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Abstract: Triadic distances t defined as functions of the Euclidean (dyadic) distances 
a1, a2, a3 between three points are studied. Special attention is paid to the contours of 
all points giving the same value of t when a3 is kept constant . These isocontours allow 
some general comments to be made about the suitability, or not, for practical 
investigations of certain definitions of triadic distance. We are especially interested in 
those definitions of triadic distance, designated as canonical, that have optimal 
properties. An appendix gives some results we have found useful. 
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1. Introduction 
 

Originating with Hayashi (1972), interest in triadic distance models 
has grown during the last decade with developments by Cox, Cox and 
Branco (1991), Pan and Harris (1991), Joly and Le Calvé (1995), Daws 
(1996), Heiser and Bennani (1997), De Rooij and Heiser (2000), De Rooij 
(2001), De Rooij (2002), and Gower and De Rooij (2003). There has been 
little interest in the underlying geometry of triadic distances. In this paper we 
discuss Euclidean properties of triadic distances, some proposed in the 
literature and others new. 

Before examining triadic distance, we briefly consider the place of 
dyadic terms in data analysis. In general, these terms may express distances 
or they may be of bilinear product form. Distance-terms are primarily used 
for multidimensional scaling or (hierarchical) classification, where the 
results of analysis are often presented as graphical displays, whose 
interpretation relies heavily on the metric and distance properties of the 
measure. Bilinear terms are often used as parametric interaction terms in 
statistical models. Then, geometrical considerations may be irrelevant but 
the links between bilinearity, inner-products and distance are sometimes 
exploited to give visualizations similar to those used in multidimensional 
scaling (see e.g. Kempton, 1984 and Denis and Gower, 1996). Furthermore, 
although rare, direct distance parameters could be, and perhaps more 
frequently should be, included as terms in statistical models. Examples of 
such approaches can be found in Carroll and Pruzansky (1980, 1983, 1986) 
who proposed ‘hybrid’ models for the analysis of proximity data; Takane, 
Bozdogan and Shibayama (1987) who described discriminant analysis using 
Euclidean distances; and Takane (1987) and De Rooij and Heiser (2003a, 
2003b) who use Euclidean distances in the analysis of contingency tables.  

Thus, distance interpretations are important not only in multi-
dimensional scaling but also in some applications of statistical models; the 
geometry required is well-understood by all. Similar considerations apply to 
triadic terms, whether they are set in a multidimensional scaling context 
(Gower and De Rooij, 2003) or used as parameters that model three-way 
interactions, but the required geometry is not well-understood. Our objective 
is to provide some tools that will contribute to the understanding of triadic 
geometry and hence to the interpretation of the analysis of triadic distances. 
In this paper we discuss triadic terms that are all based on dyadic distances 
for which the triangle inequality holds. 

To fix notation see Figure 1, which shows three points A1, A2, and A3. 
The  dyadic distance between  A2  and  A3 is denoted by  a1  (the side opposite 



Geometry of Triadic Distances 183 

  

 
Figure 1. Three points A1, A2 and A3, with dyadic distances a1, a2 and a3, distances from the 
vertices to a center S , p1, p2 and p3, distances from a center S  to points D1, D2, and D3 on 
the sides of the triangle A1 A2 A3 denoted by q1, q2, and q3, and distances between D1, D2, 
and D3  denoted by d1, d2, and d3. 
 
 
A1), the distance between A1 and A3 by a2, and the distance between A1  and 
A2 by a3.  Also shown is a “center” S  whose distances from A1, A2, A3 are p1, 
p2 and p3. Points D1, D2 and D3 are shown on the sides of the triangle  and the 
lengths SD1, SD2 and SD3 are denoted by q1, q2 and q3; and the lengths D2D3, 
D1D3 and D1D2 by d1,  d2 and d3 respectively. We refer to D1D2D3 as an 
interior triangle  and when, as is often the case, D1, D2 and D3 are orthogonal 
projections of S, then D1D2D3 is termed the pedal triangle of S. Appendix 
A3.3 gives conditions for an interior triangle to be a pedal triangle. 

Triadic distances (t) are symmetric functions of dyadic distances, with 
the forms: 

 
t = f(a1,a2,a3), t = f(d1,d2,d3), t = f(p1,p2,p3), or t = f(q1,q2,q3).1 

 

                                                                 
1  Of course f(.) is not the same function in all cases, though sometimes it is. 
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Analogous to the symmetry of dyadic distance, the functions f(.) are chosen 
to be symmetric in the sense that the parameters a1,a2,a3 (equally d1,d2,d3  

etc.) may be permuted without affecting t: 
 
i.e. t = f(a1,a2,a3)=f(a1,a3,a2)=f(a2,a1,a3)=f(a2,a3,a1)=f(a3,a1,a2)=f(a3,a2,a1).  

Although some triadic distances may be expressed most compactly in terms 
of (d1,d2,d3) or of (p1,p2,p3) or of (q1,q2,q3), all those considered below 
remain symmetric functions of a1,a2,a3, i.e. all triadic distances in the sequel 
can be rewritten as symmetric functions of a1, a2, and a3. 

The most popular functions used in the literature are the Lρ-trans-
forms: 

( ) ρρρρ 1

321 aaat ++= . 
 

When ρ = 1 the triadic distance is often called the perimeter distance, when 
ρ = 2 the generalized Euclidean distance, and when ρ = ∞ the generalized 
dominance distance, with t = max(a1,a2,a3). In this paper we also explore the 
properties of many other symmetric functions. Our intention is partly to 
bring to attention many interesting possibilities for modeling triadic 
distances but also to eliminate some definitions that are shown to have 
undesirable properties. To this end we are particularly interested in triadic 
distances that express some interesting interpretable optimal properties of 
A1A2A3. Often, optimal properties are associated with special definitions of 
the center S, including the centroid (G), the mediancenter (M), the incenter 
(I), the circumcenter (C), and the orthocenter (H) as well as others derived in 
the following. 

For dyadic Euclidean distances the circle center A1, defines a set of 
points A2 with equal dyadic Euclidean distance from A1: this set is named an 
isocontour. Similarly, for given points A1 and A2, we define the triadic 
isocontour to be a set of points A3, having equal triadic distances with A1 and 
A2. Specific points in this set will be denoted by A3. The horizontal 
dimension will be denoted by x, and the vertical by y. Coordinates for A3 will 
be denoted by [x,y] (see Appendix A3.4), so the equation of the isocontour 
of the set A3 is a function we denote by h(x,y), which may be shown in two-
dimensions. Just as the diamond, the circle, and the square are isocontours 
for the city-block, Euclidean, and dominance dyadic distances respectively, 
for different triadic distances the isocontours have varying forms. Without 
knowledge of the isocontours, a triadic distance graph is not interpretable. 
The contour lines are essential for deciding which points have smaller or 
large values of t. Current work on triadic distances has paid little attention to 
their geometric interpretation and more specifically to their isocontours. 

