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Three-Way Multivariate Conjoint Analysis 1s developed as an extension of tradi-
tional metric conjomt analysis allowing one to examine several dependent variables
simultaneously, as well as individual differences in response. Four nested models are
developed to examine the effects of the experimental design, the dependent variables,
and individual differences. An illustration concerning the relationship of product
characteristics to the importance of various decision-making criteria for industrial
purchasing is provided. Finally, extensions of the model(s) to other marketing applica-
tions and nonmetric analyses are discussed.

(Conjoint Analysis; Three-Way Multidimensional Scaling; Constrained Preference Anal-
ysis)

1. Introduction

Traditional metric conjoint analysis typically entails gathering preferences
for various stimulus profiles and then decomposing the preference scores via
regression (or other methods) to obtain the utilities or part-worths for the
various levels of the attributes of the stimuli (Green and Rao, 1971). The
purpose of this paper is to develop an extension of metric conjoint analysis to
account for the effects of both multiple dependent variables and individual
differences in the model. Individual differences have typically been examined
via separate analyses for each individual (or segment), or have been ignored
when aggregate analysis is performed. In the model presented here, they are
allowed to directly impact on the importances of the attributes, allowing one
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to quantify their impact and interrelationships. The model also allows for the
inclusion of multiple dependent variables, much as canonical correlation
extends regression. The models proposed here allow for a graphical representa-
tion of individual differences, part-worths, and dependent variable effects.

The paper begins by presenting a brief review of traditional conjoint
analysis and its limitations. Next, Three-Way Multivariate Conjoint Anlaysis
is described and four nested models developed with algorithms for parameter
estimation. A sample illustration concerning the relationship of product char-
acteristics to the importance of various decision-making criteria for industrial
purchasing is provided. Finally, extensions of the model to other marketing
applications and nonmetric analyses are discussed.

II. Conjoint Analysis
A. A Brief Review of Traditional Conjoint Analysis

Green and Srinivasan (1978) trace the historical development of conjoint
analysis and provide a comprehensive summary of the major contributions to
this field. According to these authors, one popular approach utilized today
consists of the part-worth function model, full-profile, fractional factorial
design, metric rating scales, any type of stimuli presentation, and multiple
regression combination. Here, the analyst initially selects the relevant stimulus
attributes to be considered, specifies their various levels, and considers any
interactions that seem appropriate to estimate. After this series of steps, the
analyst constructs a fractional factorial design (Green, 1974) to estimate the
desired parameters. The experimental profile combinations from this design
are then presented (occasionally pictorially) to subjects who are asked to rate
each full-profile combination in terms of overall desirability or preference.
The data can then be pooled or averaged over subjects and multiple regression
can be used to estimate the part-worths, where the experimental design
(converted to dummy variables) becomes the set of independent variables
(Green and Tull, 1978). Alternatively, analysis can be performed at the
individual level and a choice simulator aggregates predictions.

B. Limitations of This Approach

There are two major limitations with this form of conjoint analysis:

(1) The methodologies usually deal with a single dependent variable or, if
multiple dependent variables are used, deal with each dependent variable
separately. A notable exception is the path analyses employed by Holbrook
(1981);

(2) The research must choose among two extremes in handling individual
differences:

(a) aggregate individuals and hence mask individual differences, or
(b) analyze data separately at the individual or segment level.

1. Univariate vs. Multivariate Analysis. Many situations exist where one is
concerned with more than one dependent variable. As one example, consider
an analyst attempting to assess the impact of marketing strategy (advertising
budget, price, etc.) on various objectives such as sales, market share, and
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profitability. Or, an automobile manufacturer might be interested in the
impact of such attributes as color, miles per gallon, and front vs. rear wheel
drive, etc., on perceptions of a car’s sportiness, roominess, appropriateness for
the respondent’s life-style, as well as overall preference. While one could
perform a multiple regression analysis separately on each dependent variable
(or use multivariate regression), there is no technique available to perform
conjoint analysis and simultaneously examine the interrelationships among the
many dependent variables of interest.

2. Individual / Segment Differences. ~Often, one pools or averages the data
over subjects before performing multiple regression. However, this procedure
can render quite misleading results. As a simple intuitive example, consider
Jjust two subjects. Clearly if their preference ratings are highly negatively
correlated, the pooled or averaged analysis will show quite a different picture
than the two individual analyses. In fact, the pooled or averaged analysis
would certainly not be representative of either subject.

While some may argue that such a problem can be minimized by dealing
with larger sample sizes, some problems can still arise:

(a) “Outlier” or untypical responses will contribute to or affect the pooled
or averaged analysis more than typical responses; and,

(b) One can still obtain a result that is not truly representative of the
entire sample.
These two points have been demonstrated algebraically in Currim and Wittink
(1979), and independently in DeSarbo, Carroll, and Lehmann (1981) where it
was demonstrated that the coefficients obtained in the aggregate (pooled or
averaged) analysis were the averages of the coefficients in the individual
analyses.

Clearly, then, one could obtain very significant results in each of the
individual regressions, but uncover no significant findings in the averaged or
pooled analysis. This may indicate that the sample contained a very heteroge-
neous group of subjects with quite different preferences, or it may also
indicate that the model specified did not fit the data from all subjects very
well. Obtaining such results without fitting each individual’s utility function
(together with the averaged or pooled results) can therefore be quite inade-
Quate.

