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1. Introduction 

Sorting tasks provide researchers with valuable alternatives to traditional 
paired-comparison similarity judgments. They are particularly well-suited to 
studies involving large stimulus sets where exhaustive paired comparison judg- 
ments are infeasible (Rao and Katz, 1971). Asking subjects to provide excessive 
paired comparisons may result in fatigue and alter the basis of their judgments 
(Johnson, Lehmann, and Horne, 1990). Having subjects sort the stimuli into 
piles of similar alternatives greatly simplifies the subjects’ task. 

Moreover, a sorting of stimuli based on perceived category membership is a 
natural reaction to large stimulus sets. Rosch (1973, and Mervis and Rosch 
(1981) define categorization as the equal treatment of items that can be 
discriminated on the basis of their attributes. Humans form categories to 
simplify their inherently complex world. In an attempt to map natural catego- 
rizations or objects, actions, or relationships, subjects are normally asked to sort 
the stimuli on the basis of some similarity criterion. The definition of the 
similarity criterion is normally decided upon by the subjects. The stimuli in such 
categorization studies have included mathematics problems (Schoenfeld and 
Herrmann, 19821, semantic relations (e.g., agent-activity, object-function, etc.; 
Chaffin and Herrmann, 1984), personality attributes (Andersen and Klatzky, 
1987), etc. The purposes of these studies range widely from comparing the 
natural categorizations of novices and experts (or adults and children), to 
validating a priori categorizations based on some underlying theory. 

The traditional approach to analyzing sorted stimuli is to initially calculate 
some similarity measure. For example, the relative frequency with which sub- 
jects sort any two stimuli together in the same subset may be treated as a 
measure of their similarity. This pooled or aggregate measure is then analyzed 
using existing two-way multidimensional scaling or clustering techniques. Yet, 
there are at least two important limitations to this approach. First, the input 
data may not be compatible with the technique. Some very unique aspects of the 
subjects’ perceptions may be lost in the aggregation or pooling of the subjects’ 
sorting data into a continuous similarity measure and its subsequent scaling or 
clustering. For example, subjects who form more natural categories will have 
greater impact on the solution than subjects who display less fine discrimination 
processes. Second, because these continuous measures result from an aggrega- 
tion of responses across presumably homogeneous individuals, individual differ- 
ences are hidden. This loss of individual differences occurs at two levels. 
Assuming subjects use the same aspects or attributes to judge stimuli, the weight 
placed on the aspects will likely vary from subject to subject. In judging cookies, 
for example, some subjects may give more weight to sweetness while others may 
give more weight to texture. Furthermore, the data may represent an averaging 
of two or more qualitatively different cognitive structures. For example, one 
consumer may distinguish cookies exclusively on sweetness while a second may 
distinguish the same cookies exclusively on texture. The structure revealed by a 
traditional multidimensional scaling or clustering analysis of aggregated relative 
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frequencies may bear little resemblance to either subject’s actual cognitive 
structure. In the following section, we describe a methodology for the analysis of 
sorting task data via a new multidimensional scaling (MDS) procedure designed 
to overcome these potential problems. 

2. The CATSCALE methodology 

Many of the categorization studies performed in the social sciences utilize a 
common data collection procedure. Basically, the entire set of objects is placed 
on cards, one object per card. The subject is then asked to sort the cards into as 
many or few piles as he/she desires, congruent with the similarities or dissimi- 
larities perceived among the stimuli. The subject is then asked to place the cards 
(stimuli) that they view as similar in the same pile. Later, individual level 
information is collected (e.g., experience/ expertise, usage, attribute ratings, 
demographics, etc.) and related to the particular scheme used to form these 
‘piles’. Given such a data collection procedure, we are proposing a new 
methodology to examine the underlying perceptual categorization process. The 
data collected is ‘subject conditional’ in the sense that subjects may utilize 
differing numbers of piles/groups, as well as differing numbers and types of 
objects per pile/group. We wish to devise a new MDS based methodology which 
derives a common space for the objects from such data, as well as individual 
level parameters that can be directly interpreted in terms of individual differ- 
ences in subjects’ categorization processes. 

A. The model 

We ask subjects to subjectively group a designated set of stimuli into piles of 
similar objects on whatever basis they desire, where the number of piles is 
determined by the individual subject. Let 

i=l ,a**, I subjects; 

j, k= l,..., N stimuli or objects; 

l,..., T 

= 
if subject i j and k the same 

0 otherwise; 

= the t-th of the j-th 

4, the importance salience of to subject i; 

= threshold parameter i. 

