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In the application of clustering methods to real world data sets, two problems frequently 
arise: (a) how can the various contributory variables in a specific battery be weighted so as to 
enhance some cluster structure that may be present, and (b) how can various alternative batteries 
be combined to produce a single clustering that "best" incorporates each contributory set. A new 
method is proposed (SYNCLUS, SYNthesized CLUStering) for dealing with these two problems. 
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I. Introduction 

In the application of clustering techniques to large scale empirical problems, the 
researcher often encounters two difficulties. First, in any given battery of variables, it 
appears to be the case that only a proper subset of the variables contribute in an impor- 
tant way to the resultant clustering. Indeed, the presence of additional variables on which 
the clusters are not distinguished may obscure the cluster structure. For example, in auto- 
mobile marketing research applications, one often finds that certain attitudinal variables, 
such as those emphasizing styling and comfort versus design simplicity and high gas 
mileage, produce clusters of car owners with markedly different patterns of brand owner- 
ship. However, if extraneous attitudinal variables (describing general leisure-time interests 
or feature preferences) are added, the original structure may be completely obscured. 
Fowlkes (Note 2) has demonstrated this "masking" effect empirically with hierarchical 
clustering methods. 

Second, in many applied problems--again those often arising in public opinion and 
marketing research--one often faces an embarrassment of riches: the availability of sev- 
eral competing batteries of variables on which to conduct the cluster analysis. While one 
could simply cluster on the basis of the full set of variables, the implicit weighting of the 
separate batteries is rarely in accord with the researcher's judgments regarding their rela- 
tive importance. The judgments for this ~ priori weighting are often legitimately based on 
expert knowledge concerning the nature of the objects to be clustered. 

This paper is concerned with both of these issues. A new clustering method, called 
SYNCLUS (SYNthesized CLUStering) is proposed for dealing with these two problems. 
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We first discuss aspects of the literature bearing on the question of variable weighting so 
as to "optimize" the clustering qualities of a set of data. This is followed by a description 
of the model and algorithm underlying the SYNCLUS procedure. The algorithm is then 
applied to a synthetic data set with known cluster structure. An application concerning 
physician's attitudes and media preferences is discussed. We conclude the paper by dis- 
cussing some potential applications of the method and further research needed to examine 
its performance under diverse sets of data conditions. 

II. Literature Review 

Much of the literature that is applicable to the problem of variables importance in 
clustering is obtained from classical multivariate statistics for given or known classifi- 
cations. That is, once a clustering is obtained in K clusters or groups, one can employ 
such techniques as separate t tests, Hotelling's T 2, MANOVA, multiple discriminant 
analysis, stepwise discriminant analysis, etc. (Obviously, these techniques are inappro- 
priate if the same data are used to develop the grouping.) 

H. Friedman and Rubin (1967), in their discussion of various criteria for grouping 
data, employ such procedures for investigating relevant subsets of variables after their 
algorithm produces the desired clustering. They also discuss several graphical methods to 
aid in variable selection. 

Kruskal (1972) attempts to find a linear transformation of the data which will reveal 
a "hidden cluster structure". He solves for the coefficients of this linear transformation by 
optimizing "an index of condensation", a measure of cluster compactness. Presumably, 
the coefficients of the optimal linear transformation provide insight into which variables 
should receive higher weights (or contribute more to the clustering) and which variables 
should receive lower weights. However, Kruskal (1972) admits to having difficulty in 
selecting an appropriate condensation index to optimize. Friedman and Tukey's (1974) 
"projection pursuit" approach also attempts to attain a similar aim, but in "real time" 
interaction with the user. It is also restricted to one or two dimensional projections of a 
higher dimensional space rather than a general linear transformation. 

Sneath and Sokal (1973) discuss a number of related clustering techniques concerning 
weighted and adaptive clustering. One type of weighting in clustering they mention con- 
siders some dimensions of the clusters more important than others. Rohlf (1970) defines a 
generalized distance function which weights distances along axes of a hyperellipsoid inver- 
sely to the eigenvalues corresponding to each of these axes, and in this way evaluates 
distance along the principal axis of an ellipsoid as equivalent to the much smaller dis- 
tances along the minor axes. Morrison (1967) develops a "Mahalanobis-like" distance 
measure which normalizes and compensates for different variances, intercorrelations, and 
variable importances. 

More recently, Fowlkes, Gnanadesikan, and Kettenring (Note 3) have specifically 
addressed the variable importance problem in clustering. They are currently experi- 
menting with three types of "stepwise" algorithms for variable selection and evaluating 
subsets selected in terms of three measures of "cluster strength". They are (a) forward 
selection (starting with a single variable and entering one variable at a time), (b) backward 
elimination (starting with all variables and eliminating one at a time), and (c) guided 
selection (uses the data to derive a subset or starting set of the original set of variables; 
then, variables are entered and deleted again to produce clusterings for a collection of 
subsets of variables). These are analogous to stepwise approaches to subset selection 
models in linear regression. In the present case, letting B and W be the usual sums of 
squares and cross-product matrices between clusters and pooled within clusters respec- 
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tively, three measures are examined: 

tWl 
1. - l o g  I B + W  I 

2. Trace (BW - 1) 

3. Maximum eigenvalue of BW - 1. 

This procedure is still in the experimental stages of development. It differs from the 
SYNCLUS methodology in that while SYNCLUS will utilize a differential weighting of 
variables (separately within each of one or more distinct sets of variables), the Fowlkes, 
Gnanadesikan, and Kettenring (Note 3) approach seeks a selection of a subset of variables 
(which can be viewed as defining the SYNCLUS differential weights to be zero or one 
within a single variable set). 

Finally, Art, Gnanadesikan, and Kettenring (I982) have proposed a method for boot- 
strapping a metric from multivariate data that are to be clustered. The method exploits 
nearest neighbors for developing a metric that reflects possible differences in the scales of 
the initial variables as well as correlations among them which may indirectly provide 
some insights as to variable importance. 

l I I .  S Y N C L U S  

A. Objectives 

The research objectives underlying the development of SYNCLUS are: 

1. To provide an algorithm for K-means clustering (MacQueen, 1967) that can be 
directly applied to distances between objects, as well as to profile data (variables or 
characteristics of these objects) later converted to distances; and which can also be gener- 
alized to the case of three-way data (e.g., objects x objects x battery, or objects x varia- 
bles x battery). 