All the triadic distances we study satisfy the property:  
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f(λa1,λa2,λa3) = g(λ)f(a1,a2,a3) 
 

where, g(λ)=λ, g(λ)=λ2, or g(λ)=λ3. With this property, the values of t for 
similar triangles are proportional up to a scaling factor, enabling us to 
choose a scale in which a3 = 1. Hence, to study the contour lines, we will fix 
A1 to have coordinates [-½,0], and A2 to have coordinates [½,0]. We can 
rotate and isotropically scale any three points to satisfy this scaling. Because 
[x,y], [-x,y], [x,-y] and [-x,-y] generate the same dyadic distances (and thus 
the same triadic distance) with A1 and A2, it follows that for any isocontour 
h(x,y), h(x,y) = h(-x,y) = h(x,-y) = h(-x,-y), i.e. we have two axes of 
symmetry, A1A2 and the line through the center orthogonal to A1A2. 

Section 2 discusses the properties of triadic distances defined directly 
by the form f(a1,a2,a3) and section 3 discusses optimal properties of center-
based triadic distances. Section 4 mentions some sub-optimal triadic 
distances and Section 5 discusses the relevance of our results and makes 
some recommendations. 
 

2. Symmetric Functions of a1, a2, and a3 

 
Two symmetric functions that play an important part in the following 

are: 
2
3

2
2

2
1 aaas ++=  

 
and the area ∆ (Heron's form, see e.g. Apostol, 1967): 
 

))()(( 321 arararr −−−=∆  
 

where r = ½(a1+a2+a3), the semi-perimeter, or equivalently: 
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We first discuss some basic triadic distances, that have geometric 
appeal but not necessarily any optimal property. We start with the Lρ-trans-
forms and then discuss some other functions of a1, a2, and a3.  
 
 
2.1 The Perimeter Distance 
 

Perimeter distance is defined as the sum of the dyadic distances, that 
is: 

t = a1 + a2 + a3. 
 

For all points on A1A2 between A1 and A2, t = 2a3. This is the minimum 
distance for the perimeter model. For one-dimensional representations this 
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property is important, since then the triadic distance is completely 
determined by the two furthest points of the triple. In our representation, 
where A1 and A2 are fixed at unit distance, the perimeter model has minimum 
2 and: 

a1 + a2 = t – 1. 
 

That a1 + a2 is a constant is well known as defining an ellipse with foci A1 
and A2 (e.g. Wells, 1991, p. 64). The ellipse crosses the x-axis at a point X 
given by A1X = 2

t  and hence X has coordinates ( 2
1)-(t , 0) and the ellipse has 

a major axis of length 2
1)-(t . It crosses the y-axis at Y where a1 = a2 = 

2
1)-(t and hence OY 2 = ( ) 4

2
4
12

2
)t(t1)-(t −=− , giving the square of the minor 

axis. Thus, the ellipse has eccentricity  
 

e = 
1
2

−
−

t
)t(t

 and equation:   1
2
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The contours shown in Figure 2, are nicely behaved, i.e., they are convex 
and smooth. As t ∞→ , e →1, showing that the elliptic contours tend to 
circularity as t increases. 

  
2.2 Generalized Euclidean Distance  
 

For the generalized Euclidean distance:  
2
3

2
2

2
1 aaat ++=  

and thus in our parameterization 
.122

2
2
1 −=+ taa   

From Appendix A3.4, we have that the equation for the isocontour is: 
 

4
32

2
122 −=+ tyx , 

 
which is a circle, centered at the origin, of squared radius 4

32
2
1 −t , shown in 

Figure 3. As with standard dyadic Euclidean distance, the contour lines are 
concentric circles. When 2

3=t  we achieve the minimal triadic distance 
and the circle collapses to a single point at the origin. Unlike perimeter 
distance, generalized Euclidean distance varies for points between A1 and A2. 
 
2.3 The Generalized Dominance Distance  
 

The generalized dominance distance is defined by t = max(a1,a2,a3). 
With our normalization a3 = 1, we have to consider the two situations: (i) t >  
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Figure 2. Elliptical contours for perimeter model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Circular contours for generalized Euclidean model. 
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Figure 4. Intersecting circular contours for generalized dominance distance. 
 
 
a3 = 1 and (ii) t = a3 = 1. Inspection of Figure 4 shows that in case (i) the 
contour for constant t is given by the intersection of the two circles centered 
at  A1 and A2, each with radius t.  When A3 lies within the shaded area of 
Figure 4, a3 is the longest side, so that t = 1, which is case (ii); the whole of 
the shaded area corresponds to t = 1. 
 
2.4 The Variance Function 
 

Variance is defined by 
 
       t2 = var(a1,a2,a3) = 2

3213
12

3
2
2

2
1 )aa(a)aa(a ++−++  

 
and may be considered as giving a measure of departure from an equilateral 
triangle (which has zero variance). Figure 5 shows the contours plotted for 
values of 3t2. The equations and shapes of the contours are quite complicated 
(see Appendix A1). For 3t2 < ½ we have closed pairs of egg-shaped 
contours; for ½ < 3t2 < 1½ the two parts fuse while for 1½ < 3t2 < 2 the 
contours form disjoint sections, including small roughly circular contours 
around A1 and A2; when 3t2 >2 the contours again become continuous, 
tending to circularity as t increases.  
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Figure 5. Disjoint and double contour lines for triadic variance distance. For values of 3t2 

exceeding 1.75 the contours approach an elliptical shape. 
 
2.5 Area 
 

Writing ∆ for the area of the triangle A1A2A3, we have (from Heron's 
formula): 

16∆2
 = (a1+a2+a3)(-a1+a2+a3)(a1-a2+a3)(a1+a2-a3). 

 
The area is an interesting property of a triangle in its own right; we shall see 
that it occurs in several of the functions considered in Section 3. With A1 and 
A2 fixed at [-½, 0] and [½ ,0] the area equals ½y, so the isocontours are lines 
parallel to A1A2, together with their reflections. Thus the isocontours are sets 
of lines parallel to the horizontal; a diagram is unnecessary. When A3 is 
above (below) A1A2 we may adopt the convention that the area is positive 
(negative). 
 
2.6 The Product Model 
 

The product model a1a2a3 might be considered, partly because of its 
relationship with loglinear models and also because it occurs as a component 
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Figure 6. Disjoint and elliptical shaped contours for product distance. 
 
 

of some of the functions considered in Section 3. We have t = a1a2 for which 
the equation of the isocontour (see Appendix A3.4) is: 
 

22
4
1222 )( xyxt −++= . 

