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ABSTRACT 

We discuss various issues surrounding the use and inter- 
pretation of Generalized Procrustes Analysis and related 
methods. Included are considerations that have to be made 
before starting an analysis, how to handle different 
dimensionalities of data, when to consi&Jitting scaling 
factors and when not to, and the distinction between the 
number of dimensions that are needed to give an ad-equate 

jt and the number of dimensions nee&d fat- graphical 
representation. The distinction between signal and noise 
pkzys an important part in explaining how diffment 
methods are suitable for exploring different aspects of the 
data, rather than being viewed as competing methods 
with the same general objectives. Explanations are largely 
set in a geometrical context, thus keqbing technical muthe- 
matics to a minimum; a common Analysis of Variance 
framework allows all th4 m&h&s to be considertd in a 
una$td way and suggests some new -ways in which these 
kinds of data may be analysed. The whole is illustrated by 
example analyses. 

Kqwords: Generalized Procrustes Analysis, Analysis of 
Variance, sensory data. 

1 INTRODUCTION 
This is an expository paper about how to interpret 
Generalized Procrustes Analysis (Gower, 1975) and 
related methods. It seems that such a paper is timely as 
several issues are of current interest, including how to 
cope with different dimensionalities among the data- 
sets concerning different individuals and how to get, 
and especially how to interpret, optimal representa- 
tions in a few dimensions. The situation is complicated 
by a tendency to regard essentially different methods, 
that happen to have superficial similarities, as variant 
algorithms for solving the same substantive problem. 

More usually, different methods give information on 
different aspects of the data, so may be used to help 
answer different questions. It is therefore our principal 
aim to distinguish clearly between objectives so that prac- 
titioners can make an informed choice among methods 
appropriate to their needs. To complete the picture, 
but very much as a secondary aim, we also briefly dis- 
cuss in section [A.51 the roles of loss-functions/good- 
ness-of-fit criteria and computing algorithms. We do 
not explain how to do the computations or discuss the 
availability of software. 

Generalized Procrustes Analysis (GPA) is one of the 
family of methods that are concerned with the analysis 
of data arising from several individuals (see, for example, 
Arabie et al., 1987). Among other things, the individuals 
may be judges of food quality, or they may represent 
different laboratories where measurements and other 
observations have been made on a set of objects, or 
they may represent replications of the same informa- 
tion made on different occasions. We are concerned 
with how the individuals differ, and equally to what 
extent they may agree, in their perceptions of the same 
things, so it is essential that each individual, however 
defined, presents data on the same obje& (our preferred 
term, used throughout the following), samples, stimuli, 
or substances. The actual data provided by individuals 
may be in one of several forms and herein lies a poten- 
tial area of confusion. There are two major classes of 
data: Type I where each individual records a set of 
properties for each object and Type II, where each 
individual records his perception of the diffmence 
between each pair of objects. With Type I, properties 
may be assessed by recording qualitative observations, 
measurements, or by judgements given as a ranking of 
the objects. Although it is essential that each individual 
reports on the same objects; individuals need not 
record the same properties nor even the same number 
of properties. Free choice profiling (FCP) (Williams & 
Langron, 1984; Arnold & Williams, 1985) is one way in 
which different individuals record different properties 
(see LA.1.21). In some ways GPA is best suited to the 
analysis of data-sets where the individuals report on 
different properties. 
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As well as being directly recorded, there are several 
ways in which Type II information may be calculated 
from Type I. When individuals do provide Type II data, 
then essentially each is giving a symmetric distance- 
matrix. Just as distances can be derived from observations 
on the properties of the objects, so can Type I data be 
derived from distances. Further, Type I data may 
benefit from initial transformation, and distances may 
be transformed to give new distances which perhaps 
can be better represented in few dimensions than can 
the original distances, so leading to further variants of 
GPA. The links between Types I and II are one source 
of ambiguities in concepts of dimensional@ that are 
at the root of issues, addressed below, of how best to 
combine individual data-sets. 

Type II data may be asymmetric. For example, each 
individual might provide a confusion matrix whose 
cells give the number of times that each pair of objects 
had been confused in a tasting trial, where the order 
of tasting mattered. Models for analysing this kind 
of asymmetric data are beyond the scope of this 
paper, except to note that one way of proceeding is to 
separate the confusion matrices into their symmetric 
and skew-symmetric component parts (Gower, 1977; 
Constantine & Gower, 1978), analysing the symmetric 
parts by GPA. 

The above preamble should give some idea of the 
potential flexibility of GPA and dispel and tendency to 
regard it as a rather rigid analysis of quantitative data, 
usually in the form of scores. 

In this paper, our plan is that each section should 
be self-contained; however, we use the notation 
[ 1.2.31 to point to sections where relevant comments, 
discussion, amplifications and justifications may be 
found for assertions or for the steps taken in an 
analysis. Section [2] gives an informal exposition of 
GPA, simplifying the mathematics so far as is possible, 
by relying on geometrical explanations. This is 
followed, in [3], by a typical GPA and related analyses. 
Section [4] concludes the paper. An appendix may 
be viewed as containing an extended set offootnotes, though 
we intend that the account may also be read as a 
connected discussion of the many issues that surround 
GPA, some of them of a contentious nature; the 
Appendix sections are referred to by [A.1.2]. The 
Appendix starts by discussing, in more detail than is 
desirable in these introductory remarks, some general 
considerations concerning the forms of data used 
in GPA and some of the decisions that have to be 
made before starting an analysis. This is followed by 
a discussion of several interrelated issues concerning 
dimensionality, which naturally leads to the considera- 
tion of variant forms of analysis, emphasising how 
these may be useful in answering questions different 
from those that GPA is designed to answer. We con- 
clude [4] by providing a check-list of the major items 
covered. 

2 AN INFORMAL EXPOSITION OF 
GENERALIZED PROCRUSTESANALYSIS 

In this section our aim is to convey the general ideas 
and assumptions used in GPA. Some notation seems 
unavoidable but we have kept this to a minimum and, 
for the most part, rely on geometrical explanations. We 
assume that there are K individuals, each of whom 
provides information on the same Nobjects. With Type 
I data we have K matrices X, (k = 1, . . ., K) , each with N 
rows and Pcolumns, which may be thought of as giving, 
usually, numerical measurements or scores for each ob 
ject on each of P variables. If some X, initially have 
fewer than Pcolumns, then it is assumed that these ma- 
trices have additional zero columns appended to make 
them compatible; the justification for this practice of 
padding is discussed below in some detail [A.3.1]. With 
Type II data we assume that the K (N X N) symmetric 
distance matrices Dk (k = 1, . . ., K) have already been 
replaced by generating coordinate matrices’x, by using 
multidimensional scaling methods ( [A.I. I], [A. 1,2] ) . 

We denote the value obtained by the kth individual for 
the $h variable on the ith object by x~~ In the following 
we rely heavily on the notion that (xin,. x,,, . . ., x& can 
be considered to give the coordinates relative to 
P axes, of a point A, representing the P measurements 
on the ith object as recorded by the Kth individual, thus 
giving a total of N X K points for all object/individual 
combinations (see Fig. 2 for a representation with N = 4, 
K = 3, and P = 2). We term such a representation a 
conjiguration. 

2.1 The algebra and geometry of GPA 

Only two simple algebraic identities are needed to 
understand the basics of GPA. These are: 

and 

~ (Xi - Xj)’ =s (Xj - X)’ (1) 
+I 

N N 
C xi’= C (xi - #‘t Ni2 
t=l t=l 

where X is the mean, and is given by 

X=~ Xi/N 
i-1 

(2) 

Equation (1) says that the sum-of-squares of all pairwise 
distances between a set of points is the same as N times 
the sum-of-squares of the distance from their centroid. 
This relates the sum of the squared distances on the 
left-hand side of eqn (1) to the sum-of-squares of 
deviations from the mean on the right-hand side, and 
hence gives a useful distance interpretation of Analysis 
of Variance that is much used in the following. In 



Interpretation of Generalized Prom&es Analysis and Allied Methods 69 

??A2 

??.3 

Fig. 1. A configuration of Npoints A,, A,, . . ., A,with centroid 
G and an arbitrary origin 0. The distance betwzn two typical 
points is written in two equivalent forms: Afijz dv Other 
distances are written typically A,G = di and A,0 = 8, with 
W = 6, the distance between the centroid and the origin. 

geometric terms (see Fig. 1, where the notation is 
defined), 

f&V;d,2 
+I il 

so that when N= 4 we have 

d,; + d,; + d,; t 4; + $; t 4; = 4(d: t d.j t d3’t d,j) 

Equation (2) is Huygens’s (1629-95) formula, usually 
stated in terms of moments of inertia but, in the current 
context, better interpreted as one of the foundations of 
Analysis of Variance. It states that the sum-of-squares of 
a set of points about any origin is the same as the sum 
of their squares about their centroid plus N times the 
square of the distance between the chosen origin and 
the centroid of the points. Geometrically (see Fig. 1 

for the notation), 

i 6,s = 2 di’ t N6’ 
Z=l 

Although it may not be true of all analyses of variance, 
it is certainly true that most, including those associated 
with GPA and allied methods, may be built up from 
successive uses of Huygens’s formula. 

2.2 The geometry of configurations 

With these results, we are now in a position to demonstrate 
GPA from a geometrical point of view. Figure 2 establishes 
some notation and shows a geometrical representation of 
matrices X, , X, and X, given by three (K= 3) individuals, 
each representing N = 4 objects in P = 2 dimensions, 
here taken to be synonymous with two variables CA.1.21. 