2. To provide a technique which, in addition to solving for a clustering of objects 
into K specified clusters (step 1 above), also renders numerical weights for the variables 
describing the objects--the weights indicating the variables' relative importance to the 
clustering; and, 

3. To allow for the analysis of several different groups of variables (e.g., demo- 
graphics, psychographics, product usage, etc.) where a priori known or believed group- 
level importance weights may be specified and processed in steps 1 and 2 above. 

B. T h e  M o d e l  

Let: 

w 2 = the specified importance weight for the i-th battery or group of variables, normal- 
1 ized so that ~ =  1 w~ = 1 ; i = 1, 2, . . . ,  l. 

E1 if object j belongs to cluster k 
e~k = ~o otherwise; j , j '  = l, 2 . . . .  , J; k = 1 , 2  . . . .  , K.  

yl~ the t~-th variable in the i-th battery describing object j ;  t~ 1, 2, . . . ,  T~. j t i  ~ 

v 2 = the importance weight or square of the rescaling constant for the t~-th variable in Ill 

the i-th battery used in producing the clustering; 

d]~ ° = E~=I  v~,(Y~il - y~)2 = the weighted squared distance between objects j and j '  de- 
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fined for the i-th battery; 

6jj, = ~a*jg, + fl (discussed in the Appendix); 

where: 

1 
a*, = J~ 

0 

if objects j and j '  are jointly members of cluster k, 
where Jx = the number of objects in cluster k; 

if objects j and j '  are in different clusters. 

where, 

(It should be noted that the sum in both numerator and denominator of the expression on 
the right hand side of equation (2) is over all j and j'. Also, 6jj is not defined to be zero, 
but is the same as dij~, for j # j', where j' is in the same cluster as j, The reason for this, and 
for the particular definition of 6j j,, is discussed in the Appendix. As will be proved subse- 
quently, 6j j, as defined above, provides a measure of inter- and intra-cluster distance 
whose fit to the d2j, is optimized by the K-means approach to clustering.) Kruskal (1964a, 
b) discusses how such a stress-like measure avoids such degeneracies. Thus, we wish to 
find both the optimal clustering and appropriate scaling of the variables in minimizing Z 2 
while simultaneously taking into account any a priori information on battery importance 
(wZ). Note, one can rewrite (2) as: 

1 

z =X wi Z . ,  (3) 
i = 1  

J J 

/"1'72i j = l  j ' ~ l  
= j J ............. . 

j = l  j ' = l  

(4) 

Another possible definition of a weighted mean square stress would be of the form: 

I 

Z = W i Z 2 i ,  
t = 1  

(5) 

(Note, c~ will generally be negative, and fl positive and sufficiently large so that 6j~, > 0 for 
all j and j ' ;  however, while there are no explicit constraints imposed to insure th-is, in 
practice ~ < 0, fl > 0, and 6~j, _> 0). Then, we wish to solve for ~, fl, ejk, and for v 2.,, given 
w 2, K, and y ~ ,  in order to minimize the following sum of squares: 

1 J J 

z*2 = X Z Z w,%j, - C,',) 2. O) 
i= 1 j < j "  

However, since both 6~j, and ~2(0 ,.jj, are to be estimated from the algorithm to follow, Z .2 in 
equation (1) can be trivially minimized by driving the (6~j, - d2~°) 2 term to zero by using 
smaller and smaller numbers for each of the entities. Because of this problem, we use an 
appropriate normalization factor producing a weighted mean-square, stress-like measure. 
One of these measures is: 

1 d J 

E w2 E E ((~JJ' -- "JJtrl2(i)~2] 
Z 2 i=1 /=1j,=1 (2) 

= ff ff 

j = l  j ' = t  
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where: 

J J 

Z ~  - I = 1  t - I  - j j ( 6 )  

u.jfl 
j = t  j ' = l  

As can be seen by comparing equations (5) and (6) to (3) and (4), Z~ differs from Z 2 only 
in the normalization factor in the squared stress term (Z2~ and Z2~, respectively) defined 
for the ith variable set. Based largely on results explicated in a paper by Kruskal and 
Carroll (1969), it can be shown that optimizing (minimizing) these two apparently differ- 
ent measures in fact leads to equivalent procedures, and that, in fact, the optimal solutions 
for the two measures are identical except for scaling (i.e., for the two different measures, 
the c~'s and d2's are simply rescaled by appropriate scaling constants). This has been dem- 
onstrated empirically by computing Z 2 and Z 2 and noting that both measures decrease 
monotonically and appear to approach a minimum simultaneously. 

The equivalent problems of minimizing Z 2 or Z 2 are both equivalent to maximizing 
C 2, defined as: 

1 
C 2 V w?C? = ~ , , ,  ( 7 )  

i = l  

with C~ defined as: 
J 2 

~, 'g" t~ d2(Oq 
"/'1 jj ' ~Jfl J (8) 

E E E E 
j = l  j ' = l  j = l  j , = l  

As can easily be seen, C~ is simply the squared uncentered correlation between the di's 
and the d~(°'s, and as such can be interpreted as "sums-of-squares accounted for" (by 6 in 
d 2 or by d 2 in 6; in either case via a homogeneous linear regression, i.e., a linear regression 
without a constant term). C 2 is thus a weighted mean sum-of-squares accounted for. It 
can also easily be shown that, for the optimal values of the three indices (implying, for Z~ 
and Z~, the appropriate scaling for those indices) that 

= 1 - = t - z L  (9) 

(where the subscript "o" indicates the optimal values, corresponding to the optimal 
solutions-equivalent except for scaling). The analogous equations to (9) also obtain for 
each 2 2 and Z~.  Ci, Z l i  

Since C 2, and each of its component terms C~, is unaffected by the scaling of ~'s and 
d2's, we shall in fact use it henceforth as the preferred measure of goodness-of-fit. Since, 
however, optimizing the three measures is equivalent (except for scaling), we shall, in our 
description of the algorithm in the Appendix, shift, for reasons of mathematical con- 
venience, from a discussion optimizing one to a discussion based on another. 

