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Addressing Misallocation of Variance in Principal
Components Analysis of Event-Related Potentials

Joseph Dien*

Summary: Interpretation of evoked response potentials is complicated by the extensive superposition of multiple electrical events. The most common
approach to disentangling these features is principal components analysis (PCA). Critics have demonstrated a number of caveats that complicate
interpretation, notably misallocation of variance and latency jitter. This paper describes some further caveats to PCA as well as using simulations to
evaluate three potential methods for addressing them: parallel analysis, oblique rotations, and spatial PCA. An improved simulation model is
introduced for examining these issues. It is concluded that PCA is an essential statistical tool for event-related potential analysis, but only if applied
appropriately.

Introduction

Problems of Superposition

The superposition of activity volume-conducted
from multiple regions of brain tissue has become an im-
portant obstacle to localizing evoked potentials. While a
number of algorithms have been developed to solve this
so-called inverse problem, overlapping events can cause
significant errors in localization procedures (Zhang and
Jewett 1993). These procedures can also suffer when the
number of sources is unknown as is usually the case
(Achim et al. 1991). More generally, this problem of super-
position is a challenge for all researchers seeking to inter-
pret evoked potentials, whether for localization purposes
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or as an index of neurocognitive processes.
One method that is sometimes used to disentangle

these portions of the waveform is principal components
analysis (PCA). PCA is a multivariate technique for un-
covering latent factors responsible for patterns of covari-
ance in a set of variables (Gorsuch 1983). Although
localization algorithms (Scherg 1990) often include PCA
in some form, applying it as a separate pre-processing
stage can allow it to be more effectively applied and its
success independently evaluated. In particular, such a
two-step process largely reduces the number of judg-
ments necessary for modeling a dataset to that of how
many factors (dipoles) to retain. The utility of this
method was recently demonstrated with an auditory
attention dataset (Dien et al. 1997). This paper will de-
scribe three refinements to this technique. To test these
techniques, an improved simulation model will be pre-
sented. The results are of potential use to any analysis of
ERP data.

Temporal PCA

Temporal PCA repeatedly fits a regression line that
accounts for the most variance possible, subtracting this
variance and then fitting a new line to the residuals. Each
such line constitutes a factor and the correlations of the
variables with a given factor are provided by the factor
loadings. In the classical PCA of event-related potential
(ERP) data (temporal PCA) the variables are the recorded
potential at a given time point of the recording epoch
(Curry et al. 1983; Donchin and Heffley 1979; Mocks and
Verleger 1991), as shown in table I. Ideally, since the ERP
components are the major source of covarying time
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Table I. Example of dataset for temporal PCA. Variables
consist of the voltage measured at each of t time points.
The observations consist of m waveforms (the waveforms
measured at all the combinations of p participants, c
conditions, and n channels).

Waveform 1 (participant 1,
condition 1, channel 1)

Waveform 2 (participant 1,
condition 1, channel 2)

Waveform m (participant p,
condition c, channel n)

Time 1

0 nv

0 av

3 nv

Time 2

1 M.V

2 ^v

3 ^v

Time t
1 J,V

2|av

0|av

points, this procedure should yield factors that corre-
spond to each component.

For each observation (raw waveform), temporal
PCA will generate numbers representing the amplitudes
of the latent variables (factor scores). The topography of
each factor is encoded by the mean amplitude of its factor
scores at each site. One can use this information to repro-
duce the portion of an observation's waveform repre-
sented by a given factor by multiplying the time point
factor loadings by the observation's factor score and then
multiplying each time point by its standard deviation
(Dien et al. 1997). See the appendix for a simple proof.

Limitations of Temporal PCA

Temporal PCA has three major issues: 1) Retention
criteria, 2) factor interactions, and 3) latency jitters (al-
though others have been noted, c.f., Hunt 1985). The first
issue arises because PCA requires the analyst to decide
how many of the factors contain interpretable signal and
should therefore be retained. Retaining too many de-
grades the solution due to retained noise variance and
retaining too little warps the solution (Wood et al. 1996),
producing misallocation.

The second issue, factor interactions, occurs when
the factor solution for one component suffers interference
from the factor solution of another component. Such
interactions arise from rotational indeterminacy. To take
a simple case, let us consider a dataset that consists of
waveforms with only a P300, of varying amplitude but
constant latency. In this case, a single latent waveform
would suffice to model the dataset (suitably weighted for
each observation by a factor score) and there is no inde-
terminacy. The difficulty can be seen for a second dataset
in which there is both a P2 and a P300. In this example
dataset, one condition produces a P2 alone, a second
condition produces a P300 alone, and a third condition
produces both. Ideally, the dataset could be accounted
for by two factors, one describing the time points in-

Figure 1. Example of alternative factor solution that can
account for the P2 and P3. The ideal solution consists of
separate factors for each component that together can
account for waveforms (rightmost column) consisting of
the P2 alone, the P3 alone, and both together. Because
of rotational indeterminacy, another pair of factors can
also be generated (alternate solution) consisting of a
contrast between the two components and the combi-
nation of the two components that together can also
account for the same three recorded waveforms. While
mathematically equivalent, the electrophysiological lit-
erature clearly indicates that the first solution is more
plausible.

volved in the P2 and another describing the time points
involved in the P300.

