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Univariate calibration and two-way and three-way partial
least squares (PLS) were applied to a series of GC–MS
results for 21 mixtures of two closely eluting compounds,
salbutamol and clenbuterol. Steps in the analysis,
including baseline correction, alignment of
chromatograms, mass selection, unfolding (for three-way
data), standardizing and centring, are described,
appropriately modified for the problem in hand. Both
mass spectral and, for three-way data, time dependent
loadings can be calculated. The quality of quantitative
predictions was determined using a leave one out cross
validation method. For PLS slightly better predictions
were obtained compared with the best predictions for
univariate single ion monitoring. Three-way PLS provides
a wealth of extra information.
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GC–MS is frequently employed as a quantitative technique.1,2

The traditional approach is to record a chromatogram of a
mixture in the presence of a known concentration of one or more
reference compounds,3 and then determine the ratio of the peak
areas of each component in the mixture at a selected mass
number to the peak area of the reference compound.

This approach of using selective ion monitoring is then used
to estimate concentrations, for example in environmental
monitoring.4 However, GC–MS contains information over the
entire mass range and, hence, is a multivariate technique. Single
masses provide only univariate information, whereas using a
range of masses allows multivariate approaches such as partial
least squares (PLS).5–8 There are two ways in which PLS could
be employed. The first, or two-way, method simply involves
performing PLS on a set of masses simultaneously, for example,
selecting 20 masses, and then doing calibration. However, GC–
MS can also be considered as a candidate for three-way
calibration. Rather than sum the masses up over all points in
time, the intensity at each point in time and each mass number
can be recorded to give a two-way matrix for each experimental
mixture, and a three-way matrix (tensor)9,10 when a series of
mixtures are analysed.

Although PLS supposedly should provide better results than
univariate methods, key problems have to be overcome first.
For example, the majority of masses in GC–MS are redundant,
containing no useful information. In this respect GC–MS differs
crucially from, for example, HPLC with diode-array detection,
where each wavelength contains some useful information.
Hence mass selection11,12 is a key step. For three-way data,
chromatograms have to be aligned, since the true offset of each
chromatogram differs slightly according to run. Scaling or
standardization13 has an important role to play in multivariate
calibration, as each mass may have different significance,
especially if the spectrum of one component in a mixture is
dominant by a prominent ion.

In this paper, we propose approaches for multivariate
calibration of GC–MS data and look at the effectiveness in
relation to univariate methods. In addition, multivariate calibra-
tion can reveal extra trends and information about the data.

Experimental

Previous studies established a mixture of salbutamol and
clenbuterol as good reference standards because both peaks are
partially overlapping and each compound has several ions in
common.11 A mixture design resulting in 21 chromatograms at
six concentration levels was used for the study in this paper.
Salbutamol and clenbuterol were purchased from Sigma (Poole,
Dorset, UK) and quinine from Fluka (Gillingham, Dorset, UK).
In order to improve volatility, trimethylsilyl (TMS) derivatives
were prepared by adding N,O-bis(trimethylsilyl)trifluoro-
acetamide (BSTFA) (Sigma) to the standard samples. The
samples were heated at 80 °C for 1 h. Reagents were removed
under nitrogen (40 °C). The derivatized samples were re-
dissolved in toluene–MSTFA (99 + 1 v/v). Stock standard
solutions of salbutamol, clenbuterol and quinine were prepared
at concentrations of 4.22, 4.04 and 4.10 mg ml21, respectively.
From these solutions a 153.75 mg ml21 quinine solution was
prepared and for salbutamol and clenbuterol six working
standard solutions were prepared by diluting 20, 10, 6.667, 5, 4
and 3.333 times. The theoretical mixture design is given in
Table 1, and the concentrations in Table 2. A typical
chromatogram is illustrated in Fig. 1.

Mass spectra recorded on a Fisons (Loughborough, UK)
MD800 mass spectrometer were obtained at a scan rate of 200
min21 for the datasets. The GC–MS conditions were the same
as in previous studies.12 The region where clenbuterol and
salbutamol elute was reduced to 18 datapoints in time. The
spectra of pure salbutamol and clenbuterol are given in Figs. 2
and 3 for reference. 