We define a 

= dijk + (1) 
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where 

(2) 

and 

ejk = the error term, where it is assumed that eijk H IID N(0, oi2). 

Note, expression (2) is of the form of Carroll and Chang’s (1970) INDSCAL 
model where X = ((Xi,)) provides the coordinates of the N objects in 

same pile by subject i, we 
assume that the latent squared distance term defined in (1) is of a quantifiable 
magnitude beZow yi; i.e., 

P( ~ijk = 1) = p( Dijk ~ ri) 

= P( dijk + eijk < ri) 

’ yi - i Wl( xjt -xkl)2 \ 
=@ t=1 

ui 

\ I 

wL_OG@ yi - ; &(Xj, -x,,)” ( r=1 I 
= a(-) = Pijk. (3) 

The variance term, o;:, can be arbitrarily set equal to 1 since its value can be 
adsorbed in the numerator by the yi and W;., terms. Similarly, 

P(~ijk=O)=P(Dijk>Yi)=l-Pijk 

= 1 -@(a). (4) 

Assuming independence over all i, j, and k subscripts, we can form the 
likelihood function 

L = zfi J$pD(.)“yl - @( *)yJ&, 

or the log-likelihood function 

(5) 

I N 

log L= 2 CC[Sijk 10g(@(*))+(l-Sijk) l”g(l-+(‘))]m 
i=l j#k 

(6) 
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Fig. 1. Hypothetical example illustrating the INDSCAL/CATSCALE model (modified from 
Carroll and Wish, 1974, p. 62). 

Thus, given A = ((S,,)) and a specified value of T, the CATSCALE methodol- 
ogy estimates X = ((X,,)), W = ((W;:,>>, and y = ((yi)) by maximizing the log-like- 
lihood function derived in expression (6). The Appendix describes the alternat- 
ing conditional maximum likelihood (ACML) algorithm utilized for parameter 
estimation. Upon convergence of this estimation procedure, we obtain a T-di- 
mensional spatial representation of the sorted objects in a common multidimen- 
sional scaling space (X), a T-dimensional representation of subjects in a sepa- 
rate multidimensional space that reflects individual differences in terms of 
differential dimension salience (IV), and a set of threshold values which reflect 
the precision of discrimination between subjects (y). Note, somewhat similar 
threshold model specifications have been presented by DeSarbo et al. (1987) for 
asymmetric binary proximity data, and by Jedidi and DeSarbo (1990) for pick 
any/N choice data. These formulations, however, utilize an unfolding model 
specification reflecting the fact that the row column objects in the binary data 
dealt with are different, and two sets of points need to be estimated: one set for 
the row objects and one set for the column objects. 

Figure 1 presents a small synthetic illustration of this INDSCAL-like multidi- 
mensional scaling model. The two-dimensional ‘group’ object space in the upper 
left panel of this Figure depicts nine hypothetical objects, labeled A through I, 
in a lattice configuration, based on the X matrix of object coordinates. In the 
upper right panel, the W matrix of weights is plotted as a set of coordinates for 
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nine subjects denoted by the numbers l-9. As long as these weights are positive 
(see the Appendix), they can be regarded graphically as stretching factors 
applied to the dimensions of the group object space. Thus, these differential 
weights produce for each subject a ‘private’ objective space by resealing (dif- 
ferentially stretching and shrinking by a factor given by fl) the dimensions of 
the group object space. Thus, for example, the private spaces for subjects 2 and 
4 can be recreated as in the lower section of Figure 1. As shown, subject 2 has 
greater weight for the first dimension than for the second dimension, while the 
situation is reversed for subject 4. Finally, the yi threshold coefficients (not 
shown in Figure 1) are also estimated denoting the precision of discrimination 
among the subjects. 

B. Model degrees of freedom 

The model degrees of freedom (df) are defined as the number of independent 
parameters to be estimated. The number of indeterminacies of the model is to 
be subtracted from the total number of parameters to be estimated to obtain the 
model degrees of freedom. Here, the CATSCALE model degrees of freedom 
are 

df=T(I+N)-2T+I. (7) 

There are T indeterminacies due to the fact that the origin of the coordinates of 
the stimuli (X) is indeterminant (one can add or subtract some constant c, to 
each dimension of X and still not affect the latent distance values). Another T 
indeterminacies are due to the fact that one can multiply each column of X by 
any arbitrary positive constant rt, and divide W by the square root of rr, and not 
affect the latent distance function value. 