However, it would be equally possible, and mathe-
matically equivalent, to describe the observed wave-
forms with a latent waveform that describes the extent to
which the two features covary for a given observation
(consisting of both a P2 and a P300) and a second latent
waveform that describes the extent to which the two
features differ for a given observation (consisting of a P2
and a P300 of opposite sign). Summed together with the
proper weights (factor scores), these two latent wave-
forms generate the observed waveforms as easily as a P2
and a P300 latent waveform could, as shown by figure 1.
For example, an observation with only a P2 could be
modeled by a difference factor weighted such that its
P300 segment cancels out that of the other factor, leaving
only the P2. One could also generate any number of pairs
of latent waveforms intermediate between these two ex-
tremes. The problem of rotational indeterminacy is the
uncertainty which of these countless possible alternative
pairs of statistical waveforms best reflects the real-world
electrical waveforms. It is important to keep in mind that
this issue is a problem for peak measures as well.

Rotation procedures attempt to address this indeter-
minacy. The rotation most commonly used, Varimax
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(Kaiser 1958), finds the set of equivalent waveforms that
maximize the importance (loading) of the time points
that are large for the factor and minimize time points that
are small (by maximizing the sum of the fourth power of
the loadings). This criterion has the value of rotating
away from solutions that have only moderate loadings,
presumably spread across multiple components. To the
extent that ERP components peak at different time points
and have relatively focal time courses, this criterion
should find factors that approximate the true latent
waveforms. This is reasonable because, for the most part,
ERP components appear to be monophasic.

Rotation procedures do not necessarily resolve inde-
terminacy correctly. In an influential paper, it was dem-
onstrated that rotational indeterminacy can result in
condition effects being misallocated to an overlapping
factor (Wood and McCarthy 1984). Ironically, although
this paper is most frequently cited by critics of this tech-
nique, these authors actually advocated its use. Their
conclusion was that although misallocation of variance is
a problem for PCA, it is also a problem for other meas-
urement techniques as well. Peak amplitude measures,
for example, will also confound the effects of overlapping
components. Indeed, they stated that, "Other approaches
to ERP analysis, measurement of peak amplitudes and
latencies for example, are no less subject to the problem
of component overlap than PCA; they simply make it
easier to ignore by not representing it explicitly," p. 258.
If nothing else, PCA can alert the researcher to the pres-
ence of overlapping components even when it does not
resolve them correctly.

Although Wood and McCarthy (1984) concluded
that component overlap is the cause of such misalloca-
tion, a reanalysis of their simulation dataset resulted in
the conclusion that the misallocation was due to an
inadvertent correlation between the two components
rather than due to their overlap (Chapman and
McCrary 1995). When the correlation was removed, it
was reported that the misallocation was eliminated
even though the components were still overlapping.
Some simulation data has been presented that seems to
suggest that correlated components are only a problem
for overlapping components (Hunt 1985) but it is not
clear why this should be. A goal of this paper is to
resolve these divergent conclusions.

A point not made by Wood and McCarthy (1984) is
that misallocation of variance can result in components
being missed entirely. Factors are defined as patterns of
correlations (or covariances) between time points with-
out regard to what the source of these correlations are. A
single factor can therefore describe multiple ERP compo-
nents as long as they have identical time courses (Mocks
and Verleger 1991). If two components differ in time
course only to a small extent, they may be described by a

large factor that encompasses their common time course
and a small factor that describes their differences. If this
small factor is then obscured by the clutter of random
noise, it may appear that there is only one factor rather
than two. One might say that one component has been
entirely misallocated to another.

The third issue is that of latency jitter, which is
variability in the time course of a component across trials.
If a given ERP component, such as the P300, occurs at two
different latencies in two different conditions, then a
single latent waveform will not be able to account for
both observed waveforms. Ideally, the dataset could be
accounted for by two factors, one wholly describing the
P300 at the first latency and one wholly describing the
P300 at the second latency. This situation may result in a
single latent waveform that captures the time points that
are activated by both latencies and a second that captures
the difference between the two latencies. Thus, a feature
that shifts across the individuals or the conditions can
result in an extra principal component resembling the
time-derivative of the feature's behavior (Mocks 1986).
Alternatively, it might produce two factors representing
the two different latency versions. A given factor may
represent latency jitter in a component already modeled
by a second factor rather than a distinct ERP component.
This is, again, an issue common to peak measurement
techniques. A negativity that appears at two different
times in two different conditions may in fact be due to
two distinct ERP components or it may be due to a single
jittered component (Polich 1985). The PCA is merely
making this issue more apparent.

These difficulties with misallocation and jitter can
be addressed via parallel analysis, oblique rotations,
and spatial PCA respectively. After the explication of
these three techniques, a series of simulations will test
their utility.