Table 1 Mixture design for salbutamol and clenbuterol. The numbers 0.5, 1,
etc., refer to relative concentrations

Experiment No.* Salbutamol Clenbuterol

1 0.5 0.5
2(a) and (b) 1.0 1.0
3(a) and (b) 1.0 2.0
4(a) and (b) 1.0 3.0

5 1.5 1.5
6(a) and (b) 2.0 1.0
7(a) and (b) 2.0 2.0
8(a) and (b) 2.0 3.0

9 2.5 2.5
10(a) and (b) 3.0 1.0
11(a) and (b) 3.0 2.0
12(a) and (b) 3.0 3.0

* (a) and (b) represent replicates; 21 experiments were performed in
total.
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Preprocessing, Selection of Significant Masses and
Ratioing to Internal Standard

Before performing any data analysis, it is important to
preprocess the data to obtain useful information. The first step
is to perform baseline correction. A baseline region which
represents only noise can be selected visually or by plotting the
logarithm of the sum of squares of the data. After the selection
of noise regions, the mean intensity at each mass number is
calculated, and these means are subtracted from the data to give
a baseline corrected dataset.

Owing to the variability of GC conditions, the compounds
may not elute at exactly the same time for each run. Therefore,
it is necessary to adjust the elution time for all the samples so
that the salbutamol and clenbuterol peaks are centred at the

same datapoint. After shifting the elution time the clusters of
peaks for each chromatogram are aligned.

The next step is to select a number of significant masses for
calibration. Of the mass numbers between 100 and 400 only
certain diagnostic masses are useful. The majority of masses are
either not detected or represent noise. Previously we described
a method for the selection of masses in an individual
chromatogram, using the variance/mean ratio for each mass. In
this study, however, there are 21 chromatograms, each of which
results in different diagnostic masses.

For each of the 21 chromatograms, the 50 most significant
masses ranked by the variance/mean ratio over the cluster
containing salbutamol and clenbuterol are computed, using the
procedure described previously. Masses that are common to all
21 sets of significant masses are then selected, resulting in 20
significant masses, 10 of which primarily arise from salbutamol
and 10 from clenbuterol. Using significantly fewer than 20
masses results in a distribution biased towards salbutamol,
presumably because the spectrum of salbutamol dominates in
intensity. The order of these masses is determined as follows. If
kij is the rank of mass j in chromatogram i (with rank 1 being
most significant), the total rank over all chromatograms is given
by 
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The smaller this number, the more significant is the mass. 
For the internal standard (quinine), the total peak area is an

indication of the amount of quinine present; since an equal
amount of quinine standard was introduced into each mixture,
this number acts as an internal calibrant. The total integral over
the quinine peak and all masses (not just the 20 significant
masses) was determined and is given, for chromatogram i, by qi.
Because this varies, the ratio dijn = zijn/qi, where zijn is the
intensity at mass j over the salbutamol and clenbuterol cluster at
time n in chromatogram i was calculated as an indicator of
intensity as ratioed to an internal standard at each mass.
Calibration was performed relative to z rather than the raw data
in all cases.

Univariate Calibration

The simplest method of regression is univariate calibration,14 in
which peak areas at selected masses are calibrated to concentra-
tions. In order to carry out a univariate calibration, a single mass
would be chosen which measures the response that corresponds
to the concentration of a compound in a sample. The choice of

Table 2 Injected amounts of salbutamol and clenbuterol

Experiment Salbutamol/ Clenbuterol/
No.* ng ml21 ng ml21

1 52.75 50.5
2(a) and (b) 105.5 101
3(a) and (b) 105.5 202
4(a) and (b) 105.5 303

5 158.25 151.5
6(a) and (b) 211 101
7(a) and (b) 211 202
8(a) and (b) 211 303

9 263.75 252.5
10(a) and (b) 316.5 101
11(a) and (b) 316.5 202
12(a) and (b) 316.5 303

* (a) and (b) represent replicates; 21 experiments were performed in
total.

Fig. 1 A typical mixture chromatogram of (A) salbutamol and (B)
clenbuterol.

Fig. 2 Mass spectrum of pure salbutamol. Fig. 3 Mass spectrum of pure clenbuterol.
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the mass is important and represents the compound with no
interference from other masses that may be present. For mass j,
the total peak area (ratioed to quinine) is given by xij:
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Integrating over the region of salbutamol/clenbuterol gives a
total area at mass j. A model of the form

ŷil = b0jl + b1jlxij

where b0jl is an intercept term, b1jl is the slope, xij is the total
integrated ratioed peak area at mass j, ŷil is the predicted
concentration of a standard l and i is the sample number, is then
computed, using inverse regression,15 where the two terms are
given by
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This approach assumes all errors are in the measurement of
intensity by GC–MS, which is probably the main source of error
in this study.

