.

It canbe verified thatV satisfies

(€§4) = (6)((4) X1 VT X2 VT X3 VT X4 VT
(seeEquaton (24) andPropety 2 of Section2.2). Moreover,in Section3.3we explairedthat, apat
from sometrivial indeterrrinacies,theorthogonaldiagonaizerof<6§4> is unique. Wewill disaussfour
concree conputationalprocedursin thenextsection After thecalculaton of V, onecanachievethe
sourceseparationThe resultis shownin Figure 6.

5. A CLASSOF ALGEBRAIC TECHNIQUES

In Section 3.2.2 we explainedthat the ICA problem can be solved by meansof an apprgriate
multilinear generalizéion of the synmetric EVD. Actually, therearevariousways in which sucha
generakation could be defired.In Section3.3we explainedthatin theorythe solution is essentidy
unique (if the higher-order cumulant of the sourceshasat mostone zero on its diagonal),but in
practicedifferent apprachesmay not produe the sameresult. The reasonis that the multilinear
generakationsshout be definedfor arbitrary supersymrmetric higher-ordertensorsandnot merely
for highe-ordertensorsthat can be diagonaized by means of an orthogoné transfornation, asin
Equation(24), sincethe latter propertyis geneically lost when noiseis present As such,different
multilinear genealizationshavetheir ownidertifiability conditions perturtationpropertes,etc. This
is particulaly relevart whenthe noise level is significant.

In thissectionwe will discussaclassof four multilinearEVD genealizations. Therationalebehind
theseapprachesds explainedandthe maintheaetical resultsare stated It is briefly explainedhow
the orthogoné factor V in Equation(24) canbe calculatedin eachof the four case. However,for
detailedcomputaional proceduresthereackr is referredto the extendedreport[21] or to the origind
referencesAlso for detailsaboutthe derivatimsthe readeris referredto the literature

The expositon requiresthat the reacer is familar with somebasicconcepts of linear algebra and
relatednumericalissues.We referto Reference [5,14].

5.1. ICA by meas of higher-ader eigenvaluedecompoision (HOEVD)

Aswill beexplairedbelow,thedeconpositiondefinedin thefollowi ngtheaemfits theform required
in Equaton (24) [22].
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Theoren 5 (Nth-orde supesymméic eigenvaluedecompaoision)

Every Nth-orde supesymmetic J x J x ... x Jtensa s« canbe written asthe produd
ﬂ:yX]_UXzU‘..XNU (36)

in which:

® U=[uy, Uy, ..., Uj] isanorthogon&J x J matrix;

® ¥ is an Nth-orde supesymmeric Jx J x ... x J tenor of which the subensors¥; -,
obtanedby fixing the nth indexto «, havethe propety of all-orthogonality,i.e. two subtensa
¥i, =« and¥; - 5 areorthogonafor all possble valuesof n, o and 3 subjectto o # 3

(Fjo=a, Fii=p) =0 when o # 3 (37)

The unsymmetric variant of this decompogion is also known as the Tucker modd in
psychanetrics[23,24.

Appliedto asupersymetricthird-ordertensorsd, Theoren 5 saysthatit is alwayspossibleto find
an orthogoral transbrmaion of the column, row and mode-3spacesuchthat the supesymmeric
tensor¥ = x; U' x, UT x5 U' is all-orthogoral. This meansthat the different ‘horizontal
matrices’ of & (the first index i, is kept fixed, whilst the othertwo indicesi, andis are free) are
mutually orthogonalwith respecto the scalamprodud of matrices (i.e.the sumof the produds of the
correspadingentriesvanishe}, atthesametime, andbecaseof thesymmetry,thedifferent‘frontal’
matrices (i, fixed) andthe different ‘vertical’ matrices (i3 fixed) shouldbe mutualy orthogona as
well. Thisis illustratedin Figure 7.

It is clear that Theoran 5 is a multilinear genealization of the EVD of synmetric matrices, as
diagonaity is a specialcaseof all-orthogonaity. Relaxation of the condtion of diagonality to all-
orthogonéity is requirad to ensurghatthedeconpositionalwaysexists.It canevenbeshownthatthe
decompotion exhibits essentidy thesame uniquenespropertiesasthematrix EVD. Moreover, it is
atrue genealization of the matrix decomposion in the sensethat, when Theoren 5 is appliedto
matrices (seconderdertensor$, it leadsto the classicaimatrix EVD. In otherwords,in thedefinition
of the EVD of synmetric matrices the constrant of diagonality may be replacedby the condtion of
all-orthogonality—for matrices the resultis the sarre, up to sometrivi al normalizationconverions.