Parallel Analysis

Up to a point, rotation procedures can address such
cases involving difference factors due to overlap or la-
tency jitter. However, the original two components can
only be regenerated if the difference factor is retained.
PCA will usually produce as many factors as there are
variables, mostly representing random noise. For parsi-
mony's sake most of the factors are dropped, retaining
only the substantive factors. It is therefore critical that the
difference factors representing overlapping components
are retained. Retaining too many factors degrades the
solution due to retained noise variance and retaining too
few warps the solution (Wood et al. 1996), producing
misallocation.

Unfortunately, the guidelines for determining the
number of factors to retain are imprecise. The most
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common method, the Kaiser eigenvalue-greater-than-
one rule (Kaiser 1960), has been strongly criticized for
providing inferior estimates (Zwick and Velicer 1986).
The second most common decision rule, the Scree test
(Cattell 1966b), is more accurate but contains a substan-
tial subjective component. It is predicated on the fact that
a PCA of a random dataset will produce a set of factors
with random size. When ordered by size (eigenvalues),
they will produce a smoothly descending slope. Factors
that are larger than predicted by this steady slope are
most likely to have interpretable signal in them. The
scree test involves graphing this set of eigenvalues and
looking for the "elbow," the point where the factors begin
rising above the slope. Simulations indicate that the last
point still on the slope, the corner of the elbow, should
also be included (Cattell and Jaspers 1967). The problem
is that scree plots of ERP data typically contain multiple
elbows, some of which are quite subtle, producing ambi-
guity as to where the scree starts.

In a comparison of five methods for determining
how many factors to retain (Zwick and Velicer 1986),
parallel analysis (Horn 1965) proved to be the most effec-
tive. In this test, PCA is conducted on a random dataset
of the same size as the dataset of interest, producing an
assortment of random sized factors. When charted in
order of size (eigenvalues), this produces a slope. This
slope can be used as a baseline against which to compare
the factors from the PCA of the experimental dataset. The
number of factors that are larger than obtained from the
purely random dataset is the number to retain for further
analysis. This test therefore uses the same logic as the
scree test but removes the guesswork about what consti-
tutes the noise level. When applied to ERP datasets, a
complication is that even after averaging the background
noise is autocorrelated across the variables. The autocor-
related noise causes factors to appear that are larger than
would be expected from a purely random dataset even in
the absence of evoked potentials. This point may be
addressed by conducting the averaging procedure on the
dataset with every other trial inverted, producing what
has been termed the +/- reference (Schimmel 1967; Wong
and Bickford 1980). In this case, the evoked potential
should cancel out leaving only the background noise.
This inversion dataset should then provide an optimal
comparison point for the parallel analysis.

Oblique Rotation

One possible way to address factor interactions is to
use oblique rotations. As noted in an important critique
of the application of PCA to ERPs (Hunt 1985), distortions
can occur when assumptions of the statistical analysis are
violated. An important assumption of PCA and varimax
is orthogonality, that the latent variables are uncorre-

lated. The use of an oblique rotation can address viola-
tions of this assumption by allowing factors to be corre-
lated. It has been previously suggested that an oblique
rotation might provide better results and was used in
passing to demonstrate that two factors were correlated
in a simulation dataset (Chapman and McCrary 1995).
The issue was not further pursued or evaluated however.

One of the better oblique rotations (Gorsuch 1970) is
the Promax procedure (Hendrickson and White 1964), in
which a Varimax rotation is relaxed to allow correlation
among the factors. As described earlier, in the Varimax
procedure the factor vectors are rotated in variable space
such that loadings of the variables on the factors are as
extreme (either zero or high absolute value) as possible.
This results in factors that are restricted to as few vari-
ables (time samples in temporal PCA) as possible. This
operation is limited by an orthogonality constraint; vari-
ance cannot be shared by factors. Factors representing
correlated components can be distorted when their
shared variance is allocated to other factors.

Promax pursues the Varimax criterion without re-
gard for orthogonality; in effect, allowing multiple fac-
tors to share ambiguous variance. Although this
approach loses the mathematical simplicity of strict or-
thogonality, it could allow the individual factors to more
closely approximate the underlying components, to the
extent that the Varimax criterion is valid. Using the
Varimax solution as the starting point, the Promax solu-
tion allows factors to become correlated, a condition
more suited to brain processes than strict orthogonality.
It does so by adjusting each factor in turn to more strongly
follow the varimax criterion for simple structure, but this
time without regard for maintaining orthogonality to the
other factors. Note that the Promax operation is carried
out after the retention step so it will not affect the number
of factors retained, only their characterization.

Spatial PCA

The high-density montages afforded by advances in
current technology have made another approach, spatial
PCA, an option for dealing with latency jitter. Although
studies using spatial PCA have been published pre-
viously (Donchin et al. 1997; Duffy et al. 1990; Kavanagh
et al. 1976; Skrandies and Lehmann 1982), these consisted
of brief demonstrations. To evaluate the utility of this
method, in-depth examination is necessary.

In a spatial PCA, the variables are the microvolts
measured at a given channel and the time points serve as
observations, as shown in table II. The resulting factors
consist of topographical patterns with each factor loading
describing the weighting of an individual channel. The
factor scores indicate the amplitude of these topographi-
cal patterns across time. This arrangement will produce
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Table II. Example of dataset for spatial PCA. Variables
consist of the voltage measured at each of n channels.
The observations consist of m topographies (the scalp
patterns measured at all the combinations of p partici-
pants, c conditions, and t time points), Note that the
spatial PCA dataset is not simply the transpose of the
temporal PCA dataset but rather the resultant of the
separate transposition of each of the p x c blocks of t time
point by n channels.