The quality of calibration for compound l can then be
determined using the root mean square error of prediction:
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where yil is the known concentration of compound l for sample
i. This error term is used for comparisons among significant
masses and calibration models for compound l. 

PLS Calibration

Notation

In this paper three-way matrices are denoted by uppercase bold
italic underlined characters, two-way matrices by uppercase
bold italics, vectors by lowercase bold italics and scalars by
normal italics. 

For three-way PLS, the raw data matrix D–– has dimensions I
3 J3 N0 with I samples, J masses and N0 (N22 N1 + 1) points
in time. The matrix D arises from this when unfolded, having
dimensions I 3 JN0 as described below.

For two-way PLS, the raw data matrix is X having
dimensions I 3 J. Each column corresponds to the total
integrated intensity between times N1 and N2 for each of the J
masses. N1 and N2 were estimated as the elution times at the
beginning and end of the peak cluster. No compounds are eluted
before and after these times. Note that the two-way matrix X is
different from the matrix D.

PLS can be three-way or two-way, and to distinguish this a
superscript w (2 or 3) is placed above the appropriate scores,
loadings and error matrices, vectors and scalars. The left-hand
side superscript l (1 or 2) refers to compound number. 

Concentration vectors are denoted by y with an appropriate
left-hand side superscript.

Further details are given in the Appendix.

Unfolding

There are many possible three-way calibration methods in the
literature. An easy way of performing three-way calibration is to

unfold the three-way data matrix into a two-way matrix.16–20

This is performed by concatenating the rows of a matrix to give
a row vector. If the objects for one sample form a I3 N matrix,
it becomes a length IN row vector. The two-way matrix is
established by performing the same operation for all the
samples. Fig. 4 shows the unfolding of a three-way data matrix
D with I (21) rows and N0 3 J (360 = 18 3 20) columns. PLS
is then used to calculate the matrices lT and lP for component l.
The concentration vector ly is the same for both two- and three
way PLS. 

Standardization

In this paper we consider the influence of standardization on
PLS predictions. Standardizing is a form of scaling. For two-
way PLS this process is simple and involves the trans-
formation
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For three-way PLS, the procedure is somewhat more
complex than in the two-way case. The aim of standardization
in this study is to ensure that all masses have equal influence
over the calibration problem. The mass at m/z 369 is very
intense and would dominate the analysis, so salbutamol would
be predicted much better than clenbuterol in the absence of
standardization. However, it is still important to retain the
relative influence of readings between samples as per two-way
data; if the data are standardized after unfolding, the variation in
intensity in different times is lost; each time and mass is
independently standardized. The aim of standardization should
not be to weight each time equally but only to weight each mass
equally. Therefore, the procedure involves standardizing the
entire mass readings at all times over all samples prior to
unfolding. Standardizing for three-way PLS analysis can be
described as follows: 
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Note that this procedure is nevertheless different from that for
two-way data, since there will be 378 ( = 18 3 21) datapoints
arising from each mass, rather than only 21 datapoints.

The scaled (standardized) samples are then unfolded. Note
that the unfolded data will no longer be mean centred, which
operation has to take place again after unfolding.

Fig. 4 Unfolding a three-way data matrix into a two-way data matrix to
prepare for the PLS analysis.
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Centring

Mean centring the data is the second important operation for
PLS calibration. For two-way PLS, it involves subtracting the
column mean from each element:

cxij = xij 2 x̄j

or
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Note that for three-way data, the process of standardization as
described above does not result in mean centring at each point
in time. 

Mean centring can be carried out by unfolding the three-way
matrix to a two-way, I3 JN0, matrix, and then centre this matrix
as in ordinary PLS. For three-way PLS, the data are mean
centred as follows:

cdijn = dijn 2
–djn

PLS

An application of two- and three-way PLS is presented using
GC–MS data. The methods are well described in the literature.
For two-way data, PLS is performed on the X matrix with
dimension I 3 J so that

X = lTBl PB+ lEB
ly = luBl qB+ lfB

where B denotes two-way scores and loadings. If there are K
components lT, for example, will have I rows and K columns.
The corresponding unfolded PLS estimates the following
model:

D = lTÚ lPÚ + lEÚ

ly = luÚl qÚ + lfÚ

For two-way PLS, each mass has a corresponding loading for
each component and each compound. The magnitude of these
loadings can be presented graphically as a function of mass
number. Although some loadings are negative, in order to be
consistent with the result for three-way PLS, they are presented
as absolute values.