C. Program options 

CATSCALE can accommodate both external and internal analyses. In an 
external analysis, the procedure solves for the relevant set of non-fixed parame- 
ters. For example, if the user supplies X (which might be derived from another 
MDS analysis), then one would solve for W and y. In an internal analysis, one 
solves for all of the designated parameters of the model (i.e., W, X, and y). 

As indicated previously, CATSCALE provides reparameterization options 
(DeSarbo and Rao, 1984, 1986; DeSarbo et al. 1982) whereby users can 
reparameterize or constrain the coordinates of the stimuli as linear functions of 
designated attributes or features. For example, if data are available on attributes 
for the stimuli, then one can reparameterize the coordinate, Xjl, as 

M 

where Hjm is the value of attribute m for stimulus j, and a,, measures the 
contribution of attribute m to dimension t. As a result of this reparameteriza- 
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tion, one obtains an MDS space where locations of the stimuli are expressed as 
linear functions of their respective attributes. The (Y,, coefficients can also aid 
in interpreting the resulting dimensions, as well as delineating the contribution 
of these attributes on each of the derived dimensions. 

Finally, one can estimate a common threshold parameter, y= ((y)), or 
threshold parameters that vary by subject (yi). Confirmatory analyses are also 
possible such as restricting W to be equal to the unit matrix of ones to examine 
the hypothesis of no individual differences. 

3. Application: Uncovering the category structure of auditors’ knowledge 

Much of the recent research on the determinants of skilled performance in 
problem solving and decision making has focused on the influence of the 
structure of knowledge on performance. The ability to recognize patterns in 
data, speed of performance, efficiency of information search, recall and recogni- 
tion performance, and other aspects of problem solving are affected by struc- 
tural differences (Glaser and Chi, 1988). The importance of the development of 
category structures to differentiate and organize knowledge of concepts is well 
recognized in cognitive and social psychology (e.g., Smith and Medin, 1981; 
Andersen and Klatzky, 1987) as well as various applied areas including market- 
ing (Alba and Hutchinson, 1987), medicine (Bordage and Zacks, 1984), aviation 
(Schvaneveldt et al., 1985), accounting (Frederick, 1986), etc. 

Studies which uncover the manner in which natural categories are structured 
are necessary to understand a variety of memory retrieval phenomena and the 
development of expertise in problem solving. Changes in category structures 
will, for example, alter the manner in which consumers react to advertising, 
physicians relate diagnostic signs, and auditors search for explanations for audit 
findings. From a practical perspective, such findings can be indicate the most 
effective approach to convey advertising information, guide the teaching of 
clinical diagnosis, and aid the development of expert systems which lead 
auditors to more likely explanations for their audit findings. We discuss a recent 
study investigating this categorization process for a small group of professional 
auditors. 

A. Study description 

1. Study context 
Auditing involves the examination by an independent certified public accoun- 
tant of the fairness with which of a company’s financial statements represents its 
financial position, results of operations, and cash flows. The process involves 
examining the accounting system and independently verifying the accuracy of 
the records it produces to insure that the resulting statements are free from 
material error. This examination is normally conducted on a test or sample 
basis. 
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The auditor’s basic decision problem is often conceptualized as involving the 
diagnosis of financial statement errors. The knowledge necessary to perform this 
task involves the generation of potential diagnostic hypotheses which relate to 
possible financial statement errors and the different types of audit evidence 
which are indicative of those errors. Following the medical diagnosis literature, 
we assume that the possible error hypotheses are a principal organizing element 
of that knowledge. The current study examines the underlying structure of this 
financial statement error knowledge for experienced auditors. Attempts to date 
to develop models of the category structure have been incomplete and have not 
been subjected to rigorous empirical testing (e.g., Coakley and Loebbecke, 
1985). 

As Einhorn (1976) and Libby (1985) noted, it is through this network of 
financial statement error knowledge that search for additional evidence and the 
evaluation of the implications of evidence for further search and possible 
financial statement adjustments will be guided. Understanding the manner in 
which experienced auditors naturally categorize financial statement errors could 
direct the organization of evidence in documents to aid in the efficient evalua- 
tion of categories of potential errors. It also can provide a basis for training or 
the development of computer decision aids which help the inexperienced 
auditor learn to perform tasks more like their experienced counterparts. At- 
tempts to gather archival statistical data that can be used by the individual 
auditor in the diagnostic process (e.g., archival frequency data from prior audits) 
can also be more effective (if the data is organized to fit the natural categoriza- 
tion of errors. 