Topography 1 (participant
1, condition 1, time 1)

Topography 2 (participant
1, condition 1, time 2)

Topography m (participant
p, condition c, time t)

Chan 1

0 jiv

1 (iv

1 nv

Chan 2

0 jxv

2 iv

2 iv

Chan n

2 ^v

4 av

0 MV

a factor solution that differs from a temporal PCA due to
emphasis on the spatial variance and due to the rotation
procedure.

The first reason spatial PCA will differ from tempo-
ral PCA lies in the role of four different sources of vari-
ance in the data. These four sources are temporal (the
waveforms), spatial (topographical patterns), condition
(experimental effects), and participant (individual differ-
ences). In temporal PCA the dataset consists of wave-
forms from all the scalp sites from all the conditions from
all the participants. In this case, the PCA is conducted on
the combination of the temporal variance and the tempo-
ral covariances produced by the effects of the site, effects
of the conditions, and effects of individual differences.
This is appropriate for an ERP dataset since a component
should be subject to all three influences. These are also
some of the sources of information by which an ERP
analyst determines what is a component (Picton and
Stuss 1980). The temporal PCA process helps summarize
the information about temporal patterns related to these
three sources. Spatial PCA represents the complemen-
tary case of analyzing spatial variance and covariance.

It is not correct to say that the difference between
spatial and temporal PCA is the same as that between R
analysis (in psychometrics, tests as variables and subjects
as observations) and Q analysis (subjects as variables and
tests as observations) (Cattell 1966a). Regular PCA oper-
ates along two modes (variables and observations). In a
simple case where there is only temporal and spatial
variance, it does not matter which is used as the variables
in this respect. For a temporal PCA, two components
with the same time course have the same profile and
cannot be distinguished, as noted earlier. Two compo-
nents could have different time courses but the same

spatial distribution and would again not be distinguish-
able as they would covary absolutely. At whatever site
the set of time points affected by one component was
large, the time points affected by the other component
would be large too. Wherever the former set was small,
so would the latter set. The result would be a single
bimodal factor. If two components were identical either
spatially or temporally, it would not matter whether
spatial or temporal PCA was used.

However, in real datasets the observations mode is
potentially disambiguated by two other sources of vari-
ance, individual differences and condition effects. For
example, in a temporal PCA, two components with dif-
ferent time courses but identical spatial distributions will
not absolutely covary if one is amplified by attention and
the other is not. A spatial PCA is no longer simply a
transpose of a temporal PCA. Whichever source of vari-
ance contributes to the observations mode has the benefit
of the two other sources of variance for disambiguating
components but is therefore also diluted in its effects on
the final factor solution. Thus, spatial PCA will be most
effective at separating components with similar time
courses although temporal PCA will be most effective at
separating components with similar scalp topographies.

Spatial PCA will also produce different results due
to the effects of the rotation procedure. As described
earlier, Varimax finds the rotation that minimizes the
number of variables that loading on the factors. In a
temporal PCA, this property will favor factor solutions
with temporally delimited waveforms. In a spatial PCA,
this property will favor factor solutions with spatially
delimited waveforms.

Temporal and spatial PCAs have complementary
strengths. A spatial PCA can characterize components
that are temporally overlapping or jittered whereas a
temporal PCA can identify components that are spatially
overlapping or jittered. For example, two components
that occur at nearly the same time but have very different
scalp distributions might be characterized by a temporal
PCA as a single substantive factor (with the small differ-
ence variance lost in the noise factors) while a spatial PCA
would characterize them with two different equal-sized
interpretable factors. Additionally, a temporal PCA
keeps the time course constant but allows the spatial
distribution to vary, allowing the distribution of different
conditions to be compared. In contrast, a spatial PCA
keeps the spatial distribution constant but allows the
temporal course to vary, so different conditions may be
compared temporally. Thus, each type should detect
components that the other misses, as well as providing
information about condition changes that the other keeps
invariant.

In general, a temporal PCA will allow stronger infer-
ences since all spatial factors necessarily overlap and



48 Dien

Figure 2. Artificial components for simulation studies. The
figure illustrates how the "P1" and "P3" patterns can be
used to form both the time course and the topography of
a component, if the topography is defined as amplitudes
measured along a midline array down the center of the
scalp.

potentially suffer from misallocation. Balancing this
methodological issue is the fact that, to the extent that
ERP components are defined as reflecting different neu-
ral functions (however, see Picton and Stuss 1980), com-
ponents are more likely to have unique spatial signatures
than temporal signatures.

While the basic principles elucidated suggest these
three techniques should be useful adjuncts to the PCA
technique, simulations are necessary to validate the con-
clusions and to detect unforeseen complications. Simu-
lations were therefore carried out to test their
effectiveness. In order to improve upon the simulation
dataset first introduced by Wood and McCarthy (1984),
a new set of simulations were constructed which permit
controlled comparison of the effects of component over-
lap and component correlation, as well as the individual
roles of spatial, condition, and subject variance.

