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SUMMARY

This paper is an introduction to the concept of independent component analysis (ICA) which has recently been
developed in the area of signal processing. ICA is a variant of principal component analysis (PCA) in which the
components are assumed to be mutually statistically independent instead of merely uncorrelated. The stronger
condition allows one to remove the rotational invariance of PCA, i.e. ICA provides a meaningful unique bilinear
decomposition of two-way data that can be considered as a linear mixture of a number of independent source
signals. The discipline of multilinear algebra offers some means to solve the ICA problem. In this paper we
briefly discuss four orthogonal tensor decompositions that can be interpreted in terms of higher-order
generalizations of the symmetric eigenvalue decomposition. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is intended to provide an introduction to a fundamental issue that has received an
increasing amount of attention from the signal-processing research community in the last decade,
namely the concept of independent component analysis (ICA), also known as blind source separation
(BSS). Disciplines involved are statistics, neural networks, pattern recognition, information theory,
system identification, etc. [1,2]. In this contribution we have to limit ourselves to the algebraic
approach: in a natural way, ICA poses the question of generalizations of matrix algebraic techniques
to multilinear algebra, i.e. the algebra of ‘multiway matrices’ or ‘higher-order tensors’. A second
objective of the paper is to give a brief overview of a class of orthogonal tensor decompositions that
can be interpreted as higher-order counterparts of the symmetric matrix eigenvalue decomposition
(EVD). Like e.g. the EVD and the singular value decomposition (SVD) of matrices, these
decompositions can be considered as tools useful for a wide range of applications.

In a nutshell, the goal of ICA is the decomposition of a set of multisensor data in ana priori
unknown linear mixture ofa priori unknown source signals, relying on the assumption that the source
signals are mutually statistically independent. This concept is in fact a fine-tuning of the well-known
principal component analysis (PCA), where one aims at the decomposition in a linear mixture of
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uncorrelated components—the weaker condition resulting in a rotational indeterminacy of the
solution.To overcomethis indeterminacy, thecrucial observationis thatstatistical independencenot
only imposes constraints on the covariance of the sources,but also involves their higher-order
statistics (HOS); theconcept of HOSwasintroducedin References [3,4]. ICA andPCA arenot only
relatedfrom astatisticalpointof view,butalsofrom acomputationalperspective,astheybothrely on
anEVD-type decomposition, in linear andmultilinear algebrarespectively.

Fromanalgorithmic pointof view, threeapproachesarepossible: (i) first aPCAis carriedout and
subsequentlytheremainingdegreeof freedomis fixedby resorting to HOS;(ii) thesolution is directly
obtained from theHOSwhile avoiding theuseof second-order statistics;or (iii) second- andhigher-
orderstatisticsareexploitedin acombined way. Eachapproachhasits prosandcons;themainpoint
of differenceis that working with HOShastheadvantagethat Gaussiannoisecanbesuppressedto
some extent, but on the other hand it requires longer data sets than needed for second-order
calculations.A second observationis that,atpresent, thethreemethodsof workinghavenotyetbeen
studiedto the samedepth.For this paperwe chooseto focus on the first type of procedure.For
bibliographicpointers relatedto the otherapproacheswe refer to Reference[2].

We begin with a brief expositionof the required preliminary material of multilinear algebraand
HOS in Section 2. Section3 discusses ICA in conceptual terms.Subsequentlywe give a formal
problem definition, analyze the mechanism of PCA-based ICA routines, discussthe issue of
identifiability, provide somemeasures of performance and makea comparisonbetween PCA and
ICA. Section4 il lustratesthe ideas with a conceptual example. Subsequently, Section 5 briefly
discusses four algebraic algorithms. Their performance is illustrated by meansof a number of
numerical experimentsat the endof the section.

Let us finally enumeratesome notationalconventions. Vectors are written as bold lower-case
letters,matrices as bold capitalsand tensors of order higher than two as bold script letters. The
transpose of a matrix A will bewritten asAT andits Moore–Penrosepseudoinverse[5] asA†. E{ ⋅}
denotesthestatisticalexpectation.RI1 � I2 �… � IN is thevectorspaceof real-valuedI1� I2�…� IN
tensors.

2. BASIC DEFINITIONS

In this section we introduce some elementary notations and definitions needed in the further
developments.Section2.1 dealswith somebasicconceptsof multil inearalgebra; Section2.2 deals
with HOS.

2.1. Multilinear algebra

First thedefinition of anouterproductgeneralizesexpressions of the typeabT in which a andb are
vectors.

Definition 1 (outer product)

The outer product! * @ ∈ RI1 � I2 �… � IP� J1 � J2 �… � JQ of a tensor ! ∈ RI1 � I2 �… � IP and a
tensor@ ∈ RJ1 � J2 �… � JQ is definedby

�! �@�i1i2...iPj1j2...jQ
�def

ai1i2...iPbj1j2...jQ

for all valuesof the indices.
For example, the entries of an Nth-order tensor ! equal to the outer product of N vectors

u(1), u(2), …, u(N) aregiven by ai1i2...iN � u�1�i1 u�2�i2 . . . u�N�iN .
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Nextwegivestraightforwardgeneralizationsof thescalarproduct,orthogonality andtheFrobenius
norm.

Definition 2 (scalar product)

The scalarproduct k!, @l of two tensors!,@ ∈ RI1 � I2 �… � IN is definedas

h!;@i�defX
i1

X
i2

. . .
X

iN

bi1i2...iN ai1i2...iN

The tensorscalarproductof two vectorsx andy reducesto the well-known form yTx.

Definition 3 (orthogonality)

Tensorswhosescalarproduct equals zeroaremutually orthogonal.

Definition 4 (Frobeniusnorm)

The Frobeniusnorm of a tensor! is given by

k!k�def ��������������
h!;!i

p
In tensor terminology, columnvectors,row vectors, etc. will be calledmode-1 vectors, mode-2

vectors, etc. In general, the mode-n vectorsof an Nth-order tensor ! ∈ RI1 � I2 �… � IN are the In-
dimensional vectors obtained from ! by varying the index in and keepingthe other indicesfixed
(Figure1).

The multiplication of a higher-ordertensor with a matrix canbe definedasfollows.

Definition 5

Themode-n product of a tensor! ∈ RI1 � I2 �… � IN by amatrix U ∈ RJn � In, denotedby !� n U, is
an I1� I2�…� In71� Jn� In�1 …� IN tensordefinedby

�!�n U�i1i2...jn...iN
�
X

in

ai1i2...in...iN ujnin

for all index values.

Themode-n product allows oneto expresstheeffectof a basistransformation in RIn on thetensor
!.

By way of illustration,let uslook at thematrix product A = U(1) ⋅ B ⋅ U(2)T involving matricesB ∈
RI1 � I2, U(1) ∈ RJ1 � I1, U(2) ∈ RJ2 � I2 andA ∈ RJ1 � J2. Working with ‘generalizedtransposes’ in the

Figure1. A 4� 4� 4 tensorconsideredasasetof columnvectors,row vectorsandmode-3vectorsrespectively.
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multil inearcase(in which thefact thatmode-1vectorsaretranspose-freewouldnothaveaninherent
meaning) canbeavoidedby observing thattherelationshipsof U(1) andU(2) (not U(2)T) with B arein
fact completely similar: in the same way asU(1) makeslinear combinations of the rows of B, U(2)

makeslinearcombinationsof the columns; in the sameway asthe columnsof B aremultiplied by
U(1), its rowsaremultiplied by U(2); in thesameway asthecolumnsof U(1) areassociatedwith the
columnspaceof A, thecolumnsof U(2) areassociatedwith therow space. This typical relationshipis
denotedby meansof the�n symbol:A = B�1 U(1)�2 U(2).