2. Subjects 
The subjects were 20 staff auditors employed by one ‘Big 8’ CPA firm. Each 
auditor had completed between 6 and 18 months of practical experience. The 
experimental task was completed during a required one-week professional 
development seminar for all staff with that level of experience. Their coopera- 
tion was obtained by agreement with the executive office of the participating 
firm. 

3. Stimuli 
The stimuli used in the card sorting task were 35 financial statement audit 
differences or errors typically discovered in the audit of medium-sized manufac- 
turing companies. The errors were selected in a two stage process. First, an a 
priori classification scheme was constructed based on standard textbooks (e.g., 
Arens and Loebbecke, 1988), the firm audit manual, and an extensive study of 
the occurrence of financial statement errors in medium sized manufacturing 
companies (Coakley and Loebbecke, 1985). The classification scheme with 
respective categories is presented in Table 1. The first aspect, transactions cycle, 
refers to the accounting subsystem which records transactions relating to a 
major business activity such as sales and cash receipts, purchases and cash 
disbursements, indebtedness or borrowing, etc. The second aspect, the audit 
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Table 1 
Financial statement error aspects and categories 

Transaction Cycle 
1. Sales and cash receipts 
2. Inventory 
3. Purchases and payables 
4. Payroll 
5. Indebtedness 
6. Investments 

Audit Objective VIolated 
1. Proper cutoff (transactions recorded in proper period) 
2. Only valid transactions are recorded 
3. Proper valuation 
4. Proper classification 
5. Invalid transactions are not recorded 

objective violated, refers to the attributes of financial statement accuracy such as 
recording of transactions in the proper period, proper valuation of transactions, 
etc. which apply to each transaction within every cycle. 

Crossing these two aspects produces some 30 joint errors. The final set of 
errors were selected on the basis of firm managers’ responses to free and error 
cued recall tasks. This resulted in a list of 35 errors. They are listed with their 
classification on the two a priori aspects in Table 2. Each of the 35 errors were 
printed separately on 2 X 6 cards. 

4. Procedure 
Each subject was presented with a large manila envelope containing one page of 
instructions, the 35 cards presented in random order, and several business 
envelopes. They were told that the cards contained a financial statement audit 
discrepancy typically discovered at medium-sized manufacturing clients. Their 
task was to sort the cards into two or more piles grouped in a manner such that 
each pile would consist of audit differences that ‘go together’. Once sorted into 
piles, they were to place each pile in a separate business envelope and write a 
short title on the outside of the envelope. Once completed, they inserted these 
labeled business envelopes into the large manila envelope, and returned the 
manila envelope to the experimenter. The sorting data for each subject were 
converted to a 35 x 35 binary symmetric similarity matrix. Each matrix element 
took on the value of 1 if the two cards were sorted into the same pile, and 0 
otherwise. 

B. Traditional analyses 

As previously mentioned, most MDS studies involving sorting data typically 
aggregate or pool the binary data over subjects, and apply a two-way metric or 
non-metric MDS procedure to these aggregated similarity counts. In this spirit, 
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we applied Torgerson’s (1958) metric multidimensional scaling method and the 
ALSCAL (Takane, Young, and de Leeuw, 1978) two-way non-metric multidi- 
mensional scaling procedure. Table 3 presents the respective variance-account- 
ing-for (VAF) statistics for T = 1,. . . ,5 dimensions for these two methods. It is 
not clear from either of the two columns in Table 3 what the appropriate 
dimensionality should be. The VAF statistics appear to trail-off linearly for the 
Torgerson method, whereas there appears to be a somewhat large jump in VAF 
for T = 5 dimensions with the two-way non-metric ALSCAL procedure. The 
resulting spaces were not very interpretable from either method. 

Another general approach that was attempted was to apply three-way metric 
and non-metric multidimensional scaling methods to the three-way (20 X 35 X 35) 
binary data array A. The last two columns in Table 3 present the VAF statistics 
for INDSCAL (Carroll and Chang, 1970) and a three-way, non-metric (subject 
conditional) ALSCAL analysis. As shown in this table, the respective VAF 
statistics were quite poor. There appears to be no obvious dimensionality to 
select on the basis of this table. In addition, the interpretation of the resulting 
spaces was very difficult. 

C. CATSCALE analysis 

The CATSCALE methodology was applied to the three-way, two-mode binary 
data in T = 1,. . . ,5 dimensions with aijk = 1, a varying threshold by subject, and 
an internal analysis without a reparameterization option. Table 4 presents the 
various goodness-of-fit statistics by dimension. On the basis of incremental 
improvement in quality of fit, and subsequent interpretation, the T = 2 dimen- 
sional solution was selected as most parsimoniously representing the structure in 
the data. (The Appendix discusses the difficulties in using the likelihood ratio 
test and AIC heuristic in this setting.) 

