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pH modulation of aqueous mixture samples combined
with FT-IR detection and a powerful second-order resolu-
tion method is proposed for both resolution and quanti-
tation of acid analytes in the presence of similarly behav-
ing interferences. The proposed method allows for the
analyte determination in mixtures using a single standard
sample per analyte. Due to the very similar pKa values of
the investigated analytes and interferences, the highly
correlated concentration profiles of these compounds
cannot be successfully resolved with pure soft-modeling
second-order approaches. The inclusion of a hard-model-
ing constraint based on the acid-base equilibrium model
in the soft-modeling curve resolution method has allowed
for the unambiguous resolution of the analyte profiles and,
as a consequence, for the correct quantitation of this
compound in the mixture sample. A detailed discussion
of the combined hard-soft-modeling approach as well as
the analytical problem and the quantitation results is
given. Also, strategies to overcome problems associated
with variation in pKa values between different samples are
addressed. Due to the flexible implementation of the hard-
model equilibrium constraint in the multivariate curve
resolution-alternating least squares method, this approach
is expected to be useful also for analysis of other complex
mixed equilibrium-based chemical systems.

Spectroscopy has proven to be an indispensable tool in the
analysis of solution multicomponent samples. In contrast to
univariate methods, in which a separation step is necessary for
the analysis of mixtures, spectroscopy is by principle a multivariate
method, which allows for the analysis and quantification of
analytes in complex matrixes without requiring previous separa-
tion. Mid-IR spectroscopy in aqueous solution1 offers richer
spectral information than other techniques, such as UV-visible
or near-IR, but is limited by the strong absorption of water in its

working wavenumber range. However, this problem can be
overcome by the use of appropriate measuring techniques such
as small-path length transmission cells or attenuated total reflec-
tion (ATR) methods.2

In most multicomponent analyses, no selective wavenumbers
exist for the analytes of interest as the spectral features of the
sample constituents overlap. Therefore, multivariate calibration
methods3,4 such as partial least squares (PLS) or principal
component regression (PCR) have to be applied to correlate the
measured spectra to known concentration values and to predict
analyte concentrations in new samples. A drawback of PLS and
related methods is that a large number of calibration samples is
necessary, as all possible analytes and interferences have to be
included in the calibration set in suitable concentration levels to
obtain a robust regression model.5

When the sample is subjected to certain kinds of modulation
and a spectral data matrix is recorded per sample instead of a
single spectrum, the situation changes. On one hand, the sample
modulation, e.g., acid-base titration in the case of pH-depen-
dent analytes, yields additional and more discriminant spectral
information; on the other hand, getting a spectral data matrix per
mixture sample allows for the quantification of analytes in the
presence of unknown and uncalibrated interferences. The latter
feature is known as the second-order advantage6 and can in
principle be achieved by simultaneous analysis of only one pure
analyte calibration standard with the mixture sample of interest.
Chemometric methods dedicated to the analysis of this kind of
data are called “second-order calibration” methods. Examples are
generalized rank annihilation (GRAM),7 parallel factor analysis
(PARAFAC),8 Tucker and second-order curve resolution (CR)
methods.9

Multivariate curve resolution-alternating least squares (MCR-
ALS)10 has already been applied to very diverse second-order
calibration problems, as for example, series of titrations,11,12
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chromatographic runs,13 or kinetic data.14 It is a flexible method
that takes advantage of known chemical and mathematical
information about the data set through the use of constraints and
allows for the simultaneous analysis of several data matrices
without strong requirements related to the mathematical data
structure.

In a previous work,12 we reported the successful quantitation
of mixtures of diprotic organic acids by Fourier transform infrared
(FT-IR) flow titration and MCR-ALS. Quantitation of mixtures of
one or two pH-dependent analytes in the presence of an inert
unknown interfering agent was successful using only one standard
per analyte in the MCR-ALS calibration. However, when the
interference was a pH-evolving compound with a behavior very
similar to the analyte, i.e., very close pKa values, correct resolution
and quantitation of the analytes were not possible any more. The
reasons for the failure of the pure soft-modeling MCR-ALS
approach are the very similar pKa values of the acids and the
resulting highly correlated concentration profiles among the
different acid species. In such a situation, more restrictive
constraints are required in order to obtain correct MCR-ALS
resolution and quantitation.