Figure 2 visualizes the equation ! = @ �1 U(1) �2 U(2) �3 U(3) for third-order tensors ! ∈
RJ1 � J2 � J3 and @ ∈ RI1 � I2 � I3. Unlike the conventional way to visualize second-order matrix
products, U(2) hasnot beentransposed,for reasonsof symmetry. Multiplication with U(1) involves
linearcombinationsof the‘horizontalmatrices’ (indexi1 fixed) in @. Statedotherwise,multiplication
of @ with U(1) meansthatevery columnof @ (indicesi2 andi3 fixed)hasto bemultiplied from theleft
with U(1). Multiplication with U(2) andU(3) canbe expressed in a similar way.

2.2. Higher-order statistics

The basic quantities of HOS arehigher-order moments andhigher-ordercumulants.First, moment
tensorsof a real stochastic vectoraredefinedasfollows.

Definition 6 (moment)

The Nth-order momenttensor}�N�x 2 RI�I�...�I of a real stochastic vectorx ∈ RI is definedby the
element-wiseequation

�}�N�x �i1i2...iN
� Mom�xi1; xi2; . . . ; xiN � �def Efxi1xi2 . . . xiNg �1�

The first-order momentis the meanof the stochastic vector. The second-order momentis the
correlation matrix (following the definition adopted in e.g.Reference[6], in which the meanis not
subtracted).

On the other hand,cumulantsof a real stochastic vector aredefinedasfollows.

Definition 7 (cumulant)

TheNth-order cumulant tensor#�N�x 2 RI�I�...�I of a realstochasticvectorx ∈ RI is definedby the
element-wiseequation

Figure2. Visualizationof themultiplicationof a third-ordertensor@ ∈ RI1 � I2 � I3 with matricesU(1) ∈ RJ1 � I1,
U(2) ∈ RJ2 � I2 andU(3) ∈ RJ3 � I3.
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�#�N�x �i1i2...iN
� Cum�xi1; xi2; . . . ; xiN �

�defX�ÿ1�Kÿ1�K ÿ 1�!E
Y
i2A1

xi

( )
E
Y
i2A2

xi

( )
. . . E

Y
i2AK

xi

( )
�2�

wherethe summation involves all possible partitions { A1, A2,…,AK} (1 < K < N) of the integers
{ i1,i2,…,iN}. For a real zero-meanstochasticvectorx the cumulants up to orderfour areexplicitly
given by

�cx�i � Cum�xi� �def Efxig �3�

�Cx�i1i2
� Cum�xi1; xi2� �def Efxi1xi2g �4�

�#�3�x �i1i2i3
� Cum�xi1; xi2; xi3� �def Efxi1xi2xi3g �5�

�#�4�x �i1i2i3i4
� Cum�xi1; xi2; xi3; xi4� �def Efxi1xi2xi3xi4g ÿ Efxi1xi2gEfxi3xi4g

ÿ Efxi1xi3gEfxi2xi4g ÿ Efxi1xi4gEfxi2xi3g �6�
Forevery componentxi of x thathasanon-zeromean,xi hasto bereplaced in theseformulae,except
in Equations (3) and(2) whenit appliesto a first-ordercumulant, by xi 7E{ xi}.

Let usfirst illustratethemeaning of Equation(2) by meansof thesecond-ordercase(Equation(4)).
As thereare two possible partitionsof { i1, i2}, namely{{ i1, i2}} (the number of partition classes
K = 1) and{{ i1}, { i2}} (K = 2), Equation (2) reads as

�Cx�i1i2
� Efxi1xi2g ÿ Efxi1gEfxi2g

in which xi (xj) hasto bereplaced by xi7E{ xi} (xj7E{ xj}) if xi (xj) hasa non-zeromean.Sincethe
secondterm dropsby definition,we obtain the form of Equation (4).

It turnsout that,again, thefirst-ordercumulant is themean of thestochasticvector. Thesecond-
ordercumulantis thecovariancematrix. Theinterpretationof acumulant of orderhigher thantwo is
not straightforward,but thepowerful properties listedbelow will demonstratethe importanceof the
concept.For the moment it suffices to state that cumulants of a set of random variablesgive an
indicationof theirmutualstatistical dependence(completely independent variablesresultingin azero
cumulant), andthathigher-ordercumulantsof asinglerandom variablearesomemeasureof its non-
Gaussianity (cumulantsof a Gaussianvariable, for N> 2, beingequalto zero).

TableI illustratesthe definitions for two important univariate probability densityfunctions.
At first sight, higher-ordermoments,becauseof their straightforward definition,might seemmore

interesting quantities thanhigher-ordercumulants.However, cumulantshavea numberof important
properties that arenot shared with higher-ordermoments, suchthat in practicecumulantsaremore
frequentlyused.We enumerate someof the most interestingProperties (without proof) [7,8].

1. Supersymmetry. Momentsandcumulantsaresymmetric in their arguments, i.e.

�}�N�x �i1i2...iN
� �}�N�x �P�i1i2...iN� �7�

�#�N�x �i1i2...iN
� �#�N�x �P�i1i2...iN� �8�

in which P is an arbitrary permutation of the indices.
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2. Multilinearity. If a realstochastic vectorx is transformedinto a stochastic vector x̃ by a matrix
multiplication x̃ = A ⋅ x, with A ∈ RJ � I, thenwe have

}�N�~x � }�N�x �1 A �2 A . . .�N A �9�

#�N�~x � #�N�x �1 A �2 A . . .�N A �10�
3. Evendistribution. If a realrandom variablex hasanevenprobability density function px(x), i.e.

px(x) is symmetric aboutthe origin, thenthe oddmoments andcumulantsof x vanish.
4. Partitioning of independent variables. If a subset of I stochastic variablesx1, x2, …, xI is

independent of the othervariables,thenwe have

Cum�x1; x2; . . . ; xI � � 0 �11�
Thisproperty doesnothold in general for moments(e.g.for two mutually independent random
variablesx andy wehavethatMom(x,x,y,y) = E{ x2} ⋅ E{ y2}, whichdoesnotvanishunlessone
of thevariablesis identically equalto zero).A consequenceof theproperty is thatahigher-order
cumulant of a stochastic vectorhavingmutually independent components is a diagonal tensor,
i.e. only the entries of which all the indicesare equalcan be different from zero. This very
strongalgebraic condition is the basisof all the ICA techniquesthat will be discussed in this
paper. To clarify this, let us havea look at the second-ordercase.Let us assumea stochastic
vectorx ∈ RI with mutually independent entriesthatarenot necessarily zero-mean.Unlessthe
entries are zero-mean,the correlation matrix (second-order moment) of x is not a diagonal
matrix, asthemeanof theentries is not subtractedin thedefinition of a moment.On theother
hand,the covariancematrix (second-order cumulant) is a diagonal matrix regardlessof the

TableI. Momentsandcumulants,up to orderfour, of a Gaussiananda uniform distribution
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meanof x. Thedefinition of acumulantis suchthatthis property holdsfor all cumulant orders.
5. Sumof independent variables. If thestochastic variablesx1, x2, …, xI aremutually independent

from the stochasticvariablesy1, y2, …, yI, thenwe have

Cum�x1� y1; x2 � y2; . . . ; xk � yk� � Cum�x1; x2; . . . ; xk� � Cum�y1; y2; . . . ; yk� �12�
The cumulant tensorof a sum of independent random vectorsis the sum of the individual
cumulants.This propertydoesnot hold for momentseither;asa matter of fact, it explains the
term‘cumulant’. (OnecouldexpandMom(x1,y1,x2�y2,…,xk�yk) asasumoverall possiblex/y
combinations,butthecross-terms,containing x aswell asy entries,donotnecessarilyvanish,as
opposed to the cumulant case—seethe previousproperty.)