The interpretation of loadings for three-way data is more
complex. PLS is performed on the unfolded data matrix. The
resulting loadings are folded back to form a loadings matrix for
each component. These loadings can be plotted as a function of
time for each mass, i.e., graphs of lPÚjn,m versus n for each j and
m. Another way is to plot a graph of the root mean square
loadings:

l
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which shows how the loadings are influenced by mass number.
These graphs can be compared with graphs for the corre-
sponding two-way data. 

Cross Validation

An important aspect is to evaluate how well the calibration
model predicts unknown samples. Finding a minimum root
mean square error can be used for this purpose.

Cross validation is frequently used to determine the optimum
number of principal components for multivariate calibra-

tion.21,22 Increasing the number of PLS components will always
result in a closer fit to the data. However, this does not imply
that the later components are significant.

There are several methods for testing the significance of each
component, but most are based on cross validation. In this
paper, we use the method of taking one sample out at a time.23

Each of the 21 samples is removed in turn and the two errors are
calculated by
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where s is the sample removed, gs is the group of 20 samples
excluding sample s, vf is the validation error and mf is the
modelling error.

Over all 21 samples, there will be 21 values of vf and mf, so the
overall root mean square validation and modelling errors are
given by
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The prediction error, without cross validation, is given by f2

= fA f, where f is the vector of prediction errors for each
sample.

The cross validation error is likely to be considerably larger
than the modelling error, which in turn is of the same
approximate size as the prediction error. The prediction error
will reduce according to the number of PLS components used
but, if the data behave well, the validation error should decrease
until the true number of components is found, and then increase,
since the latter components are simply noise and so do not
correctly model the validation samples.

To perform cross validation correctly, it is necessary to centre
and, where appropriate, scale the 20 samples separately each
time, i.e., if standardization is required, this is performed 21
times. The transformation on the 20 samples is then repeated on
the 21st. It is not correct to standardize and/or centre the entire
dataset of 21 samples and then model the remaining 20 samples,
as the components will be neither centred nor standardized.

Results and Discussion

Univariate Calibration

The univariate calibration errors for the 20 selected masses are
given in Table 3. In addition, a crude form of validation is
performed by constructing a model using 20 samples and
determining the prediction error on the 21st. This is repeated
leaving one sample out each time.

As can be seen from Table 3, the prediction, modelling and
validation errors are comparable in size for this example.
Interestingly, some masses result in substantial errors. For
clenbuterol, all masses are relatively low in intensity compared
with m/z 369 for salbutamol and so result in high errors. It would
be hard to predict from first principles that m/z 166 results in a
low error.

Only four masses result in errors around 15 ng ml21. This
suggests that using selective ion monitoring as a means of
univariate calibration is risky and highly dependent on the
chosen mass, and it would be hard to predict which mass is best
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from first principles. For each component, the 10 masses are
ranked in descending order of significance as suggested by the
ranking criterion in the third section. For clenbuterol, it is clear
that the more significant masses do not necessarily lead to better
calibration predictions.

PLS Predictions

The two-way PLS errors for prediction, modelling and
validation are given in Tables 4 and 5. A large number of
conclusions may be drawn. The first relates to the number of
significant PLS components in the model. Although the
prediction error reduces dramatically in all cases, this does not
imply that the later components are real. One criterion for
significance is that the true number of components is reached
when the validation error is a minimum. Extending the
calculations to 10 components for clenbuterol suggests that this
is reached at around four components (Table 6). However, a flat
graph of validation errors often indicates that the safest result is
at the beginning of the plateau, suggesting two components for
the standardized data and four for the unstandardized data. The
difference between the results for standardized and un-
standardized data is striking, especially for clenbuterol. A
reason is that the salbutamol peak at m/z 369 dominates the
analysis so that the clenbuterol peaks are relatively minor in
size, meaning a poor fit if only a few components are used. This
is also reflected in the univariate calibration models since the
less intense peaks are dominated by noise. Standardizing results

in comparable predictions for both salbutamol and clenbuterol
provided two components are used for salbutamol and four for
clenbuterol as suggested by the validation errors. It is interesting
that standardizing results in a worse model for salbutamol if
only one PLS component is used. This is because m/z 369 is
very intense and diagnostic, but if there is standardization this
advantage is removed. 