In the present work, we describe a novel combination of hard
and soft modeling for successful quantitative analysis of the
complex mixture titration data of pH-dependent analytes and
interferences monitored by FT-IR. A hard equilibrium model is
implemented as an additional and optional constraint in the soft
MCR-ALS algorithm. The analyte concentration profiles are
nonlinearly fitted15 according to an acid-base equilibrium model,
where the pKas and total concentration of the system are the
parameters to be optionally modified. Comparable examples of
combined hard and soft modeling have been reported for the
analysis of kinetic data.16-18

Another novelty of this work is that the hard-modeling
constraint is not focused on the recovery of the physicochemical
model, i.e., obtaining the equilibrium constants, but on the
improvement of the analyte quantitation. Thus, on one hand, the
known physicochemical model of the analyte guarantees the
correct shape of the concentration profiles of the different analyte
acid species; on the other hand, the hard model yields the
analytical information of interest, i.e., the total concentration of
the analyte in the mixture sample, as one of the fitted parameters.
This work is not only a new example of the combination of a mixed
hard- and soft-modeling approach but, mainly, a way to prove that

this strategy clearly surpasses the pure physicochemical interest
and can have a much wider analytical application. Thus, a hard-
modeling constraint should not be seen as a manner to exclusively
unravel a reaction pathway from a complex system, but as a way
to significantly improve the resolution and quantitation of identified
compounds (analytes) in complex samples through the inclusion
of their known behavior model.

EXPERIMENTAL SECTION
Reagents. All chemicals were of analytical reagent grade. L-

(+)-Tartaric acid and a 2 N NaOH solution were purchased from
Riedel-de Haën and DL-malic acid was from Aldrich. Sucrose and
lactic acid were obtained from Merck and HCl (37%) from Fluka.
Deionized water was used in all solutions. Samples were prepared
by dissolving the appropriate amount of organic acids or sucrose
in ∼200 mL of water and adjusting to a pH of 11 with NaOH
solution for complete deprotonation of the acids. Then, the
samples were filled with water to a volume of 250 mL in a
graduated flask and transferred into the titration beaker.

Instrumentation. A SenTix 61 pH electrode (working range
pH 0-14) and a pH-meter 320 (both WTW GmbH) were used to
measure the pH changes during the FT-IR titrations. A peristaltic
pump Minipuls 3 (Gilson) with a flow rate of 2.05 mL/min was
used for the on-line sample transfer from the titration beaker to
the transmission cell in the spectrometer and back to the titration
beaker. The IR transmission cell was built of 2-mm-thick CaF2

windows with a 25-µm PTFE spacer. The cell was connected to
the peristaltic pump tubing and the outlet tubing with standard
FIA tubing and fittings, respectively. The tubing length was kept
as short as possible.

All experiments were monitored with a Bruker IFS 66 FT-IR
spectrometer (Bruker Optik GmbH) with a mercury-cadmium-
telluride (MCT) detector. To increase the signal-to-noise (S/N)
ratio in the spectral region of interest (1600-1000 cm-1) a low-
pass filter with a 5% cut on at 1900 cm-1 and an aperture of 6 mm
were used. Each spectrum was the result of 128 coadded scans,
recorded with 8-cm-1 resolution, Blackman-Harris three-term
apodization, and a scanner velocity of 100-kHz HeNe modulation
frequency.

Titrations and Spectra Acquisition. A spectrum of a flow of
neutral water was taken as a reference spectrum immediately
before each titration experiment. Then, the sample was magneti-
cally stirred and titrated in the pH range from 11 to 1 with 3 and
6 N HCl. HCl was used as concentrated as possible to keep sample
dilution effects negligible. Sample spectrum recording was trig-
gered manually approximately every 0.2 pH unit when the wanted
pH value was reached. This led to ∼25-35 spectra/sample at
defined pH values and a typical titration time of 30 min. All spectra
were recorded with the OPUS IR software. The obtained data were
converted into ASCII files by use of an OPUS macro for further
data analysis in Matlab 5.3.

DATA TREATMENT
Data Pretreatment. Major baseline changes were observed

in the original FT-IR spectra during the titrations that stem from
changes in water association with varying H3O+ and salt concen-
tration.12 These baseline contributions included shifts and complex
curvatures and their pH dependency was highly correlated with
the concentration profiles of the acid species. Therefore, they
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could not be corrected for with conventional baseline correction
methods. The pretreatment that proved to completely eliminate
the baseline contributions in the 1540-1000-cm-1 range and allow
quantitative analysis of the titration data sets was calculation of
second-derivative spectra.