In Fig. 2 the configurations for the three individuals 
are shown with different centroids, G,, C, and Gs, so im- 
plicitly we are assuming for the time-being that, unlike 
with FCP, it is valid to compare the values of variables 
between individuals [A.1.2]. The configuration for the 
second individual is contained entirely within the 
configuration of the first; clearly, these two persons are 
using different portions of the full ranges of possible 
scores and some scaling will be needed to account for 
this [2.4]. However, their centroids G, and C; are close, 
so they agree closely on their average scores. Despite the 
difference in size, these two configurations have similar 
shapes and orientations. However, the configuration for 
the third individual has not only a different shape from 
the other two but also a different orientation, so even 
after any scaling that might be used to adjust for size 
differences, this individual perceives the relationships 

A33 

Variable I 

Fii. 2. A, is the point representing object i for individual k. The configurations for three individuals, with centroids C;, C, and 
Gs, are shown as quadrilaterals. G is the overall centroid. The scaled axes are meant to indicate that the two dimensions of the 
diagram refer to substantive measured variables. 
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between the objects in a different way from the other two 
individuals. Furthermore, the centroid G, of this con- 
figuration is remote from the other two centroids, so 
this individual is using a different range of scores. The 
purpose of GPA is to forma&e statements of these kinds. 

2.3 The basic analysis of variance 

Placing the origin, for convenience, at G, the centroid 
of the whole set, and denoting the distance between 
points A and B by m, Huygens’s formula (2) may be 
used for the points of the Kth configuration to give 

Summing over all Kconfigurations to get the total sum- 
of-squares gives 

The term on the extreme right-hand side of eqn (3) is 
N times the sum-of-squares of the differences between 
the centroids. By eqn (1)) it may be written alternatively 
as 

K:G%;=:Gx; 
bl hcbl 

showing clearly how pairs of coincident centroids like 
G* and G, contribute zero terms to the total. This term 
gives the sumof-squares attributable to differences 
between the means of Individuals. The contribution on 
the left-hand side of eqn (3) is the Total sumof-squares 
and the remaining contribution, which represents 
the sum-of-squares of the Objects within Individuals 
(i.e. object scores about the individual means) may be 
obtained by subtraction and the whole expressed as the 
Analysis of Variance, given in tabular form in Table 1. 

As explained above, statements about the relative 
positions of the centroids of the configurations for the 
individuals make sense only when the two dimensions 
used in the representation refer to the same substantive 
variables. When the matrices have arisen from multi- 
dimensional scaling or from FCP, the positions of the 
centroids are arbitrary. This merely acknowledges, for 

TABLE 1. Analysis of Variance Separating the Translation 
Term M from the Total Sum-ofSquares T, the Difference 
Being Attributable to the Variance of the Object Scores about 
Their Mean Values for Each Individual 

source of variation sums of squares 

Individuals ivh$,@’ = M (say) 
3 

Objects within individuals By subtraction = T - M 

Total 5 g&i= T(say) 
k=l i=l 

Variable 1 
Fig. 3. The configurations for the individuals of Fig. 2 
translated to a common centroid C, without any change of 
orientation. The triangles link the three points representing 
the same objects as scored by the three individuals with 
centroids 4, F2, F, and F+ Because of the translation, the axes 
may be used only for within individual comparisons, for 
which distances between pairs of points, measured in either 
direction, have meaning. 

example, that it is not valid to compare one individual’s 
rating of odour with another’s rating of texture. In such 
cases, it remains valid to superimpose configurations, 
similar to those shown in Fig. 2, to have a common 
centroid C (say), as shown in Fig. 3, where what were 
G, G,, G, and G, all now coincides at C 

In Fig. 3, the configurations for the individuals are 
shown with the same orientations as in Fig. 2. This is ac- 
ceptable for the present, but it should be borne in 
mind that the orientations too are arbitrary, except 
when the axes refer to substantive variables. Shortly, we 
exploit this indeterminanacy of orientation. For the 
present, we note that the sum-of-squares about C in 
Fig. 3 is precisely the term T - M obtained by subtrac- 
tion in Table 1. Just as the individuals of Fig. 2 each 
have their own centroid, so do the points labelling the 
objects of Fig. 3, where they have been labelled F,, F,, F, 
and F4. Again, we may use Huygens’s formula (eqn (2) ) 
to partition the sum-of-squares about Cof Fig. 3 to give 

or 

T- M=S+(T- M- s) 

where the term S represents the sumofquares for 
objects. Because all the centroids G, now coincide in the 
single point C (see Fig. 3)) the left-hand side of this 
expression represents Objects within Individuals, as be- 
fore. The values of the two components on the right-hand 



Interpretation of Generalized Procrustes Analysis and Allied Methods 71 

TABLE 4. Analysis of Variance Separating the Translation 
Term M from the Total Sum-of-Squares T, and Terms 
Representing Object-Means S and Individual Deviations 
within Objects, T - M - S 

Source of variation sums of squares 

Individuals N 5 G-G; = M 
k=l 

Orientations: 

Object group average 

Individual deviations 

K ,$,F,c’ = S (say) 

By subtraction = T - M - S 

A,3 
I;‘ 

A,+--A,2 
1 

A 
42 

Total 5 $GA,:=T 
k=l t=l 

side depend on the orientations and, hence, this decom- 
position is collectively labelled Orientations. The terms 
of the decomposition attributable to the sum-of-squares 
of the rotated object means, i.e. the Group Average [2.5] 
with the remaining term T - M - S (Individual Devia- 
tions) , arise from the deviations of the rotated individual 
scores from the rotated average object scores. Thus the 
Analysis of Variance of Table 1 can now be refined to 
give the Analysis of Variance exhibited in Table 2. 

It has already been noted that the total sum-f- 
squares of Fig. 3 does not depend on the orientation of 
the configurations for the individuals. The Analysis of 
Variance of Tabb 2 is valid for any set of orientations. 
Although the value of the contribution S varies with orknta- 
tion, thejinal two lines of the body of the table (Orientations) 
will maintain a constant sum T - M. The preceding state- 
ment has been set in italics, for it becomes of central 
importance when we discuss alternative, but related, 
types of analysis ([A.4], [A.51 ). It is an obvious question 
to ask whether there might be some orientation, or 
orientations, that are more advantageous than others. 
Generalized Procrustes Analysis chooses to find the orien- 
tation that minim&s the sum-of-squares T - M - S for 
Individual Deviations; that is, GPA maximises the agree- 
ment between individuals on each object. Because 
T - M is a constant for all orientations, minimising 
T - M - S is the same as maximising both S and the 
ratio S/(T - M - S); this remark will be useful when 
we come to compare GPA with other methods (rA.4.11, 
[A.4.41). Figure 4(a) shows the result of GPA when 
applied to Fig. 3; the quantities whose sum-of-squares 
are minimised are shown as solid lines and in some 
contexts may be referred to as residuals and their sum- 
of-squares as the residual sum-of-square. 

\ 
, 

(b) 
Fig. 4. In 4(a) the configurations have been rotated to best 
fit by minimising the sum-of-squares of the marked residuals 
joining the object points with their respective centroids F,, F,, 
F, and F,. Because of the arbitrary orientations, the axes have no 
meaning and are not presented. In 4(b) the three individual 
configurations have also been scaled to reduce even further the 
residual sumaf-squares. The CPA group average configura- 
tion is indicated by the dotted lines. 

Every term in the Analysis of Variance is formed from 
summing the squares of separate distances like ak and 

has N X K components, such as the 4 X 3 components 
highlighted in Fig. 4. The quantities F>i may be 

CF;. These are worth tabulating and examining to see if tabulated as a two-way table whose column and row 
certain components contribute excessively to the total marginal totals give the contributions to the residual 
variation. This policy is especially valuable for the term 
c%, c$=, Fpi obtained by subtraction in Table 2, which 

sum-of-squares T - M - S attributable to the separate 
individuals and separate objects respectively [3.2]. 
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2.4 Optimal isotropic scaling 
With the example of Figs 2 and 4 it is clear that the 
substantive variables (rather than merely dimensions) are 
used differentially by the individuals, so that it is apprc+ 
priate to estimate a factor pk to scale Xk (/z = 1, 2, . . ., K) 
isotropically, i.e. all directions are treated equally. To 
avoid the unhelpful result that a perfect agreement can 
always be obtained by scaling every X, to have zero size, 
the estimation of optimal factors pk is adjusted so that 
the sum-of-squares, T - M, of the configurations about 
C remains the same before and after scaling. In this 
sense the total size of all configurations remains constant, 
but some configurations will be made bigger and others 
smaller. Estimating isotropic scaling factors for Fig. 4(a) 
gives the improved fit of Fig. 4 (b) . Comparing Figs 4 (a) 
and (b) shows that the orientations that result from 
minimising T - M - S depend on any isotropic scaling 
factors that might be associated with each individual’s 
use of scales. Thus, optimal scaling compared with no 
scaling will give a smaller value of T - M - Sand, con- 
sequently, a larger value of S. This improvement is no 
valid reason for scaling automatically [A.2.1]. When 
size differences are not reasonably attributable to 
differential use of measurement scales but, say, are 
merely the effects of the arbitrary size scaling given to 
configurations produced by some multidimensional 
scaling computer program, it is sufficient to prescale [A.21 
each X, to have unit sum-of-squares about its centroid. 

Whenever isotropic scaling is used, it will be assumed 
in the following that the configurations plotted, and the 
resulting analyses of variance, incorporate the optimal 
estimate of the scaling factors pk (Gower, 1975; ten 
Berge, 1977). This avoids having to make unhelpful 
distinctions between scaled and unscaled forms of 
analysis; it is understood that the estimated values 
p,, p2, . . ., pk will be recorded and used in any interpreta- 
tion. When each X, is initially scaled to have unit 
sum-of-squares, the term S of Table 2 may be written 
S=pf+di-..., pi (see Gower, 1975). 

