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Abstract

Understanding of the underlying physiology of the genotype-specific responses to predictable and unpredictable environ-

mental variation would improve the efficiency of selection within a complex target population of environments. Three-mode

principal component analysis (PCA) can be used for interpreting the complex three-way (genotypes, environments, attributes)

trial datasets from which this understanding should emerge. The efficiency of this method largely depends on the right

combination between the biological and statistical models used, especially on the attributes selected to describe the genotypic

responses and the centring of the three-way input data. In this study, we assessed the scope of yield determination models and

double-centring of input data for generating some physiological understanding of the genotype � environment (G � E)

interactions observed in a sunflower genotype–environment system and for developing ideotype-based breeding strategies.

Double-centring of the three-way arrays permitted the separation of predictable and unpredictable G � E interactions. This, in

combination with the use of models that explain the physiological bases of yield variation among genotypes, has served to

identify three relevant sources of genotypic variation for use in a breeding program, namely: (i) attributes that can be selected to

achieve specific adaptation to the target environment by emphasising predictable interactions (e.g. duration of grain filling, a trait

associated with canopy stay green); (ii) attributes that allow the unpredictable G � E interactions to be accommodated,

improving the linkage between managed-environments and target production environments (e.g. grain set); and (iii) genotypes

of similar response pattern for yield but contrasting relative behaviour for the primary and secondary yield determinants.

Breeding projects involving crosses between these genotypes could generate better opportunities for yield improvements for

individual mega-environments.
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1. Introduction

Effective identification of superior genotypes in

multi-environment trials is generally complicated by

the presence of significant genotype � environment
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(G � E) interactions, such that relative cultivar yields

vary across testing environments (Cooper and DeLacy,

1994). Testing regimes may consider such interactions

as a source of error or bias in assessing the overall

superiority of a genotype. Alternatively, G � E inter-

actions can be viewed as a reflection of differences in

genotype adaptation, which may be exploited by

selection and/or by adjustments in the testing strategy

(Basford et al., 1996).

It has been argued that some understanding of the

nature of the G � E interactions is needed to use them

effectively through appropriate breeding methodolo-

gies (Basford and Cooper, 1998 and references

therein). The concept of repeatability or predictabi-

lity is critical to understand and use adaptations

associated with G � E interactions. Allard and

Bradshaw (1964) distinguished between predictable

and unpredictable interactions, largely associated with

locations or management regimes and years, respec-

tively. Adequate models of target genotype–environ-

ment systems would enable plant breeders to exploit

positive components of G � E interactions, i.e. breed-

ing for specific adaptation associated with predic-

table interactions, and avoid the pitfalls of the

disruptive effects of the sampling variation that are

often associated with multi-environment trials, i.e.

unpredictable interactions (Basford and Cooper,

1998).

While the record shows that breeding advance can

be achieved empirically, more rapid progress could be

achieved when some understanding of the physiolo-

gical bases of crop performance is established and

selection criteria are defined in terms of specific traits,

i.e. ideotype-based breeding (Lawn and Imrie, 1991).

Likewise, some understanding of the underlying phy-

siology of the genotype-specific responses to predict-

able and unpredictable environmental variation should

improve the efficiency of selection within a complex

target population of environments.

The study of the physiological bases of G � E

interactions implies the analysis of the genotype rela-

tive responses across environments for multiple attri-

butes and thus requires a three-way data set of

genotypes � environments � attributes (G � E � A).

Three-mode principal component analysis (PCA)

(Tucker, 1966; Kroonenberg, 1983), an extension of

standard PCA to handle such three-way datasets, has

been used for handling genotypes, environments and

attributes simultaneously (Kroonenberg and Basford,

1989; Basford et al., 1990; Crossa et al., 1995;

Chapman et al., 1997), allowing an examination of

the relationships between genotypes and attributes

associated with specific patterns of environmental

variability. Basford and Cooper (1998) highlighted

the importance of thinking about the right combina-

tion between the biological and statistical models used

for generating a more comprehensive understanding of

G � E interactions. The decision of which biological–

statistical model combination is appropriate to any

particular genotype–environment system depends on

the researcher’s objectives and assessment of the

origin of the variability of the data. In the case of

three-mode PCA, probably the most relevant biologi-

cal challenge is the right choice of attributes to

describe the genotype-specific responses to contrast-

ing environments. From the statistical point of view,

the treatment of the raw data, i.e. centring and normal-

isation of the G � E � A input data arrays, is a central

decision to obtain the ‘best’ analysis for a particular

dataset (Kroonenberg, 1983, Chapter 6). In three-way

data, different types of centring and normalisation lead

to different solutions. There are also many more ways

of centring and normalising to choose from, compared

to two-way data. Kroonenberg (1983, Chapter 6) and

Harshman and Lundy (1984, pp. 225–253) give

detailed discussions on this issue.

Crop yield in a given environment can be explained

in terms of its determinants or components. Simple

analytical crop models of yield determination prob-

ably offer the most scope for improving the efficiency

of selection in breeding programs, because an

improved physiological understanding of genotype

variation in yield performance under differing envir-

onmental conditions can be achieved (Wright et al.,

1996). However, this criterion is not commonly used

to select attributes in the three-mode PCA literature,

with the exception of de la Vega and Chapman (2001),

who used the primary components and determinants of

oil yield (i.e. grain number, grain weight and grain oil

proportion; oil-corrected biomass and harvest index)

for explaining the bases of G � E interaction for

sunflower in two regions of Argentina.

The main purpose of centring is to eliminate from

the analysis those means that should not be modelled

multiplicatively. Inorder tounderstand the implications

of different types of centring, one may write three-way
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data as if they were generated by a three-way analysis

of variance:

xijk ¼ mþ ai þ bj þ gk þ abij þ agik þ bgjk þ abgijk

where xijk is the value of genotype i in the environment

j for attribute k; m the expected mean over all geno-

types, environments and attributes, and the remaining

terms are the relevant main effects and associated

interactions (see also Van Eeuwijk and Kroonenberg,

1998). In all previous studies where three-mode PCA

was applied to crops (Kroonenberg and Basford, 1989;

Basford et al., 1990; Crossa et al., 1995; Basford et al.,

1996; Rincon et al., 1997; Chapman et al., 1997; de la

Vega and Chapman, 2001; Cooper et al., 2001), the

G � E � A arrays were jk-centred (i.e. the G � E � A

data were centred by subtracting the across-genotypes

environment mean for each attribute; Kroonenberg,

1983, Chapter 6). This led to

x0ijk ¼ ai þ abij þ agik þ abgijk

where the environmental effects, i.e. �xjk, were

removed and the genotypic means were maintained

within attributes, as well as the G � E and G � A two-

way interactions and the G � E � A three-way inter-

action. This type of centring is useful in pattern

analysis to display both genotypic and G � E inter-

action effects on two-mode biplots. However, in three-

mode PCA, uncentred modes tend to have large 1st

components, due to the presence of the means, and

these complicate interpretation of G � E interactions

by confounding their effects with the main effect of

the uncentred mode, i.e. genotypes. Consequently, in

the cited studies, the large 1st environment compo-

nents, which accounted for more than 50% of variation

in all cases, explained the common pattern over

environments, i.e. the genotypic effect, and the 2nd

components contrasted the environment types asso-

ciated with the main pattern of G � E interaction.