For all data analysis, MATLAB 5.3 was used.19 Second-
derivative spectra were calculated according to the method of
Savitzky and Golay.20 For MCR-ALS, an equilibrium hard-model
adaptation of the algorithm implemented by the authors as
MATLAB code was applied.21

MCR-ALS. MCR-ALS10 is a flexible, iterative curve resolution
method for decomposing a mixture data matrix D into the pure
contributions of all (significant) components in the system along
the two measurement directions:

In this work, D is the spectral data matrix containing rows of FT-
IR spectra recorded during a titration experiment. The columns
of the C matrix are the pure pH-dependent concentration profiles
of the modeled components and the rows in the ST matrix are
their related pure FT-IR spectra. E is the matrix of residuals not
explained by the MCR-ALS model.

For the purpose of second-order calibration and prediction,
two or more matrices from different experiments, e.g., mixture
and standard samples, should be analyzed simultaneously (Figure
1). The application of MCR-ALS to quantitative analysis of FT-IR
titration data has been explained in detail in the previous work12

and will only be described briefly.
Rank Analysis. The number of components to be modeled with

MCR-ALS is determined by singular value decomposition (SVD).22

Chemical components give rise to bigger singular values than
noise or minor instrument contributions. Therefore, the chemical
rank can be estimated by the number of singular values larger
than singular values associated with noise.

In data sets coming from one titration with more than one
closed equilibrium system (e.g., two different acids) or with an

inert interfering agent (sugar) and closed equilibrium systems
simultaneously present, the chemical rank is unavoidably under-
estimated; i.e., the number of significant components estimated
by SVD is lower than the true number of spectroscopically
absorbing species. This phenomenon is known as rank defi-
ciency23,24 and completely hinders the correct resolution of the
respective data matrix. However, rank deficiency can be removed
by matrix augmentation, i.e., by simultaneous MCR-ALS analysis
of the respective matrix together with one or more additional full-
rank standard matrices. The issues of rank deficiency and rank
augmentation by matrix augmentation have been addressed in
detail in our previous work12 for FT-IR titration data of mixtures
of organic acids and sugar.

Initial Estimates. MCR-ALS requires initial estimates of either
spectral (S-type) or concentration profile type (C-type) for all
modeled components. S-Type estimates can, for example, be taken
from mixture spectra. C-Type estimates can be obtained from
evolving factor analysis (EFA)25 or can be calculated for analyte
profiles according to the suitable equilibrium model.

Constrained Alternating Least-Squares Optimization. Equation
1 is solved in an alternating least-squares (ALS) optimization by
minimizing the residual matrix E. The two alternating steps in
the iterative optimization are

where (C)+ and (ST)+ are pseudoinverses of C and ST. D* is the
PCA-reproduced data matrix for the number of modeled compo-
nents. To minimize the ambiguity of the solution,26 the iterative
calculation of C and ST is always subject to constraints. These
constraints are based on chemical and mathematical properties
of the data and can be individually applied to profiles in C, ST, or
both and, in data sets formed by several matrices, to submatrices
of C, ST, or both. Constraints applicable to FT-IR titration data
include nonnegativity, selectivity, local rank, unimodality, and
closure for concentration profiles. Nonnegativity of spectra cannot
be used because of the second-derivative pretreatment.

The ALS optimization is stopped when the relative difference
in lack of fit (LOF) between consecutive iterations is below a
threshold value. The lack of fit (LOF) is defined as

where dij is the original element in the data set and eij is its related
residual.
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Figure 1. Column-wise matrix augmentation for simultaneous MCR-
ALS analysis of mixture and standard sample in second-order
calibration.
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Equilibrium Constraint. As mentioned in previous works
related to kinetic examples,16,17 a hard-model constraint selects
the concentration profiles in the C matrix involved in the known
reaction process as input for a nonlinear hard-modeling fit. The
selected profiles in the matrix C (or in the suitable submatrix of
C in the case of second-order data) are fitted to a kinetic model
in every iteration of the MCR-ALS. The fitted profiles update the
input profiles in every iteration, and the kinetic parameters
optimized in the nonlinear fit are obtained as additional informa-
tion.