6. Non-Gaussianity. If y is a Gaussianvariable with the samemeanand variance as a given
stochastic variable x, then,for N > 3, it holdsthat

#�N�x � }�N�x ÿ}�N�y �13�

As a consequence,higher-order cumulantsof a Gaussian variableare zero (seeTable I). In
combination with themultil inearityproperty, we observethathigher-ordercumulantshavethe
interesting property of beingblind for additive Gaussiannoise.Namely, if astochasticvariable
x is corruptedby additiveGaussiannoise n, i.e.

x̂� x� n

thenwe neverthelesshavethat

#�N�x̂ � #�N�x � #�N�n � #�N�x

Generally speaking,it becomesharder to estimate HOSfrom sampledataasthe orderincreases,
i.e. longerdatasetsarerequiredto obtain thesameaccuracy[9,10].Hencein practicetheuseof HOS
is usually restricted to third- andfourth-order cumulants. For symmetric distributions, fourth-order
cumulantsareused,since the third-ordercumulantsvanish,asmentionedin Property3.

3. INDEPENDENT COMPONENT ANAL YSIS

3.1. Theproblem

Assume the basic linear statistical model

y � Mx � n � ~y� n �14�

in which y ∈ RI is called theobservation vector, x ∈ RJ is thesourcevectorandn ∈ RI represents
additivenoise. ỹ ∈ RI is thesignalpart of theobservations.M ∈ RI � J is calledthemixingmatrix—
its entries mij indicate to what extent the jth source componentcontributesto the ith observation
channel(1 < i < I, 1 < j < J), i.e. they determine how the sourcesare‘mixed’ in the observations.
The columns{ mj} of M arethe mixing vectors; its rangeis known asthe signal subspace.

The conceptof independent componentanalysiscannow be formulatedasfollows.

* The goal of independentcomponentanalysis (ICA) consists of the estimation of the mixing
matrixM and/orthecorresponding realizationsof thesourcevectorx, givenonly realizationsof
the observation vector y, underthe following assumptions.
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1. The mixing vectors arelinearly independent.
2. The componentsof x aremutually statistically independent, aswell asindependent from

the noise components.

Thesecondassumption is thekey ingredient for ICA. It is a very stronghypothesis,but also quite
naturalin lotsof applications:in practice,‘mutually statistically independent’canoftenberephrased
as‘of adifferentnature’. ICA is thereforeof intereste.g.for theseparation of electromagnetic signals
emitted by different usersin mobile communications; for the extraction of bioelectric signals,
generated by different organs, from body surfacepotentials; for the analysis of differentsourcesof
vibration in rotatingmachinery; etc.Fromanalgebraic point of view it doesnot only meanthat the
covarianceof x is a diagonal matrix, but also that all the higher-ordercumulants of x arediagonal
tensors. Using the properties discussed in Section2.2,we havethat

Cy � Cx �1 M �2 M � Cn �15�

#�N�y � #�N�x �1 M �2 M . . .�N M � #�N�n �16�

in which Cx and#�N�x arediagonaland#�N�n vanishesif the noiseis Gaussian.
Thefirst assumption is, for theclassof algorithmsthatwill bediscussedin this paper,required for

reasonsof identifiability. It holds in a genericsensewhen I > J (regardlessof the fact that an ill-
conditionedmixing matrixcanmaketheICA problemheavierfrom anumericalpointof view,aswill
beillustratedby thenumericalexperimentsin Section 5.5).However, theidentifiability constraint is
not inherent to ICA assuch.Undersmoother conditions it is evenpossible to identify the mixing
matrix in the situation in which therearemore sourcesthansensors [11]; this is a topic of current
investigations.

In the following subsectionswe will explain how the two assumptionsabovecanbeexploitedto
obtainanestimate M̂ of themixing matrix.However,merely resorting to thesetwo assumptions,it is
impossible to distinguishbetweenthe signalandthe noise term in Equation (14). Hencethe source
signalswill beestimatedfrom theobservationsby meansof asimplematrixmultiplicationasfollows:

x̂ �WTy �17�

WT cane.g.taketheform of M̂†. Moregenerally, variousbeamformingstrategies[12] canbeapplied
(seealsoSection3.4).

TheICA problemis also addressed in theliteratureunderthelabelsblind sourceseparation (BSS),
signal copy,waveform-preserving estimation, etc.However, the assumptionson which the solution
strategiesarebasedmay sometimesdiffer from paperto paper.

3.2. Prewhitening-basedICA

TheICA problemis most oftensolvedby atwo-stagealgorithmconsistingof asecond- andahigher-
order step. In this subsectionwe will explain the technique in general terms.An outline of the
procedureis presentedasAlgorithm 1.

Algorithm1 (PCA-based ICA)

Given:T samples { yt} 1 < t < T of y = Mx � n (y, n ∈ RI,x ∈ RJ,M ∈ RI � J). Call Ay = [y1,y2,…,yT].

1. Prewhiteningstage (PCA).
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* Compute samplemeanm̂y from Ay. Define Ãy = [y1 7m̂y,y2 7m̂y,…,yT 7m̂y]/
������������
T ÿ 1
p

.
* Truncated SVD of Ãy: Ãy = U ⋅ S ⋅ ṼT, with U ∈ RI � J and Ṽ ∈ RT � J column-wise

orthonormal andS ∈ RI � J positive definite anddiagonal.
* If n is spatially white and Gaussian, with variance �2

n, replacethe diagonalentriesof S by���������������
s2

jj ÿ �2
n

q
�1< j < J�.

(Section3.2.1.)
2. Higher-orderstage.

* Compute samplecumulant #̂�4�y from Ay.
* #̂�4�z � #̂�4�y �1 �Sy � UT� �2 �Sy � UT� �3 �Sy � UT� �4 �Sy � UT�.
* (Approximate) diagonalization:

#̂�4�z � #̂�4�x �1 VT �2 VT �3 VT �4 VT

in which V is orthogonal. A classof algebraic algorithms:

- HOEVD (Section 5.1);
- MD (Section 5.2);
- JADE (Section5.3);
- STOTD(Section 5.4).

(Section3.2.2.)

Results:mixing matrix estimate M̂ = U ⋅S ⋅VT; sourceseparationby meansof MVDR, LCMV, …,
beamforming.

3.2.1. Step1: prewhitening. The prewhitening step amountsto a principal componentanalysis
(PCA) of the observations. Briefly, the goal is to transform the observation vector y into another
stochastic vector z having unit covariance.This involves the multiplication of y with the inverse
of the square root of its covariance matrix Cy. When J< I, a projection of y onto the signal
subspaceis carriedout.

Let usnow discusstheprewhiteningprocedurein moredetail.Firstweobservethatthecovariance
matrix Cy takesthe form (for the moment the noiseterm in Equation(14) is neglected,for clarity)

Cy � M � Cx �MT �18�

in which thecovarianceCx of x is diagonal,sincethesourcesignalsareuncorrelated.Assumingthat
thesourcesignalshaveunit variance (without lossof generality, aswemayappropriatelyrescale the
mixing vectorsaswell), we have

Cy � M �MT �19�
A first observation is that thenumberof sourcescanbededucedfrom therankof Cy. Substitution

of theSVD of themixing matrixM = USVT showsthattheEVD of theobservedcovarianceallowsus
to estimate the componentsU andS whilst the factor V remainsunknown:

Cy � U � S2 � UT � �US� � �US�T �20�

Hencethesignalsubspacecanbeestimatedfrom thesecond-orderstatistics of theobservations, but
the actualmixing matrix remainsunknownup to an orthogonal factor.