C. The Algorithm 

Appendix I presents a detailed description of the entire iterative SYNCLUS algo- 
rithm. The SYNCLUS algorithm is composed of seven phases. Not including the clus- 
tering, the number of parameters estimated (v~,) is equal to the total number of variables 
T = ~i  Ti. Each phase is described in turn in the Appendix. 
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TABLE 1 

Data Set for Monte Carlo Analysis 

Observation 

Variable 

Xl X2 X3 X4 

1. 1.038 1.107 1.107 --0.896 
2. --0.171 0.996 0.996 -0 .112  
3. 0.635 0.885 0.885 1.568 
4. -1 .014  --0.885 1.107 1.680 
5. -1 .893  -0 .996  0.996 0.299 
6. -0 .537  -1 .107  0.885 -1 .232  
7. 0.965 0.885 -1 .107  1.269 
8. -0 .647  0.996 -0 .996  -0 .746  
9. 0.928 1.107 -0 .885  0.112 

10. 0.672 -1 .107  -1 .107  -0 .037  
11. -1 .197  -0 .996  -0 .996  -0 .560  
12. 1.221 --0.885 -0 .885  -1 .344  

IV. Monte Carlo Results 

SYNCLUS has been run on numerous synthetic data structures where a known clus- 
tering existed. Random error was introduced and the SYNCLUS analysis was compared 
to results for ordinary K-means and average-link hierarchical clustering. A discussion of 
one set of data  follows. 

0,5 1.0 1.5 2.0 2,5 3.0 3.5 

I I--' I I I I ............. I 

9 - -  

t 0 - -  

l Z - -  

FIGURE 1. 
Hierarchical Cluster Analysis Performed on X 1, X 2 , X 3 , and X ,  in Monte  Carlo Analysis. 



DESARBO, CARROLL, CLARK AND GREEN 63 

Table 1 lists the data used here to produce four clusters. Variables, X2 and X3 were 
used to generate four clusters (objects 1, 2, 3; objects 4, 5, 6; objects 7, 8, 9; objects 10, 11, 
12), while X1 and X ,  were random noise. 

Figure 1 depicts the results of the hierarchical clustering analysis on all four vari- 
ables, showing distortion in recovering the true clustering structure. Note that without X~ 
and X,~, the hierarchical clustering algorithm works well in recovering the four clusters. 

Table 2 presents the results of ordinary K-means for all four variables. Here too, the 
program has difficulty in recovering the cluster structure in Table 1. However, with X 1 
and X ,  in the analysis, the K-means program did recover the four clusters. 

Table 2 also presents the SYNCLUS results (w 2 = (.5, .5)) for all four variables: X~ 
and X2 in one set and X3 and X ,  in the other. SYNCLUS produces larger v~, weights for 
X 2 and X 3 and smaller v~ weights for X 1 and X , .  Also, the true cluster structure is 
recovered exactly. 

Numerous other data sets involving different cluster shapes, number of clusters, 
number of variables, correlations between variables, number of batteries of variables, etc. 
were also run with similar results. In one case, SYNCLUS did not recover a known 
cluster structure when random noise was added to a set of variables that were responsible 
for the resulting clustering, although an appropriate weighting of the variables was ob- 
tained. Assuming that SYNCLUS had arrived at a local optimum solution, another run of 

TABLE 2 

K-means and SYNCLUS Results on Xl, X2, X3 and X4 
for Monte Carlo Analysis 

K-means Results 

No. of Clusters 

Four Cluster Solution 

Within-Groups Sum of 
Squares .... Cluster # Objects 

33.11 1 1,2,8 
22.57 2 3,7,9 
17.17 3 4,5 
12.39 4 6,10,t1,12 
9.26 

SYNCLUS Results 

No. of Clusters C 2 

2 .621 
3 .644 
4 .651 
5 .645 

Four,Cluster Solution 

Cluster # Objects vi~ ' 

1 1,2,3 Xl: 0.43 
2 4,5,6 X2 : 0.90 
3 7,8,9 X3 : 0.92 
4 10,11,12 X4 : 0.39 
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SYNCLUS was made in which the E = II ejk LI matrix was fixed on the first iteration of 
SYNCLUS, as generated by the known clustering. To our surprise, SYNCLUS moved 
from this a priori clustering and arrived at the same previous clustering, with a higher 
goodness of fit statistic! In this case, it appeared that the random noise included in the 
analysis might have legitimately provided a different clustering. 

Clearly, more work in this area must be done. One of the obvious problems in such 
Monte Carlo work is how to limit the number of relevant factors to vary, experimentally, 
in order to investigate their impact on the effectiveness of SYNCLUS vs other competing 
techniques. For  example, there are an infinite variety of cluster shapes one could investi- 
gate in many dimensions. 

V. Application 

A. Study Description 

On a pilot basis, SYNCLUS was also applied to a set of real data, obtained from a 
recent marketing research study of South American physicians' attitudes toward a new 
antihypertensive drug. An initial sample of 160 respondents was obtained; all interviews 
were personally administered. 

Among the data collected for each physician was a set of 13 judgments (X 1 to X13 ) 
regarding the relative effectiveness of alternative promotional  media, a set of 20 "life style" 
statements (X14 to X33), and 7 demographic responses (X34 to X4o) for a total of 40 
variables. 

The 160 x 40 matrix was then partitioned, by columns, into three (media judgments, 
life style, and demographics) submatrices. For  illustrative purposes, a random sample of 
n = 40 from the 160 subjects was selected for subsequent analysis. Each variable was 
standardized to have zero mean and unit variance prior to the various cluster analyses 
that follow. The object of the analysis was to examine the bases of possible market  seg- 
mentation schemes. 

B. K-means Analysis 
A K-means analysis for all 40 variables was performed for two through seven clus- 

ters. Table 3 presents the total within cluster sum-of-squares for these clusterings. Note  
the relatively constant reduction in the error sums of squares for successive clusters in- 
dicating that two clusters may be sufficient in describing the structure of the data. In fact, 

T AB L E3 

K-mea~ Statistics ~ r D r u g S t u d y  

Number of 
Clusters 

Within-Groups Sum 
of Squares 

2 1457.93 
3 1366.07 
4 1264.39 
5 1157.54 
6 1108.52 
7 1051.13 

Cluster # 

1 

2 

Two Cluster Solution 

Objects 

1,2,4,9,10,11,13,15,18,23,34,38 

3,5,6,7,8,12,14,16,17,19,20,21,22,24,25,26, 
27,28,29,30,31,32,33,35,36,37,39,40 
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using Hartigan's (1975, 1978) approximate F-test for K-means, one would stop at two 
clusters. 