When locations (Basford et al., 1990), water regimes

(Chapman et al., 1997), or regions (de la Vega and

Chapman, 2001) were replicated, the 2nd environment

component accounted for the predictable portion of

the G � E interactions. Unpredictable G � E interac-

tions, which can severely complicate selection, were

not retained and described by those models. Our

hypothesis is that the ik, jk-centring (i.e. the G�
E � A data are centred within attributes by subtracting

both the across-genotypes environment means and the

across-environments genotype means, and adding the

overall mean; Kroonenberg, 1983, Chapter 6) of the

G � E � A arrays, which leads to

x00ijk ¼ abij þ abgijk

where both genotypic and environmental effects are

removed from the data, and the G � E and G � E � A

interaction remain, allows the derivation of environ-

mental components that explain different sources of

G � E interaction.

Normalisation, which is also named scaling or

standardisation, is the process of equalising sums of

squares. This process is necessary since attributes are

recorded in different scales. Normalisation across

slices (Kroonenberg, 1983, Chapter 6), which in this

type of study implies the division of the centred data

by the standard deviation of each attribute over all

genotypes and sites (i.e. rijk ¼ x00ijk=S::k; Kroonenberg

and Basford, 1989; Basford et al., 1990), is the most

commonly used in three-mode PCA. However, Fox

and Rosielle (1982) and Cooper and DeLacy (1994)

recommended normalising within environments (i.e.

rijk ¼ x00ijk=S:jk), because this type of normalisation

causes each environment to have a mean of zero

and a standard deviation of 1, this being the most

appropriate treatment for reducing the influence of

environmental main effects. In further G � E � A

three-mode analyses, this criterion was implemented

(Basford et al., 1996; Chapman et al., 1997; de la Vega

et al., 2001; Cooper et al., 2001).

The objective of this study is to assess the scope of

biological and statistical models aimed at improving

the efficiency of three-mode PCA for generating a

partial physiological understanding of G � E interac-

tionsanddeveloping ideotype-based breedingstrategies

which emphasise predictable interactions and avoid the

confounding effect of unpredictable interactions. The

modelsevaluatedare: (i) theuseof theprimary (i.e. grain

number, grain weight and oil concentration) and

secondary (i.e. floret number, seed set, rate of grain

filling, duration of grain filling, kernel proportion and

kernel oil proportion) yield components for character-

ising the genotype responses to contrasting environ-

ments; and (ii) the ik-, jk-centring (Kroonenberg,

1983, Chapter 6) of the G � E � A arrays, i.e. removing

both genotypic and environmental effects from the data,

allowing the derivation of environmental components

that explain different sources of G � E interaction.
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The case study consists of a reference set of sun-

flower hybrids grown in Venado Tuerto (Central

Argentina) during 2 years in normal and late planting

dates. The hybrids composing the reference set exhibit

differential adaptation to Northern and Central regions

of Argentina and to normal (October) and late

(December) plantings at Venado Tuerto (de la Vega

et al., 2001; de la Vega and Hall, 2002a,b). Northern

and Central regions are different mega-environments

for sunflower, i.e. their differences in terms of geno-

typic discrimination for oil yield are large and repea-

table. Mega-environments were defined as the largest

subunits of a crop’s growing or target environment

within which a particular variety or related practice

was useful (CIMMYT, 1989). December planting

influences the relative performance of sunflower

genotypes in a similar fashion to the Northern

mega-environment and could be used as a mana-

ged-environment for indirect selection for that region

(de la Vega et al., 2001). A potential limitation of this

strategy is the likelihood of excluding important genes

conditioning adaptation to an undefined challenge/

stress not sampled in the managed-environment

(Cooper et al., 1995). This would lead selecting

genotypes not adapted to the target environment.

On the other hand, challenges or stresses specific to

the managed-environments could lead discarding

valuable hybrids for the target production environ-

ment.

In this study, the four levels of the environment (E)

mode are a fully crossed design of two levels of

planting date (S) and two levels of year (Y). Since

planting date is under control of the experimenter,

we will consider the portion of the G � E interaction

due to the G � S interaction as predictable. Since the

influence of the year effect is unpredictable, the por-

tion of the total G � E interaction involving it, i.e. the

G � Y and G � S � Y interactions, is considered as

unpredictable. Traits conditioning adaptation to

December plantings across years, revealed as predict-

able by three-mode PCA, can be used as phenotypic

indicators of specific adaptation to the Northern mega-

environment. Unpredictable interactions will result in

reduced phenotypic correlation between December

plantings and the Northern region in individual years,

negatively affecting the efficiency of this managed-

environment for indirect selection. The physiological

understanding of these interactions would lead to the

definition of ideotype-based selection criteria aimed at

reducing the risk of discarding valuable genotypes in

those years.

2. Materials and methods

2.1. Cultural details

Supplementary irrigated crops of a reference set of

nine sunflower hybrids (Table 1) were grown on a deep

coarse loam soil (Typic Hapludoll) at the Advanta

Semillas Research Center, Venado Tuerto, Argentina

(338410S, 618570W), using October (Oct) and Decem-

ber (Dec) planting dates during 1996/1997 (96) and

1998/1999 (98) seasons. The details of the experi-

mental material, test environments, experimental

design, and data collection are given in de la Vega

and Hall (2002a,b). The hybrids composing the refer-

ence set of genotypes were selected from the Advanta

Argentina testing program based on their contrasting

relative performance across environments for oil

yield. This set includes commercial hybrids widely

planted in the Central region, i.e. Contiflor 15, Con-

tiflor 9 and TC 2001, commercial hybrids widely

planted in the Northern region, i.e. Morgan 734 and

Aguará, and experimental hybrids that showed differ-

ent patterns of adaptation to those of the commercial

hybrids. Taken together, this set of hybrids represent a

wide range of genetic diversity according to the origin

of their genetic backgrounds and to restricted frag-

ment length polymorphism (RFLP) molecular marker

analyses (A. Leon, Advanta Argentina, Balcarce,

unpublished data). The years sampled are not a ran-

dom sample of the environmental conditions at

Venado Tuerto. 1996/1997 and 1998/1999 were clas-

sified as neutral and La Niña years, respectively, in

terms of the El Niño Southern Oscillation effect.

Based on this effect, 1996/1997 can be considered

representative of the typical summer season at Venado

Tuerto. In 1998/1999, rainfall during grain filling for

the December planting was higher and incident radia-

tion was lower than that expected in a neutral year (de

la Vega and Hall, 2002a). Although the four trials

analysed here represent a limited sample of environ-

ments, these October and December plantings showed

the same pattern of genotypic discrimination for oil

yield as found in a much larger analysis (21 trials in 3
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years) of yield trials conducted in Central and North-

ern regions of Argentina (de la Vega et al., 2001).

For the analysis of the hybrid relative responses to

environments, oil yield was considered as the product

of its primary and secondary components. Primary

components of sunflower oil yield are grain number

(achene per square meter), grain weight (mg per

achene) and grain oil concentration (%). Secondary

components are those affecting primary ones. Thus,

grain number is a function of floret number per square

metre and seed set (%), i.e. the ratio between filled

grains and florets. Grain weight may be regarded as the

outcome of the product of rate (mg per achene per day)

and duration (days) of grain filling. Sunflower grain

comprises pericarp (hull), derived from the ovary wall,

and the kernel, which is mostly embryo (Knowles,

1978). As most of the grain oil is deposited in the

kernel, grain oil concentration is affected by kernel

percentage (%, i.e. kernel mass/grain mass � 100) and

kernel oil concentration (%).