Figure 2 presents the X configuration of the 35 errors listed in Table 2. To 
assess the overall relationship between the a prior classification scheme and that 
uncovered by the CATSCALE methodology, the two hypothesized constructs in 
Table 1 were coded as dummy variables as described in Table 5, and regressed 
on the two dimensions of the CATSCALE solution. The results of this analysis 
are represented in Table 6. Dimension I and dimension II, respectively, are 
strongly related to the audit objective and transaction cycle aspects presented in 
Table 1. For the audit objective dimension I, the intercept and all of the dummy 
variables except A, (which represents the ‘invalid transactions are not recorded’ 
objective) are significant, and the adjusted R2 is 0.84. All five of the transaction 
cycle dummy variables and the intercept are significant with the transaction 
cycle dimension II, and the adjusted R2 is 0.97. This analysis suggests that the 
CATSCALE methodology seemingly uncovered the hypothesized multidimen- 
sional structure in the sorting data. (Note, we purposely did not report an 
analysis reparameterizing X with this design matrix since, as discussed below, 
we wished to examine any differences uncovered apart from this apriori classifi- 
cation scheme.) 
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Table 2 
Auditor’s list of 35 errors 

Error 
number 

Code * Plot 
value 

Error 

1 1 

2 1 
3 1 
4 1 
5 1 
6 2 

7 2 
8 2 
9 2 

10 2 
11 2 
12 3 

13 3 

14 
15 

3 
3 

16 3 
17 3 

18 3 
19 4 
20 4 
21 4 
22 4 
23 4 

24 
25 

4 
5 

26 5 
27 5 

28 5 

29 5 
30 5 
31 6 
32 6 
33 6 

34 

35 

6 

6 

1 

2 
3 
4 
5 
1 

2 
3 
3 
4 
5 
1 

1 

2 
2 

3 
4 

5 
1 
2 
2 
3 
4 

5 
1 

2 
3 

4 

4 
5 
1 
2 
3 

4 

5 

A 

B 
C 
D 
E 
F 

G 
H 
I 
J 
K 
L 

M 

N 
0 

Next period’s sales and accounts receivable were 
recorded in the current period 
Goods returned by customers were underbooked. 
Bad debt expense and allowance were understated. 
Other revenues were recorded as sales. 
Sales to valid customers were recorded more than once. 
Inventory received next period was recorded in the 
current period. 
Relief of inventory was not recorded for goods shipped. 
Inventory was not written down to net realizable value. 
Overhead was overapplied to inventory. 
Expense items were improperly charged to inventory. 
Inventory was booked but not received. 
Current period’s purchases on account are recorded 
next period. 
Payments on account made next period were booked 
this period. 
Purchases on account were not recorded. 
Accrued operating expenses and payable were 
underrecorded. 

P 
Q 

R 
S 
T 
U 
V 
W 

X 
Y 

Z 
1 

Invoice prices of purchases were understated. 
Operating expenses were capitalized as plant and 
equipment. 
Payments on account were recorded but not made. 
Accrued payroll at year end was not recorded. 
Compensated absences were not accrued. 
Pension expense was not booked. 
Payroll withholdings were understated. 
Administrative payroll was improperly allocated to 
production. 
Payroll was recorded for nonexistent employees. 
Current period’s accrued interest expense on long-term 
debt was booked next period. 
Bank debt was not recorded. 
Interest expense and bond discount amortization were 
understated. 

2 Current portion of long-term debt was improperly 
included as noncurrent. 

8 

Capital leases were treated as operating leases. 
Debt retirement payments were booked but not made. 
Accrued interest income at year end was overbooked. 
Sales of investment securities were underbooked. 
Marketable equity securities were not written down 
to lower of cost or market. 
Long-term investments were included in the current 
portfolio. 