There is also the problem of “outlier” or untypical responses affecting or
contributing to the pooled or averaged analysis more than typical responses.
Since the mean is extremely sensitive to extreme values, one subject’s “outlier”
responses could noticeably affect the coefficients, especially if the reason for
the untypical data obtained was due to a recording or data input error.

One obvious alternative is to perform the conjoint analysis on the individual
level (or by segment) and aggregate predictions via a choice simulator. In fact,
most of the applied conjoint analyses performed in industry probably falls
into this area of application. One certainly has the option to perform such
analyses but for even moderate sample sizes, this task becomes quite tedious,
especially when one attempts to compare the results over subjects. In addition,
there are often inadequate degrees of freedom for meaningful estimation.
Also, suppose one wishes to examine why subjects respond differently and
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collects various demographic, geographic, psychographic, and/or behavioris-
tic (Kotler, 1980) information for each subject. How does one now attempt to
explain response differences as a function for these new predictor variables?
Again, one must perform more regressions and one has the problem of
comparing the results over numerous subjects. In addition, such methods
require additional analyses to uncover any relevant interrelationships among
subjects and/or subject descriptor variables that might be quite useful for
market segmentation and/or product positioning purposes.

III. Three-Way Multivariate Conjoint Analysis

A. Objectives

Our goal is to provide a model which will allow one to perform metric
conjoint analysis when there are one or more dependent variables and /or one
wishes to investigate individual differences and interrelationships in response.
We wish to examine the interaction and contribution of effects due to
subjects, experimental profiles, and the dependent variables in attempting to
best fit the input responses. In addition, it is desirable to uncover potential
interrelationships between and within these modes in order to better under-
stand the structure, if any, in the data. To this end, we may also wish to
constrain two of these three modes mentioned: profiles and subjects. For
example, in order to examine why subjects respond differently, it might prove
useful to constrain subject effects to be some function of various relevant
psychographic and/or demographic descriptors. And, in the conjoint analysis
frame of reference, it is useful to constrain profile effects to be some function
of the various experimental attribute variables. In essence then, given a design
matrix, observations on individual descriptors, and observations on the depen-
dent variables for each subject, Three-Way Multivariate Conjoint Analysis
will render insight into:

(1) Subject response differences and interrelationships;

(2) Subject response differences as a function of prescribed predictor
variables;

(3) Experimental profile effects;

(4) Experimental profile effects as a function of the manipulated attributes a
la conjoint analysis;

(5) Dependent variable effects and interrelationships;

(6) Dimensionality of the data.

B. Assumptions

It is assumed that the response data collected is metrically scaled, i.e., it is
measured on at least an interval scale. In addition, it is assumed that the form
of the contraints on the subject and profile modes is linear. The model, as we
shall demonstrate shortly, is multiplicative concerning subject, profile, and
dependent variable effects and thus assumes a particular form of interaction
effects amongst these various mode effects. It is additive within experimental
profile and/or subject attributes. Its basic structure appears in Figure 1.
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FIGURE 1. Three-Way Multivariant Conjoint Analysis Model.

C. The Models

Let:
Y, = the response of the ith subject to the jth experimental full-profile on
the kth dependent variable, i=1,...,n,j=1,...,mk=1,...,¢;

Z,, = the value of subject i on the sth descriptor variable, s=1, ..., p;

X, = the value of the jth experimental profile on the rth attribute, r
=1 ..., Py

W,, = the weight of the ith person on the sth dimension or factor (this can
be thought of as the importance of dimension ¢ to subject i), t=1,..., T}

U, = the value of the jth stimulus profile on the rth dimension or factor;

V. = the weight of the kth dependent variable on the rth dimension or
factor (this can be thought of as the coefficient of the rth dimension for
predicting the kth dependent variable);

¢, = the weight of the sth descriptor variable on the sth dimension or
factor;

b,, = the weight of the rth attribute on the ¢rth dimension or factor;

a, = a scale factor for subject i.
Then, the full model can be formulated as:

Y,,k%a,z Van;th:’ (H
t
where:
Py P2
VI/it = 2[ lecsl 4 (J_;l = 2] Xjrbrt . (2)
s= r=
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Three-Way Multivariate Conjoint Analysis can be thought of as a straight-
forward generalization of the two-way factor or component analysis proce-
dure. Recall that the two-way factor model for a given data point here can be
written as follows:

Ye=UVia+ UpVia+ - - - + UgVir + error. 3)

Let us consider an interpretation of equation (3) in terms of a two-way matrix
of (averaged) ratings on a number of dependent variables for a group of
products (either actual or hypothetically defined via conjoint analysis). Each
rating in the array would presumedly be an average based on a number of
subjects. With this type of data, Y, would represent the rating of product j on
variable k, U, would represent the factor loading of the jth product on the
first “latent” factor or dimension—how much the first factor/dimension of
evaluation influences ratings of product j. The ¥V, coefficient would represent
the loading of the kth variable on factor/dimension one—how much that
dependent variable’s ratings were influenced or reflected by factor/dimension
one.
Three-Way Multivariate Conjoint Analysis has the form:

yk J

Here, 7Y, ik would represent the rating of product j on dependent variable k by
subject i. (With this model, it is no longer necessary to average over subjects.)
On the right hand side of the equation, U, and ¥}, have the same interpreta-
tion as before, representing product loadings and dependent variable loadings.
However, there is now an additional coefficient in each term, the W, coeffi-
cient. This represents the salience or importance of that particular evaluative
factor or dimension for subject i. Thus, in this three-way model, the contribu-
tion of a given factor/dimension to a particular Y, rating is determined by
three facets:

(a) the amount that the product reflects that factor/dimension (the U,
term);

(b) the amount that the given dependent variable on which the product is
being rated reflects that factor/dimension (the ¥}, term); and,

(c) the amount that the individual performing the ratings is sensitive to that
factor/dimension (the W, term).