For three-mode multivariate analysis, the collected

data was summarised in the form of G � E � A arrays

of means for the following models of yield analysis:

(1 ) Oil yield ¼ grain number � grain weight � grain

oil concentration.

Table 1

Mode component scores (with adequacy of fit) for four attributes (oil yield and its primary components) of nine sunflower hybrids grown over

four environments in Venado Tuerto, Argentina (3 � 3 � 2 component model for G � E � A)

Code Name Groupa

(2-mode)

Groupb

(3-mode)

Component scores Proportion of

SS explained
1 2 3

Genotypes (G)

1 Contiflor 15 2 2 �0.68 �0.24 �0.25 0.68

2 Aguará 1 1 0.37 0.28 0.33 0.25

3 GV23105 1 3 0.49 0.02 �0.59 0.87

4 GV25086 3 2 �0.18 0.06 0.10 0.09

5 TC 2001 2 2 �0.94 0.15 �0.34 0.92

6 GV23146 3 1 0.09 0.96 0.15 0.79

7 GV22510 3 3 0.65 �0.17 0.23 0.56

8 Contiflor 9 2 2 �0.60 �0.53 0.54 0.80

9 Morgan 734 1 3 0.80 �0.52 �0.17 0.70

Proportion of

SS explained

0.35 0.18 0.12 0.65

Environments (E)

Oct 96 October 96 �0.73 �0.39 0.15 0.71

Dec 96 December 96 0.84 0.24 0.12 0.78

Oct 98 October 98 �0.71 0.43 �0.12 0.70

Dec 98 December 98 0.41 �0.45 �0.18 0.40

Proportion of

SS explained

0.48 0.15 0.02 0.65

Attributes (A)

OY Oil yield (kg ha�1) 0.84 0.05 0.71

GN Grain number per square

meter

0.41 �0.62 0.55

GW 1000 grain weight (g) 0.06 0.76 0.58

O% Grain oil concentration

(%)

0.85 0.19 0.76

Proportion of SS

explained

0.40 0.25 0.65

a Genotype groups identified by hierarchical agglomerative clustering of oil yield across 21 environments of Argentina (de la Vega et al.,

2001)—1: Northern-adapted, 2: central-adapted, 3: broadly adapted.
b Genotype groups identified by mixture maximum likelihood cluster method of oil yield and its primary components across four

environments.
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(2) Oil yield ¼ floret number � seed set%� grain

filling rate � grain filling duration � kernel pro-

portion � kernel oil proportion.

Prior to three-mode analyses, the three-way arrays of

means (G � E � A) for each of the analytical models

were corrected for hybrid and trial main effects within

attributes (residual from additivity, Gabriel, 1978), as

in the additive main effects and multiplicative inter-

action (AMMI) model for two-way tables (Gauch,

1988). Next, the residual arrays were normalised

within environments (Fox and Rosielle, 1982; Cooper

and DeLacy, 1994). Summarising, the centring and

normalisation model applied to each xijk was

rijk ¼
xijk � x:jk � xi:k þ x::k

S:jk

With the aim of simplifying comparisons in three-

mode PCA, genotypes having similar response pat-

terns for each of the attributes analysed across testing

environments were grouped using the mixture max-

imum likelihood cluster method (Basford and

McLachlan, 1985).

2.2. Mixture maximum likelihood cluster method

This non-hierarchical clustering method is a model-

based technique which can be applied to group geno-

types that have similar response patterns for each of

the attributes analysed across testing environments

(Basford and McLachlan, 1985; McLachlan and Bas-

ford, 1988; Basford et al., 1996). In this method,

genotypes are assumed to be a sample from a mixture

of various proportions of a specific number of popula-

tions (clusters). Each cluster is allowed to have a

different mean attribute vector in each environment.

The covariance matrix (which specifies the correlation

structure among the attributes) for each cluster is the

same in all environments, although it can differ among

clusters. The unknown parameters of the groups (i.e.

proportions, mean vectors and covariance matrices)

are estimated using the maximum likelihood principle

and non-overlapping groups (clusters) are obtained by

allocating each genotype to the group to which it has

the highest estimated probability of belonging. This is

calculated by replacing the unknown parameters with

their likelihood estimates in the expression for the true

posterior probability of belonging to that group. The

number of underlying groups or clusters must be

specified. From a given starting allocation of the

genotypes into groups, the EM algorithm (Dempster

et al., 1977) ensures that convergence to a maximum

likelihood occurs. In applying this clustering method,

either group-specific covariance matrices between

attributes can be chosen (used here) or a common

covariance matrix for all groups (Basford and

McLachlan, 1985; Basford et al., 1996; Chapman

et al., 1997). The maximum likelihood method of

clustering was applied to the 9 � 4 � 4 (G � E � A)

raw data array of model (1) (primary components of

oil yield) using the FORTRAN program MIXCLUS31,

an updated version of that appearing in the appendix of

McLachlan and Basford (1988).

2.3. Three-mode PCA

This procedure derives components, i.e. linear com-

binations of the levels of the modes, for each of the

three modes (say, P, Q, and R components for geno-

types, environments, and attributes, respectively). It

can be assumed that these components together con-

tain the only relevant systematic variation of the three-

way array dataset. The components of the three modes

can be labelled on the basis of the patterns shown by

the levels with high loadings on such components. In

this model, each mode is allowed to have a different

number of components. The number of components

for each mode needs to be simultaneously determined

for all modes. Therefore, several solutions have to be

inspected to come to an adequate description of a

dataset (Kroonenberg, 1983, Chapter 2; Kroonenberg

and Basford, 1989).

A three-way array of order P by Q by R (the core

array) contains the weights assigned to each of the

combinations of the components for the three modes.

The complete model is written as (Kroonenberg, 1983,

Chapter 2; Kroonenberg and Basford, 1989):

xijk ¼
XP

p¼1

XQ

q¼1

XR

r¼1

aipbjpckrgpqr þ eijk

where aip represents the coefficient for genotype i in

the genotypic component p ðp ¼ 1; . . . ;PÞ, bjq the

1 This program can be obtained from Prof. K.E. Basford,

University of Queensland, Australia: http://biometrics.ag.uq.e-

du.au/software.htm.
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coefficient for environment j in the environmental

component q ðq ¼ 1; . . . ;QÞ, and ckr the coefficient

for trait k in the trait component r ðr ¼ 1; . . . ;RÞ. The

term gpqr indicates the joint weight for the pth com-

ponent of the genotypic mode, the qth component of

the environmental mode, and the rth component of the

attribute mode, and its squared value indicates the

variation explained for that combination of compo-

nents (Kroonenberg, 1983, Chapter 2; Kroonenberg

and Basford, 1989). In this way, the core array repre-

sents a partitioning of the overall fitted sum of squares

into small units through which the complex relation-

ships between the components can be analysed

(Kroonenberg, 1983, Chapter 6)2.

It is very instructive to investigate the component

loadings of the genotypes jointly with the component

loadings of the attributes, by projecting them together

in one space, as it then becomes possibly to display the

interaction between genotypes and attributes. The plot

of the common space is called a joint biplot, a variant

of Gabriel’s (1971) biplot (Kroonenberg, 1983;

Basford et al., 1996), and is constructed from the core

matrix as follows. For each component r of the

environment mode (E), the genotype components

(G) and the attribute components (A) are scaled by

dividing the core slice associated with that component

r between them (using singular value decomposition),

and weighting the scaled G and A by the relative

number of elements in the modes to make the dis-

tances comparable. For more detailed discussion see

Kroonenberg (1983, Chapter 6).