In this work, we introduce for the first time a hard-modeled
equilibrium constraint into a CR algorithm. The underlying
physicochemical model describes the acid-base equilibria of
simple molecules. In a general manner, the concentration profiles
of the species involved in the acid-base equilibrium of an n-protic
acid can be described as follows:

As can be seen, the concentration profiles of all involved species
are expressed as a function of two kinds of parameters, the total
concentration of the acid-base system, cA, related to the analytical
information sought, and the suitable acidity constants, Ki (also
denoted by the logarithmic pKi), related to the physicochemical
behavior of the compound. Those are the parameters that may
be modified in the nonlinear fitting. The algorithm used is an
adapted Newton-Gauss-Marquardt algorithm, as described by
Maeder and Zuberbuehler,15 and it allows for the refinement of
some or all the parameters in the model.

Given the flexibility of both the MCR-ALS algorithm and the
nonlinear fitting algorithm integrated in it, the possibilities to apply
the hard-modeling equilibrium constraint to a chemical system
are extremely diverse. Thus, (1) all or some of the concentration
profiles in C can be included in the nonlinear fitting. (2) The
different submatrices in C (related to different titrations) can be
treated differently: (a) The number of acid-base systems to be
fitted can vary (e.g., submatrix of mixture of analytes and
submatrices of pure standards). (b) The nature of the acid-base
systems to be fitted can vary (e.g., different combinations of
analytes in the different titrations). (c) The selection of the
parameters to be fixed or loose in the nonlinear fit may vary (e.g.,
in a pure standard matrix, the total concentration of analyte is
known and, therefore, fixed, whereas it is left loose in a sample
matrix).

In the example of quantitation of analytes in the presence of
interferences, the hard-modeling constraint applies only to the
concentration profiles of the analytes, the only compounds of
known identity and formally known physicochemical model. The
concrete application of this constraint to the real examples in this
work will be explained in Results and Discussion.

CHEMICAL SYSTEMS AND DATA SETS
Two diprotic organic acids, L(+)-tartaric and DL-malic acid,

were studied as analytes in this work. These two acids, the
monoprotic lactic acid, and the pH-inert sucrose were also used
as interfering substances in the mixture samples. Mixture and
standard samples were titrated in the pH range 11-1, and FT-IR
spectra were recorded at defined pH values in steps of ∼0.2 pH
unit. In the course of the titration, the diprotic acids are character-
ized by three acid species, namely, the fully deprotonated A2-,
the intermediate HA-, and the fully protonated H2A. The pH
dependency of the H2A, HA-, and A2- species is determined by
the equilibrium constants pKa1 and pKa2 for the corresponding
protonation steps. H2M, H2T, and HL will be used throughout the
article for malic, tartaric, and lactic acid species, respectively. The
literature pKa values27 are 3.40 and 5.11 for DL-malic acid, 2.98
and 4.34 for L(+)-tartaric acid, and 3.85 for lactic acid. Concentra-
tion profiles for the species of the different acids are calculated
with these pKa values and plotted in Figure 2. It can be seen that
some profiles, e.g., H2M and H2T, HM- and HT-, or H2M and
HL, are very similar and separated by no more than 0.4 pH unit.
This corresponds to the pH interval in which three FT-IR spectra
were recorded in the titration experiments. The concentration
profiles of analogous species from different acids are extremely
correlated due to the very similar pKa values of the acids, which
is also confirmed by the correlation coefficients between the
different species of malic, tartaric, and lactic acid that are given
in Table 1, with values often exceeding 0.80. In contrast to the

(27) CRC Handbook of Chemistry and Physics, 81st ed.; Lide, D. R., Ed.; CRC
Press: New York, 2000/2001; Section 8.
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Figure 2. Concentration profiles of acid species with pH modulation,
calculated from literature pKa values. Both plots depict mixture
systems that correspond to experimental samples of this work: (a)
malic acid (-), tartaric acid (- -); (b) malic acid (-), lactic acid (- -).
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organic acid concentration profiles, the shapes of the related
second-derivative FT-IR spectra were significantly less correlated
but there was a strong overlap in all the working wavenumber
range and no clear selective regions could be detected. Samples
of varying complexity were titrated in order to systematically
evaluate the performance of the new hard-soft-modeling algo-
rithm. The compositions and the data matrix names of the different
titration samples are given in Table 2. Samples included pure
standards of malic and tartaric acid, samples of malic acid with
sucrose or the monoprotic lactic acid as interferences and, finally,
mixtures of the two diprotic acids, malic and tartaric acid, with
and without sucrose, where one of the diprotic acids also acts as
interfering agent. All data matrices contained 25-35 FT-IR spectra
in rows that were evaluated in the 1540-1000-cm-1 range, thus
yielding matrices of dimension 25 × 210 to 35 × 210.