The effect of the additive noise term n can be neutralized by replacingCy by the noise-free
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covarianceCy 7 Cn. In the caseof spatially white noise (i.e. the noisecomponentsaremutually
uncorrelatedandall havethesamevariance),Cn takestheform �2

nI , in which�2
n is thevarianceof the

noiseoneachdatachannel. In amore-sensors-than-sourcesset-up,�2
n canbeestimatedasthemeanof

the‘noiseeigenvalues’,i.e. thesmallestI 7 J eigenvalues,of Cy. Thenumberof sourcesis estimated
asthenumber of significant eigenvaluesof Cy; for a detailed procedurewe refer to Reference[13].

Whenthe outputcovarianceis estimated from the dataas

Cy � ~Ay
~AT

y �21�

in which Ãy is anI � T matrixconsistingof T realizationsof y, dividedby
������������
T ÿ 1
p

aftersubtraction of
thesample mean,thenit is preferableto computethefactors U andS without explicit calculationof
the product (21); insteadthey canbeobtained directly from the truncatedSVD of Ãy:

~Ay � US~VT �22�

In this way thesquaring of thesingularvaluesof Ãy, which maycausea lossof numerical accuracy
[14], canbeavoided.

After computation of U andS, a standardized random vector z canbe definedas

z�def Sy � UT � y �23�

3.2.2. Step2: fixing the rotational degree of freedomusingHOS.Herewe will explain how the
remaining unknown, i.e. the right singular matrix V of the mixing matrix M , canbe estimated.As
we have already exploited the information contained in the second-order statistics of the
observations,we now resort to the HOS.

Assuming that thenoiseis Gaussian,higher-ordercumulantsof thestandardizedrandom vectorz
definedin Equation (23) aregiven by

#�N�z � #�N�x �1 VT �2 VT . . .�N VT �24�

(cf. Equation(16) with z = VTx). This tensor is relatedto the Nth-order output cumulant by the
multil inearity property:

#�N�z � #�N�y �1 �US�y �2 �US�y . . .�N �US�y �25�
The key observationis that the sourcecumulant #�N�x is theoretically a diagonaltensor,sincethe
sourcesignalsarenotonly uncorrelatedbutalsohigher-orderindependent. HenceEquation (24) is in
fact a symmetric EVD-like tensor decomposition. This decomposition is unique if at most one
diagonalelement of #�N�x equalszero, aswill beexplainedin Section3.3.However, simply counting
thedegreesof freedomin thedecompositionmodelshowsthatin general ahigher-ordertensorcannot
bediagonalizedby meansof orthogonal transformations: thesupersymmetric tensor#�N�z contains in
principle J(J� 1)…(J� N 71)/N! independent entries, whilst the decomposition allows only
J(J� 1)/2 (orthogonal factorV)� J (diagonal of #�N�x ) degreesof freedom.Thismeansthatif #�N�z is
not perfectly known (owing to a finite data length, non-Gaussian additive noise, etc.), the
approximatingtensor cannotbefully diagonalizedin general. Theway in which theestimationerror
is dealt with allowsusto distinguishdifferentsolutionstrategies.Four differentalgebraic approaches
will briefly bediscussedin Section 5.
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It is worth mentioning that (24) is in fact a CANDECOMP/PARAFAC modelof #�N�z [15]. If we
represent the rowsof VT by { vj} andthesourcecumulantsby {�xj

} (1 < j < J), thenEquation (24)
canbe rewrittenas

#�N�z �
X

j

�xj v
T
j � vT

j � . . . � vT
j �26�

This is indeedan expansionof #�N�z asa linear combinationof rank-1tensors (i.e. tensorsthat are
given by an outer product of vectors). The rank-1 terms have the specialproperty that they are
supersymmetricandmutuallyorthogonal.Again, theremaynotbeacompletematchof bothsidesof
Equation(26) in the casewhere #�N�z is not perfectly known.

3.3. Identifiability

In thissubsectionwewill explain to what extent theICA solutionis inherently unique,apart from the
concrete algorithm that onemight want to use.

First weobserve thatit is impossible to determine thenormof thecolumnsof M in Equation(14),
sincea rescalingof thesevectors can be compensatedby the inversescaling of the source signal
values;thesameholdsfor their sign. Similarly theordering of thesourcesignals, having nophysical
meaning, cannotbe identified. For non-Gaussiansources,theseindeterminacies aretheonly way in
which an ICA solution is not unique[16–18]. Formally, for source vectorsof which at most one
componentis Gaussian,we canapply the following theorem (seeReference[18], pp. 127–128).

Theorem 1

Let the Nth-ordersupersymmetric tensor # ∈ RJ � J �… � J be given by

# �D�1 Q�2 Q . . .�N Q �27�

in which $ ∈ RJ � J �… � J is diagonal, containing at mostonezeroon thediagonal,andQ ∈ RJ � J

is orthogonal. # canbe decomposed by the samemodel in termsof $' andQ' iff:

* Q' = QLP, in which � is a diagonal matrix whoseentriesare�1 andP is a permutation; and
* $' is relatedto $ in the inverseway

D0 �D�1 �PT�� �2 �PT�� . . .�N �PT�� �28�
The higher-ordercumulantsof Gaussiancomponents vanish;hencethese components cannotbe

separatedin anessentially unique way. By claiming thatboththecovariancematricesof y andx are
diagonal, it is easyto provethe theorem that makesexplicit the indeterminacy [16].

Theorem 2

Let x beaJ-dimensionalGaussianrandom vector.Let M ∈ RI � J havelinearlyindependent columns,
andconsidery = Mx . Thenthecomponentsyi aremutuallyindependent iff M = L1QL2, with L1 and
L2 diagonal andQ orthogonal.

The fact that we assumethat the sourcesarenon-Gaussianis lessrestrictive than it may seem.
Many signals of interest are non-Gaussian(e.g. modulatedelectromagnetic signals in mobile
communications, rotation-induced vibrations in machine testing, reflected signals in seismic
prospection, etc., to quote but a few examples in signal processing). On the other hand, the
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assumption of Gaussianityoften appliesto the noiseterm. Consequently, non-Gaussianity may be
seenasa property that discriminatesbetween the signalsof interest andthe noise.

In sum, wecanstatethatICA doesnotallow usto estimatethetransfermatrix M assuch,but that,
for sourcevectors of which at most one componentis Gaussian, it allow us to determine the
appropriaterestclassof thequotientsetdefinedby theequivalencerelationM �M ', M ' = MLP.
Generically auniquerepresentativeof thisrestclasscanbeobtainedby normalizing thesolutionsuch
that e.g.

* the source componentshaveunit variance;
* the mixing vectorsareorderedby decreasingFrobenius norm;
* for eachmixing vectorthe entry which is largestin absolute value is positive.

3.4. Measuresof performance

In thissubsectionwewill explainhowonecanevaluatethequalityof anestimateof theICA solution.
Actually, it is impossibleto quantifythequality,asqualitymaybeperceivedagainstabackgroundof
differentcriteria.Namely,thegoalof theICA proceduremayconsistof anoptimal mutualseparation
of the source signals, or an optimal recovery of the source signalsfrom the noise,or an optimal
estimation of themixing matrix.Foreachof theseviewpointswewill discussappropriatemeasuresof
performance.

The quality of source separationand reconstruction is naturally formulated in terms of
beamforming performance. In general termsthe idea of beamforming consists of the construction
of the matrix W in Equation(17) from an estimate of the mixing matrix in sucha way that the
performancemeasureof interest is maximized.A detaileddiscussionof beamformersfalls outsidethe
scopeof this paper; we refer to Reference[12].