Three-mode PCA was applied to the 9 � 4 � 4, and

9 � 4 � 7 (G � E � A) environment-standardised

residual arrays for the yield determination models

(1) and (2), respectively, using the program TUCK-

ALS33 (Kroonenberg, 1994). Given the complemen-

tary character of clustering and ordination techniques

(Basford et al., 1996), the genotype groups derived

from the mixture maximum likelihood cluster method

were superimposed on the bi-dimensional joint biplots

derived from the three-mode PCA, in order to enhance

the interpretation of the interactions.

The efficiency of the strategies of indirect selection

for the Northern region which use attributes selected

on the basis of results of three-mode analyses was

quantified by the correlation which measured the simi-

larity of genotype discrimination between the indirect

selection regime proposed and that for the average

performance in the Northern production environment.

For that purpose, mean genotypic discrimination of

the Northern mega-environment was calculated from

14 trials conducted between 1996/1997 and 2000/

2001. The trials from 1996/1997 to 1998/1999 are

those described for the Northern region in de la Vega

et al. (2001). Additional trials included in this analysis

were conducted in Margarita (1999/2000 and 2000/

2001), Reconquista (1999/2000 and 2000/2001), and

Sáenz Peña (2000/2001).

3. Results and discussion

3.1. Mixture maximum likelihood cluster method

After mixture cluster analysis of oil yield and its

three primary components (i.e. grain number, weight

and oil concentration), the group composition of the

genotypes (Table 1) showed some changes from the

initial allocation based on hierarchical agglomerative

cluster analysis of oil yield across 21 growing envir-

onments of Argentina (de la Vega et al., 2001). Five of

the nine genotypes maintained their original group

allocation. The major difference in group membership

was in the distribution of the Northern- and broadly

adapted hybrids which showed relatively good per-

formance in December plantings (Table 1). Two-mode

clustering defined two groups of hybrids specifically

adapted to Northern and Central mega-environments,

and a third group of broadly adapted hybrids (de la

Vega et al., 2001). The use of MIXCLUS technique

did not generate any interchanges in categorisation

among elements of the two specifically adapted

groups. On the other hand, shifts between the broadly

adapted group and that specifically adapted to the

Northern or the Central mega-environments or vice

versa did occur. In the three-mode clustering, the

broadly adapted hybrid 4 and the central-adapted

hybrids were joined in a single group (Group 2,

Table 1). The broadly adapted hybrids 6 and 7 and

the Northern-adapted hybrids were re-allocated in two

2 The partitioning of the core array into explained variability per

element is only true if the three modes are orthonormal (see Ten

Berge et al., 1987).
3 This program can be obtained from the third author: http://

www.fsw.leidenuniv.nl/�kroonenb.
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groups (Groups 1 and 3, Table 1). This pattern of re-

allocation is not surprising in view of narrower differ-

ences between broadly adapted and either of the

specifically adapted categories in comparison to dif-

ferences between specifically adapted categories.

3.2. Three-mode PCA model fit and description

of components

3.2.1. Primary components of oil yield

The three-mode model with 3 � 3 � 2 components

for genotypes, environments and attributes, respec-

tively, was considered adequate for fitting the data

(r2 ¼ 0:65, Table 1), on the basis of informal judge-

ments of the increases in r2 as compared to the

increases in dimensions and difficulty of interpreta-

tion. In this model, the three components for the

genotype mode accounted for 35, 18 and 12% of

the variation, respectively; the three components for

the environment mode accounted for 48, 15 and 2%,

respectively; and the two components for the attributes

accounted for 40 and 25% of the variation, respec-

tively (Table 1). Not all genotypes, environments and

attributes were fitted equally well by the model. For

entries 2 and 4, the model accounted for considerably

less than 50% of the variability in their response

compared to the overall fit of 65% (Table 1). The

1st genotype component (G1) distinguishes between

the hybrids belonging to the MixClus3 Group 2 and

those of Groups 1 and 3 (Table 1). The 2nd genotype

component (G2) contrasts hybrids 2 and 6 vs. 8 and 9,

and the 3rd genotype component (G3) reflects the

contrast between hybrids 2 and 8 vs. 3 and 5 (Table 1).

Environments were generally well fitted by three

components with more than 70% of the variation

accounted for in most of them, except for Dec 98

(Table 1). Even though there were differences in fit

among the attributes, the model accounted for more

than 50% of the variation in all of them (Table 1). The

1st environment component (E1) contrasted Oct and

Dec plantings across years (G � S), i.e. the predictable

G � E interaction. The 2nd environment component

(E2) accounted for the G � S � Y interaction, and the

3rd environment component (E3) explained the G � Y

interaction, i.e. E2 þ E3 accounted for the unpredict-

able part of the G � E interactions. Even though E3

only explained a small portion of the total variation, it

was maintained in the model to show how this pro-

cedure can separate different portions of the G � E

interactions.

The 1st attribute component (A1) reflects the overall

variability of the scores in the levels of this mode, and

could be labelled as ‘all attributes together’. This

variability is larger for oil yield and grain oil con-

centration than for grain number and grain weight. The

2nd component of the attribute mode (A2) is domi-

nated by a strong contrast between grain number and

grain weight (Table 1).

3.2.2. Secondary components of oil yield

The three-mode model with 3 � 3 � 3 components

for genotypes, environments and attributes, respec-

tively, was considered adequate for fitting the data

ðr2 ¼ 0:65Þ. The proportion of the total variation

explained by the components of each mode, the

loadings on the components, and the sum of squares

retained by the model for the individual genotypes,

environments and attributes are detailed in Table 2.

The 1st genotype component (G1) again distin-

guishes between the hybrids belonging to the Mix-

Clus3 Group 2 and those of Groups 1 and 3. The 2nd

genotype component (G2) again contrasts hybrids 2

and 6 vs. 8 and 9, but the 3rd genotype component (G3)

contrasts hybrids 2 and 5 vs. 4 and 6 (Table 2). The 1st

environment component (E1) again accounted for the

G � S interaction; the 2nd environment component

(E2) again for the G � S � Y interaction; and the 3rd

environment component (E3) explained the G � Y

interaction. The 1st attribute component (A1) reflects

the contrast between most attributes and floret number

and grain filling rate; the 2nd component of the

attribute mode (A2) contrasts floret number vs. seed

set and grain filling rate; and the 3rd attribute compo-

nent (A3) contrasts oil yield and grain filling rate vs.

grain filling duration (Table 2).

3.3. The core array

The core array indicates the relations among the

various components of the three modes. There are

several ways in which the elements of the core arrays

can be interpreted. In this paper, we will discuss the

percentages of explained variation and the three-mode

interaction measures, which are, in our judgement, the

most useful practical tools for breeders and crop

physiologists dealing with G � E � A interactions.
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For more detailed description of these and other

alternative approaches to interpretation, see Kroonen-

berg (1983, Chapter 6).