Simulations of Parallel Test

Test datasets were constructed to represent ten par-
ticipants in two conditions, each with 65 channels and 65
time points. Two artificial components were constructed
from half sine cycles, one with a short period like that of
the P2 component(s) and one with a long period like that
of the P3 component(s). These two components overlap
such that when a correlation is computed between their
loadings (treating each pair of loadings as an observa-
tion), r is approximately zero. To maximize comparabil-
ity between the temporal and spatial dimensions, the test

Figure 3. Parallel Test simulation. Chart shows eigenvalues
of Factors 1 through 17 for both background EEG and
base data matrix + background EEG. Although addition
of signal has increased the eigenvalues for all the factors,
it has done so most for the first three. Application of the
scree criterion indicates retention of the first four factors
(the three factors plus one more).

montage was conceptualized as being a midline montage
of 65 electrodes. While the spatial layout of the electrodes
is irrelevant to the mathematics of the PCA procedure,
this makes it reasonable to display topographies as a
linear ordered set in the same manner as the temporal
patterns. Figure 2 shows that the half sine cycles can
comprise the topography of the components as well, with
the short period cycle representing a focal component
like that of the P2 and the long period cycle representing
a diffuse component like that of the P3. These spatial and
temporal weights varied from zero to one. A given data
point consisted of the product of the two weights and
then arbitrarily multiplied by four microvolts.

Random variability in the dataset is represented by
the background EEG of ten subjects from a real dataset
(Dien, in press) and was generated by using the +/-
reference (Schimmel 1967). To further minimize time-
locked evoked potentials, the 65 time points were taken
from the baseline period plus 76 msec, post-stimulus. In
order to keep the model simple, no other random vari-
ance was included in the model.

Results and Discussion

A base matrix was constructed containing only the
two components and no background EEG. When this
base data matrix was factored, only two non-zero eigen-
values were obtained, confirming that this artificial
dataset has only two components. The background EEG
was then added to the base data matrix, producing the
final dataset. Figure 3 illustrates how dataset was then
factored and the resulting scree compared to that of the



Addressing Misallocation 49

Figure 4. Factor waveforms from parallel test simulation.
Factor loadings were multiplied by the time point standard
deviations to rescale them and then overplotted. The
corresponding factors in the four different analyses were
given the same line type to facilitate comparisons, a)
Factors from PCA of background noise alone (4 factors
retained to facilitate comparison with b). b) Factors from
PCA of data matrix, retaining 4 factors as indicated by the
parallel test, c) Retaining only two factors results in dis-
torted characterization of P2 and P3. d) Retaining more
factors than indicated by parallel test (6 factors) moder-
ately improves reconstruction even more.

background EEG alone. A notable increase is seen in
three of the eigenvalues although small increases are seen
in the remaining factors as well.

Following the parallel test criteria, four factors were
retained (the three plus the elbow) and rotated using the
promax algorithm. For comparison's sake, the back-
ground EEG was also factored, retaining four factors.
Figure 4a shows that the waveforms of the four back-
ground EEG factors are quite coherent, verifying that the
averaging process has left more than just random noise
in the background. Figure 4b of the waveforms for the
PCA of the background EEG + base data matrix shows
that Components P2and P3 were indeed mostly recov-
ered along with two noise factors. It appears that Factors
1 and 4 of the background EEG may have been incorpo-
rated into the Factors characterizing P2 and P3 due to
their similar peak times, distorting the factors somewhat.
One can also infer that the reason more than two signal
factors were indicated by the parallel test is that some of
the variance of the test components have been "misallo-
cated" in this initial extraction. Factor 2 shows a small
bump coincident with the P2 peak in b, not evident in a,
which suggests it may have incorporated some of the P2
variance. Likewise, Factor 3 show a small dip coincident
with the P3 peak in b, but not in a, that suggests is may
have incorporated some of the P3 variance. Indeed, there
is no reason in principle that misallocation cannot occur
in the initial extraction.

On the other hand, four factors turns out to be an
appropriate number to retain. Figure 4c demonstrates
that if one retains only two factors, the P2 and P3 factors
are distorted. This is in line with reports that retaining
too few factors can result in distorted results (Wood et al.
1996). Figure 4d further shows that if one retains six
factors the P2 and P3 factors appear even cleaner, adher-
ing closer to zero outside the duration of the component.
These findings seem to suggest that the results of the
parallel test should be considered merely a higher bound
for estimating the dimensionality of the evoked potential.
Moreover, it appears that the number of factors retained
may need to be an even higher number since features
contributed by the background EEG may cause distor-
tions if not characterized by additional factors.

Simulation Tests of Oblique Rotation

The goal of the next simulation test is to examine the
effect of the oblique rotation, Promax, in the presence of
temporal overlap and component covariation. In this
manner, it is also hoped to resolve the dispute between
the opposing positions on their role in misallocation of
variance (Chapman and McCrary 1995; Wood and
McCarthy 1984).