In termsof Equation(14) and(17), andassuming that thesourcesareestimatedin theright order
(for notationalconvenience),we definethe following indicesof performance:

SNRi �def �
2
xi
�wT

i mi�2
wT

i Cnwi
�29�

SIRij �def �
2
xi
�wT

i mi�2
�2

xj
�wT

i mj�2
�30�

SINRi �def �2
xi
�wT

i mi�2
wT

i �Cy ÿ �2
xi

mimT
i �wi

�31�

in which wi is the ith columnof W and�2
xi

is thevariance of the ith source(formulated for a single
ICA problem;in a seriesof MonteCarlo runs,averagedvaluesareconsidered).Thefirst index is the
signal/noiseratio (SNR)of theestimateof the ith source.It consistsof theratioof thevarianceof the
actualcontribution of the ith sourcein its estimate,overthevariance of thenoisecontributionin the
ith source estimate.Thesecond index is a signal/interference ratio (SIR). It is definedastheratio of
the variance of the actual contribution of the ith sourcein its estimate,over the varianceof the
contributionof thejth sourcein theestimateof theith source.This indexquantifiesthecontamination
by the jth source of the ith sourceestimate. Finally, the third index is the signal/interference-plus-
noiseratio (SINR) of theith sourceestimate.It consistsof theratioof thevarianceof thecontribution
of the ith sourcein its estimate,over the variance of all the other contributions(othersourcesand
noise)to the ith source estimate.Often only the numerator of SIRij , indicating to what extent WT
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approximatesM†, is considered.Note that for a goodestimate thedenominatorapproximatesunity,
which allows us to define an approximate interference/signal ratio (ISR) asISRij �def

�2
xj
�wT

i mj�2.
The SINR is optimized by a minimumvariancedistortionlessresponse(MVDR) filter given by

W � �Cy�y �M �32�

On theother hand,themutualinterferenceof thesourcescanbecancelled by implementinga linear
constrainedminimumvariance(LCMV) filter

W � �C~y�y �M �33�

in which Cỹ is the covariancematrix of the signal part of the observations. In practice, these filters
will beapproximatedin termsof samplestatisticsandthe estimateof the mixing matrix.

In the casewhere not the separation of the sourcesbut the estimation of the mixing matrix is of
primary importance, it is naturalto expressthe ICA performance in termsof theFrobenius normof
the differencebetweenM and its estimateM̂ . We implicitly assumethat the columnsof M̂ are
optimally orderedand scaled.In a Monte Carlo experimentthe root meansquare error (RMSE)�������������������������

EkM ÿ bMk2
q

is considered.

3.5. PCA versus ICA

From the preceding discussionit is clear that ICA is the natural way to ‘fine-tune’ PCA. Both
statistical techniquesarelinked with thealgebraicconceptsof EVD andSVD in a remarkableway.

In the ‘classical’second-order statistical problemof PCA theproblemof interestis to removethe
correlationfrom dataobtained as a linear mixture of independent sourcesignals. The key tool to
realize this comesfrom ‘classical’ linear algebra: it is the EVD of the observedcovariance or,
numerically, the SVD of the dataset.

In this way the signalsubspace,or more precisely the factorsU andS in the SVD of the mixing
matrix M = USVT, canbeidentified. Thefact thatthemixing vectorsandthesourcesignalscanonly
befoundup to anorthogonal transformationis knownasthe rotational invarianceproperty of PCA.
Uniquenessis usuallyobtained by adding(often artificial) constraints,e.g.mutualorthogonality of
the columnsof the mixing matrix estimate.

In themorerecentproblemof ICA onealsoaimsat theremovalof higher-orderdependence,which
additionally involvestheuseof higher-orderstatistics. It appearsthatfrom analgebraicpointof view
this leadsto a multilinear EVD. By inverting the mixing matrix, the original sourcesignalscanbe
estimated.

Although anydatasetcanbe decorrelatedby a linear transformation,it is not alwayspossible to
expressit as a linear combination of independent contributions. This corresponds to the fact that
Equation(24), with #�N�x diagonal, is overdetermined for anarbitrarygivensupersymmetrichigher-
ordertensor.WhetherICA is usefuldependsonthecontext, i.e.oneshould havetheprior knowledge
thatthedatasetunderconsiderationindeedconsistsof linearcontributionsof anindependent nature.
Ontheotherhand,thedegreeto whichthecumulanttensorcanbediagonalizedgivesanindication to
whatextenttheestimatedsourcesignalscanbe regardedasindependent (seeProperty 4 of Section
2.2).

In theschemeof Algorithm1 theprewhiteninghasthedisadvantage,compared to thehigher-order
step,that thecalculationsaredirectly affectedby additiveGaussiannoise. It turnsout that theerror
introducedin thePCA stagecannotbecompensatedby thehigher-orderstep;it introducesanupper
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boundto the overall performance. Writing the SVDs of the true mixing matrix andits estimate as
M = USVT andM̂ = ÛŜV̂T, performanceboundsaregiven by the following theorems[19,20].

Theorem 3

Assuming two sources, the quality of separation for the global ICA algorithm is boundedby the
quality of the prewhitening in the following way:

ISR12� ISR21 >
�Ŝy � ÛT �M �T�Ŝy � ÛT �M �
� �2

12

kŜy � ÛT �Mk2 �34�

The equalitysign holdsonly for a perfectreconstruction of the mixing matrix, in which caseboth
sidesvanish.

It canbeprovedthaterrorsin theprewhitening stagecausetheright-handsideof Equation(34) to
benon-vanishing.

Theorem 4

Theaccuracyof themixing matrixestimateis boundedby theaccuracyof theprewhiteningasfollows
(assuming that M andM̂ arenormalized in the sameway):

kM ÿ M̂k2 >
X

i

�s2
ii � ŝ2

ii ÿ 2�ii � �35�

in which�ii is the ith singularvalueof ŜÛTUS. Theinequality reducesto anequalityfor anoptimal
choiceof the orthogonalfactor in the higher-order ICA step.

It can be proved that the right-hand side of Equation(35) vanishesiff no estimationerror is
introducedin the prewhitening stage.

The boundsgiven by Theorem 3 and 4 can be used as a reference indicating the ultimate
performance that canbeachieved.

4. EXAMPLE

In this section we will illustratethegeneralconcept of ICA by meansof anexample.Because this is
nice for visualization,we considerdeterministic instead of stochasticsignals.Theonly differenceis
that theexpectation operatorE{ ⋅} shouldbereplacedby averagingover the interval overwhich the
signalsareconsidered,i.e. thecovariancematrix andthehigher-ordercumulant tensorarecomputed
by averaging over an interval instead of averaging oversamples.

We assume thetwo sourcesignalsdepictedin Figure3. Thefirst sourceis a sinewave,thesecond
oneis a block wave:

x1�t� �
���
2
p

sint

x2�t� �
1 iff k�< t < k�� �=2
ÿ1 iff k�� �=2< t < �k� 1��; k 2 Z

�
Bothsignalsareconsideredovertheinterval [0, 4�]. Theyarezero-meanandtheircovariancematrix
equalsthe identity (hence the scaling factor in the definition of x1(t)). The third-order cumulants
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vanish,sincethesignalsaresymmetric abouttheaxisx = 0, which is thedeterministic counterpartof
Property3 in Section2.2. In correspondencewith Property4, the fourth-order cumulanttensoris
diagonal; it containsthe entries

c�4�x1
� 1

4�

Z 4�

0
�
���
2
p

sint�4dt ÿ 3
1

4�

Z 4�

0
�
���
2
p

sint�2dt

� �2

� ÿ 3
2

c�4�x2
� 1

4�

Z 4�

0
x4

2�t�dt ÿ 3
1

4�

Z 4�

0
x2

2�t�dt

� �2

� ÿ2

Note that the fourth-ordermomenttensoris not diagonal:

�}�4�x �1122�
1

4�

Z 4�

0
�
���
2
p

sint�2dt � 1

In thedefinition(6) of thefourth-ordercumulant,ontheother hand,thesametermis subtractedagain.
We assumethe following mixing matrix:

M � 1
4
ÿ1 ÿ3

���
3
p

3
���
3
p ÿ5

� �
The SVD of this matrix is given by

M � U � S � VT � 1=2 ÿ ���
3
p

=2���
3
p

=2 1=2

� �
� 2 0

0 1

� �
� 1=2 ÿ ���

3
p

=2���
3
p

=2 1=2

� �
in which U andV areorthogonal andS is diagonal.