Thus, as will be described shortly, we attempt to find the “best” values of
W, U s and ¥V, which, when combined multiplicatively, comes as “close” to
the Y (in a prespecified dimensionality T') as possible. In addition, we may
choose to investigate possible sources of explaining why different subjects
respond differently as well as why different products are evaluated differently.
This is done here by constraining W to be a linear function of selected
background variables such as demographics, psychographics, purchase his-
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tory, etc., and by constraining U to be a linear function of product features as
in conjoint analysis.

Thus, one can derive information concerning subject response differences
(a;W,) as a function of prescribed descriptor variables (Z,), and examine
what effects (c,,) these predictors have on individual differences. Similarly, one
can obtain insight into experimental profile effects (U,) as a function of the
designated attribute manipulated in the design (X,,), and examine what effects
(b,,) these variables have on stimulus profile effects. Finally, one uncovers
information as to the effect of the various dependent variables (Vi) All of
this is done in a prescribed dimensionality which is common across all modes
and provides information as to the underlying structure of the data. In
addition, the multiplicative model in (1) also accounts for possible interactions
(see Harshman, 1980) among these three modes which may be of extreme
importance in many conjoint analysis applications.

Four nested versions of this model are examined to investigate the impact of
various additional parameters and constraints. Model I is the purely uncon-
strained version where only W, U, and V are estimated. Model II estimates
these matrices with the linear constraints placed on U. Model III estimates
these matrices with the linear constraints placed on both U and W. Finally,
Model IV is basically Model III with the estimation of additional subject
parameters a. This “hierarchy of models” will be discussed in detail in the
next section.

D. The Four Models

Four nested versions of the model (1) are examined to investigate the
“tightness” of the constraints (2) and the contribution of the a, parameters.
Appendix I contains the mathematical formulations for each of the four
models.

1. Mode!l 1: Unconstrained. The first model is the unconstrained
CANDECOMP model:

T
Yyk ~ 21 W, sz Vie s (5)
t=

where subject descriptor variables and design independent variables are ig-
nored as constraints for W, and U,. The algorithm utilized here is an
asymmetric version (see DeSarbo and Carroll, 1980) of the standard alternat-
ing least-squares or NILES (Wold, 1966) procedure, also utilized in the
CANDECOMP model (Carroll and Chang, 1970). Given the Y’s and a
specified value of T, we find the W’s, V’s and U’s yielding a best least-squares
fit to the Y’s. Given the three-way model presented in equation (1), we may,
given current estimates of two sets of parameters (say the U,’s and V’s), find
an exact least squares estimate of the third set by linear regression methods.

The NILES (Nonlinear Iterative Least Squares) procedure for estimation in
this case amounts to iterating this least squares estimation procedure, i.e.,
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estimating the W’s (with U’s and V’s fixed) by least squares methods, then the
U’s (with W’s and V’s fixed) and so on, around the iterative cycle until
convergence in a goodness-of-fit measure occurs. Note, there is no proof that
this process will converge, nor that, if it does, it will converge to the global
(rather than a merely local) optimum solution. Nonetheless, it seems, empiri-
cally, “to work extremely well, and to be almost wholly free of local minima
and similar problems” (Carroll and Chang, 1970). Monte Carlo work on this
model performed by DeSarbo and Carroll (1980) also tends to support this
claim. While estimation via nonlinear programming methods is also possible
here, the amount of computation required for this would greatly exceed that
of this NILES procedure. In addition, the local minimum problem would still
exist.

This algorithm will render least-squares estimates of subject effects W),
experimental profile effects (U,), and dependent variable effects (V) in a
prescribed dimensionality. While the most general model (5) is perhaps the
least interesting of all four models in our methodology since it does not
provide part-worths or utilities to the design variables nor information as to
the importance of subject descriptor variables, it does provide an upper bound
for the four models in terms of goodness-of-fit since it is unconstrained.

2. Model 11: Constraints on Profile Effects. The second model can be
denoted as:

T
Y=~ 21 w,U, Vies
t=
where:
P2
U, =2 X;b, - (6)

In essence, Model II differs from Model I by constraining the experimental
profile effects (U,) to be linear functions of the experimental design indepen-
dent variables (X)), in the spirit of conjoint analysis. This can be viewed as an
asymmetric three-way modification of the CANDELINC model (Carroll,
Pruzansky, and Kruskal, 1979), where only one of the modes (U,) is con-
strained.

Here, one obtains estimates of subject response differences (W), dependent
variable effects and interrelationships (V), experimental profile effects and
interrelations (U), and the part-worths or utilities (B) for the independent
design variables.