Table 3 also presents the two cluster solution. We calculated means and standard 
deviations (not shown) for the variables in the two cluster K-mean solution. By examining 
large mean differences with fairly low standard deviations (one could also perform a two- 
group discriminant analysis), one notes that variables X4, X6, X~, Xlo,  Xl l ,  X2o, X22, 
X2s, and X32 possess large mean differences between the two clusters. Thus, Cluster 1 
can be tentatively described as physicians agreeing with the following: 

--Commercial  scientific exhibits or displays are not effective (X4); 
--Direct  mail is not effective (X6); 
--Educational materials for medical schools are not effective (XT); 
--Symposia are not effective (Xlo); 
--Visual/audio cassettes/films are not effective (X, 1); 
--Spends enough time with his family (X,o); 
- -Does  not only follow tried and tested medical practices (X22); 
- - I s  not reluctant to experiment with new drugs (X2a); 
- -Rarely considers the cost of drugs he prescribes (X32). 

Cluster 2 can be described with just the converse descriptions. Note that large mean 
differences were not present between the seven demographic variables. However, it is 
really unclear what variables account for cluster differences. It is also unclear what inter- 
pretation to give to these two clusters. 

C. S Y N C L U S  Results 

This same data set was then run through SYNCLUS (w E = (.33, .33, .33)) where two 
through five clusters were obtained. Based upon the goodness of fit measures described 
earlier, two clusters also appeared to best represent the structure in the data. Table 4 
presents the details of the two cluster SYNCLUS solution. Note, a different clustering is 
obtained as compared to the previous K-means solution. From a cursory inspection of 
the v 2, weights in Table 4 and the means and associated standard deviations (not shown), 
one can note that variables X4, Xs,  Xg, Xl t ,  X13, X3o, X39, and X~o possess high 
within-set v2~ weights and have large mean differences between clusters. Given the I differ- 
ent regression phases to estimate v z these weights can only be compared numerically iti 

with variables in the same battery. Cluster 2 can be described as physicians tending to 
agree with: 

--Commercial/scientific exhibits or displays are not effective (X4); 
- -Journal  ads are not effective (Xs); 
--Sampling is not effective (Xg); 
--Visual/Audio Cassettes or films are not effective (Xg); 
--Physician's radio or T.V. network is not effective (Xla); 
- -Once  a day dosage is important for his patients (X30); 
- - H e  does not work in a hospital (X39); 
- - H e  tends to be a G.P. (X40). 

Accordingly, cluster one can be described in a converse manner. 
The interpretation here is quite clear--Cluster 1 tends to be hospital based specialists 

(although it does contain some physicians who are not) with quite a different outlook 
towards detailing effectiveness than cluster two's general practitioners. It is interesting to 
note that cluster two contains no doctors working in a hospital (variable X39 for cluster 
two has zero variance). 
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TABLE 4 

SYNCLUS Two-Cluster Solution For Drug Study 

. Two Cluster Solution 

Cluster# Objects 

2,3,5,6,8,12,14,15,16, 
17,19,20,21,22,23,24,26, 
28,29,31,32,34,36,37,39,40 

2 1,4,7,9,10,11,13 
18,25,27,30,33,35,38 

C 2 - .808 

v,, 2, 

i-1 

X~ .137 
X2 .104 
X3 .298 
X4 .373 
Xs .169 
x6 .111 
X7 .235 
Xs .396 
X9 .420 
Xi0 .196 
Xt~ .103 
X~ .087 
Xi3 .505 

i -2  

Xl4 .116 
X~3 .200 
Xle .135 
Xl~ .221 
Xls .143 
Xl9 .191 
X2e .266 
X21 .170 
X22 .139 
X23 .445 
X24 .174 
X25 .269 
X26 .208 
X27 .010 
X28 .234 
X29 .313 
X3o .292 
X3~ .243 
X32 .159 
X33 .193 

i -3  

X34 .365 
X35 .359 
X36 .253 
X37 .161 
X3s .385 
X3~ .528 
X,~ .469 

It is also interesting to note that, except for educational materials for medical 
schools, the specialist/hospital working cluster (1) is more receptive to all other forms of 
detailing as demonstrated by larger mean scores on media judgments 1-6 and 7-13. This 
may indicate that cluster one members are more receptive to manufacturers' marketing 
mix policies than Cluster 2's doctors. 

Another important finding demonstrated in Table 4 is the fact that the psycho- 
graphic variables, with the possible exception of X3o, do not differentiate cluster member- 
ship all that much. Rather, it is the media judgment and demographic variables that 
appear to be the most important batteries in determining this two-cluster solution. 

These results are quite consistent with a separate analysis performed by Green and 
Goldberg (note 4) on the entire N = 160 data set. 

C. Comparisons 

Since K-means and SYNCLUS attempt to optimize two different objective functions, 
there is really no reason to expect to get the same clustering. To pursue this point further, 
two additional analyses were performed. In the first analysis, the SYNCLUS two-cluster 
solution was used as a starting configuration for K-means. The SYNCLUS solution pro- 
duced a total error sums of squares of 1488.96--higher than the 1457.93 in Table 3. 
K-means then iterated on this configuration and resulted in a different so lu t ion--  
different, in fact, than the one presented in Table 3, with a higher error sums-of- 
squares = 1463.97. Similarly, the K-means solution in Table 3 was then used as a starting 
configuration for SYNCLUS. With equal v2~ weights on iteration one, it initially rendered 
a C 2 = .779, lower than the .803 in Table 4. SYNCLUS moved away from the K-means 
solution and converged to the one in Table 4. Note that SYNCLUS provided the same 
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K-means solution at iteration 1 where all the v 2, were set equal. This is to be expected 
since the two procedures are equivalent under such equal weighting conditions. Again, 
since the two procedures seemingly try to optimize quite different objective functions, it is 
not surprising that different results were obtained. 

VI. Discussion 

On the assumption that SYNCLUS continues to show reasonable results when ap- 
plied to synthetic and empirical data sets, a number of possible applications are suggested. 
We first describe some potential applications to problems in marketing research and seg- 
mentation, followed by a companion discussion of applications in psychology and other 
behavioral sciences. 

A. Marketing Research and Segmentation 

One of the most actively researched areas in marketing is market segmentation. By 
this is meant the delineation of groups of consumers who evince similar behavior within 
segments and different behavior across segments with respect to some set of marketing 
variables, such as brand preferences, product class consumption, and the like. A large 
number of different sets of variables--benefits sought, psychographics, demographics, self- 
concept measures--have been proposed as criteria for segmenting markets. Clustering 
methods represent a common technique for partitioning markets according to one or 
more of these batteries (Wind, 1982). 

As described at the beginning of this paper, two of the main problems associated with 
market segmentation entail the weighting of variables within battery and the weighting of 
the batteries themselves, when the clustering is to be based on two or more data sets for 
the same individuals. Increasingly, marketing managers are requesting researchers to fur- 
nish a single "best" partitioning of the market, even though this usually entails amalgama- 
tion over several batteries of variables. 