Three-way PLS predictions of the unstandardized data
(Tables 7 and 8) result in errors comparable in size for both
salbutamol and clenbuterol. In some cases the models are
actually slightly worse. This probably is because of the
problems of exactly aligning data. Because there is an
unpredictable offset when a chromatogram is run, the precise
position of a peak will change relative to the beginning of
acquisition for an intense peak. This change may be significant
for two-way data; the intensities are simply summed for each
mass, so this offset is irrelevant.

When the data are standardized this problem apparently
disappears, presumably because the intense tops of peaks have
less influence on the model. The predictions for clenbuterol are
now fairly good, even for one component.

Loadings

A great deal of information can come from the loadings plot.
The easiest to interpret are the loadings plotted as a function of
time using three way analysis. The loadings for the first two
PLS components are given in Figs. 5 and 6. For the

Table 3 Root mean square errors of univariate calibration (ng ml21). Prediction error refers to the error when the entire 21 samples are used; validation and
modelling errors are the average errors when the data set is split into 1 test and 20 training samples

Salbutamol Clenbuterol

Mass Prediction Modelling Validation Mass Prediction Modelling Validation

369 14.51201 14.5034 15.2465 262 52.9003 52.3151 54.7844
370 15.9678 15.9253 16.7844 243 45.523 45.5224 46.6973
147 23.5113 20.5732 24.1903 264 42.2964 42.042 43.8859
207 13.8473 13.8339 14.5452 186 31.8329 28.9176 33.644
265 60.5821 60.5802 61.4897 173 26.4489 26.103 27.2311
133 28.4676 27.4523 29.2518 212 36.0138 35.4542 38.0682
294 24.1052 24.0685 24.6289 166 14.0452 13.1963 14.8421
281 24.8886 24.813 26.2671 188 34.3321 33.4795 35.831
220 20.2818 20.2816 21.2602 245 23.7456 21.4552 24.4513
177 51.3573 50.8283 52.6191 277 40.8727 40.2014 42.5105

Table 4 Root mean square error of two-way PLS calibration of salbutamol (ng ml21)

Unstandardized Standardized

Component Prediction Modelling Validation Prediction Modelling Validation

1 14.5 14.7907 15.5489 30.0977 29.218 34.3195
2 13.8364 14.1351 15.459 10.8668 10.705 12.454
3 12.6539 12.8975 15.0545 8.8071 8.4721 12.3484
4 10.3475 10.2772 14.7892 6.8891 6.5467 11.2131

Table 5 Root mean square error of two-way PLS calibration of clenbuterol (ng ml21)

Unstandardized Standardized

Component Prediction Modelling Validation Prediction Modelling Validation

1 65.8421 65.6303 69.8464 30.7642 30.7846 34.4136
2 29.2507 29.0469 31.1823 20.6712 20.9968 22.7378
3 22.6302 23.023 28.2061 13.2479 12.4302 22.1795
4 13.1725 13.2623 19.4711 11.8193 10.9652 19.1694
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unstandardized data there is little difference for the first PLS
component between salbutamol and clenbuterol, except a
slightly larger maximum at fast elution time, reflecting the
position of clenbuterol. This is presumably because the ion at
m/z 369 dominates no matter which component is used for
calibration. Even though m/z 369 is not well correlated with
clenbuterol, it will, nevertheless, exhibit a small correlation
because of the design as chromatograms 1, 5 and 9 are
correlated for both components so there will be a slight

correlation between salbutamol and clenbuterol concentrations
which is picked up. The second component is necessary for a
good model, particularly for clenbuterol, as can be seen from
Tables 7 and 8. Here there is a dramatic difference, the earlier
eluting salbutamol having a negative influence on clenbuterol
calibration. The reverse is the case, but less strongly, for
salbutamol.

The standardized time-dependent loadings show a much
more obvious trend, the maxima for both salbutamol and
clenbuterol being in the correct place. The second loadings
provide an appropriate negative balancing effect. These are in
good agreement with the expectations from the prediction error.
The influence of standardization is especially obvious from the
first PLS component of Fig. 6. Note that the small correlation
with the second compound is almost certainly a result of the
design used, demonstrating the special importance of design
when doing calibration experiments. This is likely to disappear
if an orthogonal design is employed.