Thereare many striking analogesbetwee the matrix EVD andthe multilineargenealization of
Theoren 5. In thisrespectve usethetermhigher-ader eigenvaluedecompsition (HOEVD) in this
paper,for converience.Note at this point that the existence of different types of multilinear EVD
extensbnsmay not be excluded—asa matter of fact, focusingon different propeties of the matrix
EVD does lead to the defintion of different (perhapsformally less striking) multilinear

Figure7. All-orthogonalityof anl; x I, x I3 tensory implies mutualorthogonalityof the ‘horizontal’, ‘frontal’
and'‘vertical’ matricesrespectively.
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generakations; e.g. the techniquesdescriled in the following subsetions can be consideed as
alternaives.

The HOEVD canbe obtainal asfollows. The eigennatrix U canbe computel astheleft singula
matrix of a matricized versionof o (seethe terminologypropo®din Referencg25]), denotedby
A, in which all the moden vectorsare stackedascolumns(the orderirg is of no importance);the
tensor? thenfollows from Equation (36).

As tensr diagonality is a specialcaseof all-orthogonality, Equation(24) shows anHOEVD of the
cumulanttensor% (N) Hencethehigher orderstepin theschemeof Section3.2.2canbeinterpretedas
an HOEVD. To obtaln a unique solution, slightly strongercondltlonsare required than the ones
discussd in Section3.3: to makethe SVD of the matrix unfolding of N essentidly unique, it is
requiredthatthe singular valuesaremutually different. It canbeshown thatthis impliesthatthe Nth-
ordercumulants of the componerd of z shouldbe mutually different (N even) or mutually different
in absolué value (N odd)[18].

5.2. ICA by means of maximaldiagonality (MD)

We alreadystresgdthatagenerichighe-ordertenor cannotbediagmalizedby meanwf orthogonal
transfornations.In the previoussubsetion this problemwasintercepedby replacingthecondiion of
diagonaity of the matrix of eigenvalies,in the definition of the matrix EVD, by the condtion of all-
orthogonéity in a multilinear EVD equialent. An interesing altemative defintion of a tengrial
EVD couldinvolve the optimal diagonaization,in a leastsquaessenseof the highe-ordertensor.
This criterion will be calledmadmal diagaonality (MD). Formaly, thefactorV in Equation(24) will
be estmatedasthe orthogonalmatrix U that maximizesthe function

Z IR (38)

in whichtheJ x J x ... x Jten®r €’ is definedas

€ L'eN) 5 Ux,U x3... %y U (39)

A computdional procedurewas propogd in Refelence[16]. The ideais to basethe optimal
diagonaization of the standadized higherorder currulant%(z'\‘) in Equation (24) on a multilinear
generailzation of the Jacolb techniquefor the computationof the EVD of a symmetric matrix [14].
Hencethe unkmown factor V in Equaton (24) is estimatedas a product of elementay Jacol
rotations where eachelementay rotation maximally diagonalizesthe 2 x 2 x ... x 2 subensor
associted with the margnal cumulantsof the estimatesof two different sourcecomponents.For
exampe, if one aimsto address the j;th and j,th soure componentthen the part of the globd
cumulant tensorconskting of the entries of which eachindex is equalto eitherj, or j, is consdered.
All the possibe sourcecombindions(i.e. all the differentchoicesof the pairj,/j,) areaddressedone
aftertheotherin afixedorder,andoneiteraesoversuch'swees’. Forexampe,in anICA problem
with threesourcespne may sweep over the pairs(1,2), (1,3) and(2,3).

For a detaileddescrition of the computationalprocalurewe refer to Refeienceq16,21].