 
Figure 6 shows the isocontours (Cassinian ovals, see Wells, 1991, p25). 
Noteworthy are the figures of eight close to the origin and the disjoint ovals 
around A1 and A2 For larger t the isocontours become elliptical. 
 

3. Triadic Distances Based on Centers  
 

For the generalized Euclidean model it is well known that when the 
center S is the centroid G, then: 

 
)(3 2

3
2
2

2
1

2
3

2
2

2
1

2 pppaaat ++=++=  
 

This relationship links the triadic distances defined in terms of a1, a2, a3¸ and 
those defined in terms of S and p1, p2, p3. Moreover, we know that G is the 
center that minimizes 2

3
2
2

2
1 ppp ++ .  
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The emphasis in this section is on the optimal properties of the centers 
themselves. Of course, 2

3
2
2

2
1 ppp ++  may be evaluated for any center S but 

only for G does it have the optimal property. We term t = 2
3

2
2

2
1 ppp ++  the 

canonical triadic distance for the center G. Here we have replaced t2 by t, 
see section 5 for comment on the consequences of this change. Other centers 
induce their own canonical triadic distances. Thus, the mediancenter M 
minimizes 321 ppp ++  and the circumcenter C minimizes max(p1,p2,p3) 
The incenter I and the orthocentre H also induce canonical triadic distances: 
for I, the inradius r minimizes max(q1,q2,q3) the distance from the sides of 
the original triangle; for H, we have the remarkable property that the pedal 
triangle has smallest perimeter of all interior triangles, provided the original 
triangle is acute-angled (see e.g. Wells, 1991, under the entry Billiard Ball 
Paths in Polygons, p. 14). In general, the canonical triadic distances are 
defined as minimal values of some salient geometric property of the triangle 
A1A2A3 and we shall require not the individual values of p1, p2, p3 but only 
the optimal value, t, of each criterion. Like the triadic distances discussed in 
Section 2 these may be expressed as symmetric functions of a1, a2, a3. These 
functions can be algebraically complicated but our emphasis is on the 
geometry, which remains simple. In this section, we concentrate on the 
canonical triadic distances and content ourselves with some brief remarks in 
Section 4 on the enormous number of possible non-canonical forms.  

The above remarks mainly refer to measures based on p1, p2,  p3 
principally the minimization of the L2-norm, the L1-norm and the minimax 
criterion, i.e.: 

 

),,( 321

321

2
3

2
2

2
1

pppmax
ppp
ppp

++
++

 
 
 

respectively, but similar functions of q1,  q2, q3 and of d1, d2,  d3 are also 
considered. 
 
3.1 Distances Based on pi 
 

In this section attention is paid to functions of pi, the distances from a 
center to the vertices. 
 
3.1.1 The L2-norm and the Centroid 
 

As already stated, the L2-norm is minimized by taking the centroid G 
as center. This case is covered by the generalized Euclidean distance 
discussed in Section 2.2. 
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Figure 7. Elliptic shaped contour lines for sum of distances around mediancenter. See Figure 
A2 for further details. 
 
 
3.1.2 The L1-norm and the Mediancenter 
 

For triangles with no angle exceeding 120°, the mediancenter, M, 
(Haldane, 1948; Gower, 1974) minimizes p1 + p2 + p3 with min(p1 + p2 + p3) 
= k where k2 = ½s + 2 3 ∆ (See appendix A2). When the angle at A2, say, 
exceeds 120°, M coincides with A2 and then p1 + p2 + p3 = a1 + a3. 

From Figure 7 we see that the isocontours for (p1 + p2 + p3) are, at 
least to the eye, of elliptical shape. Indeed, they are approximated by ellipses 
with major axis t-½ and minor axis t- 2

3 . Appendix A2 shows that the 
reality is more complex and the contour is made up of several sections that 
join together smoothly. The four main regions are separated by the 120° 
lines shown in Figure 7. When t 

3
2≥ the four sections are all circular, but 

when t <
3

2 there are eight sections, part of the central circular arcs now 
being replaced by elliptical arcs. These elliptical arcs closely follow the 
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circular arcs they replace but now the “minor axis” becomes 4
12 −t . The 

minimal permissible value of t is t = 1, when the isocontour collapses to the 
line A1A2 and we attain the maximal difference of 1- 2

3 = 0.134 between the 
“ellipse” (now a line) and the circle it replaces. Despite their inherent 
complexity, these contours are very regular with no disconcerting features; 
they may be compared with the elliptical contours of perimeter distance 
(section 2.1). 
 
3.1.3 Minimax and the Circumcenter 
 
It is clear that when a solution p1 = p2 = p3 is admissible then this must 
minimize max(p1,p2,p3). Otherwise, it would be possible to shorten the 
largest of p1,p2,p3 without exceeding either of the shorter lengths. Such a 
solution is well-known to be possible by choosing S to be the circumcenter C 
when p1 = p2 = p3 = R, the circumradius, where: 

 
R = 

?4
321 aaa

. 
 
From Appendix A3.4, the equation of an isocontour, which by definition is 
circular, is: 

( ) 22

4
122224 xxyyR −++= , 

 
which factorizes into:   

( )( )2 2 2 2 2 21 1 1 1
4 4 4 42 ( ) 2 ( ) 0x y y R x y y R+ − − − + + − − = , 

 
 
representing the upper and lower circumcircles through A1 and A2 of radius 
R. Figure 8 shows these circular isocontours. 

Circular contours are easy to interpret but we have to be aware that 
there are two circles for each value of t. Furthermore, in the area of their 
intersection, there is very little to distinguish between different values of t 
(see Figure 8). Circumcenters may be exterior to A1A2A3 but this is no 
problem. Flat triangles will have very large values of R. 

 
3.2 Distances Based on qi 
 

In this section attention is paid to functions of qi, the distances from a 
center toward the sides of the triangle. 
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Figure 8. Double circular contours for minimax (p i) and circumcenter. 
 
  
3.2.1 The L2-norm and the N-center 
 

The minimization of 2
3

2
2

2
1 qqq ++  leads to a new center that we have 

labeled N. Equation (A3.6) of Appendix 3.3 gives: 
 
 

2
3

2
2

2
1 qqq ++  = 


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++∆ 2
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s
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which on minimization under the constraint s1 + s2 + s3 = 1 leads 
immediately to sk = 2

ka /s. The main characteristic of N is that it is at the 
centroid of the pedal triangle D1D2D3; this is shown geometrically in Section 
3.3.1. The minimal value of 2

3
2
2

2
1 qqq ++  is t = 4∆2/s which gives an 

isocontour: 
0)12(2 2

322 =+−+ tyttx . 
 

Thus, we must have 0 = t < ½, so the contours are hyperbolic, as is shown in 
Figure 9. 
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Figure 9. Hyperbolic contours for 2

iq∑ around N-center. 
 