3.3.1. Primary components of oil yield

3.3.1.1. Explained variation. The element G1E1A1 of

the core array (Table 3) indicates the strength of the

relationship between the 1st components of the three

modes, i.e. 34% of variation explained; G2E2A1

indicates the strength of the relationship between

the 2nd components of the G and E modes and the

1st component of the A mode, i.e. 4% of variation

explained; and so on. From the 18 possible

combinations of components of the three modes,

which jointly explain 65% of the total variation

contained in the system under study, four elements

accounted for 58% of such variation, namely G1E1A1

(34%), G2E1A2 (12%), G3E2A2 (8%), and G2E2A1

(4%) (Table 3). This analysis of Table 3 is a clear

example of how the inspection of the elements of the

core array allows the separation of the pattern-rich

variability from the noise-rich variability encountered

in a G � E � A system. Then, the pattern-rich

variability can be partitioned as follows:

(i) Due to G1E1A1 (34%). G � S interaction for all

attributes together, which separates MixClus3

Group 2 hybrids from Group 1 and 3 hybrids

(Table 3). This combination of components of the

Table 2

Mode component scores (with adequacy of fit) for seven attributes (oil yield and its secondary components) of nine sunflower hybrids grown

over four environments in Venado Tuerto, Argentina (3 � 3 � 3 component model for G � E � A)

Code Name (MixClus3 group) Component scores Proportion of

SS explained
1 2 3

Genotypes (G)

1 Contiflor 15 (2) �0.61 �0.03 �0.18 0.55

2 Aguará (1) 0.19 0.84 0.30 0.70

3 GV23105 (3) 0.65 �0.20 �0.14 0.59

4 GV25086 (2) �0.28 �0.15 �0.39 0.37

5 TC 2001 (2) �0.61 �0.08 0.76 0.84

6 GV23146 (1) 0.06 0.53 �0.34 0.45

7 GV22510 (3) 0.40 0.35 �0.08 0.35

8 Contiflor 9 (2) �0.70 �0.52 �0.18 0.77

9 Morgan 734 (3) 0.90 �0.74 0.23 0.83

Proportion of SS explained 0.31 0.22 0.12 0.65

Environments (E)

Oct 96 October 96 �0.78 0.17 0.21 0.69

Dec 96 December 96 0.75 �0.37 0.05 0.70

Oct 98 October 98 �0.72 �0.23 �0.25 0.63

Dec 98 December 98 0.39 0.64 �0.12 0.57

Proportion of SS explained 0.46 0.15 0.03 0.65

Attributes (A)

OY Oil yield (kg ha�1) 0.79 0.18 0.34 0.76

FN Floret number per square meter �0.05 �0.67 0.28 0.53

SS% Seed set (%) 0.32 0.73 �0.13 0.65

RGF Grain filling rate (g per achene

per day)

�0.35 0.63 0.34 0.63

DGF Grain filling duration (days) 0.74 �0.02 �0.35 0.66

K% Kernel proportion (%) 0.79 �0.19 �0.10 0.67

KO% Kernel oil proportion (%) 0.71 �0.03 0.33 0.62

Proportion of SS explained 0.36 0.21 0.08 0.65
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three modes accounted for the predictable G � E

interactions for oil yield, which can be exploited

through selection for specific adaptation.

(ii) Due to G2E1A2 (12%). G � S interaction which

contrasts hybrids 2 and 6 vs. 8 and 9 in terms of

their relative responses for grain number and

grain weight. This element of the core array

accounted for the portion of the predictable

G � E interactions associated with the relative

responses of hybrids that showed similar

patterns of oil yield across environments but

achieve these by different physiological path-

ways. If these differences are a reflection of

complementary favourable alleles (Dudley,

1984; Cheres et al., 1999), combining geno-

types of similar adaptation profile but of

different responses for yield-related traits

should bring better opportunities for yield

improvements in particular mega-environments.

Thus, the relationships between the components

associated with this element of the core array

may contribute to a more objective selection of

parents for breeding projects.

(iii) Due to G3E2A2 (8%) and G2E2A1 (4%). These

combinations of components accounted for the

unpredictable G � E interactions, i.e. G � S � Y

interaction, which may have a disruptive effect

on the efficacy of Dec planting as managed-

environment for indirect selection for the North-

ern mega-environment. The analysis of the

relationships of the levels the three modes

associated to these elements of the core array

may help to find phenotypic indicators aimed at

avoiding this effect.

3.3.1.2. Three-mode interactions. The percentages of

explained variation point to the dominant

combinations, but the direction of the relationships

must be found in the original, i.e. non-squared, core

array (three-mode interactions in Table 3). For

Table 3

TUCKALS3 core array for the 3 � 3 � 2 (G � E � A) model for four attributes (oil yield and its primary components) of nine sunflower

hybrids grown over four environments in Venado Tuerto, Argentinaa,b

Components of

the genotype mode

Components of attribute mode

Three-mode interactions Proportion of variation explained

All attributes

together (A1)

Grain number vs.

grain weight (A2)

A1 A2

Environment component 1 (E1): G � S interaction

G1 6.56 �0.64 0.34 0.00

G2 0.06 3.85 0.00 0.12

G3 �0.77 �1.59 0.01 0.02

E1 ¼ 0:48

Environment component 2 (E2): G � S � Y interaction

G1 0.02 1.16 0.00 0.01

G2 2.32 1.48 0.04 0.02

G3 0.07 3.23 0.00 0.08

E2 ¼ 0:15

Environment component 3 (E3): G � Y interaction

G1 0.22 �0.11 0.00 0.00

G2 1.04 �0.44 0.01 0.00

G3 0.95 �0.53 0.01 0.00

E3 ¼ 0:02

a G: genotype, S: planting date, Y: year.
b G1: Group 2 vs. Groups 1 and 3, G2: genotypes 2 and 6 vs. 8 and 9, G3: genotypes 2 and 8 vs. 3 and 5.
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G1E1A1, e.g. the three-mode interaction between

loadings on components is þ6.56 (Table 3). This

positive interaction reveals a relative improvement

of a particular attribute for a given genotype in an

individual environment. Hypothetically this could

arise from any of four different combinations of

elements of the three modes for (G1, E1, A1),

namely (�, �, þ), (þ, þ, þ), (�, þ, �), and (þ,

�, �). As A1 has only positive loadings (Table 1), the

number of possible combinations reduces to the first

two. This indicates the following. (i) Negative scores

for G1 (Table 1) occur together with negative scores

for E1 and positive scores for A1. Consequently, the

hybrids of the MixClus3 Group 2 showed an improved

relative performance in Oct plantings for all attributes,

especially for oil yield and grain oil concentration, and

vice versa in Dec plantings. (ii) Positive scores for G1

occur together with positive scores for E1 and A1.

Consequently, the hybrids of the MixClus3 Groups 1

and 3 showed an improved relative performance in

Dec plantings for all attributes. The attribute loadings

on component A1 (Table 1) indicate that oil

concentration is strongly underlying the genotype-

specific responses to planting date for oil yield.

Grain oil concentration is an easy-to-assess trait,

which make it suitable for using it as a selection

indicator. Since differences in average performance

for oil yield in the target population of environments

of Argentina are strongly determined by grain oil

concentration (de la Vega and Chapman, 2001), this

trait is a useful indicator of broad adaptation.

However, the strong genotypic effect shown by oil

concentration in previous studies, i.e. non-crossover

G � S interactions for grain number and size and oil

concentration determine cross-over interactions for oil

yield (de la Vega and Hall, 2002b), precludes its use as

a simple indicator of specific adaptation.