3. Model 1I1: Constraints on Both Profiles and Subject Effects. Model III
can be written as:

T
Yy~ 2 W, th Vit
=1
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where:

P2 4!
(ij = 2 /Y/rbrt ’ VVI: = Z Z:scst N (7)

r=1 s=1

Here, constraints have been placed on both subject and profile modes. The
objective in doing this is to obtain both the conjoint part-worths via con-
straints on U and response style differences as a function of prespecified
descriptor variables. This latter addition can be very useful for market
segmentation and/or product positioning purposes where individual differ-
ences vis-a-vis specified background variables can be utilized for the creation
of target market segments and associated product positioning strategies within
such segments. Although the literature (e.g., Moore, 1980) warns against the
use of demographics alone to predict behavior in many types of conjoint
analysis studies, demographics when combined with psychographics, product
usage, purchase occasion, benefits sought, user status, etc., can provide
(Kotler, 1980) an effective set of variables upon which to formulate initial
segmentation and positioning strategies. DeSarbo and Rao (1982) illustrate the
use of such information in an optimal positioning model for new telecommu-
nications equipment.

Thus, Model III provides us with:

(a) the effects and interrelationships between the dependent variables (V);

(b) the effects and interrelationships between subjects (W);

(c) the importance of various descriptor variables concerning individual
differences (C);

(d) the effects and interrelationships between experimental profiles (U);

(e) the part-worths of the independent design variables and their levels (B).

4. Model 1V: Model 111 with Additional Subject Parameters. The mathe-
matical formulation for Model IV can be written as:

T
Yljk ~Q 2 W;r (/;! th ’

=1

where:

4

P Py
u/ll = zl lecxl ’ ljjl = 2] /bert , 2 0. (8)
s= r=

Model 1V is essentially a generalization of Model III with additional parame-
ters a,, i =1,...,n, which have the effect of stretching or shrinking the
derived subject vectors. Carroll, Pruzansky, and Kruskal (1979) observed a
profound degeneration of derived configuration and fit measures when plac-
ing constraints on subjects. This was also found in analyses by Carroll, Green,
and Carmone (1976) and Green, Carroll, and Carmone (1976) with a two-way
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application of CANDELINC. According to Carroll, Pruzansky, and Kruskal
(1979), this empirically observed degeneration of configuration and fit mea-
sures can be related to a theoretical argument against putting constraints of
this type on entities which are interpreted as vectors, rather than as points.
Since the directional information is of primary interest in the case of such
vector-like entities, it would seem that only constraints should be considered
that are invariant under changes in length of individual vectors. In particular,
it should be clear that the linear constraints imposed in CANDELINC are not
invariant under such length altering transformations. An easy way to see this
is to imagine subject points arrayed in a regular square or rectangular lattice
arrangement in the positive quadrant of a two-dimensional space. If we now
change the lengths, say by normalizing all vectors to unit length, this lattice
structure will be almost wholly destroyed. This limitation is also applicable to
the three-way nonsymmetric CANDELINC model adapted in Model III
where linear constraints are also placed on the subject mode. To this end,
Model IV has been developed where an additional stage of computation is
programmed to estimate these «; stretching/shrinking parameters in order to
restore subject vector lengths in the configuration and enhance associated
goodness-of-fit measures.

Model IV thus renders the estimates W, V, U, C, and B, as well as «;,
i=1,...,n, subject parameters.

5. Nested Feature of the Four Models. The degrees of freedom for the
four different models are:

Modell: (n+m+q—-2)T

ModelII:  (n+p,+q—=2)T

Model III:  (p,+p,+q—2)T

Model IV: (p,+p,+q—2)T+ (n—1).

The respective degrees of freedom for the residual would merely be these
quantities subtracted from the total number of data points (nmq). Model I
clearly has the most model degrees of freedom since the highest number of
parameters must be estimated. Assuming m > p,, Model II is nested within
Model I since constraints are placed on U.

Assuming T > (n — 1)/(n — q), Model IV becomes nested in Model II. If
this condition does not hold, then Model IV is underdetermined and is
essentially equivalent to Model I1.! Finally, Model III is nested in Model IV.

For true nesting of the four models, a necessary condition is that:

daf; > dfy; > dfyy > dfyy

where df refers to the model degrees of freedom. Thus for dfy; > dfyy, the condition T > (n — 1)
/(n— p,) must hold or else Model IV is underdetermined and equivalent to Model II This
condition is derived from the definitions of df}; and df;), in Table 2 and from the nature of the
model parameters involved.
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Unfortunately, because of the lack of adequate statistical distribution the-
ory, one can not “legitimately” utilize standard model comparison tests to
investigate which model of the four best fits the data. However, as in PREF-
MAP, “pseudo-F” statistics are given for all pairs of models as rough
indications of which model might be most appropriate. Here, one can formu-
late (Green, 1978):

R} — R} df;

F= » , 9
& -4 ©)

where:

sz = goodness of fit for full model;

R} = goodness of fit for restricted model;

dff = model degrees of freedom for full model;

df, = model degrees of freedom for restricted model;

F= pseudo- F statistic,
and compare F vs an F with (df; — df,) degrees of freedom for numerator and
df; degrees of freedom for denominator. Again, because of the lack of
adequate distribution theory here, this is only meant to be a rough indication
for selecting one of the four models. Clearly, one must also examine interpre-
tation, split-half analyses, etc. in selecting one of the four models.

IV. Application

A. Study Description

The study employed was an attempt to describe patterns in the criteria used
by purchasing managers in selecting suppliers for different types of products.
Specifically four types of choice criteria (four dependent variables) were
considered:

1. Economic (relative cost outlays associated with the purchase),

2. Technical /performance,

3. Integrative (cooperation from suppliers),

4. Certainty of supply (supplier capability in responding to changes in the
environment).

In order to see if the relative importance of these varied across situations,
products were classified into four basic categories (from which the experimen-
tal design is to be created as will be shown shortly):

1. Routineness of product (standard—nonstandard),

2. Complexity (simple—complex),

3. Novelty of application (standard—novel),

4. Dollar commitment involved (low—high).

The focus of the study was to see if the product types impacted on the relative
importances of the four choice criteria.