 
3.2.2 The L1-norm and the K-center 
 

From Appendix A3.3, to minimize q1 + q2 + q3 is the same as 
minimizing:  









++∆

3

3

2

2

1

12
a
s

a
s
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s

 
 
 

subject to the constraint s1 + s2 + s3 = 1. This is a simple linear programming 
problem with solution si = 1 when ai is the longest side, else si = 0. Thus, 
 

t = 
),,(

2

321 aaamax
∆

. 
 
 

When max(a1,a2,a3) = a2 it follows from Appendix A3.4 that t =y/a2. This is 
constant when sin(A1)  is constant, that is on the line A1A3. Similarly, when 
max(a1,a2,a3) = a1, t is constant on the line A2A3. However, when 
max(a1,a2,a3) = a3 = 1, the maximum length side is A1A2 and t is constant 
when y is constant. This state of affairs holds within the intersection of the 
two circles, both with unit radius, one centered at A1 and the other at A2.  
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Figure 10. Multiple straight line contours for qi∑ around K-center. Each contour has two 
parts except for those that pass through the intersection of the two unit circles, which have 
three parts. 
 
 
Thus the contours are made up of two or three linear segments as shown in 
Figure 10. The two-line contours occur for 3 / 2t ≥ . 
 
3.2.3 Minimax and the Incenter 
 

The incenter is the point I equidistant from the three sides of the 
triangle and hence gives the center that minimizes max(q1,q2,q3). We have 
that q1 = q2 = q3 = r, the inradius, given by: 

 
 

r = 
321

?2
aaa ++

. 
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               Figure 11. Hyperbolic shaped contours for Minimax(qi) around Incenter. 
 
 
Using Appendix A3.4 shows that the isocontours do not have a simple 
equation in Cartesian coordinates. However the isocontours are readily 
computed and are shown in Figure 11. 
 
3.3. Functions of di 

 
We continue with functions of di, the lengths of the sides of an 

interior triangle.   
 
3.3.1. The L2-norm and the N-center 
 

We adopt a geometrical approach, referring to Figure 12(i). Consider 
the set of points F that have the same value of 2

3
2
2

2
1 ddd ++  with D1 and D2 

as does D3. This is a circle centered at the midpoint of D1D2 which meets 
A1A2 at D3 and one other point F′ , say. Between D3 and F′ will be points that 
give smaller values of 2

3
2
2

2
1 ddd ++ . It follows that for fixed D1,  D2 the 

smallest value of 2
3

2
2

2
1 ddd ++  is obtained when D3 is chosen to be the 

point where a concentric circle touches A1A2. The normal at this point, being 
also a radius,  passes through the midpoint of  D1D2;  the same applies  to the 
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Figure 12. Derivation of the N-center. (i) shows any interior triangle D1, D2, D3. F′ is the point 
that has the same sum-of-square with D1 and D2 as has D3. In the limit (ii) shows the center N 
of a pedal triangle. 
 
 
normals at D1 and D2. The geometry is shown in Figure 12(ii). The normals 
meet at N, the centroid of the triangle D1D2D3. It follows that 2

3
2
2

2
1 ddd ++  

= 3( 2
3

2
2

2
1 qqq ++ ) so this leads to the same solution as in Section 3.2.1. We 

have defined D1, D2 and D3 as the vertices of any interior triangle but the 
above shows that at the minimum, they define a pedal triangle. 

  
3.3.2. The L1-norm and the Orthocenter 
 
 The orthocenter, H, is at the intersection of the altitudes from A1, A2 

and A3. When one of the angles is obtuse, the orthocenter will lie outside the 
triangle. For acute angled triangles the pedal triangle of the orthocenter has 
minimal perimeter among all interior triangles – that is where D1, D2 and D3 
are not necessarily given by orthogonal projections of any center. To see this 
refer to Figure 13(i) in which D1D2D3 represents any internal triangle and 
consider the set of points F that have the same value of d1 + d2 + d3 with D1 
and D2 as does D3. This is an ellipse with foci at D1 and D2 that passes 
through D3 and will intersect A1A2 at one other point F′, say (compare with 
Section 2.1). Between D3 and F′ will be points that give smaller values of d1 

+ d2 + d3. It follows that for fixed D1, D2 the smallest value of d1 + d2 + d3 is 
obtained when D3 is chosen to be the point where a confocal ellipse touches 
A1A2. From the standard property that a normal to an ellipse bisects the 
directions to its foci, D1D3 and D2D3 make equal angles with the normal at 
D3. The same result must apply for normals at D1 and D2. This is a standard 
result for the pedal triangle associated with the orthocenter, showing that the 
minimal perimeter  occurs  when  D1D2D3  is  the pedal triangle of the ortho- 



Geometry of Triadic Distances 199 

  

 
Figure 13. Derivation for the orthocenter having minimal perimeter of interior triangle. (i) 
shows any interior triangle D1, D2, D3. F′  is the point that has the same sum of distances with 
D1 and D2 as has D3. In the limit, not shown, the triangle is pedal with center at the 
orthocenter, H. In (ii) the angle at A2 is obtuse and the geometry of (i) has to be modified as 
described in the text. 
 
 
center. This derivation breaks down when the triangle has an obtuse angle. 
Figure 13(ii) shows that the minimum is then given by the pathological pedal 
triangle  with two coincident vertices at the obtuse-angled corner and the 
other vertex at its projection on the opposite side, giving a minimal value of 
twice the smallest altitude. 

The minimal value of d1 + d2 + d3 for an acute-angled triangle may 
be derived from di = ai cosAi to give 

 
      t = 

321

28
aaa

∆
 = 

R
∆2

,  
 

giving isocontours shown in Figure 14 with equation (Appendix A3.4): 
 

{ }22
4
12224 )(4 xxyty −++=  

 
3.3.3 Minimax and the J-center 
 

For the minimax solution, we seek an interior triangle that is 
equilateral. This case is discussed in detail in Appendix A3.5, where it is 
shown that the minimax solution defines an equilateral pedal triangle where 
si  = ( )2

3
2

2
12

ii asa −∆+ . We find that the minimum is given by 
 

t = D2D3 = D1D3 = D1D2 = 2∆/k  
 

where   k2 = ½ s +2 3 ∆, as  for the distance around the mediancenter  (Sec- 
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Figure 14. Contours for ? di  around Orthocenter. Outside the vertical lines and inside the 
circle the contours are straight. Otherwise, between the vertical lines the contours are curved. 
The overall effect is that of hyperbolic-shaped contours. 
 
 
tion 3.1.2) but now valid for obtuse angles greater than 120º. The equation of 
a contour is: 

 
))(3( 4

32222 +++= yxyty  
 

as shown in Figure 15, but this is valid only for t2< 1. Then the contours are 
hyperbolic but only the upper branch of the hyperbola refers to valid 
triangles. For triangles reflected in A1A2 the appropriate contour is the 
reflection of the corresponding upper branch, not the lower branch. 