For this next series of simulations, three temporal



50 Dien

Figure 5. Results of promax simulation tests. The results for
the P1 /P2 factor only are illustrated. The horizontal figures
represent the time course and the vertical figures repre-
sent the topography. Results are shown for both the vari-
max and promax rotations. The original pattern is shown
is gray and the factor reconstruction is drawn in black,
such that only deviations from the original pattern can be
seen. A) No temporal overlap or component correlation
between the two components (PI and P3) results in a
good reconstruction of the P1. B) Both temporal overlap
and component correlation between the two compo-
nents results In distortions. C) Component correlation but
no overlap results in distortion only for the varimax rotation.
D) Temporal overlap but no component correlation results
in distortion for both rotations.

patterns were used. The temporal patterns of the P2 and
P3 patterns from the preceding test were used as well as
a third (to be termed the P1 pattern) with the same short
duration as the P2 pattern but located earlier so as not to
overlap with those of the P3 pattern. The P1 and P2
patterns were used to produce the four possible combi-
nations of having temporal and spatial overlap/non-
overlap with the P3 pattern. Overlap in the spatial
domain determines overall correlation between the com-
ponents in a temporal PCA. The P2 pattern results in a

zero correlation with the P3 pattern (overlap) while the
P1 pattern (non-overlap) results in a -.3 correlation (since
the presence of one partially predicts the absence of the
other).

The dataset was kept as simple as possible. The basic
data consisted of 65 variables (time points) at 65 observa-
tions (electrodes). Since there has to be more observa-
tions than electrodes to avoid singularity (which
interferes with computing the generalized negative in-
verse used to calculate the factor score coefficients) these
observations were doubled (representing two identical
conditions, for simplicity's sake). Since simply doubling
the data would not prevent the matrix from being singu-
lar, a very small random noise term was added. The
noise term amounted to only about .5% of the average
peak amplitude of the signal (centered on zero) and was
added to each data point in the data matrix. One hun-
dred datasets were generated for each simulation. In
addition to the noise term, additional randomness was
introduced (in the interests of generalizability of the re-
sults) by varying each component amplitude within a
+/-50% range.

Misallocation of variance was evaluated in terms of
defective reconstruction of the components. Effective-
ness of component reconstruction was quantified by
measuring the correlation between the original time
course (or topography) and the corresponding factor us-
ing each time point (or electrode site) as the observations.
The measure has the additional advantage that since
correlations normalize the two variables involved, the
waveform amplitudes is controlled for. The correlation
was computed between the varimax rotated P1 /P2 factor
(as the smaller component, it is expected to show misal-
location more clearly) and the original time course. The
100 replications were then rank ordered according to the
correlations and the median (50th) simulation was se-
lected as the most representative result for each of the
simulations.

Results and Discussion

Simulation A is a zero temporal overlap, zero com-
ponent correlation. The correlations ranged from 1.000
to .9681 with a median of .9994. As figure 5A presents,
there is essentially no misallocation of variance for either
time course or topography, with only a subtle dip sug-
gesting some spillover from the P3 component.

In simulation B, there is temporal overlap and nega-
tive correlation between the components, one or both of
which should produce misallocation of variance (Chap-
man and McCrary 1995; Wood and McCarthy 1984). The
correlations ranged from .7370 to 1.000 with a median of
.9949. Even with this high correlation, figure 5B reveals a
notable misallocation, especially in the topography. Pro-
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max rotation improves the fit slightly to a correlation of
.9976.

To disentangle the effects of temporal overlap and
component correlation, simulation C contains a negative
correlation but no temporal overlap. Correlations range
from .8522 to .9979 with a median of .9673, reflecting a
notable spillover from the P3 component in both time
course and topography as seen in figure 5C. Promax
essentially eliminates the distortion, improving the cor-
relation to .9999.

To determine if the reverse can also cause distortion,
simulation D contains temporal overlap but no compo-
nent correlation. Correlations range from .8877 to 1.000
with a median of .9912, reflecting some misallocation,
particularly in the topography, as figure 5D shows. Pro-
max increased the time course distortion to .9882 but
decreased the topography distortion from .9648 to .9945,
suggesting this rotation does not reliably address tempo-
ral overlap.

These results indicate that both McCarthy and Wood
(1984) and Chapman (1995) are correct. At least under
some situations, both component overlap and compo-
nent correlations can produce misallocation of variance.
Only when both were absent (Simulation A) was there
accurate reconstruction of the components using the cus-
tomary varimax rotation.

These results also suggest that, as Chapman sug-
gested, an oblique rotation can indeed be helpful. Al-
though it had mixed effects on misallocation due to
temporal overlap, Simulation C shows it can essentially
eliminate misallocation due to correlated components.
Given that it is unlikely that most components will have
the exact spatial overlap necessary to produce zero cor-
relation, let alone having uncorrelated sources, such a
property seems likely to be of use.

Although this example focused on time course and
topography with an eye towards localization efforts,
these findings are equally valid for misallocation of ex-
perimental effects. When a component has condition
effects, it should maintain them when misallocated to
different factors as demonstrated by Wood and
McCarthy (1984).