The observations

y1�t�
y2�t�

� �
� M � x1�t�

x2�t�
� �

aredisplayed in Figure 4. Thesesignalsareclearlymixturesof a sineanda block wave.We do not
consideran additivenoiseterm, for clarity.

Figure3. The two sourcesignalsconsideredin theexampleof Section4.
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A PCA yields the two signalsshownin Figure 5. They areuncorrelated,i.e.

1
4�

Z 4�

0
z1�t�z2�t�dt � 0

but far from equalto the original two sourcesx1(t) and x2(t). The problemis that any orthogonal
rotationof Z(t) = (z1(t) z2(t))

T yieldssignalsthataremutually uncorrelated.Statedotherwise,Z(t) is
the resultof anorthogonalrotationof X(t): Z(t) = VT ⋅ X(t).

Theorthogonal factorcanbefoundfrom the fourth-ordercumulant#�4�z , of which theentriesare
given by

�#�4�z �1111� ÿ39=32

�#�4�z �1112� 9
���
3
p

=32

�#�4�z �1122� ÿ21=32

�#�4�z �1222� ÿ5
���
3
p

=32

�#�4�z �2222� ÿ31=32

Figure4. The observationsignalsconsideredin theexampleof Section4.

Figure5. ThePCA componentsof the signalsin Figure4.
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It canbe verified that V satisfies

#�4�z � #�4�x �1 VT �2 VT �3 VT �4 VT

(seeEquation (24) andProperty 2 of Section2.2).Moreover,in Section3.3we explainedthat,apart
from sometrivial indeterminacies,theorthogonaldiagonalizerof #�4�z is unique.Wewill discussfour
concretecomputationalproceduresin thenextsection.After thecalculation of V, onecanachievethe
sourceseparation. The result is shownin Figure 6.

5. A CLASSOF ALGEBRAIC TECHNIQUES

In Section 3.2.2 we explained that the ICA problem can be solved by meansof an appropriate
multilinear generalization of thesymmetric EVD. Actually, therearevariousways in which sucha
generalizationcould bedefined.In Section3.3we explainedthat in theorythesolution is essentially
unique(if the higher-order cumulant of the sourceshasat most one zero on its diagonal),but in
practicedifferent approachesmay not produce the sameresult.The reasonis that the multilinear
generalizationsshould bedefinedfor arbitrary supersymmetrichigher-ordertensors, andnot merely
for higher-order tensorsthat canbe diagonalized by means of an orthogonal transformation, as in
Equation(24), sincethe latter propertyis generically lost when noiseis present. As such,different
multilineargeneralizationshavetheirownidentifiability conditions,perturbationproperties,etc.This
is particularly relevant whenthe noise level is significant.

In thissectionwewill discussaclassof four multil inearEVD generalizations.Therationalebehind
theseapproachesis explainedandthemain theoretical resultsarestated. It is briefly explainedhow
the orthogonal factor V in Equation(24) canbe calculatedin eachof the four cases. However,for
detailedcomputational proceduresthereader is referredto theextendedreport[21] or to theoriginal
references. Also for detailsaboutthe derivations the readeris referredto the literature.

The exposition requiresthat the reader is familar with somebasicconcepts of linear algebra and
relatednumericalissues.We refer to References [5,14].

5.1. ICA by meansof higher-order eigenvaluedecomposition (HOEVD)

As will beexplainedbelow,thedecompositiondefinedin thefollowingtheoremfits theform required
in Equation (24) [22].

Figure6. The ICA componentsof the signalsin Figure4.

INDEPENDENTCOMPONENTANALYSIS 139

Copyright 2000JohnWiley & Sons,Ltd. J. Chemometrics 2000;14: 123–149



Theorem 5 (Nth-order supersymmetric eigenvaluedecomposition)

Every Nth-order supersymmetric J� J�…� J tensor ! canbewritten asthe product

! � 6�1 U�2 U . . .�N U �36�

in which:

* U = [u1, u2, …, uJ] is an orthogonal J� J matrix;
* 6 is an Nth-order supersymmetric J� J�…� J tensor of which the subtensors6in = �,

obtainedby fixing thenth indexto�, havetheproperty of all-orthogonality,i.e. two subtensors
6in = � and6jn = � areorthogonal for all possible valuesof n, � and� subjectto � = �:

h6jn��;6jn��i � 0 when � 6� � �37�
The unsymmetric variant of this decomposition is also known as the Tucker model in

psychometrics[23,24].
Appliedto asupersymmetricthird-ordertensor!, Theorem 5 saysthatit is alwayspossibleto find

an orthogonal transformation of the column, row andmode-3spacesuchthat the supersymmetric
tensor6 = ! �1 UT �2 UT �3 UT is all-orthogonal. This meansthat the different ‘horizontal
matrices’ of 6 (the first index i1 is kept fixed, whilst the other two indices i2 and i3 are free) are
mutuallyorthogonalwith respectto thescalarproduct of matrices (i.e. thesumof theproductsof the
correspondingentriesvanishes); at thesametime, andbecauseof thesymmetry,thedifferent‘frontal’
matrices (i2 fixed) andthe different ‘vertical’ matrices (i3 fixed) shouldbe mutually orthogonal as
well. This is il lustratedin Figure 7.

It is clear that Theorem 5 is a multilinear generalization of the EVD of symmetric matrices, as
diagonality is a specialcaseof all-orthogonality. Relaxation of the condition of diagonality to all-
orthogonality is required to ensurethatthedecompositionalwaysexists.It canevenbeshownthatthe
decomposition exhibitsessentially thesameuniquenesspropertiesasthematrixEVD. Moreover,it is
a true generalization of the matrix decomposition in the sensethat, when Theorem 5 is appliedto
matrices(second-ordertensors), it leadsto theclassicalmatrix EVD. In otherwords,in thedefinition
of theEVD of symmetricmatrices theconstraint of diagonality maybereplacedby thecondition of
all-orthogonality—for matrices theresultis thesame, up to sometrivial normalizationconventions.

Therearemanystriking analogiesbetween thematrix EVD andthemultil ineargeneralizationof
Theorem 5. In this respectweusethetermhigher-order eigenvaluedecomposition(HOEVD) in this
paper,for convenience.Note at this point that the existenceof different types of multil inearEVD
extensionsmay not be excluded—asa matter of fact, focusingon different propertiesof the matrix
EVD does lead to the definition of different (perhaps formally less striking) multil inear

Figure7. All-orthogonalityof anI1� I2� I3 tensor6 impliesmutualorthogonalityof the‘horizontal’, ‘frontal’
and‘vertical’ matricesrespectively.
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generalizations; e.g. the techniquesdescribed in the following subsections can be considered as
alternatives.

TheHOEVD canbeobtained asfollows. Theeigenmatrix U canbecomputed asthe left singular
matrix of a matricizedversionof ! (seethe terminologyproposed in Reference[25]), denotedby
A(n), in which all themode-n vectorsarestackedascolumns(theordering is of no importance);the
tensor6 thenfollows from Equation(36).