9 Fictitious investment securities were booked. 

* The first digit indicates the transaction cycle and the second indicates the audit objective 
violated tied to Table 1. 
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Table 
Results from analyses \VAF) 

2-way 2-way 3-way 
Torgerson INDSCAL non-metric 

ALSCAL ALSCAL 

0.124 0.021 0.022 
2 0.049 0.036 
3 0.338 0.053 0.125 

0.420 0.111 0.144 
5 0.288 0.078 

Inspection of the stimulus plots in Figure 2 and the simple correlations 
presented in Table 4 provides further insights into the differences between the a 
priori classification and the auditors’ natural categories. Concerning the audit 
objective dimension I, none of the errors which are invalid transactions (No. 5) 
or classification errors (No. 4) overlap on dimension I with members of any 
other category as seen in Figure 2. The same holds true for all members of the 
proper cutoff category (No. 11, except for item S (Accrued payroll at year end 

Table 4 
CATSCALE goodness-of-fit statistics 

T df -In L Pbc Match Phi AIC 

1 73 5518.21 0.259 0.839 0.211 11182.42 
2 126 4269.81 0.478 0.856 0.359 8791.62 
3 179 3817.68 0.519 0.863 0.405 7993.36 
4 232 3042.24 0.650 0.887 0.544 6548.48 
5 285 2686.61 0.697 0.899 0.605 5943.22 

Correlations of Table 1 categories and the CATSCALE dimensions 

Category Dimension 

I II 

Transaction cycle 
1 
2 
3 
4 
5 
6 
Audit objective 
1 
2 
3 
4 
5 

0.043 0.530 
- 0.049 - 0.316 
-0.151 0.174 

0.004 - 0.077 
0.055 0.414 
0.118 - 0.751 

- 0.573 0.015 
0.015 0.013 
0.170 - 0.093 
0.747 0.061 

- 0.381 0.003 
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A 

R 0 34 
M 

D 

2 

Dim1 

9 7 

56 

Dim. 2 

Fig. 2. CATSCALE two-dimensional solution for the auditor free-sort data. 

was not recorded) which was categorized by subjects with the failure to record 
transactions. Although accrual errors result in timing errors on the financial 
statements, it appears that they are perceived instead as members of a category 
generated by a similar procedural error. The fit of these categories to the 
solution is supported by the R*‘s in Table 6. Audit objective violations No. 2 
and No. 3 (only valid transactions recorded and proper valuation), which had 
the lowest correlations with the solution, evidenced considerable overlap. The 
results suggest that errors in amounts recorded resulting in under-recording of 

Table 5 
Dummy variable coding for hypothesized aspects 

Transaction cycle Tl T2 T3 T4 Ts 

1 0 0 0 0 0 
2 1 0 0 0 0 
3 0 1 0 0 0 
4 0 0 1 0 0 
5 0 0 0 1 0 
6 0 0 0 0 1 

Audit objective violated Al A2 A3 A4 

1 0 0 0 0 
2 1 0 0 0 
3 0 1 0 0 
4 0 0 1 0 
5 0 0 0 1 
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Table 6 
Regression analyses with X 

Dependent variable 

XI x2 

Intercept - 1.01 * 3.39 ** 
T, - 0.58 -3.58 ** 
T* - 0.54 -1.72 ** 
T3 - 0.22 -2.66 ** 
T4 - 0.50 -0.70 ** 
T, 0.39 -5.66 ** 
A, 2.46 ** 0.04 
A, 3.13 ** -0.12 
A3 5.55 ** 0.02 
A, 0.61 0.05 

RMSE 0.87 0.31 
R2 0.88 0.98 
adj R2 0.84 0.97 
F-Ratio 19.96 ** 131.28 ** 

* p Q 0.05. 
** PGO.01. 

expense or overrecording of revenues are placed in one category, while errors 
involving fuiZure to record a proper transaction are placed in another, indicating 
some discrepancy from the a prior classification structure. As suggested by the 
regression analysis, the relationship between the a priori transaction cycle aspect 
and dimension II is very strong. Only two of the 35 errors indicate category 
overlap (C and P), and this overlap is small. Thus, no changes in the a priori 
categorization structure on this dimension seem necessary. However, the differ- 
ences between the a priori classification on audit objective and dimension I 
could provide the basis for a reorganization of teaching materials and audit 
workpaper organizations which may allow novice auditors to more quickly learn 
various audit tasks. 