2.5 The group average 
The configuration of the centroids F,, F2, . . ., FN, associ- 
ated with the objects provides a valuable summary of 
how the individuals view the relationships between the 
objects on the average. This was termed the wnsensus 
conJigurution by Gower (1975)) but this terminology is 
somewhat unfortunate because the configuration cer- 
tainly does not represent a consensus of views of the 
individual ([A.4.4] (see also Lingoes & Borg, 1978, 
p. 459). Rather, it represents an average that may conceal 
a wide range of differences of viewpoint. The term 
group average used in individual scaling [A.4.5] is better, 
but its unqualified adoption would be confusing. Per- 
haps all methods that provide an average configuration 
of this kind should adopt the term ‘group average’ but 
precede it by the name of the method used. Thus we 

could have CPA group average, STATIS group average 
(Lavit, 1988) and even lh!DScAL group average, though 
INDSCAL [A4.5] might be omitted in acknowledgement 
of priority for the term in that method, rather as the 
name of the country is omitted from British postage 
stamps. Alternative terminologies refer to the common 
space of the analysis or to the centroid confguratirm. The 
GPA group average is shown on Fig. 4(b) and consists 
of the points F, (i = 1, . . ., 4). It has greater sum-of- 
squares (and therefore by eqn (l), it is bigger in size) 
than all group averages given by other sets of orienta- 
tions not obtained by GPA. 

2.6 The exhibited and unexhibited parts of the analysis 
So far everything has been described in terms of two 
dimensions. It should be clear that however many 
dimensions there may be, everything follows through, 
except for the problem of exhibiting high dimensional 
configurations in the confines of two-dimensional paper. 
Gower (1975) suggested using Principal Component 
Analysis of the GPA group average configuration to give 
a low-dimensional (hopefully two-dimensional) approxi- 
mation to that configuration and then representing 
everything relative to these principal axes. Also, this 
gives a convenient unique final orientation for all the 
configurations which does no violence, because the 
orientation of the combined configuration (the multi- 
dimensional generalization of Fig. 4(b) is otherwise 
arbitrary. Thus, the component analysis merely chooses 
an optimal joint orientation that gives a best configura- 
tion for display, without changing any of the inter-point 
distances given by the GPA. With component analysis, as 
with other ways for handling problems of dimensionality 
to be discussed shortly [A.4], the Analysis of Variance may 
be divided into two independent parts, one representing 
the part of the total configuration that is exhibited, in the 
R (say) most effective dimensions, and the remaining 
unexhibited part, in P - R dimensions; this is shown 
in Table 3, where we have now adopted a shortened 
terminology for the sources of variation. As is usual in 

TABLE 3. Analysis of Variance as in Table 2 but Partitioning 
Every Sum-ofSquares into a Part that is Exhibited in R 
Dimensions and an Independent Non-Exhibited part in 
P - R Dimensions 

Source of Sums-ofsquares 
variation 

Exhibited Unexbibited Total 
(R (P-R (P 

dimensions) dimensions) dimensions) 

Individuals MR MW-R, M 

Orientations: 
Group sR %I0 S 

average 
Deviations G - MR - S, TtFls - McFR, - Scp-m T- M- S 

Total TR ?p-R, T 
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a component analysis, ‘the proportion of variance 
accounted for’ in R dimensions is S,/S. 

This particular breakdown into exhibited and un- 
exhibited dimensions is designed to give the best 
representation in R dimensions of the GPA group 
average. In mathematical terms, this gives a particular 
projection [A.41 of the P-dimensional space onto R 
dimensions. There are other possibilities. For example, if 
one wishes to be even-handed and get a best representa- 
tion of all the data, then all N X K P-dimensional 
coordinates (after orientations and any scaling) should 
be used for the component analysis [3.2]. Other 
projections are discussed in [A.4]. 

2.7 Relating the properties to the reoriented configurations 

An important aid to interpretation is to see how the 
coordinate axes for representing the properties appear 
in the final reoriented configurations. These axes will 
have been rotated, scaled and projected in precisely the 
same way as the data. It follows that the axes will appear 
as straight lines through the centroid but, because of 
the projections, they will no longer be at right angles as 
they were originally. Further, unit length on some axes 
will project into much smaller lengths than on other axes; 
such foreshortened axes contribute little to the display 
in the chosen projection, normally the exhibited space, 
and should be ignored. To help identify insignificant 
axes, unit lengths of the original scales of measurement 
should be indicated on the projected axes [A.5]. Each 
individual has his or her own axes in FCP and one 
of the advantages of displaying axes is to get a feel for 
how descriptions of properties given by the different 
individuals may be related. 

The above is a valid description when the X, relate 
to the original data matrices, perhaps with some pre- 
scaling and centering. However, with the more elaborate 
transformations of multidimensional scaling type, the 
situation is more complicated. Nevertheless, axes may 
still be displayed, although they will now be non-linear. 
The methodology required is beyond the scope of this 
article (see Gower & Harding, 1988). An example 
which includes both qualitative and quantitative axes is 
given by Gower and Dijksterhuis (1992). 

3EXAMPLES 

Throughout this section, there is a considerable 
amount of forward referencing, including analysis of 
data using methods related to GPA that are explained 
in the Appendix. The data discussed in this section are 
of Type I [l] and stem from an experiment in which 
seven assessors tasted eight different kinds of yoghurt; 
thus K= 7 and N= 8. These data are a subset of the data 
used by Dijksterhuis and Punter (1990). The experi- 

TABLE 4. The Raw Data Used in the Analysis in this Paper, 
K = 7 Individual Sets (k= 1, . . ., 7)) N= 8 Products (i = 1, . . ., 8)) 
Ph attributes (4 < Pk 5 9) 

ki k i 

11 2184261124 5 1 69 17 64 83 
2 9 73 75 9 8 2 9882719 
3 67 84 40 9 32 3 91 11 77 14 
4 41 75 55 9 24 5 71 24 87 32 
5 1067 31 9 77 5 958 1587 
6 106784 816 6 11 87 13 16 
7 71 89 14 54 47 7 87 16 66 76 
8 8 86112037 8 13807550 

2 1 37 15 82 65 59 22 32 34 6 1 71 1626 945 87 
2 2219142415162537 2 88 33 72 10 12 66 
3 79 58 65 32 46 22 25 40 3 49 21 69 84 54 71 
4 70 85 42 73 86 25 57 56 4 24 77 62 10 17 52 
5 22 14 30 20 50 27 42 32 5 86 10 76 77 78 67 
6 9 10 14 24 21 33 22 47 6 88 20 81 13 15 49 
7 9154906940277876 7 3474631384 20 
8 15 10 33 62 36 25 25 58 8 87 10 66 89 63 73 

3 1 71 70 75 28 42 34 12 90 43 7 1 42 16 68 59 0 45 28 8 
2 9090 8 790748927 8 2 12 7333776 166315 
3 3424882764529141 13 3 11 16574225 1612 8 
4 383161803018 04619 4 7019152425 624020 
5 919570167560561629 5 10 7175033 515790 
6 98 91 42 60 47 82 73 23 8 6 80 9 44 33 27 23 43 30 
7 19 9 91 80 22 53 8 75 52 7 32 40 65 51 20 64 32 28 
8 898186 8 98511 974 8 61 9144671 725775 

4 1 56 81 20 21 20 
2 10 11 462681 
3 88 82 21 20 26 
4 59 49 60 28 75 
5 9 83 49 40 49 
6 9 19 22 23 74 
7 75 47 21 21 22 
8 1680481729 

ment used Free Choice Profiling in which the assessors 
themselves were allowed to choose the variables on which 
to rate the yoghurts. As a result, the seven individual 
data matrices X, (k = 1, . . ,, 7) (Table 4) have different 
numbers of columns-in this case, ranging from four 
to nine-but all have eight rows. 

Table 5 presents the means of the attributes for each 
individual. From Table 5 it can be seen that there are 
large differences in mean scores between attributes. 
Because the data in this example is of FCP type, the 
means cannot be compared over individuals in terms of 
the attributes [A.1.2]. Thus, in Table 5, the first value 
of the first set (29.6) cannot be compared with the first 
value of the second set (43.1) because they refer to dif- 
ferent attributes. The blanks in Table 5 result from the 
sets having differing numbers of attributes. X, has nine 
columns and X, and X, each have eight columns, so 
we have a situation discussed in [A.3.1] of excess 
dimensionality. These matrices may be reduced to seven 
columns by performing a PC4 on the raw data in the 
sets. This initial PCA preserves distances and so does not 
result in any loss of information [A.3.1]. Theoretically 
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TABLE 5. Mean Attribute Scores (Translation Terms) 

Individual 

1 29.6 78.1 42.0 16.1 33.1 
2 43.1 33.1 46.3 46.1 44.1 24.6 38.3 4’7.5 
3 66.3 61.4 65.1 38.3 47.4 57.3 42.5 40.9 30.8 
4 40.3 56.5 35.9 24.5 47.0 
5 45.0 47.6 53.0 47.1 
6 65.9 32.6 64.4 38.1 46.0 60.6 
7 39.8 15.4 39.1 42.8 34.6 43.6 41.3 34.3 

these initial PCAs are unnecessary but they may help with 
computer implementations and they ensure the size of the 
computed rotation matrices is minimal, so improving 
computer efficiency. Sets with less than seven columns are 
padded with additional zero columns in order to make 
all the matrices of the same size. Thus we arrive at P= 7. 