RESULTS AND DISCUSSION
Pure Soft-Modeling MCR-ALS Approach. In a previous

work,12 we reported on the quantitative analysis of FT-IR titrations
of mixtures of diprotic organic acids and sucrose. The pure soft-
modeling approach was successful when malic acid and tartaric
acid were quantified simultaneously by augmenting the mixture
sample matrix with standard matrices of both acids. Clear
advantage was taken of the inert behavior of sucrose during
titration and relative prediction errors clearly below 5% could be
achieved for the acids even in the presence of 30 times higher
sucrose concentrations. No pH measurements were required for
MCR-ALS analysis of the titrations.

However, if only one diprotic acid is regarded as an analyte,
and hence, only one standard sample titration is included in the
analysis and the other acid is considered as an unknown interfer-
ence, pure soft-modeling MCR-ALS does not yield acceptable
resolution and quantitation. The main reasons for this failure are
attributed to the extremely high correlation between the malic
and tartaric acid species concentration profiles, the big overlap
in the spectral direction, and the impossibility of applying the
nonnegativity constraint in the second-derivative spectra.

Pure soft modeling of the diprotic acid mixture titration data
does not allow for quantitation of the analyte acid as rotational
ambiguous MCR-ALS solutions26 are obtained. Using S-type initial
estimates, the recovered analyte species profiles do not normally
fulfill diprotic acid behavior; hence, no quantitative answer can
be extracted from the MCR-ALS model. Using C-type initial
estimates, reasonably shaped concentration profiles may be
obtained but the estimated concentrations, i.e., the heights of the
profiles in relation to the ones in the standard sample, can be far
from the true ones, depending on the scaling of the initial
estimates (Figure 3a). This is because the data structure leads to
severe rotational ambiguity and the algorithm cannot ensure
convergence to the correct resolution with the exclusive applica-
tion of soft constraints (nonnegativity, unimodality, selectivity,
closure).

Table 1. Correlation Coefficients between Theoretical
Concentration Profiles of the Different Acid Speciesa

with pH

H2M HM- M2- H2T HT- T2- HL L-

H2M 1 -0.26 -0.79 0.98 0.11 -0.92 0.98 -0.98
HM- 1 -0.39 -0.37 0.80 -0.12 -0.09 0.09
M2- 1 -0.70 -0.62 0.95 -0.88 0.88
H2T 1 -0.06 -0.84 0.93 -0.93
HT- 1 -0.49 0.31 -0.31
T2- 1 -0.98 0.98
HL 1 -1.00
L- 1

a Abbreviations: H2M, HM-, M2- (malic acid); H2T, HT-, T2-

(tartaric acid); HL, L- (lactic acid).

Table 2. Sample Composition (in g/L) for the Different
Acid-Base Titrations

sample malic acid tartaric acid lactic acid sucrose

[M] 1.500
[T] 1.500
[MS1] 0.735 24
[MS2] 1.626 24
[ML1] 1.509 1.715
[ML2] 1.080 2.010
[MT1] 2.908 2.801
[MT2] 1.458 1.462
[MT3] 2.920 1.368
[MT4] 1.272 2.503
[MT5] 5.522 0.804
[MT6] 0.813 5.591
[MTS] 2.044 0.958 24

Figure 3. Malic acid quantitation results for sample [MT1;M]. Malic
acid profiles (thick lines), interference profiles (thin lines). The
horizontal dashed lines in (a) and (b) indicate the true concentration
level of malic acid in the samples. (a) Concentration profiles from
pure soft-modeling MCR-ALS. Left plot, [MT1] mixture; right plot, [M]
standard. (b) and (c) Concentration profiles (left plot, [MT1] mixture;
right plot, [M] standard) and second-derivative spectra from MCR-
ALS with equilibrium constraint.
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MCR-ALS Approach with Equilibrium Constraint. When
the novel equilibrium constraint was applied in MCR-ALS, correct
resolution for the analyte diprotic acid was achieved, hence
allowing reliable quantification. As shown in the Data Treatment
section, this constraint has general applicability to any acid-base
system but discussion is limited to diprotic acids, the analytes
investigated in this work. Only three parameters were necessary
to describe the concentration profiles of the H2A, HA-, and A2-

species as a function of pH. These parameters were cA, the total
concentration of the acid-base system, and the two equilibrium
constants, pKa1 and pKa2. The equilibrium constraint was only
applied to the analyte in both the mixture and the related standard
matrix and not to the interferences, since they were regarded as
unknowns. Within each titration, this constraint guaranteed that
the concentration profiles of the three analyte acid species
summed up to a constant total concentration at each pH value
and that the profile shapes obeyed a pH equilibrium model. No
additional constraints other than nonnegativity for all concentration
profiles had to be used in MCR-ALS.