A second problem concerns the fact that most market segmentation studies involve a 
large number of variables--frequently in excess of 200--as candidates for clustering. 
Marketing researchers have tried to cope with this problem by conducting some prelimi- 
nary factor analyses on the data and then clustering consumers on the basis of a relatively 
few factor scores, rather than the full set of original variables. 

Factor scores are based on the intercorrelations of the original variables across the 
full set of consumers, however, and not upon the cluster structure that may exist with 
respect to the "objects" (i.e., consumers or other entities being clustered). It seems to us 
that one of the major advantages of SYNCLUS is its use in selecting variables (from some 
large candidate set) that are the most useful for revealing the inherent cluster structure. 

In some sense, the variable weights obtained from SYNCLUS can be viewed as anal- 
ogous to factor loadings, as obtained in R-type factor analysis (i.e., the factor analysis of 
variables over objects when the latter are treated simply as replications). For example, one 
could start with large batteries of candidate variables and use SYNCLUS to select subsets 
of variables which contribute most to the cluster structure. 

Knowledge of the important segmenting variables is also important in its own right 
for decision making purposes. For example, if markets are best segmented on the basis of 
attitudes relative to product functionality (as opposed to image-type variables), this infor- 
mation should be useful in product research and advertising. 

In addition to data routinely collected on consumer attitudes, demographics, and the 
like, marketing researchers often work with consumers' perceptions of competitive prod- 
ucts on various attributes of interest. For example, new car models may be rated on style 
features, roominess, fuel economy, acceleration, anticipated trade-in value, availability of 
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repair service, and so on. It is not unusual to take profile data of this sort and find 
multidimensional scaling representations of the car models and the attributes in a 
common space. 

SYNCLUS could be used in a complementary way to find a cluster representation of 
the new car models and a set of weights for the attributes that best delineate the underly- 
ing cluster structure. This type of analysis is analogous to the prevalent use of multiple 
discriminant analysis in which car models (or other sets of objects) are first grouped into 
segments--often by managerial judgment--and one then tries to find which attributes 
contribute most to among-group discrimination. In SYNCLUS, however, both the seg- 
ments and the discriminating attributes are found simultaneously. 

The "amalgamation" feature of SYNCLUS is also potentially important in market 
segmentation studies. For example, the research may test out the sensitivity of cluster 
structures and variable weights to alternative proposals for separate battery weighting 
(where different batteries assume the role of the "distinguished" battery which receives the 
highest weight). If one finds that individual variable importance is relatively insensitive to 
different sets of a priori specified battery weights, this finding would lend greater credence 
to the development of a single clustering of the data. On the other hand, if variable 
weights and the cluster structure are highly sensitive to the user-supplied battery weights, 
marketing managers might be well advised to consider alternative bases for segmenting 
their markets. 

In sum, it seems to us that the concepts underlying SYNCLUS can be useful in both 
the screening of candidate segmentation variables and in exploring the robustness of clus- 
ter structures and variable weights to alternative battery weights. Moreover, this applica- 
bility covers not only the segmentation of consumers or industrial buyers but the clus- 
tering of brands or product varieties (e.g., soup flavors, cereal varieties) as well. This latter 
application appears particularly interesting in research dealing with consumer preferences 
for alternative bundles of items, such as liquor assortments, season programs of concerts, 
and the like. 

B. Behavioral Science Applications 

SYNCLUS can be extended to many types of behavioral science applications beyond 
marketing research. For example, SYNCLUS can be utilized as a classification device for 
classifying subjects who have taken a series of different psychological tests. SYNCLUS 
could reveal exactly which variable items in particular test batteries are most important in 
deriving the resultant classification scheme. This scenario can be extended to tests mea- 
suring personality, attitudes, learning, etc. For example, in clinical psychology, the various 
test batteries could be different personality tests, and SYNCLUS could derive a clustering 
and associated importance weights for each of the items within a specific battery. This 
could greatly aid the psychologist in rendering proper interpretation to the various dus- 
ters. 

In educational psychology, one often takes measurements of student IQ or aptitude 
via a variety of different tests in order to predict student performance and classify the 
student population. There is ample psychological theory to also include variables describ- 
ing the classroom scenario, the school, the teacher, the student's parents, etc. SYNCLUS 
could be used in such an application to derive a clustering and associated weights to 
indicate which variables in which batteries were most important in obtaining such a 
classification. 

Indeed, there appear to be many possible psychological applications for SYNCLUS 
and the technique can be utilized for the case where there is only one battery of items 
(1 = 1). 
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C. Possible Algorithmic Enhancement 

Some areas of further research concerning different aspects of the algorithm are dis- 
cussed. Several of these areas are currently being actively pursued. 

1. Phase III Modifications 

One could apply a branch and bound procedure (see Garfinkel and Nemhauser, 
1972), to obtain an E that could maximize C 2, but for large K and J this would be 
prohibitively expensive computationally. An alternative, and one that is being explored 
currently, is a combinatorial optimization procedure (see DeSarbo, 1982) to maximize C 2 
(or similar objective function) that would also allow for overlapping clusters. 

2. Integer, Non-negative v~, 

Whether or not one wishes to alter the exact nature of the objective function, there is 
the question of interpretability of the v .2 importance weights. First, there is no explicit lti 
constraint in the Phase V OLS procedure to insure that all the v2~ will be positive. How 
does one interpret a negative v 2, if one should arise? Secondly, how does one compare 
these weights? Clearly, the larger the weight (assumed to be positive), the more important 
the variable. But how does one compare one weight of 1.7362 vs another of 1.9937? 

There is some justification for considering the imposition of positivity and/or integer 
constraints on the entire set of v2,. For example, one could constrain the v z, to be in some 
small set of positive integers, such as {0, 1, 2, 3}. This would guarantee that all v 2 would iti 
be positive, and would also simplify interpretation considerably, especially if many v2~ 
were set to zero. Unfortunately, enforcing these constraints would complicate this section 
of the algorithm. Again, a branch and bound procedure or combinatorial optimization 
method as previously discussed would be necessary--either of which would significantly 
increase CPU time, especially for large T. 