As tensor diagonality is aspecialcaseof all-orthogonality,Equation(24)showsanHOEVD of the
cumulant tensor#�N�z . Hencethehigher-orderstepin theschemeof Section3.2.2canbeinterpretedas
an HOEVD. To obtain a unique solution, slightly strongerconditionsare required than the ones
discussed in Section3.3: to makethe SVD of the matrix unfolding of b#�N�z essentially unique, it is
requiredthatthesingularvaluesaremutuallydifferent. It canbeshown thatthis impliesthattheNth-
ordercumulantsof thecomponents of z shouldbemutuallydifferent (N even), or mutually different
in absolute value (N odd) [18].

5.2. ICA by meansof maximaldiagonality (MD)

Wealreadystressedthatagenerichigher-ordertensor cannotbediagonalizedby meansof orthogonal
transformations.In theprevioussubsectionthisproblemwasinterceptedby replacingthecondition of
diagonality of thematrix of eigenvalues,in thedefinition of thematrix EVD, by thecondition of all-
orthogonality in a multilinear EVD equivalent.An interesting alternative definition of a tensorial
EVD could involve theoptimal diagonalization, in a leastsquaressense, of thehigher-ordertensor.
This criterion will becalledmaximal diagonality (MD). Formally, thefactorV in Equation(24) will
beestimatedasthe orthogonalmatrix U that maximizesthe function

f �U� �
X

j

c02jj ...j �38�

in which the J� J�…� J tensor #' is definedas

#0 �def
#�N�z �1 U�2 U�3 . . .�N U �39�

A computational procedurewas proposed in Reference[16]. The idea is to basethe optimal
diagonalization of the standardized higher-order cumulant #�N�z in Equation (24) on a multilinear
generalization of the Jacobi techniquefor the computationof the EVD of a symmetric matrix [14].
Hence the unknown factor V in Equation (24) is estimatedas a product of elementary Jacobi
rotations, where each elementary rotation maximally diagonalizesthe 2� 2�…� 2 subtensor
associated with the marginal cumulantsof the estimatesof two different sourcecomponents.For
example, if one aims to address the j1th and j2th source component, then the part of the global
cumulant tensorconsistingof theentries of which eachindex is equalto eitherj1 or j2 is considered.
All thepossible sourcecombinations(i.e. all thedifferentchoicesof thepair j1/j2) areaddressedone
aftertheotherin a fixedorder,andoneiteratesoversuch‘sweeps’. For example, in anICA problem
with threesources,onemay sweepover the pairs(1,2), (1,3) and(2,3).

For a detaileddescription of the computationalprocedurewe refer to References[16,21].

5.3. ICA by meansof joint approximatediagonalization of eigenmatrices (JADE)

Consideragainthefourth-order cumulant#�4�z of thestandardizedrandom vectorz in thehigher-order
ICA stage,asin Equation (24). A very efficient techniquecanbederivedby interpreting this fourth-
order tensoras the representation of a matrix-to-matrix mapping, in the sameway as a matrix
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representsa vector-to-vector mapping, andexaminingthe structureof this transformation [26].
Formally, a linear mappingis associated with #�4�z in the following way:

A0 � #�4�z �A� () a0ij �
X

kl

�#�4�z �ijkl akl �40�

for all indexvalues.In analogywith theEVD of a classicalvector-to-vector mapping, onecanlook
for matricesthataresimply rescaledby themapping (40).Thesematricesarecalled ‘eigenmatrices’;
the scalingfactorsare generalized eigenvalues.In analogywith the EVD of a symmetric matrix,
eigenmatrices corresponding to different eigenvalues are mutually orthogonal, owing to the
symmetry of the mapping. Taking Equation (24) into account, onecanderivethat theEVD hasthe
form

#�4�z �
XJ

j

�xj �vT
j vj� � �vT

j vj� �41�

in which:

* the eigenvalues�xj (1 < j < J) correspond to the source cumulants;
* theeigenmatricesvT

j vj�1< j < J� areequalto theouter products of therows of V, represented
by { vj}, with themselves—note that the eigenmatricesare indeedmutually orthogonal if { vj}
aremutually orthogonal, i.e. if V is orthogonal thenEquation(41) definesan EVD structure.

We concludethat,in theabsenceof noise,theunknownV candirectly beobtainedfrom theEVD
(41). Moreover, we remark that all the matrices in the rangeof #�4�z can be written as a linear
combination of the eigenmatrices (in the sameway asanyvector in the rangeof a vector-to-vector
mappingcanbewrittenasa linearcombinationof theeigenvectorsassociatedwith theeigenvalues
thataredifferentfrom zero), suchthat theycanbediagonalizedby V. That is, if a matrix T is in the
rangeof (40), it canbe expandedas

T �
X

j

djvT
j vj

for a certain setof scalars{ dj}; this canbe rewrittenasthe EVD

T � VT � D � V

in which D is a diagonalmatrix containing { dj} on the diagonal.
Whennoise is presentand/or whenthestatisticsof z areonly known with a limit edprecision,the

derivation aboveis only approximatelyvalid. Namely,theeigenmatricesof #�4�z arenotexactlyrank-
1 matrices anda matrix T in therangeof themappingcannotbeexactlydiagonalizedby V. Here it
makessenseto estimateV astheorthogonalmatrix thatsimultaneously maximallydiagonalizes(in a
least squaressense) a set of matrices that form a basisof the range.Formally, if the set to be
diagonalizedis given by { Tp}, V is estimatedastheorthogonalmatrixU thatmaximizesthefunction

f �U� �
X

p

X
j

j�T0p�jj j2
 !

�42�
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in which

T 0p �def U � Tp � UT �43�
An orthogonal basisfor therangeof thelinearmappingcanbeobtainedfrom theEVD in Equation

(41), together with a first estimateof V—‘JADE’ standsfor ‘joint approximatediagonalizationof
eigenmatrices’. A variant is the simultaneousEVD of the ‘matrix slices’ �#�4�z �k;l , obtained by
keepingtheindicesk, l in �#�4�z �ijkl fixedwhile varyingtheindicesi, j; thesematricesspantherangeof
the mappingas they are the image of the matrices that contain a single ‘one’ entry and zeros
elsewhere. In the latter case, J2 matrices arejointly diagonalized; in the formercase, J matrices are
considered(if all thesourceshaveanon-vanishingcumulant;for identifiability, atmostonevanishing
cumulant canbe allowed). Of course, an estimateof V canalsobe obtained from a limited setof
matrices in the spanof the mapping, withoutexploiting all the information available in #�4�z .

Let usnowexplainhowthis procedureof simultaneously diagonalizing asetof matrices relatesto
theproblemwestartedfrom, namelythediagonalizationof #�4�z itself in Equation (24). Implicitly or
explicitly, thesimultaneousdiagonalizationof abasisof therangeof (40)amountsto theapproximate
diagonalization of thematrix slices�#�4�z �k;l , definedin thepreceding paragraph, i.e. theorthogonal
factorV is determinedin suchawaythattheentriesof #�4�z of whichthefirst andthesecond indexare
differentareminimized.However, in (24)weseethatV is appliedin asymmetric wayoverall modes.
Hencealso theentrieswith distinctfirst andthird index,distinctfirst andfourth index, distinctsecond
andthird index, etc.areapproximately minimized.It is intuitively clear thatthiscanbeconsideredas
anapproximatediagonalizationof #�4�z itself.

As far as the computation of the result is concerned, a set of symmetric matrices can
simultaneouslybediagonalizedby meansof a Jacobi iteration;we refer to References [21,27].