Data were gathered by means of a mail survey to members of the National
Association of Purchasing Managers. The questionnaire required managers to
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TABLE 1
Purchase Style Variables

Please indicate your degree of agreement with the following statements by circling a “1” 1f
you strongly disagree, a “6” if you strongly agree, or somewhere in between depending on how
much you agree with the statement.

Strongly Strongly
Disagree Agree

Compared to other purchasing managers, I
am more compulsive about carefully con-
sidering alternatives before I buy. 1 2 3 4 5 6

Compared to other purchasing managers,
am more concerned about how others will
react to what I recommend or purchase. 1 2 3 4 5 6

Compared to other purchasing managers,
tend to spend less time in reaching a
purchase decision. 1 2 3 4 5 6

Compared to other purchasing managers, I
tend to focus more heavily on objective
criteria. 1 2 3 4 5 6

Compared to other purchasing managers, I
tend to be more loyal to current
suppliers. 1 2 3 4 5 6

Compared to other purchasing managers,
tend to be technically better informed
about products. 1 2 3 4 5 6

Compared to other purchasing managers, I
am more likely to avoid taking risks
when buying. 1 2 3 4 5 6

allocate ten points among the four choice criteria for each of eight hypotheti-
cal products. Definitions of both the choice criteria and product dimensions
were provided to the respondents. The eight hypothetical products formed an
orthogonal array (for main effects estimation) from the 16 possible combina-
tions of the four product categories/attributes. Respondents also rated them-
selves in terms of seven 6-point agree-disagree scales, listed in Table 1, which
attempted to measure their purchasing style relative to other purchasing
managers in terms of attributes such as loyalty to suppliers and thoroughness.
They also provided data on such variables as years of experience, education,
etc.

The survey was sent to a random sample of 600 purchasing managers.
Within three weeks, 240 (40%) responded and 220 (35%) were complete (i.e.,
no missing data) and are used here. More extensive discussion of both the
data and the results appear in Lehmann and O’Shaughnessy (1980). The
objective of the study was to explain patterns in the criteria used in selecting
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suppliers where different products and different purchasing managers are
involved.

B. Analysis of a Selected Subsample

In order to facilitate the illustration of a Three-Way Multivariate Conjoint
Analysis and because of local computer usage constraints,” we examined a
“representative” subset of the N = 220 subjects. The 220 subjects were cluster
analyzed via Johnson’s compact hierarchical method (Johnson, 1967) on
Euclidean distances (proximities) in two separate analyses. In analysis one, the
proximities for the cluster analysis were generated via a subjects by dependent
variables input matrix, and a resulting dendrogram (hierarchical clustering
tree) was obtained clustering the N = 220 subjects. In the second analysis, the
proximities for the hierarchical clustering were obtained from a subject by
descriptor variable (purchasing style) input matrix, and a second dendrogram
of the N =220 subjects was obtained. From a cursory visual inspection of
each dendrogram, it appeared that fifteen or sixteen clusters could be found in
each analysis. Each tree was “cut” at sixteen clusters (Becker and Chambers,
1980), and the N = 220 subjects were then classified, first in the analysis with
the dependent variables, and then in the other with the descriptor variables. A
matching procedure was then initiated in order to pick sixteen subjects of the
total 220 that were members of both sets of sixteen clusters. While it is also
likely that other groups of sixteen subjects could also pair different clusters so
that a different subsample of sixteen subjects could be drawn, only one set of
sixteen subjects was selected on this basis in order to merely illustrate the use
of the technique. As with all subsampling plans, it is conceivable that different
sets of sixteen subjects could render different results. Regardless, substantive
conclusions based on this small a sample are clearly tenuous.

1. Univariate Conjoint Analysis. A pooled dummy variable regression
analysis was performed separately for each dependent variable. The analysis
was performed for both the total sample (see DeSarbo, Carroll, and Lehmann
(1981) for results) and the subsample of 16 subjects. Here (as in the conjoint
analysis for the entire N =220 subjects) we found that economic criteria
become more important as a product becomes standard, simple, and with a
typical application (Table 2). The direct opposite held for performance crite-
ria, which were viewed as being more important for nonstandard, complex
products with novel applications. Neither cooperation nor certainty of supply
importance variables were related to any of the four product variables in this
set of analyses.

2. Individual Differences. Pooled regression analyses were also run for
each dependent variable as a function of the seven purchasing style variables.
Again, the analysis was performed for both the total sample (see DeSarbo,

2The Three-Way Multivariate Conjoint Analysis procedure was initially programmed in the
APL computer language, which because of its structure and operating environment (interpretive
execution) is not suited to handling large arrays. A Fortran version of the program will soon be
devised.
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TABLE 2
Univariate Conjoint Analysis on n = 16 Subjects

Regression Coefficients

Adjusted
Dependent Variable b, b, b, by by, SE R? R? F
Economic 539 —1.13** —138* —-97** -—-09 220 .18 15 6.76**
Performance 1.52 1.34** 1.69 g5+ —22 182 29 27 12.75%*
Cooperation 149 -.14 -.02 27 -05 1LlLi6 .02 .00 0.553
Certainty 1.60 -—.08 -.39 -.05 36 122 .04 00 1.21

*indicates significance at p <.05
**indicates significance at p <.01
by not tested for significance

b, constant

by Economic (X,)
b, Performance (X,)
b, Integrative (X3)
b, Adaptive (X,)

Carroll, and Lehmann (1981) for results) and the subset of 16 subjects (in
Table 3). Subjects for whom economic criteria are important tend to be: more
concerned about how others react, less loyal to current suppliers, and less
informed about products. When performance criteria are important, subjects
tend to be: less concerned how others react, more loyal to current suppliers,
and better informed about products. When cooperation is important, man-
agers tend to: spend more time in reaching a purchase decision, be better
informed about products, and be less likely to avoid taking risks. The fourth
dependent variable, certainty of supply, is unrelated to any of the purchasing
style independent variables.