Simulation Tests of Spatial PCA

The final simulation test is intended to contrast the
characteristics of spatial PCA with the more traditional
temporal PCA. From first principles, it is expected that
spatial PCA should be able to separate components in
some situations that temporal PCA cannot. It is also
expected that temporal PCA should be better suited to
modeling topography changes and spatial PCA should
be better suited for time course changes.

Simulation datasets were constructed as in the pre-

vious series using just the P1 and P3 patterns. Jittered
versions were produced by shifting waveforms to the
right by five places. Representative replications were
chosen arbitrarily by taking the correlation between the
factor 1 (promax rotated) time course and correlating it
with the P3 component time course and taking the repli-
cation with the median value. For simulations B-D, con-
dition variance was introduced by doubling the size of
the P1 component in the 2nd condition. For simulations
E-H, jitter is introduced by shifting the appropriate pat-
tern five spaces in the 2nd condition. Representative
replications were chosen arbitrarily by choosing the one
with the median correlation between Factor One and the
non-jittered P1. In simulations E and G, whether the
jittered or non-jittered P1 gravitated to Factor One was
random so for the median calculation only the replica-
tions where Factor One reflects the non-jittered P1 were
included so that a replication most representative of one
of these groupings was selected rather than an outlier
falling in between these two groups.

Results and Discussion

The first set of simulations help delineate one situ-
ation where a spatial PCA will dissociate components
more effectively than temporal PCA. As already seen, at
least with this dataset, a temporal PCA will readily sepa-
rate the two components when they differ in both tempo-
ral and spatial characteristics.

Figure 6A shows (as discussed earlier) that when the
two components have the same spatial pattern, temporal
PCA cannot dissociate them since they will correlate
100%. Factor 1 accounts for both the P1 and P3 compo-
nents in this case (>99.9999% of variance) while Factor 2
consists of incoherent noise (<00.0001% variance). It is
not clear why the topography of Factor 2 appears to
reflect the topography of the P3 component even though
the time course appears random and may be a glitch
prompted by the nearly non-existent variance involved.

Figure 6B shows that even when two components
have the same spatial pattern, temporal PCA can disso-
ciate them as long as there is some differential condition
(or subject) variance. In this case, although the PCA was
able to identify the dimensionality as being two (96.53%
and 3.46% variance respectively), the factors were quite
distorted since the components were still highly corre-
lated.

Figure 6C shows that when two components have
the same temporal pattern, neither differing spatial to-
pography nor condition variance is sufficient for a tem-
poral PCA to dissociate them. Once again, the first factor
accounts for nearly all the variance (>99.9999%) while the
second factor represents some residual noise (<00.0001%
variance).
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Figure 6. Results of spatial PCA simulation tests. The results
for the promax rotation only are illustrated. The horizontal
figures represent the time course and the vertical figures
represent the topography. Results are shown for both
Factor One and Factor Two. The original pattern Is shown
is gray and the factor reconstruction is drawn in black,
such that only deviations from the original pattern can be
seen. A) Components have same spatial pattern. B)
Components have same spatial pattern but differential
condition effect, C) Components have same temporal
pattern and differential condition effect. D) Spatial PCA
in case of components with the same temporal pattern
and differential condition effect.

Figure 6D demonstrates with this same dataset that
a spatial PCA is able to dissociate the components,
although there was considerable misallocation of vari-
ance. Factor One (96.27% variance) reflects the P3 com-
ponent and some of the P1 while Factor Two (3.73%
variance) characterizes the P1 component and only
some of the P3.

The second set of simulations illustrate the perform-
ance of temporal and spatial PCA under temporal and
spatial jitter. For simplicity's sake, only a single component
(the P1) was included in the simulation datasets. As has
been demonstrated previously (Mocks 1986), figure 7E

Figure 7. Results of jitter simulation tests. The results for the
promax rotation only are Illustrated. The horizontal figures
represent the time course and the vertical figures repre-
sent the topography. Results are shown for both Cell One
and Cell Two. Factor One is shown is black and Factor
Two is in gray. Waveforms indicate only the shape of the
factors, not the amplitude. A) Temporal PCA of compo-
nent with temporal jitter (different latencies in Cell 1 and
Cell 2). Factor 1 describes the component in Cell 1 and
Factor 2 describes the component in Cell 2. B) Spatial
PCA of component with temporal jitter. Factor 1 de-
scribes the component in both cells while Factor 2 is
essentially non-existent. C) Spatial PCA of component
with spatial jitter (different topographies in Cell 1 and Cell
2). Factor 1 describes the component in Cell 1 and Factor
2 describes the component in Cell 2. D) Spatial PCA of
component with temporal jitter. Factor 1 describes the
component in both cells while Factor 2 reflects essentially
only noise.

shows that latency jitter in a component can produce two
factors (74.26% and 25.70% variance) in a temporal PCA.

Figure 7F shows that a spatial PCA of this same
dataset more meaningfully captures the components
with just one factor (99.96% variance). The second factor
is inconsequential (<00.0001% variance) although it has
some coherence.
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Figure 7G shows that spatial jitter can produce a
multiple factor effect in a spatial PCA just as temporal
jitter does for temporal PCA. The two factors account for
72.92% and 27.05% of the variance respectively.