3.1 Analysis 

The same data set has been analysed using three different 
methods, corresponding to a ‘typical’ GPA analysis [Z] , 
and two ‘projecting’ analyses, Peay’s (1988) EA.4.11 and 
Green and Gower’s (1979) [A.4.4]. ten Berge and Knol 
(1984) give details of how to generalize the Green and 
Gower method to include more than two sets. Because 
FCP has been used, translation has no meaning, so 
this term is omitted from subsequent analyses of 
variance and the centroids of all seven configurations 
are immediately translated to a common origin. In 
doing this, it is recognized implicitly that the only 
potentially useful information in this kind of data 
resides in distances between pairs of objects. Because 
the data consist of a set of limited scale values [A.21 
obtained from an FCP experiment, so called P,-scaling 
[A.2.1, Table Al] has been applied to the data, except 
with the Green and Gower analysis [A.4.4]. 

To keep the numbers to a manageable size the total 
sum-of-squares is scaled to 100. This also results in the 
Analysis of Variance tables containing percentages of 

the total variance (see also Dijksterhuis & Punter, 
1990). This scaling has no influence on the solution 
but it is convenient to be able to work in terms of 
percentages. All analyses are carried out with an 
optimal isotropic scaling step [2.4]. 

There is insufficient space to give exhaustive analyses, 
so many of the possibilities described in the main text 
are not explored in these examples. Only summary 
information is given for individuals (e.g. Table 7). For 
example, we illustrate only group averages and not con- 
figurations giving detailed information on individuals, 
such as in Fig. 4. For variables comparable across 
individuals [A.2.1], information on variables could be 
given concisely with the group-average configuration, 
but with FCP data either separate diagrams would 
be needed for each individual or all K Z%P, variables 
could be represented with the group average. We rec- 
ommend this but have insufficient space to illustrate it 
here. The GPA [3.2] is more complete than the other 
analyses; for example, tables corresponding to Table 7 
are not confined to GPA. 

3.2 Classical GPA 

The first analysis to be presented is a classical General- 
ized Procrustes Analysis, as described in [2] and in 
more detail in Gower (1975). The criterion minimised 
is T - M - S, which measures the squared distances 
between the corresponding points of the X, (see 
Fig. 4 and Table 3); its minimisation is the same as 
maximising S. The analysis of the yoghurt data-set gave 
T - M - S= 22.3% and a group-average sum-of-squares 
S= 77.7%. S expresses the variance lost in the Procrustes 
transformations of rotating and scaling. Table 6 pre- 
sents the Analysis of Variance for this and the other two 
analyses to be described below. As described in [A.2.1], 
each set has been initially scaled to have a constant sum 
of squares so that estimates of the isotropic scaling 
factors pk are relative to this initialisation. 

The method defined as Generalized Procrustes 

TABLE 6. Analysis of Variance for the Three Analyses, Partitioned in an Exhibited Part in R = 2 Dimensions and an Unexhibited 
Part in P - R = 5 Dimensions” 

Source Individual deviations Group average Total 

R P-R P R P-R P R P-R P 

GPA’ 12.8 9.5 22.3 61.4 16.3 77.7 74.2 25.8 100 
GPA’ 13.1 9.2 22.3 61.3 16.4 77.7 74.4 25.6 100 
Green and Gower 0.8 30.4 31.2 6.8 62.0 68.8 7.6 92.4 100 
Peay 15.9 11.0 26.9 63.0 10.1 73.1 78.9 21.1 100 

Terms in Table 3: TR-MR-SR Tcp+, -Mtp+ -Scp+, T-M-S S, SW-R, S TR TV-R, T 

a GPA is presented in two forms labelled GPA’ and GPA2. GPA’ and CPA2 are essentially the same analysis but a different space is 
found for exhibiting the display. In GPA’ the exhibited Rdimensional space is relative to the principal components of the N X P 
matrix of group-average coordinates. In GPA* the exhibited Rdimensional space is relative to the principal components of the 
(N X x) X Pmatrix of all the combinations of individuals with objects [2.6]. The values in the table can be interpreted as percent- 
ages since the totals are 100. 
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Analysis in [2] performs its transformations (rotation 
and scaling) in the full-dimensional space-in this 
case in seven dimensions, since this is the maximum 
dimensionality of the sets. The analysis results in one 
highdimensional group average configuration of eight 
objects in seven dimensions. As described in [2.6] a 
PGA may be used to represent the group average relative 
to its principal components. The seven principal com- 
ponents explain, respectively, 55, 24, 7-4, 6.1, 4.2, 2.2 
and 1.1% of variance of the group average. As was 
shown in Table 3, the Analysis of Variance can be 
divided into two parts, one exhibited R-dimensional 
part and an unexhibited P - R-dimensional part. Thus, 
the row labelled GPA’ in Table 6 shows that the group 
average accounts for 77.7% of the total variance and 
with R = 2, S, = 61.4% in the exhibited space of the 
group average with 16.3% left in the unexhibited 
space. 

Table 7 shows the individual deviations partitioned 
over objects and over individuals. The numbers in the 
table are the squared distances FTik from [2.3] and 
Fig. 4. The grand total is equal to T - M - S= 22.3. The 
row margins give the residuals for the objects. In this 
case, the objects numbered 1, 3 and 4 have the largest 
residuals, which means that they do not fit as well as the 
other objects; the clusters around F,, F3 and F4 will be 
looser than the other clusters. These residuals pertain 
to the full seven-dimensional configurations [3] and 
will not necessarily be visible in the low-dimensional 
exhibited space, such as Fig. 5. Tables like Table 7 can 
help one avoid over-interpretation when the exhibited 
configuration is not a very good approximation. It can 
then be useful to partition the table into exhibited and 
unexhibited residuals, but we have not done this here. 
The column margins give the residual sum-of-squares 
for the individuals. It can be seen that individuals 2 
and 3 have the best fitting configurations, since their 
residual sum-of-squares is among the lowest; these 
individuals are close to the group average. Individuals 
6 and 7 are furthest from the group average. Indeed, 
the intersection of the worst object (3) and with worst 
individual (6) pinpoints the worst residual (1.430). 

TABLE 7. Individual Squared Deviations partitioned over 
Objects and Over Individuals (GPA) 

Objects Individuals sum 

1 2 3 4 5 6 7 

1 O-539 0.237 0.181 O-412 0.560 0.735 O-594 3.26 
2 0.228 0.150 0.390 0.434 0.212 0.417 0.611 2.44 
3 0.117 0.086 O-480 0.931 O-735 l-430 0.379 4-16 
4 0.706 0.687 O-365 O-489 0.349 O-427 0.485 3-51 
5 0.330 0.353 O-337 0.129 0.333 0.278 0.153 l-91 
6 0.309 0.462 0.101 0.200 0.288 O-123 1.102 2.58 
7 0.336 0.224 O-162 O-266 0.290 O-273 0.328 1,88 
8 0.391 O-353 O-297 0.136 0.393 O-595 O-390 2.55 

Sum 2.95 2-55 2.31 3.00 3.16 4.28 4.04 22.29 
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Fii. 5. First two principal components of a PC4 of the GPA 
group average, showing the eight kinds of yoghurt. 

The first two principal components of the group 
average give the twtimensional approximation exhibited 
in Fig. 5. From the figure it is clear that there are two 
pairs of yoghurts (2 and 6, 5 and 8)) each of which is 
judged similar by the panel. In fact, yoghurts 5 and 8 
are the same products, blindly presented twice to the 
panel. Numbers 2 and 6 are, respectively, light (low fat) 
and normal variants of the same brand of yoghurt. 
It seems as if the panel were unable to discriminate 
betieen the two variants. 

Another result of a typical GPA is the set of isotropic 
scaling factors used to shrink or stretch the sets during 
the matching process. A configuration X, is multiplied 
by a factor pk that represents shrinking when 0 < pk < 1 
and stretching when 1 < pti Table 8 presents these 
factors for all three analyses performed This table shows 
that the data of the fifth individual needed shrinking by 
a factor 0.79, and those of the first individual stretching 
by a factor 1.26, implying unusual use of the scale 
ranges. The other isotropic scaling factors do not differ 
much from unity. 

To illustrate a different partition of the exhibited 
and unexhibited spaces we have also chosen the first 

TABLE 8. Scaling Factors pk for the Three Methods (GPA 
and Peay with Pk scaling, Green and Gower without Pk scaling 
[A.4.4]) 

Individual GPA Green and Gower Peay 

1 l-26 O-84 1.14 
2 1.17 l-14 1.24 
3 0.92 0.98 l-01 
4 1.09 o-99 1.08 
5 o-79 o-55 0.78 

o-90 l-49 0.79 
1.11 1.18 l-24 
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two principal components of the N X K P-dimensional 
coordinates to define the exhibited space [2.6]. This 
gives the analysis labelled CPA* in Table 6 in which the 
P-dimensional sum-of-squares are as before, because it 
is only the partition into exhibited and unexhibited 
components that differ. The difference between the 
two versions of exhibiting the GPA is trivial, and is 
mainly to be seen in minor changes in the contribu- 
tions from Individual Deviations; the group average is 
hardly affected. This variant gives a diagram (not 
shown) very similar indeed to that of Fig. 5. When out- 
liers are present, the GPA’ and GPA’ analyses will differ 
more and the group average of GPA* could then show a 
much poorer representation in the exhibited space. 

3.3 Method of Green and Gower [A.4.4] 

The Analysis of Variance associated with this analysis 
is also presented in Table 6. A value of R = 2 was 
chosen for the exhibited space. The criterion min- 
imised is (see Table 3) TR - MR - S, = O-S%, only 6.8% 
is captured in the two-dimensional group average. This 
phenomenon is almost certainly due to the fact that the 
high dimensions are projected to cast ‘shadows’ which 
are of similar shape [A.4.4], but this happens irrespec- 
tive of the shadows’ sizes. It seems as if, at least with 
this data-set, rather small shadows are closely matched, 
suggesting that there is little ‘consensus’ between the 
individuals. 