5.3. ICA by meas of joint approdmate diagonalization of eigennatrices (JADE)

Consiceragainthefourth-orde cumulant€'” of thestandardizedrandam vectorz in thehigher-order
ICA stageasin Equaton (24). A very efficienttechnique canbe derivedby interpretirg this fourth-
order tensoras the represatation of a matrix-to-matrix mapping, in the sameway as a matrix
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represats a vecor-to-vecbr magping, and examiningthe structureof this transfornation [26].
Formaly, alinear mappingis associted with <€<Z4> in the following way:

A =€ A) & = Z(%QA))UM a (40)
K

for all indexvalues.In analogywith the EVD of a classicalvecior-to-vecbr mapping onecanlook
for matricesthataresimply res@ledby themagping (40). Thesematrices arecalled ‘eigenmatrices’
the scalingfactorsare genealized eigenvalies.In analogywith the EVD of a symmetric matrix,
eigennatrices correspading to different eigenvalues are mutually orthogond owing to the
symmery of the mapping Taking Equaton (24) into account, onecanderivethatthe EVD hasthe
form

G =k (vv) o (vv) (42)

in which:

e the eigenvaluesk,; (1 <j < J) correspad to the soure curmulants;

e the eigmmatricea/ijj (1=<j=<7) areequalto the oute produds of therows of V, represated
by {v;}, with themséves—noe thatthe eigenmatries areindeedmutually orthogona if {v;}
aremutualy orthogond i.e. if V is orthogon&thenEquation(41) definesan EVD strucure.

We concludethat,in the abseige of noise,theunknownV candirectly be obtainedfrom the EVD
(41). Moreover, we remak that all the matrices in the range of ‘6&‘” can be written as a linear
combindion of the eigenmatrices (in the sameway asany vecbr in the rangeof a vecibr-to-vecbr
mappingcanbe written asalinear combination of the eigenvetors associged with the eigenvalies
thataredifferentfrom zerg, suchthatthey canbediagonalizdby V. Thatis, if amatrix T isin the
rangeof (40), it canbe expandedas

T= Z djVJTVj
i

for a certan setof scalars{dj}; this canbe rewrittenasthe EVD
T=V'.D.V

in which D is a diagonalmatrix contairing {d;} on the diagonal
Whennoise is presentandbr whenthe statisticsof z are only known with a limited precision,the
derivatian aboveis only approximatelyvalid. Namely,the eigennatricesof C@Q‘” arenotexactlyrank-
1 matricesandamatrix T in the rangeof the mappingcannotbe exactlydiagonalizedby V. Here it
makessenseo estimateV astheorthogonalmatrix thatsimultaneouly maximally diagonaizes(in a
least squaressensg a set of matrices that form a basisof the range.Formally, if the setto be
diagonaizedis given by { T}, V is estimaedastheorthogonalmatrix U thatmaximizesthefunction

f(U) = Z(Z I(T;)jj|2> (42)
p J

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometric000;14: 123-149



INDEPENDENTCOMPONENTANALYSIS 143
in which

T EU-T,-UT (43)

An orthogoné&basisfor the rangeof thelinearmappingcanbeobtanedfrom the EVD in Equaton
(41), together with a first estimate of V—'JADE’ standsfor ‘joint appraimate diagonalizationof
eigenmatrices’. A variant is the simuktaneousEVD of the ‘matrix slices (4.”),,, obtaned by
keepingtheindicesk, | in (<€§4))in| fixedwhile varyingtheindicesi, j; thes matrices spantherangeof
the mapping as they are the image of the matrices that contain a single ‘one’ entry and zeros
elsewhereln the latter case J° matrices arejointly diagonaized:; in the former case J matrices are
consideed(if all thesourceshaveanon-vanishingcumulant;for idertifiability, atmostonevanishing
cumulant canbe allowed) Of cours, an estimateof V canalsobe obtainel from a limited set of
matrices in the spanof the mapping without exploiting all the information available in <6<Z4>.

Let usnow explainhow this procedureof simultaneous} diagonaizing a setof matrices relatesto
the problemwe statedfrom, namelythe diagonaliation of <€§4) itself in Equaton (24). Implicitly or
explicitly, thesimultaneousliagonaizationof abasisof therangeof (40) amountgo theappraimate
diagonaization of the matrix slices(%“))k‘, , definedin the precedng paragrap, i.e. the orthogonal
factorV is detaminedin suchaway thattheentriesof €\* of which thefirst andtheseconl indexare
differentareminimized.Howeve, in (24)we seethatV is appliedin asymmetic way overall modes.
Hencealso theentries with distinctfirst andthird index, distinctfirst andfourth index, distinctsecond
andthird index, etc.areapproximagly minimized.lt is intuitively clearthatthis canbeconsideedas
an approimate diagonalizationof 6.? itself.