The mass spectral loadings are harder to interpret primarily
because they are displayed in the absolute value mode. Only the
three-way spectral loadings are illustrated for sake of brevity
(Figs. 7 and 8) but similar conclusions also come from two-way
analysis. The root mean square loadings over all points in time
are illustrated for this purpose. For example, the loadings for
unstandardized salbutamol show maxima at peaks for salbuta-

Table 6 Root mean square error of two-way PLS cross validation of
clenbuterol for 10 PLS components (ng ml21)

Component Unstandardized Standardized

1 69.8464 34.4136
2 31.1823 22.7378
3 28.2061 22.1795
4 19.4711 19.1694
5 22.1532 21.9661
6 23.258 22.7049
7 24.7529 24.1972
8 26.2817 26.6376
9 27.2957 27.1828

10 30.8872 28.1535

Fig. 5 Time-dependent loadings for the first two components of three-way
PLS data for salbutamol. The top figures represent the unstandardized data
and the bottom figures the standardized data.

Table 7 Root mean square error of three-way PLS calibration of salbutamol (ng ml21)

Unstandardized Standardized

Component Prediction Modelling Validation Prediction Modelling Validation

1 15.3467 15.5379 21.7641 16.7973 15.7835 22.202
2 14.3254 14.5242 19.9991 14.0457 14.0227 20.3149
3 12.3116 12.1632 18.6847 10.9006 10.1287 18.8127
4 9.4362 9.5854 16.4184 7.414 7.0539 17.0949

Table 8 Root mean square error of three-way PLS calibration of clenbuterol (ng ml21)

Unstandardized Standardized

Component Prediction Modelling Validation Prediction Modelling Validation

1 57.4241 55.2667 65.7378 17.8093 17.7842 23.1488
2 25.6571 26.7913 31.1776 15.8925 15.9249 22.1179
3 17.7387 17.832 23.8823 9.7123 10.0147 21.119
4 11.9961 11.6328 22.3824 5.7637 5.6139 19.7164

Fig. 6 Time-dependent loadings for the first two components of three-way
PLS data for clenbuterol. The top figures represent the unstandardized data
and the bottom figures the standardized data.
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mol in the first PLS component, being a good reconstruction of
the salbutamol spectrum since the time-dependent loadings also
suggest that the first component primarily picks up salbutamol.
The second component is influenced more by clenbuterol,
although in negative manner, so the loadings primarily relate to
the clenbuterol spectrum with a more prominent maximum at
m/z 262, although some salbutamol (m/z 369) still remains. 

Standardizing the data distorts the relative mass spectral
intensities but the trends are still there. For example, the time-
dependent loadings for the first standardized component for
clenbuterol and second for salbutamol are dominated by
clenbuterol and the equivalent mass spectral loadings show low
intensity at m/z 369 and 370 but relatively high intensities at m/z
262. Visually the loadings for the three-way first standardized
PLS components of salbutamol and clenbuterol can be divided
into two groups, those of value around 0.07 and 0.02. These are
given in Table 9. Remarkably, the high value loadings all arise
primarily from the calibrant and the low value loadings from the
second component. There is a high degree of correspondence
between the order of these loadings and the order of univariate
calibration errors as given in Table 3. For example, the m/z 265
and 177 ions have the highest calibration errors for salbutamol
and, therefore, appear intermediate between the salbutamol and
clenbuterol group in clenbuterol (0.0542 and 0.0413). The m/z
166 and 245 ions have lowest univariate calibration errors for
clenbuterol (and are the only two ions that could be employed to
provide an estimate of clenbuterol concentration with a high
degree of confidence in the univariate models) and both have
the highest loadings. The results for salbutamol are slightly less

clear, but the ion with the highest univariate calibration error
(m/z 265) has, nevertheless, the lowest value of the loadings for
the salbutamol first component. A graph of the time-dependent
loadings for salbutamol explains this. The second component is
not as well defined as it is for clenbuterol. 

Conclusions

This paper has described two methods for PLS calibration of
GC–MS data. The improvement in prediction error is small but
significant over univariate calibration if PLS is properly
performed. However, the major advantage of PLS is that 20
masses can be used, and the prediction error is better than the
best single mass. The difficulty with single ion approaches is
that a correct choice of mass must be made. For at least one of
the components, it is not clear, from first principles, which mass
is most suitable, so selective ion monitoring risks poor results
unless great care is taken to select a range of ions, some of which
may not be obvious to the mass spectrometrists at first
glance.