Figure 6 shows the two-dimensional group average 
that results from the Green and Gower analysis of the 
yoghurt data. The resemblance between the pair of 
yoghurts (5, 8) which was clear from Fig. 5 is absent in 
Fig. 6; the other similar pair (2, 6) is visible in both 
configurations. Because the representation of Fig. 6 
does not capture much variance (just 6.8%, see Table 
6) it is not surprising that this configuration does not 
match the GPA one (and the Peay one described 
in [3.4]) very much. The scaling factors (Table 8) for 
individuals 1 and 5 are smaller than those given by the 
other two methods. The data of individual 6 were 
stretched with this analysis and shrunk with the other 
two analyses; contrariwise, for individual 1. The scaling 
factors for individuals 3 and 4 approximate unity, as 
with the other analyses. However, the use of P,-scaling 
[A.2.1] complicates the direct comparison of this 
method with the other two. 

3.4 Method of Peay [A.4.1] 

Table 6 also contains the result of Peay’s method of 
analysis of the yoghurt data. This method maximises 
S, (Table 3), the sum-of-squares contained in the ex- 
hibited part of the group average. While maximising the 
percentage captured in the two-dimensional group 
average (S, = 63-O%), this method shows the greatest 
deviations between the individuals in the two-dimensional 
space ( TR - MR - S, = 15.9%). 

The unexhibited (P - R)dimensional space contains The group average given by Peay’s method (Fig. 7) is 
parts of the individual configurations with arbitrary very similar to that given by GPA (Fig. 5). This is to be 
orientations [A.4.3]. These configurations were analysed expected because the group average sum-ofsquares in 
using GPA and the resulting sum-of-squares for the both the P-dimensional spaces and the R-dimensional 
individual deviations and the group average are also exhibited spaces are quite close. In this case at least, it 
shown in Table 6. matters little whether the (P - R)dimensional space 
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given by Peay (10.1%) represents pure noise, pure 
signal or a mixture of both [A.4.2]; other cases may 
show larger differences. 

The Peay group-average sum-of-squares in the ex- 
hibited space (63.0%) has been maximised and is, as it 
must be, greater than the corresponding GPA value 
(61.4%). However, in the full P-dimensions the reverse 
is true [A.4.1] (73.1% and 77*7%), even though S,, 
has been maximised, conditional on the maximisation 
of S, [A.4.3]. Further the P-dimensional signal-to-noise 
ratios are 3.48 (GPA), 2.72 (Peay) and 2.21 (Green and 
Gower); recall that this ratio is maximised by GPA 
[2.3]. It is worth noting that the signal-tonoise ratios in 
the exhibited space are 4.80 (GPA), 3.69 (Peay) and 
8.50 (Green and Gower) , but we have not attempted to 
maximise this ratio to get its optimal value [A.4.2]. 
Green and Gower does best but note that in that case 
both the exhibited signal and exhibited noise are 
small and one cannot expect that the unexhibited parts 
represent only noise, underlining the importance of 
deciding what is signal and what is noise. 

Figure 7 shows the group average of the Peay analysis. 
Apart from a reflection in the first dimension, this 
configuration is very much like that of GPA. The scaling 
factors (Table 8) have the same pattern as those 
from GPA. For this data-set, it seems there is not much 
difference between the solutions of these two methods. 

4 CONCLUSIONS 

We shall summarise the above discussion in the form of 
a checklist. 

(1) 

(2) 

(3) 

(4) 

Decide whether data is of Type I or II [l] and, if 
the former, whether it is in the form of FCP or 
whether the variables are comparable across 
individuals [A. 1.21. Decide which, if any, trans- 
formations may be needed or be worth exploring 
[A.l. 11. As part of this process decide if some 
form of initial scaling is desirable [A.2.1]. Do 
any preliminary multidimensional scaling or 
component analyses [A.l.l] perhaps to separate 
what appears to be signal from what appears to 
be noise [A.4.2]. 
Has initial scaling taken care of size differences 
or is it sensible to fit isotropic scaling factors? Do 
not fit isotropic scaling merely to improve the fit 
(E2.41, [A.2.1]). 
Eliminate individual means. Do these means 
contain useful information? If there is a cross- 
classification, decide whether the analysis is to be 
focused on individuals or on objects; remove the 
appropriate means [k1,2]. Consider a MANOVA 
Decide on what aspects of the data you wish to 
explore. Recall that GPA gives the best overall 

(5) 

(6) 

(7) 

(8) 

group-average for noiseless data [2.3]; Peay 
gives a method for separating signal from noise 
[A.4.2], but this is perhaps better achieved 
by an initial multidimensional scaling or com- 
ponent analysis [A.4.2]; and that Green and 
Gower’s method gives a method for detecting 
consensus or agreement [A.4.4]. 
Decide on the dimensionality R of the signal space 
and the dimensionality RI of the exhibited 
space. Several different values of R may need 
to be examined. Plot the group-average space 
together with information on individual differ- 
ences [2.5] and on the variables [2.7]. Try to 
interpret this analysis in the light of what you 
know about the objects, the individuals, the 
variables and the experimental procedures that 
generated the data. Make proper allowance for 
the degree of approximation with respect to the 
full R-dimensional signal space [A.4]. 
Record the Analysis of Variance [2]. Record 
any scaling factors that may have been estimated 
[2.4]. Examine the contributions to the residual 
sum-of-squares, breaking this down by both indi- 
viduals and by objects [2.3]. Record the numerical 
values of the individual rotated/projected con- 
figurations and of the group average configura- 
tion. 
Decide whether it is worth analysing the part of 
the data that is in P - R dimensions [A.4.3]. If 
so, return to (4). 
If you must, consider possible reification of 
directions (not necessarily orthogonal) in the 
group-average space. The original data and the 
rotation matrices [A.51 might be helpful in this 
process-also, correlations between variables and 
fitted dimensions. 

If there are any conclusions to be drawn from this 
discussion, they are that data analysis is not a straight- 
forward matter of using the right computer package 
and that, even in the restricted area under discussion, 
one cannot recommend a single best method. We hope 
that as a result of this article, researchers will be in a 
position to appreciate what questions the methods 
might help answer and hence do better and more 
relevant analyses. 

We conclude with a quote from Hurley and Cattell 
(1962) who coined the term Procrustes Analysis. They 
write: ‘To publish widely a program which permits any 
tyro, by pressing a computer button, to seem to verify 
any theory, is as irresponsible as loosing opium on the 
open market. That computers and their programs can 
be a real danger to proper values and directions in re- 
search must already be evident in several fields.’ Thirty 
years later things have got much worse-computers are 
now commonplace and software for a confusing variety 
of methods is readily available. 
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APPENDIX: IMPORTANT ISSUES 
CONCERNING GPA AND 
RELATED METHODS 

In this section, several issues surrounding the use of 
GPA and related methods are discussed. To get the 
most out of these methods, and to avoid misinterpreta- 
tions it is important that these issues are appreciated. 
Fortunately much can be understood without having to 
master the mathematical and algorithmic details that 
are the concerns of methodological research workers. 
It will become evident that many issues cannot be 
resolved in a clear-cut way. Data-analysis is part art, 
part science and part technology (Healy, 1978); this is 
certainly true of Procrustes methods. 
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A.1 Considerations concerning the data of GPA 

This subsection considers decisions that have to be 
taken before embarking on a GPA. Potentially here we 
could discuss much of general data-analytical interest 
but we have singled out considerations of particular 
importance in the current context. One topic of major 
importance that cannot be covered here is the design 
of methods for collecting (sensory) data and the associ- 
ated sampling problems. 

A.I.l Raw data, distances, and derived coordinates 
We have written x+ to denote the value obtained by the 
lath individual for the jth variable on the ith object. This 
apparently simple statement conceals much that needs 
discussion. Variables might be quantitative, ordinal 
or categorical (nominal) whereas the methods under 
discussion operate only on quantitative values. The 
values of categorical variables may be replaced by 
numerical scores (Gifi, 1990) which may be analysed in 
the usual way. Alternatively and more generally, we may 
proceed as follows. For each individual k (K = 1, . . ., K) 
and each pair of objects il,& (i, = i, . . ., N, & = 1, . . ., iV) 
estimate a distance or dissimilarity dilrzk; this may be 
done in many ways (see, for example, Cower 8c Legendre, 
1986). These distances may be assembled into Kmatrices 
D, which may be treated just as if Type II data had been 
directly supplied [l]. These initial processes of trans- 
formation and distance-matrix computation are valid 
not only for categorical or ordinal variables but also 
when all, or some of, the variables are originally in 
quantitative form. 

When transformed versions of the X,, or D, are 
analysed (see Fig. Al), the estimation of appropriate 
transformations (including optimal monotonic, spline- 
monotonic, ordinal and polynomial transformations) 
may be based on optimising the Procrustes statistic in a 
given number of dimensions (see, for example, van 
Buuren & Dijksterhuis, 1988; Gifi, 1990). Another way of 
deriving coordinate matrices from distance matrices is 
to do a cluster analysis and then calculate coordinates 
that generate the induced ultrametric distances-- 
such coordinates are known to be embeddable in 
Euclidean space and may be calculated easily (see, for 
example, Gower & Banfield, 1975). The GPA of 
ultrametrics is useful for comparing different cluster 
analyses, in precisely the same way that GPA of ordinary 
distances may be used to compare different multi- 
dimensional scalings. Whether D, is observed directly, 
or is computed from raw data on observations of basic 
variables, it may be analysed by some form of multi- 
dimensional scaling (Kruskal& Wish, 1978; Gifi, 1990) 
to give numerical coordinates X, for each individual. 

A. 1.2 Variables and dimensions 
There are essential differences between an X, directly 
observed and one calculated from a distance matrix. 