For G2E1A2, the positive three-mode interaction

(3.85, Table 3) can be interpreted as follows. Hybrids

2–6 showed an improved relative performance for

grain number in Oct plantings, i.e. (þ, �, �) for

(G2, E1, A2) (Table 1), and for grain weight in Dec

plantings, i.e. (þ, þ, þ) for (G2, E1, A2). Hybrids 1, 7–

9 showed an improved relative performance for grain

weight in Oct plantings, i.e. (�, �, þ) for (G2, E1, A2),

and for grain number in Dec plantings, i.e. (�, þ, �)

for (G2, E1, A2). Note that the hybrids adapted to Dec

plantings, i.e. MixClus3 Groups 1 and 3, which

showed similar patterns of adaptation for oil yield

and consequently grouped together in G1, can be

separated based on their contrasting responses for

grain number and grain weight in G2. It is to be

expected that, if these differences are the reflection

of complementary favourable alleles (Dudley, 1984;

Cheres et al., 1999), combining genotypes of same

interaction direction on G1 and opposite interaction

direction on G2 in breeding projects should bring

higher opportunities of genetic progress than combin-

ing genotypes of the same interaction direction on

both genotypic components. The first attempts we

have made in this direction tend to confirm this

hypothesis (data not shown). It is important to note,

however, that the F2 populations from this type of

crosses must be large enough to have a reasonable

chance of identifying the desired genotypes in the

segregating population.

The positive three-mode interactions of the core

array elements G3E2A2 (3.23, Table 3) and G2E2A1

(2.32, Table 3) indicate the effect of the unpredictable

G � E interactions, which could result in a reduced

efficacy of Dec plantings for indirect selection. The

Northern-adapted genotypes 2 and 6, e.g. showed a

better relative performance for oil yield in Dec 96 (þ,

þ, þ) than in Dec 98 (þ, �, þ) (Table 1), for both the

positive elements G3E2A2 and G2E2A1. This

G � S � Y interaction for oil yield was determined

by the relative responses of grain weight and grain oil

concentration, according to the interaction directions

for G3E2A2 and G2E2A1 (Table 1). However, for the

positive G3E2A2, both genotypes showed a relative

increase in grain number in Dec 98, i.e. (þ, �, �)

(Table 1). In consequence, the environmental factor

driving the observed G � S � Y interaction, which

determined the relatively poor performance of hybrids

2 and 6 for oil yield in Dec 98, affected grain weight

and oil concentration rather than grain number.

3.3.2. Secondary components of oil yield

3.3.2.1. Explained variation and three-mode interac-

tions. Four elements of the core array for model (2),

from the 27 possible combinations of components of

the three modes, accounted for 52% of the total

variation contained in the system (Table 4), namely

G1E1A1 (27%), G2E1A2 (14%), G2E2A1 (6%), and

G3E2A2 (5%). The combination of the 1st components
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of the three modes, i.e. G1E1A1, explains the G � S

interaction for oil yield, which contrast the MixClus3

genotype Group 2 vs. Groups 1 and 3. These reflect the

predictable G � E interactions that can be exploited

through selection for specific adaptation. The positive

three-mode interaction for this combination of com-

ponents (7.78, Table 4) indicates that the hybrids of the

MixClus3 Group 2 showed an improved relative

performance for oil yield in Oct plantings and those

of Groups 1 and 3 in Dec plantings. The high loadings

of grain filling duration, kernel proportion and kernel

oil proportion on component A1 (Table 2) indicate that

the genotype-specific responses for these attributes are

strongly determining the observed G � S interaction

for oil yield. The contrasting response patterns shown

by floret number and grain filling rate indicate that

these attributes are not underlying the genotype rela-

tive responses to planting date for oil yield. Kernel

proportion and kernel oil proportion are difficult-

to-assess traits in large breeding populations and do

not conform to usual requirements for screening pro-

cedures (Shorter et al., 1991). However, the duration

of grain filling in Dec plantings, which is also a hard-

to-assess trait, is positively associated with the

duration of green leaf area (canopy stay green) in

post-anthesis (de la Vega and Hall, 2002a). This latter

is a trait that can easily be evaluated by a breeder and

can be used as a surrogate for duration of grain filling.

The positive element G2E1A2 (5.50, Table 4)

explains the portion of the G � S interaction which

contrasts hybrids 2 and 6 vs. 8 and 9 in terms of their

relative responses for floret number, grain set and

grain filling rate (see loadings on components in

Table 2). As in the case of the primary components

of oil yield, this element of the core array accounted

for the portion of the predictable G � E interactions

that contrasts hybrids of similar response patterns for

oil yield in terms of their relative responses for the oil

yield components. The relative improvement of

hybrids 2 and 6 in Dec plantings in terms of grain

Table 4

TUCKALS3 core array for the 3 � 3 � 3 (G � E � A) model for seven attributes (oil yield and its secondary components) of nine sunflower

hybrids grown over four environments in Venado Tuerto, Argentinaa

Components of

the genotype mode

Components of attribute mode

Three-mode interactions Proportion of variation explained

All attributes vs.

floret number and

grain filling rate (A1)

Floret number vs.

seed set and grain

filling rate (A2)

Oil yield and grain

filling rate vs. grain

filling duration (A3)

A1 A2 A3

Environment component 1 (E1): G � S interaction

G1 7.78 0.02 0.30 0.27 0.00 0.00

G2 �0.39 5.50 1.19 0.00 0.14 0.01

G3 0.49 1.18 �2.96 0.00 0.01 0.04

E1 ¼ 0:46

Environment component 2 (E2): G � S � Y interaction

G1 �1.29 0.75 1.84 0.01 0.00 0.02

G2 �3.69 0.21 �1.24 0.06 0.00 0.01

G3 1.19 3.26 �1.33 0.01 0.05 0.01

E2 ¼ 0:15

Environment component 3 (E3): G � Y interaction

G1 0.93 �0.46 �1.05 0.00 0.00 0.01

G2 �0.59 �1.47 0.17 0.00 0.01 0.00

G3 �1.15 0.96 �0.05 0.01 0.00 0.00

E3 ¼ 0:03

a G1: Group 2 vs. Groups 1 and 3, G2: genotypes 2 and 6 vs. 8 and 9 , G3: genotypes 2 and 5 vs. 4 and 6.
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weight is explained by their relative increase in terms

of rate of grain filling. By contrast, the improved

performance of hybrids 8 and 9 in Dec plantings in

terms of grain number is explained by their specific

response to this environment type in terms of floret

number.

The combinations of components G2E2A1 (�3.69,

Table 4), and G3E2A2 (3.26, Table 4) explain most of

the observed G � S � Y interaction. The negative

element G2E2A1 reveals that the Northern-adapted

hybrids 2 and 6 showed a poorer relative performance

for oil yield in Dec 98 than in Dec 96, i.e. (þ, þ, þ) for

(G2, E2, A1) in Dec 98 for a negative element of the

core array (see loadings on components in Table 2).