The results of section 3 are gathered together in Table 1, which lists 
the canonical triadic distances together with their optimal properties (column 
4). Appendix A3 gives the mathematical tools we have found useful in 
obtaining these results and gives a few examples of their use; we do not give 
detailed derivations in every case. Recall that if the coordinates of A1A2A3 
are presented in a 3×2 matrix X,  any center S may be written in the form s ′X 
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Figure 15. Contours for Minimax(di) around J-center. These are true hyperbolas but the lower 
half is a reflection of the upper half in the line A1, A2. The true lower half of the hyperbola 
contains impermissible points A3 and is not shown. This is a double contour. 

 
 

where the elements of the centering column-vector s are simple functions of 
a1, a2 and a3 and s ′1 = 1 (see Appendix A3.1). The different settings of s  are 
shown, in unstandardized form, in column 3 of Table 1. 

 
4. Non-canonical Triadic Distances 

 
Section 3 discussed canonical triadic distances that have the optimal 

properties given in Table 1. Thus, 2
3

2
2

2
1 ppp ++  is minimized when S = G. 

We could easily calculate sums-of-squares about H or 321 ppp ++  about 
G but there are very many such non-canonical distances and they do not 
merit separate discussion. We content ourselves with showing in Figure 16 
the isocontours for (i) sums of squares around the orthocenter and (ii) 
max(pi) from the mediancenter. 

The contours in Figure 16 are bizarre and it is hard to see how they 
may have any potential practical value. 
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(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Sum of squares around orthocenter and Max (pi) around mediancenter. These are 
examples of non-canonical distances that have some unexpected features. 
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5. Discussion 
 

We may group contours in various ways. Some contours are single 
(e.g. Figures  2,  3  and  4)  and  others  are  double  (e.g. Figures  8  and 16). 
Double contours occur for a given value of t when one loop reflects into 
another: e.g. isocontours for a fixed circumradius R. When reflection maps a 
loop into itself we have single contours: e.g. the perimeter distance. The two 
loops of double contours necessarily intersect at A1 and A2, usually defining 
a region between A1 and A2 where t changes very rapidly. Some isocontours 
include disjoint sections: e.g. the variance distance (Figures 5) and the 
product model (Figure 6). Most contours are closed (approximately elliptical 
or ovoid) but some are open (hyperbolic, or approximately so: e.g. Figures 9, 
10, 11, 14 and 15). 

Closed single contours are the simplest to interpret because they have 
similar properties to the familiar circular contours of dyadic distances. 
Hyperbolic contours admit extreme points that have the same triadic 
distances with A1 and A2 as do less extreme points. However this hyperbolic 
behavior accurately reflects the properties of the triadic distance adopted and 
should not necessarily be regarded as a deficiency. We note the analogous 
properties of representations of asymmetry in terms of area (Gower, 1977; 
Constantine and Gower, 1978) where zero area with an origin O may be 
given by two adjacent points or two distant points collinear with O. Other 
criteria model non-size properties of triadic data. For example, the variance 
criterion models shape; a zero value implies an equilateral triangle and 
increasing values departures from equilateralism. In such cases it is better to 
replace the term triadic distance by triadic shape and other appropriate 
terminology. Just as with interpreting diagrams of asymmetry, we have to 
learn to understand the geometry of such spaces before we can use them for 
interpretation. Some of our results are a first step in that direction. 

The distinction between triadic distance and triadic shape is related to 
the triadic metric concept. Gower and De Rooij (2003) define a triadic 
metric to be one that may be expressed as a function of dyadic distances that 
satisfy the usual dyadic metric property that dij + dik ≥ djk for all triads i,j,k. 
With this definition all the triadic distances discussed in this paper are 
metric. However, Heiser and Bennani (1997) propose the more stringent 
definition that tijl + tikl + tjkl ≥ 2tijk for all tetrads i,j,k ,l. Yet another definition, 
Joly and Le Calvé (1995), requires that tijk + tijl ≥  max(tikl,  tjkl). The 
Perimeter, generalized Euclidean and max(ai, aj, ak) definitions satisfy both 
these definitions provided that the dyadic distances satisfy the triangle 
inequality. For all other triadic distances we have found counter-examples 
showing they do not follow the axioms, except for the L1-norm around the 
mediancenter which remains undecided. However, although 2

3
2
2

2
1 ppp ++  
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is clearly not a triadic metric by the definition of Heiser and Bennani, 
(1997), its square root obviously is; simple transforms of other triadic 
distances may also satisfy the strict triadic metric conditions. Contours are 
not affected by making simple transformations, such as square root; only the 
values of t on the contours change. The same is true of dyadic distances 
when non-metric scaling methods are used, and the associated monotonic 
transformations are not sensitive to metric properties. These observations 
suggests to us that, however defined, the triadic metric properties themselves 
may not be as relevant as the shapes of the isocontours. We believe that the 
distinction between closed, hyperbolic and disjoint contours is more 
important. Thus, we emphasize two points: (i) non-triadic metrics may often 
be simply transformed into triadic metrics and (ii) satisfaction of the triadic 
metric property is not necessary for a triadic coefficient to be useful. 

We have discussed many triadic distances and their properties but not 
how to fit them to data. Although some distances are easy to fit (see Gower 
and De Rooij, 2003), it might be a formidable problem to fit others. In 
principle, optimization software (e.g. MATLAB’s optimization toolbox) 
may be used to minimize a loss function for any definition of distance. The 
result of any fitting process is a set of estimates of the underlying dyadic 
distances. A crucial assumption that lies behind all our isocontours is that 
triadic distances are functions of dyadic distances. The plots are entirely 
based on properties of triangles, so the only assumption actually used for 
drawing the isocontours is that the metric (i.e. triangle) inequality holds. 
However, if more than three points are plotted, then a full Euclidean 
representation is envisaged, at least as a good approximation. This may be 
represented visually by a multidimensional scaling of the estimated dyadic 
distances (Gower and De Rooij, 2003). 