These differences stem from the distinction between a 
jth variable and a jth dimension. When the $h columns 
of the different data-sets X, refer to dimensions (rather 
than variables) or, as with FCP, to d#krent variables, 
then there is no information in the mean value of any 
dimension that is useful for comparisons between sets; 
i.e. for individuals K, and &, +, may not be validly 
compared with xv,+ unless there is a sense in which the 
jth coordinate axis of the one configuration matches 
the jth axis of the other. Even when direct comparisons 
between variables or dimensions are invalid, distances 
may be comparable [A.2.2]. Joint rotations and transla- 
tions-the so-called rigid body motions of applied 
mathematics-do not affect distances between points 
of the configuration. The mathematical expression of 
this simple fact is fundamental to GPA and therefore 
cannot be avoided. The notion of an orthogonal matrix 
H, may be thought of as specifying a rotation of the kth 
configuration, although it may also accommodate reflec- 
tions; translation is specified by a column-vector mk 
giving the displacement of a new origin relative to the 
current origin. The combined effect of both transfor- 
mations on a data-set X, generated from distances D, 
will give a new set of coordinates X$4, + lm; that 
generates the same distances D,. CPA is concerned with 
exploring this distance-preserving model [A.5]. 

When the jth columns of the different individuals 
refer to direct measurements on the samevariable, not 
only are comparisons valid but they are likely to con- 
tain useful information, not available with FCP and 
with configurations derived from distance matrices, 
that should certainly be considered in any analysis of 
how the levels of measurement may differ between 
individuals and between objects. In the above model, 
m, represents the kth individual’s average scores for 
each variable, the average being taken over objects, and 
so gives a measure of the level of his scoring for each 
variable. The remaining term represents object scores, 
not in terms of averages but in terms of rotations. The 
model permits the individuals’ perceptions of the 
distances between objects to be similar even though 
objects may have different average scores for different 
individuals. Note, however, that similar distances do 
not necessarily imply similar perceptions [A.2.2]. 

With the same Pvariables observed by all individuals, 
a two-way N X Kcross-classified table Y, (i = 1,2, . . ., P, 
may be constructed for each variable, with entries yijR; 
we shall denote the entries in any one of these tables by 
yik. The procedure described in the previous paragraph 
amounts to removing the column-means Y.~ from this 
table. If one had preferred to isolate the object means 
averaged over all individuals, then one would remove 
the row-means yi.. Depending on which method is used, 
what remains are differences between the means of the 
objects or individuals (respectively), as well as any rota- 
tional differences. Thus the GPA of cross-classified data 
does not use all the available information about the 
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structure of the data. For example, when working in 
deviations from the individual means m,(y.,) and a 
rotational term H,, one should recognise that the 
distances analysed include additive object means yi.. 
Removing both means would leave for each variable a 
table of residuals yfi - y ;. - Y.~ + y.., where y.. is the general 
mean. This is the form of a conventional additive 
statistical analysis which would be summarised by the 
marginal means themselves, perhaps associated with a 
MANOVA (Hand & Taylor, 1987) of all P variables, 
itself supporting a variety of significance tests concerning 
certain mathematically derived linear combinations of 
the observed variables. Generalized Procrustes Analyses 
could be done on residual matrices, focusing either on 
the row-differences or the column-differences, but 
because it is not clear to us how these might be 
interpreted, we would then prefer a conventional 
analysis that modelled all differences as differences 
between means rather than in terms of orientations. 

Although dimensions should never be treated as 
variables, an observed, or transformed, variable that is 
common to several individuals, may be treated as a 
common dimension if one finds this useful. Figure Al 
shows the relationships between some of the different 
ways in which coordinate matrices may be derived and 
transformed. 

A.2 Scaling and distance 

There are two places where scaling has to be consid- 
ered in GPA. Firstly, there is the possibility, already 
mentioned in [2.4], of estimating optimal isotropic 
scaling factors pk associated with each of the K data- 
sets. Secondly, as part of the initial transformations of 
data [A.l.l], scaling may be required to make the data- 
sets commensurable; the form this may take will de- 
pend on whether the data is of Type I or Type II and, if 
of Type I, different considerations will apply to FCP 
and situations where Variables are Comparable across 
Individuals [A. 1.21. Further, different considerations 
will apply to variables with a well,defined Limited set of 
Scale-values, say line-scales and category-scales, and 
those with Open-Ended Scales, say measurements of 
weight or length. The issues underlying initial scaling 
(also termed prescaling) can be very complex and only 
an introduction can be given here. Also included in 
this section is a short discussion of some of the implica- 
tions of using distance as the underlying interpretive 
tool for GPA. 

A.2. I Scaling factors 
A matter that needs attention is whether or not the 
coordinate matrices X, to be used in GPA call for any 
kind of scaling. Gower (1975) described how the 
estimation of a set of optimal isotropic scaling factors 
m could be incorporated into a GPA [2.4]. The 
factor pI scales the matrix X,, thus allowing for innate 

Type I Type II 

I 
I 

transform 
x 1 . . . . . x, 

derive 
x 1 . . . . . x, 
by cluster- 
analysis 

derive ?-l x 1 I.... x, 

by MDS 

Fig. Al. Initial adjustments (prescaling) to the data preparatory 
to a CPA. 

differences in sizes. This procedure is commonly used 
but can only be justified when the coordinates contain 
size information attributable to different behaviour 
among the individuals. For example, when the variables 
represent judgements on some set of scales, then some 
individuals may use the full range of the scale and others 
only a limited range of values. Using an isotropic scaling 
factor is then valid provided that this propensity 
extends, at least approximately, equal to all measure- 
ment scales. Such scaling would continue to be 
justifiable when the observed variables had undergone 
initial transformations that preserve size information. It 
would also be acceptable when observed X, generate 
matrices D, which inherit size factors attributable to 
individual differences and which are passed on to new 
X, generated for analysis by GPA (Fig. Al). Generally, 
these considerations would exclude the use of isotropic 
scaling factors for coordinates derived from forms of 
non-metric scaling (see, for example, Kruskal & Wish, 
1978) (which are invariact to size information) but 
allow them for coordinates derived from forms of metric 
scaling (which retain size information). When scaling 
factors cannot be given substantive interpretations, 
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their estimation is questionable and, in particular, to 
use scaling solely to increase the apparent goodness- 
of-fit is to be deplored, because without interpretation 
the apparent gain is illusory. Whenever non-metric 
multidimensional scaling is used, the derived coordinate 
matrices X, will normally have arbitrary size and rather 
than adjusting for this by estimating optimal scaling 
factors pk, which is one possibility, it is simpler and bet- 
ter to ensure equal size by putting the origin at the cen- 
troid and adopting an initial scaling such that the sum- 
of-squares of the elements of X, is a constant for all 
values of k; the obvious choice for this constant is unity, 
but the value is arbitrary. These operations are indi- 
cated in the lower part of Table Al. 

Even when there is a plausible reason for it, isotropic 
scaling can give only a very crude treatment. It does not 
handle situations where two individuals both use the 
full range of a measurement scale but one uses it 
uniformly while the other rarely uses the extremes of the 
scale. Also it does not accommodate those individuals 
who treat different variables in different manners. The 
latter would require an anisotropic scaling factor pjk 
giving the scaling for the kth individual on the $h 
variable and one now has to consider whether the 
scaling is applied to the original variables before trans- 
formation or to the dimensions after rotation. These 
generalisations considerably complicate the conceptual 
framework, interpretation and computation ( [A.4.5], 
Lingoes & Borg, 1978; Commandeur, 1991). Other forms 
of anisotropic scaling occur in biological applications 
where the elements of distance matrices D, represent 
distances between landmark points on a (once) living 
organism, the parts which grow or develop in a differ- 
ential manner (Siegel & Benson, 1982). Further remarks 
on isotropic scaling are given in [A.4.5]. 

When the columns of the X, represent variables 
rather than dimensions [A.1.2], initial scaling may be 
desirable to adjust for incommensurability of measure- 
ment scales. When all variables have limited scales 
[A.2], then an initial scaling is inbuilt and further scaling 
may not be required. Whenever the number Pk of 
variables associated with each of the K individuals is not 
a constant, as with FCP, a spurious overall size-difference 
will be induced. This is easily eliminated by dividing 
each variable for the kth individual by the square root 
of Pk, thus putting the size of the matrix for each indi- 
vidual on a ‘per variable’ basis; this we term P,-scaling. 
For FCP variables with open-ended scales [A.2], or with 
different scale ranges, each variable might first be 
adjusted to have either unit range or unit sum-of- 
squares about its mean; in the other cases, additional 
P,-scaling will ensure that the sum-of-squares for each 
individual configuration is unity. The aim here is to give 
all individuals the possibility of generating the same 
distance matrix. Even after these steps it may be evident 
that different individuals may be using their own 
adjusted measurement scales differently from the way 
other individuals are using their adjusted scales and 
then it may be justifiable to include the estimation of 
isotropic scale-factors pk in the GPA of FCP data. All this 
is summarised in the Free Choice Profile rows of 
Table Al. 