Unlike the univariate conjoint analysis above, the results here do not closely
resemble the corresponding analysis performed for the entire sample. This
may primarily be due to the relatively poor relationships between the four
dependent variables and the seven independent variables in the data. Also,
because only one subject was selected per cluster, the different results ob-
tained could be due to sampling error.

C. Analysis via Three-Way Multivariate Conjoint Analysis

1. Major Options Selected. The analysis was run in 1, 2 and 3 dimensions
with the convergence tolerance set at .00001 and 100 maximum number of
iterations for the NILES procedure. In all cases, the four models were
requested. The raw data, Y (16 subjects X 8 profiles X 4 dependent variables),
were row centered to remove the effects of the row means which, since they
are constrained to be the same for all rows for this task, really do not convey
any useful information. Note that in this special case, the row means are all
equal to 2.5, which is also the overall grand mean of the three-way array Y (as
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TABLE 4
Goodness of Fit Measures For the Two Dimensional Solutions
V-Unrestricted V-Restricted
Model I: 669 528
Model 1I: .662 511
Model III: 522 428
Model IV: 582 489

well as each two-dimensional profile X dependent variable mean). Intercept
terms were estimated for each of the constraint conditions. Analyses were also
performed with prespecified restrictions on the form of V to aid in the
interpretation of the results. Based upon goodness-of-fit, interpretability, and
correlations between dimensions, the two-dimensional solution (see Harsh-
man, 1980) appeared clearly to be the appropriate representation and will be
reported here.

2. Results.

a. Unrestricted V. Table 4 presents the variance accounted-for statistics
for Models I, II, III, and IV in two dimensions. While the drop in goodness-
of-fit is small (.007) in proceeding from Model I to Model II, indicating that
the profile constraints are not all that “tight”, the drop in variance accounted-
for in going from Model II to III is quite large (.140). This indicates that the
subject constraints are “binding” and affect the resulting solution. This also
provides some evidence for the solution deterioration and possible configura-
tion distortion phenomena associated with Model IIT’s constraints on subjects
mentioned earlier. Note the 6% increase in the variance accounted-for statistic
in going from Model III to Model IV, indicating that the stretching/shrinking
estimation phase does tend to alleviate the problem of placing constraints on
subjects. Since we are interested in examining both profile and subject con-
straints, we shall focus on the examination of the results of Model v}
although, as we shall see, because of the lack of relationship between purchase
style variables and individual differences, Model II according to (7) may be a
more parsimonious description of the structure in the data.

(1) Dependent Variable Effects. Figure 2 presents a plot of the derived
configuration for dependent variable effects: V. The first dimension is clearly
dominated by economic(—) vs. performance(+) criteria. The second dimen-
sion is dominated by economic criteria, but with a somewhat moderately sized
loading on cooperation.

(2) Betas for Design Matrix. Figure 3 presents a plot of the derived solution
for the betas (constraints) on the design matrix: B. As in the traditional
analysis results, performance criteria (economic criteria) become more (less)
important as one has a nonstandard, complex, novel product.

(3) Betas for Subject Descriptors. Figure 4 shows a plot of the betas on the
individual descriptors: C. Here, when performance criteria are important,

3Model IV solutions converged in two iterations indicating that the resulting B, C, U, W, and V
matrices are identical to Model IIT’s.
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managers tend to be: less concerned how others will react and more loyal to
current suppliers. The opposite holds true for the case when economic criteria
are important. Again, the results seem to substantiate the findings obtained in
the traditional analysis.

(4) Subject Response Differences. Figure 5 presents a plot of the individual
effects solution: W. Here, one can see that subjects 3, 6, and 16 tend to load
heavily on the first dimension, while subjects 4, 5, 7, 8, 9, 11, 13, and 16 load
highly on the second dimension. This gives us insight as to how subjects
weighted these criteria differently—an aspect not addressed in traditional
analyses.

(5) Profile Effects. Figure 6 presents a plot of the derived solution for the
design profile effects: U. Profiles 4, 6 and 8 have greatest impact on the first
dimension, while profile 1, 4, and 6 have greatest impact on the second
dimension. This is another aspect not addressed in traditional analyses.