Grain filling duration, kernel proportion and kernel oil

proportion (positive loadings on A1, Table 2) would

have been negatively affected in Dec 98 in these

hybrids, determining the relative reduction observed

for oil yield and its primary components grain weight

and grain oil concentration. The environmental factors

negatively affecting grain filling of hybrids 2 and 6 in

Dec 98 did not affect grain number. However, as in the

case of oil concentration for G � S interactions, the

strong genotypic effect showed by grain number (de la

Vega and Hall, 2002b) precludes its use as phenotypic

indicator of indirect selection aimed at avoiding the

disruptive effect of testing environments such as that

sampled in Dec 98. When the secondary components

of grain number are considered, the positive element

of the core array G3E2A2 (Table 4 and the loadings on

components in Table 2) reveal that hybrid 2 improved

its relative performance for seed set and hybrid 6

improved its relative performance for floret number

in that environment. Although both secondary com-

ponents of grain number contributed to its determina-

tion, floret number shows a strong genotypic effect (de

la Vega and Hall, 2002b), again negating its value as a

phenotypic selection indicator. By contrast, seed set

showed a strong G � E interaction effect and it is a

trait easy to assess, since fertilisation failures and

embryo abortion are concentrated in the central por-

tion of the floral disk (de la Vega and Hall, 2002b).

3.4. Joint biplots

The joint biplots of genotypes and attributes asso-

ciated with individual environment components pro-

vide an alternative way for visualising patterns of

G � E � A interaction. The 1st environment compo-

nents for yield determination models (1) and (2)

explain the G � S interaction and the 2nd environment

component for both models explain the G � S � Y

interaction (Tables 1 and 2). Thus, the joint biplots of

genotypes and attributes for the 1st and the 2nd

environment components for both models will be used

to investigate the relationships between genotypes and

attributes associated with the predictable and unpre-

dictable G � E interactions, respectively. The propor-

tion of variability explained by the 3rd environment

components of both yield determination models is too

small to justify discussion.

3.4.1. First environment components:

Interpreting the attributes contributing to

predictable G � E interactions

The component weights for the 1st and 2nd axes of

the joint biplots of genotypes and attributes in the 1st

environment component were 0.34 and 0.14, respec-

tively, for yield determination model (1) and 0.27 and

0.14, respectively, for model (2). The bi-dimensional

joint biplots of Fig. 1A and B display those aspects of

the relationships between genotypes and attributes that

are influenced by the differences between Oct and Dec

plantings across years, after the genotypic and envir-

onmental effects have been removed. These effects

can be selected in breeding for specific adaptation to

late plantings or to the Northern mega-environment.

In these bi-dimensional joint biplots, genotypes are

represented by points and attributes by vectors from

the origin. Genotypes located near the origin have all

their values close to the attribute means, given that the

data are attribute-centred. Genotypes that are close

together are similar in their specific responses for all

attributes analysed. For any particular attribute, gen-

otypes can be compared by projecting a perpendicular

from the genotype points to the attribute vector, i.e.

entries that are further along in the positive direction

of an attribute vector show higher values for this

attribute and vice versa. The bi-dimensional joint

biplots also display the strength of the associations

among attributes. Acute angles between any two

attribute vectors indicate positive associations, i.e.

they are positively correlated; 908 angles indicate

no association; and angles greater than 908 indicate

negative associations (Chapman et al., 1997;

Kroonenberg, 1997).
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In the joint biplots of Fig. 1A and B, the positive

direction (indicated by arrow heads in figures) of the

attribute vectors indicates improved relative perfor-

mance in Dec plantings. This is because the loadings

on the 1st environment component are positive for

the Dec 96 and Dec 98 (Table 1). Hybrids 2, 3, 6, 7,

and 9 (i.e. MixClus3 Groups 1 and 3) showed a

relative increase in oil yield in Dec plantings, since

their perpendicular projections on this attribute vec-

tor intercept it in positive direction (Fig. 1A). The

angle formed by the attribute vectors of grain oil

concentration and oil yield indicates that these traits

are strongly and positively correlated (Fig. 1A). This

means that the genotype-specific responses for oil

concentration are strongly underlying the predict-

able G � E interactions for oil yield. Oil yield

showed a weak positive association with grain num-

ber. The attribute vectors of oil yield and grain

weight form almost a right angle (Fig. 2A), suggest-

ing that the variation in grain weight has little effect

on the G � S interactions for oil yield. Grain number

and grain weight showed a negative association

between them in terms of their G � S interaction

effects. Hybrids 7 and 9 showed a relative improve-

ment in grain number in Dec plantings, and hybrid 6

showed a relative improvement in grain weight in

that environment.

Oil yield showed a positive association with kernel

proportion, kernel oil proportion, duration of grain

filling, and grain set, a lack of association with rate of

grain filling, and a slightly negative association with

floret number (Fig. 1B). Both kernel proportion and

kernel oil proportion positively determined the geno-

typic relative responses for oil concentration. A rela-

tive increase in floret number in Dec plantings

(Fig. 1B) determined the relative increase in grain

number (Fig. 1A) shown by hybrids 8 and 9. Contra-

rily, hybrids 7 and 2 showed a relative increase in grain

number in Dec plantings (Fig. 1A) determined by a

relative improvement in seed set (Fig. 1B). However,

only the relative responses for seed set are positively

correlated to those for oil yield (Fig. 1B). Similar

observations can be made for grain weight and its

secondary determinants rate and duration of grain

filling.

Although these joint biplots show that the patterns

of relative performance for oil yield become blurred

when the focus moves towards its primary and sec-

ondary components, they allowed the identification of

seed set (determining grain number) and duration of

Fig. 1. Joint plots of the 1st two components of sunflower hybrids and attributes associated with the 1st environment component for the

primary (A) and secondary (B) oil yield determinant models. Genotypes are represented by numbers (see Table 1 for genotype names) and

attributes by vectors (positive direction shown by arrow head) from the origin. Genotype groups identified by mixture maximum likelihood

cluster method of oil yield and its primary components are superimposed on plots. Attribute abbreviations are: OY: oil yield, GN: grain

number, GW: grain weight, O%: grain oil proportion, FN: floret number, SS%: percentage of seed set, RGF: rate of grain filling, DGF:

duration of grain filling, K%: kernel proportion, KO%: kernel oil proportion.
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grain filling (determining oil concentration) as useful

putative indicators of adaptation to Dec plantings and

the Northern region. These analyses were also useful

for detecting materials of similar response pattern for

oil yield but contrasting relative behaviour for some

primary and secondary yield determinants (e.g.

hybrids 2 and 9, which showed similar responses

for oil yield and contrasting responses for rate of grain

filling and floret number; Fig. 1B).

3.4.2. Second environment components:

interpreting the attributes contributing to

unpredictable G � E interactions

The effects associated with the 2nd environment

component for models (1) (Fig. 2A) and (2) (Fig. 2B),

i.e. G � S � Y interactions, complicate indirect selec-

tion in Dec plantings for specific adaptation to the

Northern mega-environment. The component weights

for the 1st and the 2nd axes of the joint biplot of

genotypes and attributes in the 2nd environment com-

ponent for model (1) were 0.12 and 0.03, respectively.

Therefore, major effects of unpredictable interactions

on the primary components of oil yield can be

described in a single dimension, corresponding to

the 1st component of the joint biplot. In a case like

this, when one dimension effectively explains most of

variability, the joint biplots collapse into a single line,

where it is possible to include the component loadings

of the environment mode as well. In such a case, a

product term to compare scores may be calculated as a

product of any combination of the scores of the three

modes (Basford et al., 1990; Chapman et al., 1997).

Hybrid 6 (score �1.32), e.g. will have a negative

product for oil yield (score �0.46) in Dec 98 (score

�0.45) (Fig. 2A). For the same environment type and

attribute, hybrid 9 (score 0.55) will have a positive

product.