When variables are comparable across individuals 
[A.l] , similar initial scaling operations to the FCP case 
can be considered, but with variables measured on 
ratio scales one simple action is to take logarithms, 
which ensures that distances are invariant to the choice of 
alternative measurement scales for the same variables 
(e.g. centimetres and inches). There is the possibility of 
scaling each variable globally. One useful method of 

TABLE Al. Possibilities for Initial and Isotropic Scaling of the Data-Sets Xha 

Variables Type I data, Observed X, 

Measurement scales Scaling allowed 

Variables comparable 

Free choice profiling 

Limited scale 
Open-ended scale 
Limited scale 
Open-ended scale 

Pk 

Replace X, by canonical scores, pk 

5, Pk 

diag txLxk) = 1, 5, pk 

Type II data Xk derived from observed Dk by multidimensional scaling 

Type of multidimensional scaling Scaling allowed 

Metric Pk 
Non-metric Trace (XLX,) = 1 

a The terminology is explained in [A.2.1]. 
pc isotropic scaling is a possibility. 
PC needs P,scaling (see [A.2.1]). 
Trace (Xix,) = 1: scale the sum-of-squares of each centred data-set to be unity. 
diag (Xix,) = I: scale the sum-of-squares of every column of each centred data-set to be unity. 
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global scaling is to regard the individuals as defining 
groups in a canonical variate analysis (see, for example, 
Gittins, 1984). The original X, may then be replaced by 
their canonical variate values and analysed as if they had 
been produced by any other metric-scaling method. 
This procedure has the advantage of making an 
allowance for the correlations between variables, but 
as with the other methods for handling comparable 
variables, it does not adjust for object means [A.1.2] ; 
other MANOVA methods are also worth considering 
here (Hand & Taylor, 1987). The foregoing remarks 
about initial scaling refer principally to GPA, in [A.4.4] 
we shall see that with other models other considera- 
tions may be relevant. 

A.2.2 Distance 
When working with distances between objects given by, 
or calculated for, each individual separately (Type II), 
all information is lost on original variable values and 
hence on how these may differ between individuals. What 
remains are the differences between the differences 
between objects; i.e. for individuals k, and k we can 
compare drlak, with di,tia, giving a measure of how the 
two individuals view the comparison between the same 
pair (iI,&,) of objects. If the perceptions of two individuals 
are in some sense the same, then their distance matrices 
would be expected to agree; however, the converse 
does not follow. Thus, although it is impossible to know in 
absolute terms how individuals k, and 4 may perceive 
objects ir and 4, at least we may investigate whether 
they agree on the degree of difference. When the 
differences are small it may be inferred that the 
individuals may have similar perceptions, but they 
could also be diametrically opposed (think of an 
individual who scores 1, . . ., 10 in that order for 10 
objects, while a second individual scores 10, . . ., 1; both 
would give the same distances). 

GPA and related methods rely heavily on distance 
interpretations. The rationale for these methods is to 
search for configurations representing individuals that 
substantially agree in their inter-object distances, the 
group average giving an overall measure. What can it 
mean when two configurations agree although, as with 
FCP data, based on different sets of measurements? 
The obvious answer is that perhaps both configurations 
indicate measures of the same underlying qualities, 
rather as the latent variables of factor analysis are 
imagined as inducing structure in measurable variables. 
GPA does not assume common distance matrices but 
it does allow the commonality and the degree of 
departures from commonality to be investigated. 

A.3 Considerations of unequal dimensionalities in the data 

The practice [2] in GPA of appending zero columns to 
FCP, or other column-deficient data, has been treated 
with misgivings in some quarters, and other methods 

(for example, Peay, 1988) have been seen as circum- 
venting a perceived problem. It is our view that the 
problem is largely nonexistent, arising in the main 
from a confusion between different possible interpreta- 
tions of the standard GPA model and partly from 
misinterpretations about other related types of model. 
These issues deserve examination and are explored in 
the following subsection. 

A.3.1 Free choice profiling and ‘zero columns’ 
The ‘problem’ is most likely to arise with FCP when it is 
rare for every individual to nominate the same number 
of profiles; that is, unless the individuals have been 
instructed to nominate a specified number of profiles. 
As was discussed in [ 11, even with a constant number of 
profiles, FCP always carries with it the difficulty that 
profiles cannot be compared from one individual to 
another and cannot be regarded as shared. Although, 
except for translation to a common centroid, the transla- 
tion part of the analysis is invalid for FCP, the orientation 
part remains useful. Indeed, orientation is about the 
only thing that can be exploited when analysing free 
profiles; even the use of isotropic scaling factors 
requires special care [A.2.1]. What can be done is to 
evaluate a distance matrix for each individual and the 
coordinate matrices X, (k = 1, . . ., K) which generate 
them, just as was described in [1] and discussed in 
[A.2.2]. With most choices of distance, any differences 
in dimensionality will vanish in this process. The initial 
transformations of [A.2.1] are subsumed in the possible 
transformation steps shown in Fig. Al, where one route 
leaves the dimensions of the original data-sets unchanged; 
hence, when they were of different dimensions before 
transformation they will remain so. Then zero columns 
should be appended so that all X, occupy the same 
space as the largest set. This gives the correct mathe- 
matical result for rotating the individual configurations 
to optimal fit in the GPA sense. There is nothing wrong 
in rotating, say, a linear configuration to fit a two- 
dimensional one and it is just a generalisation of this 
that the process accomplishes. Because the initial 
configurations are arbitrarily oriented, all initial orien- 
tations of a lower-dimensional configuration in a larger 
space are equivalent. Most orientations will lead to non- 
zero values in all P dimensions but nevertheless give 
identical GPA results; however, the orientation with zero 
columns is the most simple. Arbitrary initial orientation 
can be hidden in non-zero, but linearly related, sets of 
columns, which have the same effect as the more obvious 
columndeficiency of adding zero columns. Those 
concerned about adding zero columns do not seem to 
be concerned by such unnoticed relationships. 

A related issue is when an individual freely chooses 
so many profiles that his data-set has more. variables 
than objects, in a sense having an excess of dimensions. 
No special action need be taken, provided the remaining 
data-sets are padded out by zero columns. Alternatively, 
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for any data-set whose number of chosen profiles 
exceeds N - 1, a principal component analysis may be 
used to generate a new set with no more than N - 1 
columns. The two methods give the same distances and 
therefore are completely equivalent, provided the 
components are extracted from the sums-of-squares- 
and-products matrix and not from the correlation 
matrix. Note that data-sets with Nprofiles are in (N - 1) 
dimensions when expressed in deviations from their 
means; when a component analysis is not used, this 
gives yet another way in which column deficiency can 
occur without showing overt zero columns. When plotting 
the property axes [2.7], a consequence of adding zero 
columns is that there will be axes corresponding to 
null-properties. This is also sometimes regarded as a 
deficiency of the padding process. However, as has 
already been explained, it is not only the directions 
of axes but also their lengths which matter. Axes 
corresponding to null properties have zero lengths, so 
vanish and cause no problem. Padding with zero 
columns is a convenient device with no harmful side- 
effects. 

A.4 Dimensionality of the presentation and projections 

As well as considerations concerning the dimensionality 
of the data [A.3], there are also considerations 
concerning the dimensionality of what we have termed 
the R-dimensional exhibited space of the GPA group 
average (consensus) ([2.5], [2.6]). The two concepts of 
the dimensionality of the data and the dimensionality 
of the presentation are often confused with one 
another. In GPA, we have taken the view that they are 
totally unrelated and that the full GPA solution exists in 
P dimensions, the R-dimensional space being used only 
to give an approximation that has visual and presenta- 
tional conveniences but which should only be used 
with caution if the approximation is a poor one. We 
believe that this view often closely represents the true 
state of affairs, but in the following we discuss how 
alternative interpretations of the (P - R)dimensional 
unexhibited space influence thinking and lead to the 
consideration of different models. 

A.4. I Optimising projections-Peay ‘s model 
Recalling [2.3] that GPA minimises the residual sum- 
of-squares T - M - Sand, equivalently, maximises S of 
Table 2, an alternative criterion that has been considered 
by Peay (1988) is to find the orientations and, if 
required, the isotropic scaling factors, that maximise S, 
of Table 3; this is equivalent to minimising T - M - S,. 
Thus, the Peay group average is the one that is best ap- 
proximated in the exhibited space. There is no formal 
partition of sums-of-squares in the unexhibited part of 
the space and, there, the orientation of the configura- 
tions is arbitrary, giving different values of S+,) and 
Tc~-~) - Mc~_~) - S(,_,) with a constant sum. A unique 

partition is not necessary but, if required, can be found 
in many ways; for illustrative purposes, and because it 
maximises SC,_,) conditional on the Peay S,, we shall 
imagine that the unexhibited space is partitioned by 
GPA [3.4]. Because the GPA group average maximises 
the group average fitted in the maximal space, the total 
Peay group average fit must be poorer in this respect 
(whatever partition is used for the unexhibited space) 
and the residual variation ‘Individual Deviations’ will 
be greater than that of GPA. Two reasons have been put 
forward for favouring the Peay fit. The first is that S, 
obtained by Peay is maximised, and hence is undeniably 
greater than S, obtained by GPA in an exhibited space 
of the same number (R) of dimensions. As we have just 
explained, this ‘improved’ fit pertains only to the 
exhibited part of the group average and is poorer in 
total. It might be acceptable to maximise S, if one were 
prepared to regard the unexhibited (P- R) dimensional 
part of the analysis as arising from noise or random 
Variation, arguing that Peay’s criterion might be 
regarded as maximising the signal. We discuss this in 
[A.4.2]. The second reason for favouring the Peay 
criterion is that it is said to give an improved method 
for handling differing dimensionalities in the data. We 
have already explained [A.3.1] why we believe that 
appending zero columns is a satisfactory procedure, 
provided due attention is paid to any induced size 
differences [A.2.1]; the latter is something which also 
deserves serious consideration with the Peay criterion. 
The way the Peay process handles the dimensional 
problem, if it is one, is to choose R to be no more than 
the dimensionality r of the smallest data-set X,. When 
all data-sets are of the same size, then 7~ = P, and we 
may set R = P and, hence, P - R = 0. This use of Peay’s 
method is identical to GPA but with no partition into 
exhibited and unexhibited components. In general, 
Peay’s criterion may be thought of as first rotating and 
then projecting the higher-dimensional configurations 
onto R dimensions and doing a GPA in the smaller 
space, all of which can be expressed in terms of K 
projection matrices Rk (k = 1,2, . . ., K) with Pk rows and 
7~ columns [A.5]. The trick is to find the projection 
onto R dimensions of the group average in P dimen- 
sions that maximises S,. From these remarks it should 
be clear that the geometry of [2] remains valid and that 
Peay’s process operates in Pdimensions just as much as 
does GPA. Mathematically, all methods that satisfy the 
Analysis of Variance decomposition of Table 3 operate 
in the same P-dimensional space. They differ in the 
models they fit and what criterion is adopted to judge 
best fit [A.5]. 