Finally, Table 7 presents the normalized weights and estimated threshold 
coefficients. As shown by a cursory inspection of these normalized weights, 
there appears to be significant individual differences in how these various 
auditors use these two dimensions for error categorization. For example, audi- 
tors 4, 5, 6, 9, 10, 13, 15, 16 and 18 possess high salience for the first dimension, 
while auditors 2, 7, 8, 11, 14 and 20 possess high salience for the second 
dimension. There is also evidence of several auditors that have large weights for 
both dimensions using more complex categorization processes. The threshold 
coefficients (yi> indicate that auditors 5, 10, and 14 utilize finer discrimination 
processes than the remaining 17 auditors given their larger yi coefficients. 
Unfortunately, because of the homogeneity of this subject group, we did not 
collect individual difference or background data on these 20 subjects to attempt 
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Table 7 
CATSCALE estimated weights (normalized) and threshold coefficients 

Subject i WiI wi2 Yi 

1 0.506 0.862 0.000 
2 0.164 0.986 0.027 
3 0.551 0.835 0.008 
4 1.000 0.018 0.536 
5 0.992 0.128 0.237 
6 0.983 0.181 0.003 
7 0.077 0.997 0.010 
8 0.002 1.000 0.288 
9 1.000 0.016 0.495 

10 0.998 0.061 0.005 
11 0.025 1.000 0.082 
12 0.859 0.512 0.000 
13 1.000 0.001 1.302 
14 0.006 1.000 0.177 
15 1.000 0.004 0.225 
16 0.998 0.066 0.038 
17 0.459 0.889 0.000 
18 0.994 0.110 0.002 
19 0.572 0.820 0.000 
20 0.006 1.000 0.040 

to explain these different categorizations. However, in future studies of groups 
with differing backgrounds, such analyses could be employed. 

Appendix. The CATSCALE ACML procedure 

Algorithm 

In CATSCALE, the log of the likelihood function is maximized with respect to a 
specific set of parameters (i.e., the objects’ coordinates X = ((X,,>), the subjects’ 
weights W = ((I&>>, and the threshold coefficients y = ((YJ)), holding the other 
sets constant. This conditional maximum likelihood estimation alternates across 
all the parameter sets until a convergence criterion is satisfied. Hence, we label 
the procedure ACML for Alternating Conditional Maximum Likelihood estima- 
tion. In each major iteration, CATSCALE utilizes a conjugate gradient method 
with automatic restarts (Powell, 1977) to estimate the particular parameter set. 
The major phases of this methodology are summarized below. 

Phase 1. Input options 

The user must specify the number of subjects (I), the number of objects (J), the 
number of dimensions (T), the type of analysis (internal or external), the 
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threshold option (varying by subject or constant), the type of starting solution 
(rational, given, or random), and the name of the input file containing the input 
data. This file must include the object coordinates if an external analysis is to be 
performed or if a given start is selected. In addition, it must also contain H if 
the reparameterization option is requested. 

Phase 2. Starting estimates 

Options exist for the user to specify a random start, a ‘rational’ start for X (a 
singular value decomposition, SVD, analysis on the double-centered, aggregated 
(over subjects) sorted data) or, a given start. 

Phase 3. Estimate X, Wand y 

We need to impose non-negativity constraints on the subject weights <yt 2 0) 
and threshold parameters (yi 2 0). To accomplish this, we estimate the corre- 
sponding squared entities: 4; and yf as suggested by Gill, Murray, and Wright 
(1981, pp. 268-269). 

Partial derivatives 

Mijk = 

i 

1 - aijk ‘ijk 
-- 

I l-Q(*) @(*) ’ 

Then 

a In L 
p=2i E Kf(xjt-xkt)6(‘)Mijk; 

axjt i j+k 

a In L 
-= 

aYi j>k 

W) 

(A.6) 

In the case of a reparameterized object space, we have the following partial 
derivatives with respect to the (Y,~ parameters: 

a In L 
-=2i c”cwl:(xj,-xk,)(H,,-H,,)~(‘)M,jk~ 

%nt i j>k 

(A*? 
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where 4( .) represents the standard normal density function. At the start, the 
IQ’s, the yi’s, and the Xj,‘s (in the case of an internal analysis with a random 
start option) are randomly generated from a uniform distribution. In the case of 
external analysis, the methodology solves for whatever parameter set(s) are not 
fixed/given. Holding W and y constant, the algorithm uses the conjugate 
gradient method with automatic restarts (Powell, 1977) to estimate X (assuming 
an internal analysis). Then it estimates W, holding X and y constant. Finally, y 
is estimated while holding W and X fixed. The algorithm repeats these major 
phases until a convergence criterion is met. 

With these partial derivatives specified, we can now briefly describe the 
conjugate gradient procedure with automatic restarts (Powell, 1977) for a given 
set of parameters. 

(i) Start with initial parameter estimates tY(‘), and set the iteration counter 
IC = 1. ly here denotes a vector, stacking the relevant set of parameters to be 
estimated (i.e., X, W, y). 