If the triadic model fits well, then the triadic terms may be represented 
as discussed above and interpreted in terms of our isocontours. For example, 
Gower and De Rooij (2003) found that the perimeter model fitted very well 
to Hayashi's (1972) "teams of three" data and in their Figure 4 presented a 
multidimensional scaling of the underlying dyadic distances. Therefore, a 
team of three people is represented by a triangle of three points whose 
perimeter approximates the observed triadic value. Further, if we are 
interested in how other people may work with the first two members relative 
to the way that does the third member, then we must construct an ellipse 
passing through the third vertex with foci at the vertices representing the first 
two members. Then we can see which other persons lie on, or near this 
ellipse, and which lie inside (implying a better performance) and which 
outside (implying a poorer performance). This demonstrates one kind of use 
of our isocontour results. 
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Gower and De Rooij (2003) presented evidence suggesting that the 
estimates of dyadic distances are robust relative to a range of triadic 
distances. Then, the same multidimensional scaling diagram may be used to 
inspect the effect of adopting different triadic models. As noted above, the 
isocontours may be classified into a few general types of shape. This 
suggests that it may be difficult to discriminate between triadic models that 
generate the same general shape of isocontour (e.g. the elliptical contours of 
the perimeter model and the elliptical-shaped contours of the sum of 
distances from the mediancenter). A corollary would be that one may as well 
use the most simple model within each class. It is less clear to us how to 
interpret the concentration of contours within the intersection region of 
double contours and the disjoint regions of some triadic models. These 
anomalies occur only for small dyadic distances relative to the base distance; 
for points remote from this region the approximation to the observed triadic 
value should be acceptable. Gower and De Rooij (2003) give an example 
where the variance triadic distance gives good estimates of the dyadic 
distances in spite of the disjoint contours. It seems that it is only part of the 
triadic information that may be estimated very imprecisely. Thus a second 
use of the isocontours is as a mode of thinking about triadic models that 
highlights properties that need examination. 

The symmetry condition implies a special type of model, suitable for 
special forms of three-way table typified by the teams of three data. We 
might also fit triadic distances to an n×n×n table, in the same way that 
distances are sometimes fitted to square tables. Furthermore, just as 
unfolding models can be used to fit distance models to rectangular tables, 
one might seek to develop methodology where any p×q×r table is regarded 
as a corner of a symmetric n×n×n table, most of which is missing (see De 
Rooij and Heiser, 2000).  

Hitherto we have regarded triadic distance as a function of dyadic 
distance, but there is no formal need for this restriction when triadic terms 
are parameters of statistical models. Then, distance properties are less 
important and other forms might be used, although the symmetry condition 
would be retained when the three classifying factors have no natural 
ordering and hence are interchangeable. The triadic distance terms discussed 
above do not include main effects, and refer only indirectly to two-way 
interactions. Such additional terms may be included in any model; indeed 
Gower and De Rooij (2003) found it desirable to add a constant to each 
triadic observation of the teams of three data before fitting a triadic distance. 
Triadic terms express the three-way interaction as a function of dyadic 
parameters that must be estimated. This is a very special form of three-way 
interaction, which may be contrasted with the general three-way interactions 
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of additive and generalized linear models, or to the three-way multiplicative 
interaction CANDECOMP model  

 
tijk = 

1

p

ir jr kr
r

a b c
=

∑  
 
of rank p (Harshman, 1970; Carroll and Chang, 1970). We may consider the 
generalization: tijk = 

1 ijr

p

jkr ikrr
CA B

=∑ , where Ajkr is the (j,k)th term of the 
matrix Ar. Our model can be seen as the special case where (i) Ar = Br = Cr, 
and are symmetric with elements that may be interpreted as distances, (ii) p 
= 1 and (iii) the product operation is replaced by the triadic functions f(.,.,.). 
In summary, triadic distances are just one possible term to include in 
statistical models together with possible main effect and other interaction 
terms. Triadic distances that adequately model triadic interaction need 
further development. 

We have focused on isocontours for points A3 with A1 and A2 fixed. A 
further development would be to consider only A1 fixed and find regions for 
A2 and A3 with constant triadic distance. We observe that A2 may be moved 
in a circle, center A1, and for each point on the circumference A3 has the 
desired triadic distance with A1 and A2. However, in the above we have a3 = 
1, a constant, whereas we can maintain the same triadic distance while 
varying a3. To give a complete picture we need the extreme setting of A2 

obtained in this way; this extends the permissible region for A3. Things can 
get very complicated and in our opinion little is added to the understanding 
of triadic distances or triadic shapes. Moreover, the interest is usually in the 
question of whether a given point has a smaller or larger triadic distance 
with A1 and A2 than with A3 and then the isocontour lines presented above 
are relevant. 

Finally, we remark on the process we have used for making our 
isocontours. One would have thought that it would be a simple matter to 
present the formula for constant t for the different criteria and let a computer 
contour-plotting program do the hard work. We found this not to be the case, 
especially in regions where the contours change rapidly or there are singular 
points. In practice we found it necessary first to do a detailed mathematical 
analysis for each set of contours to discover the general behavior and 
whether there were any regions where special care was needed. Then the 
computer program can be controlled to ensure that interesting details are not 
smoothed out of existence. 
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Appendix 
 
A1 The Variance Distance 
 

The variance distance (see Gower and De Rooij, 2003) is defined in 
section 2 as: 

 
t2 = var(a1,a2,a3)= 2

3213
12

3
2
2

2
1 )aa(a)aa(a ++−++ , 

 
It is more convenient to work in terms of the equivalent form: 
 

L = 2
21

2
31

2
32

2 )()()(3 aaaaaat −+−+−= . 
 

If we let u=a1-a3 and v=a2-a3 then 
 

222)( vuvuL ++−= , 
 

i.e.                                   2
2
12

2
3 )()( vuvuL ++−= , 

 
which represents an ellipse with orthogonal axes u – v = 0 and u + v = 0. The 
metric constraints a1+a2>a3, a1+a3>a2 and a2+a3>a1 transform into u + v > 
-a3, u > v - a3 and v >u - a3 which, together with a3 = 1 define the feasible 
region shown in Figure A1. For L = ½ the ellipses lie entirely within the 
feasible region. When ½ < L = 1½ then a horse-shoe portion of the ellipse 
lies within the feasible region, bounded by the line u + v + 1 = 0. For 1½ < L 
= 2 the ellipse is cut into three sections bounded by all three metric 
constraints, where the main part remains of horse-shoe shape while a small 
portion is acceptable near u = -1, v = 0 and u = 0, v = -1. At the extreme, 
when L = 2, the latter portion collapses into two single points. For L > 2, 
only the horse-shoe portion remains but increasingly has a more circular 
shape. When the u,v space is transformed back into a2,a3 space we arrive at 
Figure 5 where the same structure is clearly preserved.  
 
A2 The Structure of the Isocontours for the Median L1 norm. 
 