Figure 7H illustrates that, unlike spatial PCA, a tem-
poral PCA smoothly handles topography changes. The
first factor has 99.97% variance while the second is van-
ishingly small (<00.0001% variance).

These simulations support the predictions made in
the introduction that temporal and spatial PCA have
complementary strengths and weaknesses. For model-
ing components with nearly identical time courses or
with substantial latency jitter, spatial PCA may produce
less misallocation problems. On the other hand, since
electrical fields affect the entire head (to varying de-
grees), unlike in temporal PCA each factor has loadings
on every variable (site). This means that misallocation
of variance is much more likely to occur since all com-
ponents overlap.

Conclusion
Whether PCA is successful at parsing components

depends on the definition of "component." Unfortu-
nately, there is no simple answer which is why compo-
nents tend to be defined according to a number of criteria
(Picton and Stuss 1980), forming fuzzy categories. For
example, a strict latency definition would fail to catego-
rize a component like the P300 which varies according to
stimulus evaluation time. On the other hand, a strict
topographical or source definition would fail to group
together motor potentials which will be different be-
tween fingers and toes, or even between different fingers,
and yet are roughly equivalent in function and charac-
teristics. A component, like any other theoretical con-
struct, is essentially an arbitrary category defined by
researchers that supports experimentally and theoreti-
cally useful generalizations that facilitate interpretation
and communication. If PCA produces factors that are
useful and generalizeable for the goals of the experiment,
then it has been successful. Useful can mean the factor
shows coherent condition effects and/or is readily local-
izeable. Generalizeable means the factor is replicable and
has convergent validity when compared to other analysis
techniques or other sources of information.

On the basis of these simulations, one can arrive at
some recommendations for PCA of ERP data. 1) Careful
attention should be focused on the issue of how many
factors to retain. The parallel test may provide some
assistance but overall does not appear to provide much
improvement over a simple scree test. A more practical
procedure may be to use the scree test to arrive at an initial
estimate and then to determine whether a solution with
an additional four factors adds or changes the results in

any substantive fashion. 2) Promax appears to provide a
substantial improvement over varimax and should be
used in all analyses. 3) Temporal PCA is useful when it is
expected that the features of interest have spatial jitter or
have less temporal overlap than spatial overlap. Spatial
PCA is useful when it is expected that there is temporal
jitter or less spatial overlap than temporal.

Although improvements on PCA have been pro-
posed (e.g., Bell and Sejnowski 1995; Maier et al. 1987;
Mosher 1992), in order to be useful they must have their
limitations and strengths mapped out in the same manner
as has been done for PCA in this and previous articles. For
example, PCA has been generalized to 3-modes or more
(Kroonenberg 1983; Tucker 1963). An early application
used the three modes of subject, conditions, and time
points (Donchin et al. 1972). More recently, it has been
proposed using the modes of subjects, channels, and time
points (Mocks 1988). Its very strength of describing com-
ponents in terms of a fixed time course and topography is
also its weakness as this means it has both the weakness
of spatial PCA to spatial jitter (as in laterality effects) and
temporal PCA to temporal jitter (as in the P300). It is not
clear at this point how robust it would be to misallocation
of variance issues, although it appears to be promising in
cases where both spatial and temporal jitter is lacking
(Achim and Marcantoni 1997). A recent extension to this
technique may be able to take latency jitter and stretching
into account but remains a work in progress and is not yet
publicly available (Achim and Bouchard 1997). Likewise,
independent components analysis (Bell and Sejnowski
1995; Makeig et al. 1997) studies done thus far have been
applied in a fashion analagous to spatial PCA and should
be evaluated accordingly.

In conclusion, both PCA methods provide useful
information about the component structure of the ERP.
It should also be apparent that the richness of the evoked
potential, as revealed by PCA, cannot be appreciated by
a simple windowing procedure. While concerns about
misallocation of variance are valid, to avoid therefore the
use of PCA is to kill the messenger carrying the bad news
that coping with superposition is a challenge for ERP
analyses in general. Ideally, one should use experimental
manipulations to isolate components as best possible and
then characterize the component structure of the result-
ing effects with the appropriate PCA. ERP studies not
doing so should have to justify any conclusions they
make concerning componentry, particularly latency
measures and neural generators. Such a PCA may also
prove helpful with subsequent localization efforts. With
sufficient observations it could be feasible to apply these
techniques to functional MRI as well, separately or in
conjunction with ERP data.
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where Zt is a given time point variable (standardized), r
is the factor loading, and Zs is the factor score (stand-
ardized). Since:

or

If one carried out this operation for each factor,
added together the resulting latent waveforms, and then
added |a to the result, one would reconstitute the original
raw waveform (Jackson 1991:15). PCA is therefore liter-
ally the process of decomposing the observed waveforms
into inferred latent waveforms in that the factor scores,
factor loadings, variable standard deviations, and vari-
able means together contain the full information neces-
sary to regenerate the raw data. Note that the variable
means (u.) represent variance that could not be associated
with any factors and should therefore not be used when
regenerating individual factor waveforms.
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