In all analyses, the mixture sample matrix was augmented with
one standard sample matrix of the analyte diprotic acid, e.g.,
[MT1;M] (see also Figure 1). Initial concentration profile estimates
for the interfering acid could be taken from pure soft modeling
of this augmented data matrix. Concentration estimates for the
analyte diprotic acid in the standard and the mixture sample were
calculated according to the diprotic equilibrium model with pKa

values obtained from analysis of a pure standard sample. The
crucial point in building the analyte estimates, however, was the
scaling of the profiles in the mixture relative to the scaling in the
standard. This ratio could not be known a priori, as it was the
analytical information sought for. A successful algorithm should
give correct results, i.e., the true ratio between analyte in standard
and mixture sample, independently of this initial scaling ratio
(Rinit), and should also converge from extreme initial ratios or
ratios far from the true ones.

For successful quantitation of the diprotic acid mixture
samples, a two-step resolution process was developed. In the first
step (“pKa fixed”), very high and low Rinit were used to build initial
analyte estimates in order to cover the possible analyte concentra-
tions in the mixture sample. The pKas of the analyte acid in the
mixture were fixed to the same known values as in the pure
standard sample. Only the analyte acid concentration, cA, in the
mixture sample was left loose for fitting in the equilibrium
constraint. The MCR-ALS converged fast to solutions and cA values
that were not accurate, but much closer to the true ones than the
initial estimates. The obtained rough estimates of cA were averaged
and used to build a new initial estimate for the second step (“pKa

optimizing”) of the analysis. Now, the pKa values for the analyte
in the mixture sample were left loose together with cA; i.e., they
were optimized in the nonnegative least-squares fit of the equi-
librium constraint. The so-obtained diprotic acid concentration
predicted accurately the analyte content of the mixture samples
with prediction errors mostly lower than 5% (see Table 3).

This two-step resolution process combines the advantages of
the individual fixed pKa and optimizing approaches. In the fixed
pKa approach, the algorithm converges fast, even from extreme
Rinit. The obtained cA values are only a first estimate of the true
analyte concentration as the assumption of identical pKas in the

mixture and the standard samples is an approximation. Due to
various factors (total concentration of acid in the samples,
differences in salt concentration during titration and in analyte/
interference ratios, shifts in pH measurement), the pKa values of
the diprotic acids change to a small extent between different
titrations. Therefore, in the second, pKa optimizing, step the pKa

values of the analyte in the mixture sample are left loose and can
adopt their true values. As a result, correct prediction of analyte
concentration in the mixture samples is obtained.

In Table 3, the quantitation results for the two-step MCR-ALS
are given for samples of increasing complexity, for both malic
and tartaric acid as analytes. They ranged from samples with
sucrose as interfering agent ([MS1], [MS2]) that can also be
resolved by pure soft-modeling MCR-ALS and samples with the
monoprotic lactic acid interference ([ML1], [ML2]) to samples
with a diprotic acid interference ([MT1] - [MT6]) and also
diprotic and sucrose interference ([MTS1]). In all cases, the
resolution with MCR-ALS was successful and the predicted analyte
concentrations obtained from the equilibrium model were very
close to the true ones. A look at the obtained pKa values for the
malic and tartaric analytes in the different samples shows that
the pKa values were not identical but changed slightly from sample
to sample as was mentioned before. However, the range of pKas
was close enough to the literature values and confirmed that the
hard equilibrium constraint was appropriate and did not introduce
artifacts into the data. In Figure 3b and c, the resolved concentra-
tion profiles and second-derivative spectra for the [MT1;M]
analysis are depicted. The malic acid concentration profiles in
Figure 3b obeyed the diprotic equilibrium model and the heights
of the profiles corresponded to the true ones, in contrast to the