(ii) Set the first search direction So) = - V(ln L.)(‘), where V(ln L)(l) de- 
notes the gradient vector of the log-likelihood function evaluated at q(l). 

(iii) Find Yc2) using the relationship 

lyC2) = 90) + /$‘)s(‘) , (A-8) 

where A(‘) is the optimal step-size in the gradient direction S(l). A quadratic 
interpolation method is used for estimating the optimal step-size. Set IC = 2. 

(iv) Calculate V(ln 15)~“) and set the (new) search direction 

SW) = _ V(ln q”C’ + p$W,, 
(A4 

if IC = 2 or if a restart is needed. In this algorithm, restarts are made every V 
iterations (V is the number of parameters to be estimated) or when the search 
direction is not ‘sufficiently downhill’. If this is the case, then set R = IC and go 
to step (vi). R holds the number of the iteration where a restart is made. 
Otherwise, set 

S(Ic) = - V(ln L)“” + psCIc-l) + &M, 

where 

(A.lO) 

P= 
V( In L)““‘V( In L)“” 

V(ln L)(Ic-lYqln quc- 1) ’ 

E = (V(ln ~5)“” - V(ln L)‘R’)‘V(ln L)(“) 

(V(ln L)“” - V(ln J~)‘~‘)‘S(~) 

(A.ll) 

(A.12) 

and 

ScR) = the search direction when a restart is made. 
(v) Check if S(“) is ‘sufficiently downhill’ using the following condition: 

-A(ln L)(“)‘s(ic) > p II SC”) II II V(ln 45)“” II, (A.13) 
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where p is a positive constant. Powell (1977) suggests setting p = 0.2. If this 
condition is satisfied then go to step (vi>, otherwise return to step (iv). This 
phase is performed only when S(ic) is computed via (A.lO). 

(vi) Compute the optimal step-size at iteration IC in the direction S(“) and 
then compute: 

lyoc+ 1) = *UC) + /$‘C).#‘C) (A.14) 

(vii) If ly “+ ‘) is optimal, stop. Otherwise set IC = IC + 1 and return to step 
(iv). The optimal@ of !@c+l) is determined using the following convergence 
criteria: 
- The amount of improvement of the log-likelihood function between the last 

and before last iteration, i.e., I In L(“-‘) - In L(“) I < TOL. 
- The length of the gradient, i.e., II Vln L”” II G TOL. 
- The maximum number of iterations set by the user, i.e., IC > IC”. 

Phase 4. Normalization and output 

Here, we normalize the dimensions (columns) of X to unit sums of squares and 
then redefine the matrix of situations’ weights (W) to compensate for these 
transformations. Various goodness-of-fit measures (described below) are com- 
puted over the entire data, as well as by subject, to examine possible outliers in 
the data. 

These goodness-of-fit measures, computed for a particular solution, are: 
(1) The log-likelihood function; 
(2) A deviance measure (Nelder and Weddenburn, 1972): 

D= -2[ i & [8ijk ln($ijk) + (1 -aijk) l+4jk)l] 

i=l j<k 

= -2 In L(ejk). (A.15) 

This is basically (6) with Pijk replaced by its estimated value, Fijk. The differ- 
ence between two deviance measures corresponding to two nested models is 
asymptotically x2 distributed with degrees of freedom equal to the difference in 
the models’ degrees of freedom. This difference can be used (theoretically) to 
test for dimensionality as well as for various model specifications because of the 
obvious nesting. However, one potential problem with using such a x2 test 
concerns the presence of incidental parameters in the likelihood function. In 
other words, the number of parameters to be estimated varies with the number 
of individuals, stimuli, and situations considered. In such a case, the MLE’s are 
not consistent (Anderson, 19801, and thus the x2 test is not appropriate. 

(3) The Akaike information criterion (Akaike, 1974): 

AIC = -2 ln L(Ejljk) + 2 ( number of independent parameters 

in the model). 
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This AIC measure can be utilized to test for dimensionality and model selection. 
According to Akaike (19741, the model with minimum AIC should be selected. 
However, as noted by Bozdogan (19871, the use of this AIC criterion tends to 
result in over-fitting certain models. 

(4) A simple matching coefficient (Match) calculated between A and the 
predicted A, according to the threshold rule of the model&being estimated. 

(5) The point biserial correlation (Pbc) between P = ((Pi,)) and A. 
(6) The phi coefficient (Phi) calculated between A and d. 
All these goodness-of-fit measures need to be inspected in determining the 

dimensionality of the space and testing for nested models, given the problems 
and difficulties in using the x2 test and the AIC. 
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