As far as the computdion of the result is concerned a set of symmeric matrices can
simultaneouslybe diagonalizedby meansof a Jacob iteration; we referto Reference[21,27].

5.4. ICA by meas of simultareousthird-order tenor diagonalizaion (STOD)

Thetedhniqueof simultaneoughird-orde tensor diagonaization (STOTD) is very similar in spirit to
JADE. Insteadof linking a matrix-to-matrix mappingto ¥, we now assodte with it a linear
transformation of R” to the vectorspaceof third-orde tenrs, R? > 7, in the following way:

A = (€(z4>(a) — ailjk = Z(c@y))ijkla (44)
[

for all index values.The SVD of this mappingis given by
J
(6;4) — ZUJOVJ o VJT (45)
j

in which:

e thesingula valuesaregivenby sign (rx)sx (1 <] < J), in which s, symbolizes the cumulant
of thejth soure;
e the correspadingright singular vecorsv! arethe columnsof VT (1<j < J);
e the correspading ‘left singulartensors ¥ (1 <j < J) aregiven by
V; = sign (Iixj)VjT o VJ-T o VjT (46)

All the third-orde tenrsin the rangeof ¢¥ canbe written asa linear combinaion of the left
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singula tensorssuchthattheycanbe diagonalizdby V. In the STOTDalgorithm,V is estimaedas
the orthogon& matrix that simuttaneous} diagonalizs,in aleast squaresensea setof third-orde
tensorghatform abasisfor therangeof %g“). Formaly, if thesetto bediagonaizedis givenby { 7},

V is estimatedasthe orthogoral matrix U that maxmizesthe function

fU) = Z(Z((gf)mf) (47)

P\ |
in which 9;) equalsthe tensord , after multiplication with U:

JO"p:OJpx1U><2U><3U (48)

An orthogonabasisfor therangeof thelinearmagping canbe obtanedfrom the SVD in Equaton
(45), togeher with a first estimae of V. It is alsopossibe to resortto an ordinary basisby simple
transfamation under<6<z4) of J lineady independem vectors.For exampe, transfornation of the
canonicé unit vectorscorrespadsto choosingthe ‘third-order tensr slices’ (<6<Z4))|, obtainel by
keepingthe index | in (<6§4))ijk| fixed while varying the otherthreeindices

Reference[28] shows how the simultaneousdiagonaization of third-order tensorscan be
computel by meansof a Jacobiiteration;a summaly of the resuts canbe foundin Referencd21].

5.5. Numeical expeiments

In this subsetion weillustratethe performanceof themethodghathavebeendiscussd, by meansof
somenumercal results.

We consideranICA problemwith two souresandfive observaibn channés; the overestimation
of the numberof soures senesto limit the influence of noise on the PCA stage,asexplainedin
Section3.2.1,suchthattheresultsreflectthe performanceof the differentapprachedor the higher-
orderstage Thefirst soure distribution is binary (+1), with anequalprobability of bothvalues;the
seconddistribution is uniform over the interval [ — /3, v/3]. Both sourcesare zeromeanandhave
unit variance.Data set underconsiderationconsistof 100 sample. For eachdatasetthe mixing
matrix M was generagd asfollows: the left andright singular matrices were obtaned from a QR
factorization of a5 x 2 anda 2 x 2 matrix of which the entries hadbeendrawnfrom a zero-mean
Gaussandistribution, andthe matrix of singular valueswasequalto

o 5 (k o)
V1i+k2\0 1

in which k wasthe condtion numker. The noiseis spatally white Gaussiamwith variances? . Owing
to the way M was construted, o2 can also be interpretedas the inverse of the SNR of the
observabns(the Froberius normof the covarianceof the sigral partof the obsevationsequat 5; the
Froberius normof the noisecovaianceis equalto 5 oy). Forthis problemwe condud¢ a Monte Carlo
experimentonsstingof 500runs.Sincebothsoure distributonsareeven the higher-orde stageof
the different ICA algorithmsis basedon fourth-orde cumulants.