(6) Subject Adjustment Factors. Figure 7 presents the vector adjustment
factors o,, i=1,...,16, for the sixteen subjects. The rather substantial
deviation from 1 that these numbers exhibit suggests that Model III may in
fact substantially distort subject vectors in this example as suggested earlier.
This is especially shown with respect to subject 14’s high « value which,
because of its size, had to be omitted from the plot in Figure 7.

b. Restrictions on V. Since the derived dimensions for the various effects
involve linear combinations of the original variable comprising these modes,
an option has been built in these models to allow for the user to restrict the
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dependent variable mode (V) to remain fixed throughout the analysis. Because
of the apparent dominance of the economic and performance variables in the
Three-Way Multivariate Conjoint Analysis as noted above, another two-
dimensional solution was run with the following restrictions on V (the 4 X 2
matrix of dependent variable (choice criteria) effects):

SCOoOOoON
SO O

where a and b are any real constants. (Actually, a and b are both set equal to
1 in the algorithm, and it is the normalization procedure at the end of this
estimation phase which can make a and b any real constants.) In essence, this
restriction forces the first dimension of the solution to focus upon the
economic criteria variable above, while the second dimension examines the
performance criteria variable alone. This has the effect of orienting the B, C,
W and U, matrices to solely these two dependent variables. The results
(presented in DeSarbo, Carroll, and Lehmann, 1981) are essentially the same
as in the unrestricted case.

c. Discussion. We have learned that two dimensions—one related to
Economic criteria and one related to Performance criteria—adequately de-
scribe the structure of the data. This was also indirectly demonstrated in the
traditional conjoint analyses performed. As in the traditional analyses, pur-
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chase style descriptor variables are not strong predictors of individual
differences—a result supported by much Marketing literature (e.g., Moore
(1980)). However, the Three-Way Multivariate Conjoint Analysis gives us
more information. It examines which subjects weight the two dimensions
similarly and which do not (Figure 5: W), hence aiding in benefit segmenta-
tion. We also can examine the interdependence relations which exist between
our dependent measures via Figure 2 (V). Finally, we are able to examine
effects and interrelationships among the various experimental profiles (Figure
6: U) to aid in interpretation.

V. Conclusion

A. Other Marketing Applications

An extension to traditional metric conjoint analysis has been developed
with an illustration to demonstrate the method. Three-Way Multivariate
Conjoint Analysis is not only restricted to applications examining industrial
buying behavior. This new technique might be employed in advertising,
pricing, product policy, etc. For example, Three-Way Conjoint Analysis could
be employed in determining appropriate advertising copy. Consider a design
matrix being used where the independent variables relate to descriptors of
print advertising, e.g., color vs. black and white, size, appeal, etc. The
dependent variables could be elements of the hierarchy of effects such as
awareness, knowledge, preference, conviction, intention to buy. The third
mode could relate to individual differences as a function of various measured
psychographic/demographic descriptor variables as well as usage patterns.
This would make possible the investigation of which types of advertising copy
might be most appropriate for certain types of market segments.

One could also employ Three-Way Multivariate Conjoint Analysis with
respect to new product design. Here, one could employ a design matrix to
manipulate levels of features or attributes of a newly proposed product. The
dependent variables of interest could be overall preference, intention to buy,
and ratings on a number of specific product benefits. Again, a number of
subjects representing different market segments could be utilized, given back-
ground psychographic and/or demographic descriptors.

B. Methodological Extensions

A useful extension of this newly developed method would be to adapt it to
handle the nonmetric case where the data are merely ordinally scaled. This
could be done by replacing* the regression phase described for estimating the
a,’s in Model IV by a monotone regression phase in which Kruskal’s (1964a, b)
MFIT routine, for example, is used to find the best fitting monotone function
of each subject’s data—that is, the monotone function agreeing best with the

“Note that Model IV becomes irrelevant as soon as one considers the possibility of such a
nonmetric analysis since a general monotonic function (say, separately for each subject) is
sufficiently general to absorb the a, parameters.
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predicted values from the (current) model estimates in a least-squares sense.
Just as in fitting Model IV by alternating between fitting Model III and fitting
the o, parameters via simple homogeneous linear regression (i.e., linear regres-
sion without a constant term), we could fit any one of the other three models
(I, 1II, or III) nonmetrically by alternating between fitting that model and
using monotone regression separately for each subject.

This, of course, assumes that the data are “matrix conditional”—that is, the
data are comparable within each subject’s stimulus profile X dependent vari-
able matrix, but not comparable berween subjects. Other assumptions about
the data—e.g., that the data are row conditional within each subject’s data
matrix (i.e., that a single subject’s judgments are not comparable across
different dependent variables)—would, of course, lead to different estimation
schemes. It is unlclear how serious local optimum problems would be in this
case.

C. Limitations

There are some limitations of the Three-Way Multivariate Conjoint Analy-
sis Model. Clearly, there is the potential for interpretation problems. When-
ever one deal with linear composites in a canonical correlation or multidimen-
sional scaling framework, interpretation is sometimes risky. However, Three-
Way Multivariate Conjoint analysis does enable one to build in a priori
information (restictions on V) to enhance interpretation.

There is also the potential problem of locally optimum solutions since the
alternating least-squares algorithm employed in all four models can only
guarantee a locally optimum solution. One method to investigate this possibil-
ity is to run an analysis two or three times, each using a different starting
solution.

Finally, there are also limitations which exist with respect to the structure of
the models themselves. For example, subject x dependent variable two-way
interactions are not measurable in the models per se. Harshman (1980)
discusses various types of preprocessing and their effects of “smoothing” out
such unmeasurable effects.

In spite of these potential drawbacks, the approach seems both sufficiently
intriguing and potentially efficient to warrant further investigation.

Appendix I
A. Model 1: Unconstrained

Given the three-way model presented in equation (1), we may, given current
estimates of two sets of parameters (say the U,’s and V,,’s), find an exact least
squares estimate of the third set by linear regression methods.