Three-way PLS does not have major advantages over two-
way methods as far as prediction errors are concerned. One
problem is correctly aligning chromatograms. If digital resolu-
tion is not very high (typically a peak is defined by around 10
datapoints in GC–MS), small shifts in detector offsets can result
in difficulties exactly aligning chromatograms, so introducing
extra errors into the calibration24 which counterbalance the
advantages of using the extra dimension. However, three-way
analysis does result in more diagnostic information such as
time-dependent loadings and, certainly for more complex
problems of three or four components eluting at slightly
different times, will reveal much more than two-way proce-
dures.

The absolute importance of data scaling such as standardizing
and mean centring at the correct step in the procedure has been
discussed. In this paper, we have only reported meaningful
results. Incorrectly applying data preprocessing methods results
in meaningless output, so the user of such approaches must take
great care.

We thank Dr. F. Burden for helpful discussions relating to cross
validation and P. Hindmarch for writing the program for

Fig. 7 Spectral loadings of three-way PLS data for salbutamol. The top
figures represent the unstandardized data and the bottom figures the
standardized data.

Fig. 8 Spectral loadings of three-way PLS data for clenbuterol. The top
figures represent the unstandardized data and the bottom figures the
standardized data.

Table 9 Root mean square loadings of the first standardized three-way
PLS component of salbutamol and clenbuterol and their assignments
(C and S)

Corre- Corre-
sponding sponding

Salbutamol m/z compound Clenbuterol m/z compound

0.0769 133 S 0.0713 245 C
0.0740 207 S 0.0713 166 C
0.0739 220 S 0.0705 277 C
0.0719 147 S 0.0705 186 C
0.0713 177 S 0.0702 243 C
0.0695 281 S 0.0700 264 C
0.0694 369 S 0.0661 173 C
0.0692 370 S 0.0649 262 C
0.0658 294 S 0.0640 212 C
0.0626 265 S 0.0635 188 C
0.0341 186 C 0.0542 265 S
0.0270 188 C 0.0413 177 S
0.0266 262 C 0.0278 220 S
0.0257 173 C 0.0274 133 S
0.0232 277 C 0.0247 281 S
0.0224 212 C 0.0235 207 S
0.0224 166 C 0.0206 370 S
0.0196 243 C 0.0201 369 S
0.0176 264 C 0.0198 294 S
0.0165 245 C 0.0190 147 S
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decoding GC–MS data. We are grateful for support from
Uludag University (Bursa, Turkey).

Appendix

List of Notations Used
D–– Three-way GC–MS data matrix
D Unfolded GC–MS data matrix
X Two-way GC–MS data matrix
i Sample number
I Total number of samples
j Mass number
l Compound number
Kj Total rank over all chromatograms
kij Rank of mass j
qi Quinine peak area for sample i summed over time

and all masses
zijn Intensity for mass j, sample i and time n
dijn Peak area ratio for mass j, sample i and time n
n Time
N1 Point in time at the beginning of a cluster of peaks
N2 Point in time at the end of a cluster of peaks
xij Peak area ratio for mass j and sample i summed

over all time
sxij Standardized data matrix for two-way PLS
cxij Mean centred data matrix for two-way PLS
sdijn Standardised data matrix for three-way PLS
cdijn Mean centred data matrix for three-way PLS
ŷil Predicted concentration
yil Concentration of compound l
ȳl Mean concentration of compound l
x̄j Mean peak area ratio of mass j summed over time
bojl Intercept of univariate calibration line
b1jl Slope of univariate calibration line
Rl Root mean square error of compound l
ly Concentration vector for compound l
lTw PLS scores matrix for compound l
ltwm PLS scores vector for compound l
ltw

im PLS scores for sample i, component m and
compound l

lPw PLS loadings matrix for compound l
lpw

m PLS loadings vector for component m and
compound l

w Order of PLS (2 or 3)
lpw

mj Loadings for mass j for two-way PLS
lpw

mjn Loadings for mass j and time n for three-way PLS
lPw

mj Sum of loadings for mass j over all time for three-
way PLS

m Component number
M Total number of components

N0 Number of data points in time over significant peaks
(N2 2 N1 + 1)

lEB Error matrix of X for two-way PLS and compound l
lEAAA Error matrix of D for three-way PLS and

compound l
lfB Error vector of y for two-way PLS and compound l
s Removed sample
vf Validation error
mf Modelling error
gs Group of samples excluding sample s
vF Root mean square validation error
mF Root mean square modelling error
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