3. Other Generalizations 

It would also be straightforward to generalize SYNCLUS to allow definition of the 
squared Euclidean distances for each battery of variables via a generalized metric involv- 
ing a general quadratic form rather than a simple weighted Euclidean metric (in which the 
quadratic form is effectively constrained to be diagonal). This would be tantamount to 
allowing a general linear transformation of the variables in each data set (battery) fol- 
lowed by computation of the simple Euclidean metric on the transformed variables. (This 
interpretation assumes constraining the quadratic form matrices to be positive-definite or 
semi-definite, of course). DeSarbo and Mahajan (Note 1) are currently experimenting with 
such a model with respect to constructing a model and algorithm for constrained classifi- 
cation. Use of such a generalized Euclidean metric would have some of the spirit of the 
approaches of Kruskal (1972) and of Art, Gnanadesikan and Kettenring (1982) in which 
the general transformation of a single battery of variables is allowed. 

A final algorithmic note is that the current approach to the definition of the 6jj,'s was 
chosen because of its particular relation to the K-means approach--a  popular method for 
nonhierarchicaI clustering (and, in fact, an alternative formulation of K-means has been 
proposed here entailing optimizing an appropriate goodness-of-fit criterion defined in 
terms of these 6's). However, the 6's could be defined in a number of other ways on either 
nonhierarchical cluster structures (i.e., partitions into K mutually exclusive and exhaustive 
groups), hierarchical clustering structures (e.g., an ultrametric defined on a hierarchical 
tree structure) or on overlapping cluster structures such as the ADCLUS-MAPCLUS- 
INDCLUS-GENNCLUS type structure. The important thing is that however the 6's are 
defined, the clustering portion of the algorithm be directed at obtaining a least-squares fit 
of the 6's to the d2's. 
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D. Limitations of S YNCLUS 

There are a number of conceptual and computational limitations involving SYN- 
CLUS that should be mentioned. One obvious limitation is that SYNCLUS only involves 
a rescaling of the variables to designate variable importance via the v. z As mentioned l l i"  

earlier, one could more generally define 6jj, as: 

6jj, = (ej  - e j , ) a - ~ ( e ~  - ej,) '  + c, (10)  

where: 

ej = j-th row of E, 

c = additive constant, 

A - t  = real, symmetric matrix. 

This approach is currently utilized in DeSarbo and Mahajan (Note 1) with a different 
algorithm for constrained classification. 

Another limitation of SYNCLUS concerns its inability to accommodate overlapping 
clusters. Many applications, particularly in marketing are quite amenable to analysis via 
overlapping clusters, especially those involving market segmentation and product posi- 
tioning (cf. Arabie, Carroll, DeSarbo, and Wind, 1981). The DeSarbo and Mahajan (Note 
1) approach allows the flexibility of accommodating overlapping, nonoverlapping, or 
"fuzzy" clusters. 

Finally, there are the computational limitations concerning the number of objects, 
number of batteries, and number of variables. In SYNCLUS, the real limitation concerns 
the number of objects to be classified since the various distance measures are taken across 
batteries and variables. The initial APL version of SYNCLUS could allow classifying 
perhaps up to 100 objects. A Fortran version of the program could more than double this 
bound (due to the computational expense implied by the interpretative nature of the APL 
language). 

E. More Extensive Monte Carlo Analysis 

Further, more extensive Monte Carlo work needs to be completed to examine in 
more depth such important issues as: (a) How sensitive are the results to the choice of w~'s 
and estimates of v~, ?; (b) When is local optimality a serious problem?; (c) How does the 
user reliably select K, the number of clusters?; (d) How well does SYNCLUS recover 
different cluster shapes?; and, (e) How does SYNCLUS compare with other clustering 
methods? 

Appendix 
The SYNCLUS Algorithm 

1. Phase I: Input and Preprocessing 

The user must supply the J (objects) by T = ~/x= 1 T/ (total number of variables) 
matrix of profile data Y, the vector of battery importance weights w 2, and the number of 
clusters (K) for the analysis. Other control parameters including convergence criterion, 
maximum number of iterations, options for starting values of v2,, (either all equal or 
inversely proportional to the variance of yli~), and any preprocessing options must also be 
specified. 

The SYNCLUS program allows one to cluster the raw data (Y), column-centered 
data (which doesn't affect the computed distances between objects), column-standardized 
data, or orthogonalized data (employing standard singular value decomposition tech- 
niques). 
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2. Phase II: Calculate distances 
Given starting values for v 2, and the desired preprocessing, the second phase of SYN- 

CLUS calculates the three-way array of squared distances via: 

Ti 

d]J") = L v2,(Y~', ), - y~,)2, (A-l) 
ti = 1 

one of the terms on the right hand side of equation (1). We then define: 

I 

d]J' = E w2d2) '°, (A-2) 
i=1  

as the two-way matrix of averaged (weighted) squared distances to be used in the clus- 
tering phase to follow. 

3. Phase III: Generalized K-means 
MacQueen (1967) introduced his K-means clustering procedure as an iterative non- 

hierarchical clustering technique. Basically the K-means procedure starts with K "seed 
points," each of which defines the location of a single cluster. A sequence of points is 
sampled from some distribution, and each point is assigned to the group whose centroid it 
is closest to. After the points are allocated to clusters, the cluster centroids are adjusted, 
and the points reallocated. This procedure is iterated, and stops when there is no move- 
ment of a point from one cluster to another for any case. This procedure provides a 
heuristic for minimizing the error of the partition: 

K Jk T 

EP = ~ ~ ~ (Yjkt - -  Ykt) 2 
k = l  j k E k  t = l  

K Jk 

= E E z (A-3) Djkk, 
k = l  j k ~ k  

where: 

Yj~t = the t-th coordinate of the jk-th point; 

37kt = the t-th coordinate of the k-th cluster centroid: 

1 Jk 

= JS jk~=l yjkt; 

Jk = the number of objects/points in the k-th cluster; 

T = the total number of coordinates or variables: 
I 

=ET,. 
i=1  

Hartigan (1975, 1978), and more recently Pollard (1980), discuss other relevant issues 
regarding K-means such as asymptotic distribution theory, approximate F-tests for test- 
ing for the number of clusters K, variable weighting, shapes of clusters, etc. We propose to 
generalize this two-way K-means procedure, which operates on the objects by variables 
profile data matrix (Y), to a three-way case. One important aspect of this is that our 
approach to K-means utilizes only the matrix of squared Euclidean distances between the 
objects or points, and not (explicitly, at least) the point coordinates. Sp~ith (1980) provides 
a similar two-way K-means algorithm which uses distances instead of coordinates. Our 
approach to K-means clustering using distances is described below. 
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Given a single J x J matrix of squared Euclidean distances, we initially attempt to 
find a set of K (number of clusters) seed points. (In our current application, this matrix 
will be the matrix of weighted mean squared Euclidean distances defined in equation 
(A-2), but in fact the K-means algorithm described here could be applied to any matrix of 
squared Euclidean distances which we shall denote as D 2 = II dj 2, 11 .) In this case, we use 
the approach of choosing K of the actual points to define the seed points. This is done 
initially by searching D 2 for the largest entry (di.j,.) and using the corresponding j* and 
f *  points or objects as the first two seeds. Then, given j* and j '*, we search for the point 
or object which maximizes the sum of the squared distances from the first two points, i.e., 
given j* a n d / * ,  we find 1" such that 2 2 • dj.t. + dj,.t, is maximum over all other J - 2 objects. 
Once j*,  j '*, and l* are found, we iterate this procedure (if K > 3) until the total number 
of seed points equals K. 