5.4. ICA by meansof simultaneousthird-order tensor diagonalization (STOTD)

Thetechniqueof simultaneousthird-order tensor diagonalization(STOTD) is verysimilar in spirit to
JADE. Insteadof linking a matrix-to-matrix mappingto #�4�z , we now associate with it a linear
transformation of RJ to the vectorspaceof third-order tensors,RJ � J � J, in the following way:

!0 � #�4�z �a� () a0ijk �
X

l

�#�4�z �ijkl al �44�

for all index values.TheSVD of this mappingis given by

#�4�z �
XJ

j

�j9j � vT
j �45�

in which:

* thesingular valuesaregivenby sign(�xj
)�xj

(1 < j < J), in which�xj
symbolizes thecumulant

of the jth source;
* the corresponding right singular vectorsvT

j arethe columnsof VT (1 < j < J);
* the corresponding ‘left singulartensors’ 9j (1 < j < J) aregiven by

9j � sign ��xj �vT
j � vT

j � vT
j �46�

All the third-order tensors in the rangeof #�4�z canbe written asa linear combination of the left
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singular tensors,suchthattheycanbediagonalizedby V. In theSTOTDalgorithm,V is estimatedas
theorthogonal matrix thatsimultaneously diagonalizes,in a least squaressense,a setof third-order
tensorsthatform abasisfor therangeof #�4�z . Formally, if thesetto bediagonalizedis givenby { 7p},
V is estimatedasthe orthogonal matrix U that maximizesthe function

f �U� �
X

p

X
j

��70l�jjj �2
 !

�47�

in which 70p equalsthe tensor7p after multiplication with U:

70p � 7p�1 U�2 U�3 U �48�
An orthogonal basisfor therangeof thelinearmappingcanbeobtainedfrom theSVD in Equation

(45), together with a first estimate of V. It is alsopossible to resortto an ordinary basisby simple
transformation under #�4�z of J linearly independent vectors.For example, transformation of the
canonical unit vectorscorresponds to choosingthe ‘third-order tensor slices’ �#�4�z �l , obtained by
keepingthe index l in �#�4�z �ijkl fixed while varying the otherthreeindices.

Reference[28] shows how the simultaneousdiagonalization of third-order tensorscan be
computed by meansof a Jacobiiteration;a summary of the results canbe found in Reference[21].

5.5. Numerical experiments

In thissubsectionweillustratetheperformanceof themethodsthathavebeendiscussed, by meansof
somenumerical results.

We consideranICA problemwith two sourcesandfive observation channels; theoverestimation
of the numberof sourcesserves to limit the influence of noise on the PCA stage,asexplainedin
Section3.2.1,suchthattheresultsreflecttheperformanceof thedifferentapproachesfor thehigher-
orderstage.Thefirst source distribution is binary (�1), with anequalprobabilityof bothvalues;the
seconddistribution is uniform over the interval [7

���
3
p

,
���
3
p

]. Both sourcesarezero-meanandhave
unit variance.Data sets underconsiderationconsistof 100 samples. For eachdataset the mixing
matrix M wasgenerated as follows: the left andright singular matrices wereobtained from a QR
factorization of a 5� 2 anda 2� 2 matrix of which the entries hadbeendrawnfrom a zero-mean
Gaussiandistribution, andthe matrix of singular valueswasequalto

S� 5�������������
1� k2
p k 0

0 1

� �
in whichk wasthecondition number.Thenoiseis spatially white Gaussianwith variance�2

N . Owing
to the way M was constructed, �2

N can also be interpretedas the inverse of the SNR of the
observations(theFrobeniusnormof thecovarianceof thesignal partof theobservationsequals5; the
Frobeniusnormof thenoisecovarianceis equalto 5 �N). For thisproblemweconduct aMonteCarlo
experimentconsistingof 500runs.Sincebothsourcedistributionsareeven,thehigher-order stageof
the different ICA algorithmsis basedon fourth-order cumulants.

In Figure 8 we plot themeanISR of theestimatedLCMV filters(Equation (33)).Thedottedlines
belowcorrespond to theperformance boundspecified in Equation(34). Figure9 shows theINSR of
thefirst sourceestimateobtainedfrom anMVDR filter (Equation(32)). Thedottedlinesin themiddle
correspond to the MVDR filter in which the true valuefor M is used;notethat the MD, JADE and
STOTD filters outperform this informed beamformer. In Figure 10 the Frobenius RMSE of the
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Figure8.MeanISRof theLCMV beamformerobtainedby meansof HOEVD (broken),MD (full), JADE(chain)
andSTOTD(dotted).Dottedbelow:performancebound.Top: effectof theSNRon thequality of separationfor
k = 1 (lower curves),5 (middle curves)and10 (uppercurves).Bottom: effect of the conditionnumberon the

quality of separationfor SNR= 30 dB (lower curves),20 dB (middle curves)and10 dB (uppercurves).
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Figure9.MeanINSRof thefirst sourcefor theMVDR beamformerobtainedby meansof HOEVD (broken),MD
(full), JADE(chain)andSTOTD(dotted).Dottedmiddle: informedbeamformer.Top: effectof theSNRon the
quality of separationfor k = 1 (lower curves),5 (middle curves)and10 (uppercurves).Bottom: effect of the
conditionnumberonthequalityof separationfor SNR= 30dB (lowercurves),20dB (middlecurves)and10dB

(uppercurves).
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Figure10.FrobeniusRMSEfor themixing matrix estimateobtainedby meansof HOEVD (broken),MD (full),
JADE(chain)andSTOTD(dotted).Dottedbelow:performancebound.Top: effectof theSNRon thequality of
separationfor k = 1 (lower curves),5 (middle curves)and10 (uppercurves).Bottom: effect of the condition
numberon thequality of separationfor SNR= 30 dB (lower curves),20 dB (middle curves)and10 dB (upper

curves).
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mixing matrix estimateis plotted; to facilitate the comparisonof the different curves,the mixing
vectorsare normalized to unit length. The dotted lines below show the performance bound of
Equation (35). In eachfigure the left plot showstheperformance asa functionof thenoiselevel for
threedifferentvaluesof k, while theright plot showstheinfluenceof how closethemixing vectorsare
for threedifferent valuesof the SNR.

The figures show that the MD, JADE and STOTD algorithms have approximately the same
accuracy; moreover, for sufficiently highSNRsandsufficiently low conditionnumberstheresults are
close to the performancebound.This is theoretically founded in Reference[29]. Becauseof the
heaviercomputationalload of the MD technique, the JADE andSTOTDalgorithmsarepreferable.
STOTDhastheslightadvantageoverJADEthattheJ tensorsto bediagonalizedarereadily available,
whereas JADE requiresthe computation of the dominant J-dimensional eigenspaceof a J2� J2

matrix to reduce the numberof matrices to J; in addition, JADE seemsto bea bit morevulnerable
w.r.t. abadconditioningof themixing matrix.TheHOEVD techniqueis theleastaccurateof thefour
approaches,but on theother handit is alsoby far thecheapest.Intuitively thedifferencein accuracy
canbeexplainedby takingin mind that in theHOEVD approachdiagonality of thesourcecumulant
tensoris a premise,while in the MD technique it is explicitly forced,i.e. in the MD technique the
sourceestimatesareexplicitly made ‘as independent aspossible’, while in the HOEVD technique
statistical independenceis merelypresupposed;the sameargument appliesto JADE andSTOTD.

6. CONCLUSION

In manyapplications,ICA is the naturalway to setoff the rotational invarianceof PCA. From an
algebraic point of view, ICA amounts to multilinear generalizationsof the symmetric EVD. We
briefly discusseda framework of four typesof orthogonal transformation, in which theconditionof
diagonality of the matrix of eigenvalues was replaced by (i) all-orthogonality, (ii) maximal
diagonality, (iii) maximaljoint diagonalityof asetof matricesand(iv) maximal joint diagonality of a
setof third-ordertensors.
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