Table 3. Prediction Results and pKa Values for Malic
and Tartaric Acid from MCR-ALS Analysis with
Equilibrium Constraint

samplea
LOFb

%
pred

concn, g/L
pred

error, % pKa1 pKa2

analyte: malic acid
[MS1;M] 0.31 0.713 -3.1 3.29 5.14
[MS2;M] 0.40 1.665 2.4 3.30 4.96
[ML1;M] 2.61 1.572 4.2 3.12 4.78
[ML2;M] 2.54 1.071 -0.8 3.28 5.10
[MT1;M] 1.48 2.928 0.7 3.45 4.83
[MT2;M] 2.50 1.374 -5.8 3.40 4.93
[MT3;M] 1.85 2.870 -1.7 3.49 4.89
[MT4;M] 1.74 1.205 -5.3 3.42 4.89
[MT5;M] 1.19 5.505 -0.3 3.43 4.83
[MT6;M] 0.94 0.812 -0.2 3.50 4.83
[MTS;M] 0.68 1.989 -2.7 3.48 4.89

3.40c 5.11c

analyte: tartaric acid
[MT1;T] 1.41 2.772 -1.0 2.86 3.96
[MT2;T] 2.49 1.458 -0.3 2.89 3.85
[MT3;T] 1.59 1.352 -1.2 2.88 4.03
[MT4;T] 1.66 2.453 -2.0 2.85 4.05
[MT5;T] 1.06 0.848 5.4 2.90 3.99
[MT6;T] 0.99 5.483 -1.9 2.85 3.97
[MTS;T] 0.67 1.000 4.4 2.91 4.08

2.98c 4.34c

a Mixture samples are given together with the standard sample used
in MCR-ALS analysis with equilibrium constraint. The resulting
augmented matrices are given in Matlab notation, i.e., semicolon holds
for columnwise augmentation of the data set. b LOF as defined in Data
Treatment Section. c Literature pKa values for comparison.
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pure soft-modeling results of Figure 3a that gave a malic acid
concentration much higher than the true one. The interference
profiles (tartaric acid) were not correct in the higher pH range
as they were not constrained at all, except nonnegativity for the
concentration profiles. Still, this rotational ambiguity26 of the
interference that could be much higher in other samples did not
hinder the correct resolution and quantitation of the analyte. From
Figure 3b it can also be seen how overlapped the analyte and
interference contributions to the measured matrix [MT1] were
and that in a wide pH range all acid species of the analyte and
interference were present simultaneously. Even the rank-deficient
sample [MTS1] in which a chemical rank of only six could be
detected by singular value decomposition instead of the seven
spectroscopically contributing species12 was correctly resolved for
the analytes. In this sample, the three interference components
accounted simultaneously for the interference diprotic acid and
the sucrose contribution to the spectral data matrix. Nevertheless
the hard-modeling constraint ensured the correct recovery of the
analyte profiles and limited the rotational ambiguities to the
components of the sample that were not of analytical interest.

An additional asset of the novel hard-model constraint is that
it implicitly includes several other conventional soft constraints.
Unimodality, closure, and selectivity/local rank information are
covered by the equilibrium model and do not have to be applied
separately anymore. When initial estimates for the analyte are built
based on its approximate acid-base equilibrium model, the
application of this single constraint and the inclusion of the
measured pH values are sufficient for correct resolution of the
analyte in the FT-IR titration data.

CONCLUSIONS
In this work, we demonstrated how second-order resolution

and calibration can be performed successfully, even when the

concentration profiles are extremely correlated for analytes and
interferences and classical pure soft-modeling approaches fail
because of severe rotational ambiguities in the resolved concentra-
tion profiles and spectra. The knowledge about the chemical
behavior of the analytes is used to implement a hard-modeling
equilibrium constraint in the MCR-ALS algorithm that ensures
the correct resolution and quantitation for the analyte and
concentrates the remaining rotational ambiguities of the system
in the profiles of the uninteresting interference components. This
holds even for samples where the interference contribution is rank
deficient.

In contrast to previous examples of combination of hard- and
soft-modeling methods, this work shows that the inclusion of a
hard-modeling constraint into soft-modeling methods does not
necessarily require a physicochemical focus on the model and
its parameters but can have a direct analytical application. Indeed,
the analyte concentration is obtained as one of the fitted param-
eters in the equilibrium model and can be directly used for analyte
prediction in the presence of unknown interferences. Due to the
flexible implementation of the hard-model equilibrium constraint
in MCR-ALS, this approach is expected to be useful also for
analysis of other mixed equilibrium-based chemical systems.
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