Once these K seed points have been selected, we then assign the remaining J -  K 
points to these K seeds/clusters simply by assigning each point (a) to the closest {min d2ab 
b = j*, j'* . . .  do 2} seed point. Because of potential problems that may arise in choosing K 
seed points in fewer than K - 1 dimensions, an option is provided to select the K seed 
points according to the following procedure. Having selected L < K seed points, SYN- 
CLUS selects the L + 1'st based on a max-min criterion defined as follows: 

This provides an alternative starting clustering for the iterative procedure to follow. In 
our empirical work, however, we have found that the algorithm described earlier for gen- 
erating seed points seems to lead to better solutions i.e., fewer local minima, speedier 
convergence, and otherwise superior performance of the algorithm. This may be because, 
in practice, we are in fact dealing with data in which the clusters are not embedded in 
such a small dimensional subspace. 

With this starting clustering, each point is now reassigned to the cluster to whose 
centroid it is closest. We use equation (A-5) below to calculate the point-centroid squared 
distances without explicit use of coordinates: 

1 sk 
Oi2 = Z E d~2k -- 02 ,  (A-5) 

Jk = 1 

where: 

1 Jk 
02 -- d .2 . (A-6) 2j E E 

j k = l  j ' k = l  

That is, object j is assigned to cluster k for minimum DjEk, Vk = 1 . . . . .  K. This is done 
simultaneously for j = 1 . . . . .  J and is repeated iteratively until no points change cluster 
membership, i.e., until ~]=1 ~ff=l D2k can not be further minimized. This phase thus 
renders the clustering to be used in this iteration: E = II ejk It- 

Phase I V: Definition of Cluster Distances 

As a secondary stage of this generalized K-means procedure, we define new distances 
6j j, in order to minimize Z 2 at this stage. The K-means solution can be shown to provide 
a least-squares fit to squared distances defined in terms of the data in a sense specified 
below. 

Let us first define an adjacency matrix: 

A = II ajj, [I, (A-7) 
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where: 

if e j k  = e j ,  k = 1, for some k, 
otherwise; 

(i.e., ajj, = 1 i f f j  and j '  are in the same cluster k). We then define a modified adjacency 
matrix: 

where: 

Now, define: 

A* = II a*, II, (A-8) 

f 
l 

a* ,=  a j j, _ 

x/nj  n j, 0 

i f j  and j '  are both in cluster k, 

i f j  and j '  are in different clusters; 

nj = the size of the cluster which contains object j. 

u = 111 II, (A-9) 

where, U, is simply a units matrix. We now estimate ~ and fl in: 

A = ~A* + flU* = II d 2, II, (m-10) 

where estimates of ~ and f are obtained optimally by ordinary least-squares from the 
equation: 

/ d l\ 
\ 

d2 2 l , J /  
dj, j / 

a*l 

a*z 
a~' 3 

a ~ - l ,  j 

aT, J 

1 

1 

1 

(A-11) 

with the solution (denoting the ,]2 × 1 matrix on the left as D 2, the j 2  × 2 matrix on the 
right as X, and the vector containing ~ and fl as e) given by: 

¢: = (X 'X) - IX 'D  2 = ( ~ ) .  (A-12) 

After this estimation phase, A = 116z, II is redefined as in equation (A-10), using the least- 
squares estimates ~ and/~ obtained as described above. We now prove that the K-means 
algorithm followed by this regression phase (at least locally) optimizes the fit of the 6's to 
the d2's in a least-squares sense. 

As discussed earlier, the generalized K-means algorithm (at least locally) optimizes 
(minimizes): 

K Jk 
EP = E E O2./kk' (A-13) 

k=t jk=l 

(See equation (A-3) and following definitions). It can easily be shown that: 

Jk 1 J~ J~ 
~, 0 2 d .2 • (A-14) 
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so generalized K-means minimizes: 

= djk j ,  k . EP ~ ~ 2 
k : 1 Jk = 1 J'k = 1 

Equation (A-15) can be written as: 
1 J i 

EP = "~ E ~ sjj'dj 2', 
j = l  j ' = l  

where: 

0 
S j j ,  = 1 

Z 
Minimizing EP for fixed dE's is equivalent to maximizing the cross product: 

J J 

s(~,/~) = E E @" ~ d~, (~ < 0), 
j = l  j ' = l  

where: 

for fixed ~, ft. 

if j, j '  are in distinct clusters, 

if j, j' are jointly in the k-th cluster. 

(~(a, fl) (~Sjj, + f l ,  j j ,  

Again, assuming fixed ~ and fl, we define a sum-of-squares function: 

J J 

ss(~,~)= E E[@~q ~ 
j = l  j ' = l  

J J 

j = l  j'=1 

J J 

E E ~ 2psjj,+p~] = [~ s n, + 
j = l  j ' = l  

=O~ 2 , + 2  _{_fiE 

J J J J 

=O~ 2 , + 2  +f12. 
J J J J 

It is straightforward to show that: 

So: 

J J 
2 =  K E E ~J~, 

j = l  j ' = !  

J J 

E E sj~, = J. 
j = l  f l = l  

SS(o~,  f l )  = c t 2 g  d-  2flJ + f12 

= constant (for fixed 0t, fl, J, K). 