This can be seen reformulating the problem as:

Yx:*=ZVVith:’ (A'l)
t
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where:
Yir= 1(jk)
(A2)
Gs! = (jjl Vk! ’
and s is a subscript that ranges over all mq values of j and k.
In matrix notation, this can be formulated as:
Y** = WG/, (A-3)
and we can estimate W by:
W= Y**G(G'G)™' (A-4)

(amounting to postmultiplying by the right pseudoinverse of G').

B. Model 11: Constraints on Profile Effects

Redefining X = [J,X], where J=[1,1,..., 1], to account for optional
intercept terms, we, as in CANDELINGC, initially perform a singular value
decomposition on X, assuming of course that m > p,. We obtain:

X=PAQ, (A-5)
where:

A, = diagonal matrix of the square root of the eigenvalues of XX,

Q, = matrix of eigenvectors X'X,

P, =XQA[ "
Defining

X*=PQ; (A-6)

where X* is the best (least-squares) orthonormal approximation® to X, we

5Carroll, Pruzansky, and Kruskal (1979) show the necessity of this orthogonalization procedure
in their article.
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create Y* via:
abc 2 z % Yy I*X
i j

=3 Y,.X3, (A-T)
J

where:
= an n X n identity matrix,
I** = a g X g identity matrix,
Y*=ann X (p,+ 1) X g array.

We then fit the CANDECOMP model:
T
Yhe~ 2 WaBLVE (A-8)
r=1

to Y* by utilizing the NILES procedure discussed in the previous section for
obtaining the estimates W*, B*, and V*. Now, W* =W gives information as
to subject differences. V* =V renders insight into dependent variable effect
differences. U = X*B* = XB, where:

B=Q,A 'Q;B*, (A-9)

gives us information as to experimental profile effects and interrelationships
(the rows of X) in terms of the original set of variables, while B provide the
part-worths or utilities for the independent design variables (columns of X).
C. Model 111: Constraints on Both Profiles and Subject Effects

Redefining both X and Z,

~[3.X]
(A-10)
~[3.2),
where again J=[1,1,..., 1] to account for optional intercept terms, we
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perform a singular value decomposition on both X and Z, obtaining:
X=PA4a0Q,
and
Z="P,A,Q,, (A-11)
as was done in Model II. Defining
X* =P,
and
Z* = P,Q;, (A-12)

we create Y** via:
Vae=2 2 DY, ZEX3IE
t j ok
=2 DY, Z: X3, (A-13)
vy

where Y** is a (p, + 1) X (p, + 1) X ¢ array. One now obtains the CANDE-
COMP model:

T
Yok 2 CorBLrva (A-14)

cr
r=1

and utilizes the NILES procedure as in Models I and II to obtain C**, B**
and V**. One can now solve for these coefficients in terms of the original
variables via:

C=Q,A;'Q;C**
and

B =Q,A7'Q|B**, (A-15)
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Similarly, having the dependent variables effect V = V**, one can also solve
for both profile and subject effects via:

U = XB = X*B**
(A-16)

W =ZC = Z*C**

D. Model IV: Model 111 with Additional Subject Parameters

Essentially, we initially perform a Model IIT analysis as discussed above. At
the end of this first stage, we calculate:

T
TP = 3 WUV, (A1)

t=1

where:

Y“) = the predicted value of Y, given estimates of W, U, and V on the
first 1terat10n,

WD = the estimated value of subject effects for subject / on dimension 7 on
the first iteration;

U = the estimated value of profile effects of profile j on dimension ¢ on
the first iteration;

VD = the estimated value of dependent variable effects for dependent
varlable k on dimension ¢ on the first iteration.

The next stage involves performing n simple regressions to solve for y; via:

YRmyYW, i=l...,n (A-18)

where the dependent variable is the predicted values and the independent
variable is the actual data. The y;, i = 1, . . ., n are constrained to be greater
than or equal to zero (for reasons we shall soon explain). After this step, we

redefine Y via:

Y2 =vYw, (A-19)

and return to the Model III stage to derive estimates of W, U, V, B and C. At
the end of this, we calculate:

YR = z WUV, (A-20)

t=1
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and repeat this same process iteratively until we reach convergence in the
appropriate goodness-of-fit measure.® This additional stage for estimating
Y.(a, = 1/7v,) has the effect of stretching/shrinking the data,” instead of the
subject vectors, which basically accomplishes the same objective concerning
the problems with subject constraints mentioned earlier. By stretching /shrink-
ing the data in this manner, we insure ourselves of minimizing the same loss
function as in the Model I1I stage of Model IV.

The goodness-of-fit measure utilized in all Models I-IV 1s defined as:

2
2 2 Yyk ng
k

i

(33
(Z?%fk)(, Z37)

§t=

If the data array Y 1s centered, then S? is a squared product moment correlation coefficient, and
as such is interpretable as a variance-accounted-for measure (VAF). If Y is not centered, then S2
1s the square of what might be called the “uncentered correlation”, and can be interpreted as a
sums-of-squares-accounted-for measure (SSAF).

"Given the form of the model presented in equation (10), then «, = 1/4,. This applies the actual
shrinking /stretching factor (inversely) on the left hand side (ie., to the data). The y,’s are
estimated 1n this manner rather than the a,’s for reasons of mathematical tractability. If instead of
equation (A-18) we used:

Yuk~aY

and sought least-squares estimates of &,, a much more complicated algorithm would be required
in the succeeding stage in order to obtain new least-squares W, U, and V estimates.
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