In Figure 8 we plot the meanISR of the estimaed LCMV filters(Equatbn (33)). The dottedlines
below correspad to the performane boundspecfied in Equation(34). Figure9 shows the INSR of
thefirst soure estimateobtanedfrom anMVDR filter (Equation(32)). The dottedlinesin themiddle
correspad to the MVDR filter in which the true valuefor M is used;notethatthe MD, JADE and
STOTD filters outpeform this informed beamfomer. In Figure 10 the Froberus RMSE of the
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Figure8. MeanISR of theLCMV beamformepbtainedby meansf HOEVD (broken),MD (full), JADE (chain)

andSTOTD (dotted).Dottedbelow: performancéound.Top: effectof the SNR on the quality of separatiorfor

k=1 (lower curves),5 (middle curves)and 10 (uppercurves).Bottom: effect of the conditionnumberon the
quality of separatiorfor SNR= 30 dB (lower curves),20 dB (middle curves)and 10 dB (uppercurves).
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Figure9. MeanINSR of thefirst sourcefor the MVDR beamformenbtainedby meansof HOEVD (broken),MD

(full), JADE (chain)andSTOTD (dotted).Dottedmiddle: informedbeamformerTop: effectof the SNRon the

quality of separatiorfor k=1 (lower curves),5 (middle curves)and 10 (uppercurves).Bottom: effect of the

conditionnumberonthe quality of separatioffor SNR=30dB (lower curves),20dB (middlecurves)and10dB
(uppercurves).
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Figure10. FrobeniusRMSE for the mixing matrix estimateobtainedby meansof HOEVD (broken),MD (full),

JADE (chain)andSTOTD (dotted).Dottedbelow: performancéound.Top: effectof the SNRon the quality of

separatiorfor k=1 (lower curves),5 (middle curves)and 10 (uppercurves).Bottom: effect of the condition

numberon the quality of separatiorfor SNR= 30 dB (lower curves),20 dB (middle curves)and 10 dB (upper
curves).
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mixing matrix estimateis plotted; to facilitate the comparisonof the different curves,the mixing
vectorsare normalizedto unit lengh. The dotted lines below show the performane bound of
Equaton (35). In eachfigure theleft plot showsthe performane asa function of the noiselevel for
threedifferentvaluesof k, while theright plot shows theinfluenceof how closethe mixing vectorsare
for threedifferent valuesof the SNR.

The figures show that the MD, JADE and STOTD algorithms have approxmately the same
accuracy moreove, for suffidently high SNRsandsuffidently low conditionnumterstheresuts are
closeto the performancebound. This is theoreticadly foundal in Reference[29]. Becauseof the
heaviercomputationalload of the MD technique,the JADE and STOTD algorithmsare preferdle.
STOTDhastheslightadvanageoverJADE thattheJ tensorgo bediagonalizdarereadly avaiable,
wherea JADE requiresthe computation of the dominant J-dimensional eigenspaceof a J* x J?
matrix to redue the numberof matrices to J; in addtion, JADE seemdo be a bit morevulneratie
w.r.t. abadconditionng of themixing matrix. TheHOEVD techmiqueis theleastaccurag of thefour
approachs, butonthe othe handit is alsoby far the cheagst.Intuitively the differencein accuacy
canbeexplainedby takingin mind thatin the HOEVD approachdiagonality of the sourcecumulant
tensoris a premise,while in the MD technique it is explicitly forced,i.e. in the MD technique the
sourceestimages are explicitly mace ‘as independat aspossble’, while in the HOEVD technique
statistcal independaceis merely presipposedthe sameargumen appliesto JADE andSTOTD.

6. CONCLUSION

In many appications,ICA is the naturalway to setoff the rotational invarianceof PCA. From an
algebrac point of view, ICA amouns to multilinear genealizationsof the synmetric EVD. We
briefly discussedh framework of four typesof orthogoné transfornation,in which the condition of
diagonaity of the matrix of eigenvalies was replacedby (i) all-orthogonaity, (i) maxmal
diagonaity, (iii) maximaljoint diagonalityof a setof matricesand(iv) maxmal joint diagonaity of a
setof third-ordertensors
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