J J J J 

E E (dSg- E E a~, 
j = l  j ' = l  j = l  j ' = l  

Since for fixed dj~, 's, 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

(A-23) 
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is also constant, it follows that K-means maximizes:  

s(~,/~) 
J 4 1/2 

(A-24) 

J J 

j = l  j ' = l  
: ~ J J J 4 ")1/2" 

( j=1  j ' = l  j=~ 

(A-25) 

It then follows that if we define 6jj, to be that 6~: m maximizing C(~, fl) over all ~, fl, then 
the resulting K clusters (defined via generalized K-means) and ~ and f l jointly maximize: 

J J 

r = J = 1 j,= ~ .,_.~,:~ 
~rx ~u)  

2 E_ld;, 
1= I  f l = l  1= I  j 

(with 6j j, of the form ~sjj, + fl). 
This is equivalent (except for a rescaling of the tS~,'s (see Kruskal and Carroll, 1969)) 

to minimizing: 

J J 

E E 2 
2~2 = L=I j,= 1 (A-27) 

j=1 j , = l  

In SYNCLUS we use generalized K-means to optimize L72, with 

I 

= = E w [4 ;3 
i=1 

Note, however, that in all cases the summation is a double sum over all values o f j  and j ' 
(including diagonals). In particular: 

6jj = -- + 13 ~ 0 (A-28) 
n~ 

where nj is the size of the cluster to which point j belongs (whereas, of course d 2, = 0, for 
all j). That is, for example the uncentered correlation C optimized by SYNCLU-~, corre- 
lates 6 and d 2 over the entire J x J matrices A and 13 2. 

To prove that minimizing 22(6, d 2) over 6 is equivalent to minimizing Z 2 over 6 
(with the d~,2's fixed), we use the equivalence of optimizations of Z 2 and Z 2 (except for 

2, (and thus over the scaling). Thus, consider Z22 , now assumed to be optimized over the vit~ s 
class of permissible values of d"~2's). From the Kruskal-Carroll (1969) results it follows 
that the d(~2's are so scaled that 

J J 

E E ~.jj, = ~ ~.. 62,/c0s 2 0,, (A-29) 
j = l  j ' = l  j = l  j ' = l  
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where: 

J J 

Z Y. .,.,2 w j j, ~jj, 
v a j = I j, = i COS 

=1 f i = l  j = l  J 1 

(A-30) 

then: 

where: 

t i J J 

Z2 J J E w~2 Z Z ((~JJ' -- d(i)2"12 

Z Zq , 
j = l  fl=l 

(A-31) 

w~ 2 = w 2 cos 2 0i. (A-32) 

It can easily be shown that the u n c o n s t r a i n e d  minimum (over 6./j,), of Z22 as defined in 
equation (A-31) is obtained for 

I 
Z ,,, '2d(i)2 rvi ~jj, 

j2, oc/= ix , (A-33) 

Z w: 2 
i=1 

(with a constant of proportionality unimportant for present purposes). Let d~, 2 represent 
values of d~ 2, yielding an ordinary least squares fit to the 6jj,'s, so the values optimizing 
Z 2 are simply d~),2/cos 2 0i, since 

It then follows that 

(±,2) - . ,  = ~ f i . / '  cos  02. 
.i=1 ./,=l j = l  j 

I I 

i= 1 i= 1 (A-34) 
1 ~ I ' 

E W~2 Z W*2 
l=1 i=1 

which (except for a scale factor, which is unimportant for present purposes) is just the 
weighted average of the d~,2's. But in previous iterative cycles (which actually corresponds 
to Phase V, described below) the dq~.2'~ themselves were in fact calculated by precisely --j j, 

such an ordinary least-squares procedure. Therefore, the weighted mean of the d~2's (the 
--2 ' d./i, s calculated with the ordinally specified weights w 2) do indeed correspond to the u n -  

c o n s t r a i n e d  optimum values of 6j./,--that is, if we then fit c o n s t r a i n e d  Jr.~' s to the d././, s, 
these values will constitute a constrained optimum for the problem at hand if and only if 
certain orthogonality conditions hold. (These orthogonality conditions state that the 
vector from the data vector to the unconstrained solution must be orthogonal to that 
from the unconstrained to the constrained solution.) These orthogonality conditions, in 
the present case, can be stated as 

1 J J 

Z W2 Z Z (d~ '2 -2 -2 • - d j j , ) (d . / y  - 6././,) = 0. (A-35) 
1=1 j = l  j ' = l  
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By s t ra ightforward algebra (and utilization of the definition of d~j, as 

I 
d~j, = E w2id~ )'2 (A-36) 

i = 1  

I as well as the side condi t ion that  ~ i =  1 w~ = 1), this or thogonal i ty  condi t ion can easily be 
seen to hold. (Note that  the scalar p roduc t  in terms of which the required or thogonal i ty  
condi t ion is stated is a weighted scalar product ,  with weights corresponding to those in 
the weighted least squares p rob lem being solved.) 

Phase V: Solve for  v? t t i  

With the redefinition of A = II 6jj, II f rom the previous stage, we wish to est imate a set 
of  opt imal  variable impor tance  weights or  rescalings v~,  (i = 1 . . . . .  1, ti = 1 . . . . .  T~). 
Recall that :  

Ti  

d])/)= E v~t,(Y~ ° -- Y~I,) z. (A-37) 
t i = l  

With A fixed, one can est imate the v~ by a series of  I regressions via: 

/ 622 (y],) _ y~))2 (Y]')r,- y2r,, 

, ~  - -  Y 3 T i !  " (A-38) 

2 ,,tO ~2 (Y~J)- t. r, yJ. r,, , 

or, denot ing the (s) x T~ matr ix  of  independent  variables on the right by X ~°, we est imate 
the vector  v~ containing the v 2 's via: it~ 

~/2 = ( x t ( i ) x ( 1 ) ) -  1 x t ( i ) 6 ,  (A-39) 

(where 6 is the (J) c o m p o n e n t  vector  on the left containing the 6~y's). 

Phase VI:  Test  for  Convergence 

Once  a complete  ma jo r  i teration (Phases II-V) has been completed,  tests are per- 
formed to see if the iterative a lgor i thm has converged or has exceeded a st ipulated maxi-  
m u m  number  of iterations. Basically, we test to see if ( C ~ r  - C~Z~ --  t) < e, where e is some 
small constant  (e .g . ,  e = . 0 0 1 ) ,  or if I T  >_ MAXIT ,  where M A X I T  is some stipulated maxi-  
m u m  number  of i terations (e.g., M A X I T  = 100). If  either of  these condit ions is true, we 
go to Phase  VII.  If  not, we set I T  = I T  + 1 and return to Phase  II. 

Phase V I I :  Output 

At this last phase  we print  the final clustering matr ix  E, the vectors of  variable im- 
por tance  weights v~ z, Z~ z, ~, B, C 2, Z2 z , A, 11) 2t'~, D 2"), for i = 1, . . . ,  I. Opt ions  are also 
available to perform regression-type residual analyses via plots and listings. 
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