The mediancenter is the center M that minimizes t = p1 + p2 + p3. 
When all angles of the triangle are less than 120°, then each pair of vertices 
of the triangle subtend an angle of 120° at M (here termed a proper 
mediancenter). Otherwise, M is at the vertex with the obtuse angle 
(improper mediancenter). Referring to Figure A2, remembering now that the 
center S is M, with 120° angles at the center, we have for the three smaller 
triangles: 
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Figure A1. Derivation of contours for triadic variance distance. The plot is of a1 – a3 against 
a2 – a3. Only the unshaded region pertains to real triangles. The elliptical contours are of 
constant 3t2. 
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Summing,                          122
2
3

2
2

2
1 2 PPaaa +=++ ,                            (A2.1) 

 
where P2 = 2

3
2
2

2
1 ppp ++ and P12 = p2p3 + p1p3 + p1p2. Summing the areas of 

the triangles gives: 
                                                    4∆ = 3  P12.                                      (A2.2) 
 
Expanding t2 gives:                     t2 = P2+ 2P12.                                      (A2.3) 
 
Eliminating P2 and P12 from (A2.1), (A2.2) and (A2.3) gives: 
 
                                             2t2 – )( 2

3
2
2

2
1 aaa ++  = 4 3 ∆.                 (A2.4) 
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(i) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2. Detailed view on the complexity of L1-norm with mediancenter. The shaded areas 
denote region with improper mediancenters and the unshaded areas denote regions with 
proper mediancenters. In (i) t > 2/ 3  and the contour has four parts, all circular. In (ii) t < 
2/ 3  and the contour is in eight parts made up of different circles and of two ellipses. In 
both cases the overall effect is elliptical. 
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With the normalization a3 = 1 and A3(x, y) referred to our standard coor-
dinate system (Section A3.4), (A2.4) becomes: 
 

x2 + y2 + ¾ + 3 y = t2, 
 

i.e.                                          x2 + (y + 2
3 )2 = t2.                                    (A2.5) 

 
This is a circle center E(0, - 2

3 ) with radius t. The geometry is shown in 
Figure A2(i). Denoting min(p1 + p2 + p3) by k , we have from (A2.4) that: 
 
                                                ∆+= 322

12 sk .                                  (A2.6) 
 
The lightly shaded area shows all points that generate improper 
mediancenters with A1 and A2; A1A2E is an equilateral triangle. The circle, 
center E, radius t is shown; its circumference includes all points that form 
triangles with A1, A2 with proper mediancenters. However, when M 
coincides with A1 (or A2), the angle A3A1A2 (or A3A2A1) reaches 120° and any 
A3 outside the boundaries defined by EA1 and EA2 define triangles with 
improper mediancenters at A1 (or A2). Then t = a2 + a3 = a2 + 1. It follows 
that A3, for the improper mediancenters, must lie on a circle, radius t – 1, 
center A1 (or A2). Returning to the proper mediancenters, from the 
fundamental property of cyclic quadrilaterals that A1M×A2E + A1E×MA2 = 
ME×A1A2, we see that A1M + MA2 = ME, so that t = A1M + MA2 + A3M = 
A3E and the points A3, M, E are collinear (see e.g. Wells (1991), under the 
entry “Fermat Point”, a synonym for the mediancenter, for further 
references). The perpendicular to A1E at the point where it meets the circles 
for the proper and improper mediancenters is a tangent to both and hence 
there is a smooth transition from one circle to the other. 

Things are more complicated than just described when the diameter of 
the circumcircle of A1A2E is 

3
2  > 1. Then, if 1 < t <

3
2  the circle center E, 

radius t intersects the circumcircle and part of it lies within the shaded area 
of improper mediancenters. Between the intersections putative positions of 
A3 have angles A3 > 120°. Thus, now t = a1 + a2, which defines an ellipse as 
in Section 2.1. The equation of this ellipse is as given in Section 2.1 but with 
t replaced by t +1. It can be shown that at the join of this ellipse to the 
adjoining circular arcs, there is a common tangent so, again, the join is 
smooth. The geometry for this case is shown in Figure A2 (ii). 

To the naked eye, the contours show no sign of their complex 
structure. Indeed, from Figure A2(i), we see that we may approximate the 
isocontours by an ellipse with major axis t - ½ and minor axis t - 2

3 . This 
approximation also applies quite well to Figure A2(ii) with maximum 
deviation when t = 1, when the isocontour collapses to the line A1A2 giving a 
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maximal difference of 1- 2
3 = 0.134 between the “ellipse” (now a line) and 

the circle it replaces. 
 

A3 Tools for Handling Triadic Distances Derived from Centers  
 

In this appendix we present some results that we have found useful in 
deriving the optimal properties associated with various centers. In some 
cases we have sought optimal properties that have themselves defined 
centers. 
 
A3.1 The Centering Vector s  
 

The concept of a distance matrix D is basic to the following. D is a 
symmetric n×n matrix with zero diagonal and element 2

2
1

ijd−  when i≠j. The 
rows and columns of D represent n points and dij is the Euclidean distance 
between the ith and jth points. A standard result (Gower, 1982) is that if s  is 
any column-vector of length n such that s ′1 = 1 and if X satisfies the 
decomposition: 

                               XX′ = (I – 1s′)D(I – s1′)                             (A3.1) 
 
then, X gives a set of coordinates that generate the distances dij and X is 
centered so that s ′X = 0. In particular, the squared distances of each point 
from this center are given by diag(XX′) which, when expressed as a column-
vector, p = (p1, p2, … , pn)′ may be written: 
 

                                      p = (s′Ds)1 – 2Ds.                                (A3.2) 
 

In our case n = 3 and we write dij = ak where i≠j≠k. Thus: 
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        (A3.3) 
 
 
 
which gives the squares of the quantities p1, p2 and p3. 
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A3.2 Geometrical Interpretation of s 
 

Algebraically, s  gives a set of weights which when attached to the 
vertices A1, A2 and A3 give the coordinates of S; the geometrical interpreta- 
tion of s  is useful and interesting. In Figure 1, we shall write θk for the angle 
between SAi and SAj, i≠j≠k . Then we have that: 
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Now θ1 + θ2 + θ3  = 2π, so that: 
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It follows from (A3.4) that: 
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so that s′ is proportional to ( )332211 sinsinsin )/p(?,)/p(?,)/p(? . The 
area of triangle AiAjS is  

k

k

p
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)sin(
)( 3212
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 It follows that the elements of s  are proportional to the areas of the triangles 
A2A3S, A1A3S, A1A2S, which sum to ∆. Hence: 
 
 

 ∆















= /

 Area
 Area

 Area

21

31

32

SAA
SAA

SAA

s  (A3.5) 
 
 



214 M. de Rooij and J.C. Gower   

  

is the centering vector for the coordinates. That is s′X gives the coordinates 
of S. This result is especially useful if a center is geometrically defined, in 
which case the areas are usually easily derived, and we wish to find the 
corresponding algebraic form for the elements of s . 