The most remarkable observation in the one-dimen-

sional joint biplot of Fig. 2A is the negative associa-

tion observed between the Northern-adapted hybrids 2

and 6 and Dec 98 for oil yield. This effect could have

led breeders to discard these hybrids based on a single

test effected in Dec 98. According to the product terms

obtained between the scores of the levels of the three

modes, the relative response of hybrids 2 and 6 to Dec

98 in terms of oil yield was determined by a reduction

in their relative performance for grain weight and

grain oil concentration in that environment. In con-

trast, both hybrids showed a positive score for grain

number in Dec 98.

The component weights for the 1st and the 2nd axes

of the joint biplot of genotypes and attributes in the

2nd environment component for model (2) were 0.08

and 0.06, respectively. Given the similarity of both

axes in terms of explained variability, we will use the

bi-dimensional joint biplot (Fig. 2B) to interpret the

Fig. 2. Joint plots of the 1st (A) and the 1st and the 2nd (B) components of sunflower hybrids and attributes associated with the 2nd

environment component for the primary (A) and secondary (B) oil yield determinants models. Genotypes and attributes as in Fig. 2.
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unpredictable interactions for oil yield in terms of its

secondary components. In this joint biplot, the positive

direction of the attribute vectors indicates improved

relative performance in Dec 96 and Oct 98. The

primary determinants of yield, grain weight and oil

concentration, are partially determined by the duration

of grain filling, which was negatively affected in Dec

98 in hybrids 2 and 6, since their perpendicular

projections on this attribute vector intercept it in

positive direction (Fig. 2B). Kernel proportion and

kernel oil proportion, which jointly determine oil

concentration, showed the same type of response. This

means that the environmental factor underlying the

poorer performance of hybrids 2 and 6 in Dec 98 than

in Dec 96, negatively affected the duration of grain

filling of these hybrids in Dec 98 more than that of the

Northern-adapted hybrids 3 and 9.

Rainfall excess at the end of the crop cycle affected

the duration of grain filling of late-maturity hybrids in

Dec 98 (de la Vega and Hall, 2002a). In order to assess

potential effects of rainfall excess on the usefulness of

Dec 98 as a part of an indirect selection procedure for

adaptation to the Northern mega-environment, we

contrasted the relationship between oil yield and time

to anthesis in both situations, using data from trials in

the Northern mega-environment for hybrids well

adapted to those conditions (Fig. 3). Clearly, Dec

98 did not provide a good image of the relationship

typical of the Northern target production area and its

use could have promoted discarding valuable late-

maturity hybrids (i.e. 2 and 6) for the Northern target

production environment. By contrast, Dec 96 showed

the same type of relationship between oil yield and

time to anthesis of that of the Northern mega-envir-

onment (data not shown).

Finally, the negative effect of Dec 98 on the

duration of grain filling in some Northern-adapted

hybrids is reflected in a reduced, in contrast to Dec

96, phenotypic correlation between Dec planting and

the Northern mega-environment in terms of oil yield

(Fig. 4A and B). The joint biplot of Fig. 2B reveals

that hybrids 2 and 6 improved their relative perfor-

mance for grain set and floret number, respectively, in

Dec 98 (i.e. their perpendicular projections intercept

these attribute vectors in negative direction). As

discussed above, rapid assessment of these attributes

is difficult. To examine the robustness of the diameter

of the empty centre as a phenotypic indicator of seed

set that might allow the disruptive effect of the

G � S � Y interactions to be avoided, we assessed

the similarity between the genotypic discrimination

of seed set in the central portion of the capitulum in

Dec plantings and oil yield in the Northern region. For

both years evaluated, the diameter of the empty head

centre in Dec influenced the performance of the

genotypes in a more reliable fashion relative to oil

yield in the Northern region than oil yield in the Dec

plantings (Fig. 4). The use of this indirect selection

strategy instead of oil yield would have avoided

discarding the Northern-adapted hybrids 2 and 6 in

Fig. 3. Association between time to full anthesis and oil yield for the best adapted hybrids to the Northern region in Dec 98 (A) and in the

Northern mega-environment (average 14 trials conducted from 1996/1997 to 2000/2001 seasons) (B). See Table 1 for hybrid names.
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Dec 98 (Fig. 4B and D), increasing the realised

response to selection.

4. Conclusions

In three-mode PCA, different types of centring lead

to different solutions (Kroonenberg, 1983). Double-

centring of the G � E � A arrays of means, as used

here, permitted the identification of environmental

components that allowed separation of predictable

and unpredictable G � E interactions. This would have

been difficult to achieve if genotype means had been

retained. In addition, the use of three-mode PCA in

combination with biological models capturing the phy-

siological bases of yield variation among genotypes,

rather than attributes of which the product is not yield,

has served to identify three relevant sources of geno-

typic variation for a breeding program, namely: (i)

attributes that can be selected to achieve specific adap-

tation to the target environment by emphasising pre-

dictable interactions (e.g. duration of grain filling, a

trait associated with canopy stay green; Fig. 1B); (ii)

attributes that allow the unpredictable G � E interac-

tions to be accommodated, improving the linking

between managed-environments and target production

environments (e.g. grain set; Fig. 4); and (iii) genotypes

of similar response pattern for yield but contrasting

relative behaviour for the primary and secondary yield

determinants (e.g.hybrids2and9;Fig.1AandB),which

Fig. 4. Association between oil yield in the Northern mega-environment (average of 14 trials conducted from 1996/1997 to 2000/2001

seasons) and oil yield in Dec 96 (A), and Dec 98 (B) plantings in Venado Tuerto, and diameter of the empty centre of the capitulum in Dec 96

(C) and Dec 98 (D). Hybrids 2 and 6 are indicated to compare the effect of different selection strategies on them.
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combined in breeding projects could bring better oppor-

tunities for yield improvements in individual mega-

environments. Although the elements of the core array

and the joint biplots of genotypes and attributes in

environmental componentsarealternativewaysof inter-

preting the results of a three-mode PCA, hitherto only

joint biplots havebeen extensively discussed in the plant

breeding literature. In this paper, we have also demon-

strated how inspection of the explained variation and

three-mode interactionsof the elementsof the core array

allows the separation of the pattern-rich variability from

the noise-rich variability, and further permits dividing

the first one in useful sources of variation for a breeding

program.

Fischer (1981) distinguished between two general

approaches for investigating the physiological basis of

genetic variation for quantitative traits, namely top-

down and bottom-up. This paper describes part of a

top-down study, where the investigation commenced

with the identification of repeatable patterns of varia-

tion for yield (de la Vega et al., 2001) and attempted to

work from these differences towards identification of

traits lower in the hierarchy of plant organisation that

explain yield variation. Although the reference geno-

types used in this study were selected on the basis of

their contrasting relative performance and the envir-

onments sampled reflect the genotypic discrimination

of Central and Northern mega-environments (de la

Vega et al., 2001), it is to be expected that other traits

can be detected if more genotypes and environments

are used. There is also no strong evidence to suggest

that it is not possible to recombine some of the

components of specific adaptation in a way that will

contribute to an improvement in broad adaptation,

which is the main target of a breeder. Cooper

(1999) recommended evaluating the trait-based selec-

tion criteria emerged from this type of analysis by

testing experimental populations relevant for a breed-

ing program in environments representative of the

target population of environments, i.e. bottom-up

approach. This approach is under examination at

present.
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