 
A3.3 Pedal Centers and Concurrency 
 

How to calculate the quantities q1, q2 and q3 for pedal triangles follows 
easily from the observation that the area of triangle AjAkS is ½aiqi. Thus from 
the preceding paragraph, we have:  

 qi = 2? si/ai.  (A3.6) 
 
Because for pedal triangles, A1D2 D3S is a cyclic quadrilateral, it is easy to 
see that: 

 di = pi sin(Ai).  (A3.7) 
 
Writing A2D1= λ1a1, A3D2 =λ2a2 and A1D3 = λ3a3 then we quote without 
proof that: 
 
D1, D2 and D3 are the vertices of a pedal triangle if and only if 
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which is equivalent to: 
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Turning now to concurrency, let s  define a center S given by s1x1 + 

s2x2 + s3x3. With the above notation, E1 has coordinates λ1x3 + (1-λ1)x2, then 
E1, S and A1 are collinear if and only if: 
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This, with similar expressions for the collinearity of E2, S, A2 and E3, S, A3 
are consistent if: 
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has a nontrivial solution. The condition for this is that the λ-matrix has a 
zero determinant, i.e. 
 
 λ1λ2λ3 = (1-λ1) (1-λ2) (1-λ3). (A3.10) 
 
Thus, (A3.10) is the condition for concurrency, which may be compared 
with (A3.8). When (A3.10) is satisfied, s  is the null vector of the λ-matrix. 
This null vector is easily constructed from the cofactors of any row of 
(A3.10). Using ~ to denote “is proportional to”, the three rows generate the 
following possibilities: 
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These three versions of s  must be proportional and any one may be used. 
However, it would be more elegant to have a simple symmetrical form. One 
way of proceeding is to multiply (term by term) the three forms and rescale 
the result. Writing µi=λi/(1-λi), this gives: 
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with a normalizer N which after some detailed algebraic manipulation is 
found to be given by: 
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The lack of complete symmetry derives from the necessary asymmetric 
relationships of the λi and seems to be unavoidable , e.g. A1 is adjacent to λ3 
and to (1-λ2). Thus, when (A3.10) is valid, we have concurrency and then 
(A3.12) gives the centering vector for the center of concurrency. 

 
A3.4 Coordinates for Isocontours and Trigonometrical Relationships  
 

We have adopted the convention that a3 = 1 and that A1 = (-½,0) and 
A2 = (½,0) and are interested in the locus of A3 = [x,y]. There is a need to 
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express x and y in terms of a1 and a2. From considerations of area we 
immediately have that: 

y = 2?. 
 
 

Also: 
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and hence: )( 2
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Many centers lend themselves to trigonometrical expression. We have 
chosen to write our results in terms of a1, a2 and a3 (see Table 1). The two 
forms may be linked by the elementary trigonometrical relationships: (i) the 
cosine formulae 2aiajcos(Ak)= 222

kji aaa −+ and (ii) the sine formulae: 
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A3.5 Example - Minimizing the Maximum Side of an Interior Triangle. 
 

Minimizing the maximum side of an interior triangle implies finding 
the smallest equilateral interior triangle. An equilateral triangle with smallest 
perimeter, smallest sums-of squares and smallest area are equivalent criteria. 
We may construct an interior equilateral triangle as follows. First imagine a 
point D1 on A2A3 and construct two lines D1D2 and D1D3 so that the angle 
D2D1D3 is 60° and denote the angle D2D1A3 by θ; this construction is always 
possible for some value of θ. If D1D2 < D1D3 then, keeping the same angle θ, 
we may slide D1 towards A2 until D1D2 = D1D3; D1D2D3 is then equilateral 
with side δ, say. Using the notation zi to denote what was written λiai in 
A3.3, we then have: 
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Eliminating z1 yields: 
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This is valid for any interior equilateral triangle. Now we may seek the value 
of θ that minimizes δ. Differentiation gives: 
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Eliminating δ in (A3. 13) gives: 
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which with (A3.15), after some manipulation, may be used to evaluate θ, 
giving: 
 

2

2
2

2
3

2

132
2
3

2
2

1233

1

1

2)60cos(2
)60cos((

k
aak

Aaaaa
Aaaa

a
z −+

=
+−+

+−
=  

 
 
where ∆+= 322

12 sk  (see Section A2.6). Gathering this result together 
with the similar results for z2 and z3, we have: 
 
 
 
 
 















−+
=

−+
=

−+
=

2

2
1

2
2

2

3

3

2

2
3

2
1

2

2

2

2

2
2

2
3

2

1

1

2

2

2

k
aak

a
z

k
aak

a
z

k
aak

a
z

 (A3.17) 
 
 
 
 
from which it is easy to show that a1z1 + a2z2 + a3z3 =½s, the condition 
required by Appendix (A3.8) for D1D2D3  to be a pedal triangle. Thus the 
minimax equilateral triangle must be a pedal triangle. 

Next, we derive the minimal value of δ. We do this by finding the 
areas ∆1, ∆2, ∆3 of the triangles D2D3A1,  D1D3A2,  D2D1A3, which, when 
subtracted from ∆, gives the area required. We have: ∆1 = ½z3(a2-z2) sin A1 = 
∆ z3(a2-z2)/(a2a3) which from (A3.17) gives: 
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Summing this with the similar formulae for ∆2 and ∆3 and subtracting from 
the total area gives, after a little manipulation, the area of the required 
equilateral triangle as: 
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Combining this with the area 4/3 2δ  of the equilateral triangle, (A3.18) 
becomes: 
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Thus, finally: 

k
∆

=
2

δ  (A3.19) 
 
a remarkably simple formula for the side of the equilateral triangle. 
Although k  in (A3.19) has the same algebraic form as for the median 
distance, here it is valid even when A1A2A3 contains an angle greater than 
120º. 

Having shown that the optimal interior equilateral triangle is pedal, it 
must have a center J, say. We now derive the centering vector s  for which 
s′X gives the coordinates of J. We saw in (A3.2) that this is most easily 
obtained by finding the areas of A2A3J, A1A3J, A2A1J. Denoting the equal 
angles JA1D2 and JD3D2 by α, we have:  
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and similarly for p2 and p3. It follows that: 
 
 area(A2A3J) = area(p2,p3,a1) = 2

2
1

k
a

area(a3,a2,k). (A3.21) 
 
This area may be evaluated by expansion but is more easily found by noting 
that the triangle with sides (a3,a2,k) is EA1A3  of Figure A2(i), immediately 
giving the area as ½a2a3 sin(A1+60). Thus,  s1 ~ 32

2
1 aaa sin(A1+60) where 

the symbol ~ means “up to a factor of proportionality”. Thus:  
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s1 ~ ))2(34( 2
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2
1 asa −+∆  or finally: 
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The normalizing factor, found by summation, is 2

3
2 8∆+∆s . 
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