Projections may be thought of in terms of casting 
shadows (sun at midday) from a highdimensional space 
onto a low-dimensional space. Every set of orientations 
in the maximal space will have a group average and 
Peay’s criterion ensures that this has the biggest 
shadow possible in R dimensions. In our opinion, a 
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disadvantage is that provided the variation in the un- 
exhibited (P - R)dimensional space is not attributable 
to noise [A.4.2], it could be of at least as equal, and 
possibly of more, interest than that in the exhibited 
space though, of course, an Analysis of Variance equivalent 
to that given in Table 3 would help indicate if this were 
so. The difference between the two approaches is 
that GPA with component analysis exhibits the best 
R-dimensional fit of the best group average while 
Peay’s analysis exhibits the best R-dimensional group 
average as part of a generally poorer fit, both in terms 
of an increased residual sum-of-squares and a poorer 
P-dimensional group average [ 3.43. 

A.4.2 Signal and noise 
It seems to us that although Peay’s method is mathe- 
matically sound, there is little justification for its use 
in the types of problem where the R-dimensional and 
(P - R)dimensional spaces both represent substantive 
effects, but this is not to say that there are no situations 
where it can be used. One case where it was worth con- 
sidering is when the unexhibited space is attributable 
to noise, although Peay’s method and GPA are then 
likely to give similar results. Peay’s model then may be 
regarded as a basis for noise removal but, on the 
grounds that there seems to be little reason for expecting 
any signal to be ndimensional, one would probably 
wish to explore a range of values of R less than n, and 
perhaps even some greater values. However, in such 
cases it seems better to remove the noise at the outset. 
Indeed when the initial configurations have been 
derived via multidimensional scaling (see [A.2.1] and 
Fig. Al) the noise should already have been removed. 
A simple method that should suffice for removing 
noise would be to replace each X, by scores on its first 
principal components. This suggestion was also made 
by Peay (1988), but is dismissed with the remark, ‘How- 
ever, it does not appear likely to attract a great deal 
of empirical interest’. We believe that the suggestion 
has genuine empirical interest. Once noise has been 
eliminated or made small compared to the signal, 
there seems to be little justification for maximising S, 

in fewer dimensions than the signal. Thus our suggestion 
is first to remove noise, and then to analyse the signal 
by GPA. 

We have already pointed out that Peay’s analysis 
coincides with a GPA of the configurations projected 
into the R-dimensional space. This space, regarded 
now as the space containing the signal, may itself be 
high dimensional and, with advantage, be partitioned 
as previously into exhibited and unexhibited parts. 
This consideration suggests a three-column breakdown 
in the Analysis of Variance, partitioning R = RI + Iz, (see 
Table A2), with 4 dimensions for the exhibited space, 4 
dimensions attributable to the non-exhibited systematic 
effects, as before, and the remaining P - R dimensions 
for noise (random variation). Among other possibilities, 
the partition could be based on the R, principal 
components of the R-dimensional group average, or 
on all R-dimensional coordinates. All entries in the 
column for the P - R dimensions and all entries in the 
residual row, labelled T - M - S, should be attributable 
to random variation, as may some of the entries in the 
R,dimensional space (see below). In principle, and on 
appropriate distributional assumptions, significance 
tests can be devised to examine the equality of such 
terms (Davies, 1978; Sibson, 1978; Langeheine, 1982; 
Langron & Collins, 1985). 

An alternative partition of the Peay (or any other) 
Rdimensional projection is into R, dimensions, also 
obtained by a Peay projection, and R, dimensions, 
representing what is left over. This has the disadvantages 
that we have already discussed of giving a sub-optimal 
view of the substantive signal. However, when the R, 
dimensions are intended for display, it might be worth 
maximising the signal-tonoise ratio SRI/(TR - MR1 - SRI). 

The notions of signal and noise have some appeal 
but it must be recognised that, with most forms of 
Procrustes analysis, only rarely are there objective 
methods for distinguishing signal from noise. Ideally to 
do this would require individuals to replicate object 
scores. Without replication, one has to fall back on 
assuming that the higher dimensions are attributable 
to noise. This is far from satisfactory but is analogous to 

TABLE A!L Analysis of Variance, as in Table 3, but Partitioning Every Sum-ofSquares into a Part that is Exhibited in R, Dimensions, 
a Systematic (Signal) but Unexhibited Part in 4 dimensions, and a Random (noise) Part in the Remaining P - R Dimensions, 
where R = R, + &. 

Source of variation 

Individuals 

Orientations: 
Group average 
Deviations 

Exhibited 
(R, dimensions) 

MR, 

S 
%, - M:, - sR, 

Sums-of-squares 

Unexhibited 
(& dimensions) 

M4 

% 
Th-Mh-S,+ 

Noise 
(P - R dimensions) 

Yp-ls 

SW0 
Tw-R, - M(P-R) - Smt, 

Total % ?P-Kl 
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the situation in those designed experiments with no 
replication, where the higher-order interaction effects 
are regarded as estimates of error. Our Analysis of 
Variance framework is easily extended to cope with the 
extra information given by replication. All that is 
required is to add an additional line to Tables 3 and A2 
labelled ‘Replication’, indicated by E (for error) with 
sums-of-squares ERI, E,+, EP-,+ To proceed we need the 
degrees of freedom g, d and e corresponding to Group 
Average, Deviations and Replications. Then, if the 
mean-square for, say, the deviations in the unexhibited 
space ( TR:! - MRn - S&/d is of a similar’size to E&e, this 
would give an informal indication that the corresponding 
dimensions referred to noise rather than to signal. 
Similar considerations would apply to the group- 
average term SR, and to any column purporting to 
represent noise in P - R dimensions. In this way we 
have a rough means of deciding how to partition our 
space between signal and noise. 

Instead of totally discarding random dimensions 
arising from any initial component analyses, or other 
forms of multidimensional scaling used to eliminate 
noise, they might be combined with the terms for the 
P - R dimensions attributable to error in the final 
column of the Analysis of Variance of Table A2, or even 
be presented as a separate fourth column whose entries 
could be compared with other ‘random’ entries. 

A.4.3 Other criteria 
Before considering further criteria, it is worth noting, 
as a general remark, that if the optimisation criterion 
operates within the R-dimensional space, however that 
is defined, then distances in the remaining part of the 
configuration in P - R dimensions can be generated by 
sets of coordinates and analysed independently (an 
example of this was given in [A.4.2] ) . Thus, for example, 
having minimised TRI - MR, - SRI, we may then minimise 
TRT - MKZ - Sk, conditional on the first minimisation. A 
similar remark applies to any further columns there 
may be in the Analysis of Variance. One implication is 
that, unless these further optimisations are done, there 
is a degree of arbitrariness in some of the terms; but 
this is no problem when these terms are attributable to 
error, as will usually be the case. We do not pursue it 
further here but, nevertheless, it should be borne 
in mind as one of the options available with Peay’s 
criterion as well as with other criteria in this general 
class of analyses. 

A.4.4 Optimising projections-Green and Gower 
A criterion for fitting sets of configurations, possibly of 
different dimensionalities, has been suggested by Green 
and Cower (1979) and Gower (1984) and discussed by 
ten Berge and Xnol (1984) and Peay (1988)) who refers 
to it as ‘Procrustes’. It is not the same as GPA and was 
not intended as a fix for GPA to handle different di- 
mensionalities. In the notation of Table 3, this method 

minim&es TR - MR - S, so, like Peay’s method, oper- 
ates in the space of the exhibited configuration. Again, 
one seeks projections from the higher-dimensional 
spaces onto an R-dimensional space, but now 
a GPA in the smaller space minimises the above- 
mentioned residual sum-of-squares. This criterion was 
found useful by Constantine and Gower (1982). In 
[A.4.1] we have used the imagery of shadows to get a 
feeling for projections. The Green and Gower criterion 
explores to what extent the configurations for the dif- 
ferent individuals can be orientated to give similarly 
sized and oriented shadows (projections) in R dimen- 
sions; note the difference between this and having big 
shadows. A group average of similar shadows might be 
interpreted as a true consensus, arising from features of 
the objects on which there is a high degree of common 
agreement; this is not to say that the features on which 
individuals disagree might not form a major part of 
their perceptions. This point may be illustrated by 
considering data-sets (Xi, x, y), (Xs, x, y), . . ., (Xk, x, y), 
all having common observations on each of two variables 
x, y, but otherwise of possibly different dimensionalities. 
Although variables x, y are envisaged as having the same 
numerical values, we remain in the context of FCP, so 
there is absolutely no guarantee that they represent the 
same substantive variables. Projection onto the two- 
dimensional consensus space containing x, y will always 
give a perfect fit for R = 2, which may be taken as 
interesting evidence of some underlying agreement 
between putatively incommensurable variables, notwith- 
standing how trivial these variables may be compared with 
those contained in (Xi, Xs, . . ., X,), which represent 
disagreement. Perhaps, after all, there may be some 
sense in which texture and odour ratings (say) are both 
measures of some common underlying basic property 
of the objects [A.2.2]. The R-dimensional space could 
now reasonably be labelled the consensus space rather 
than the exhibited space and the group average in that 
space is a much more plausible measure of consensus 
than that given either by GPA or Peay. Having fitted the 
consensus space, one might wish to go on to explore 
differences in the (P - R)dimensional ‘disagreement’ 
space, regarded as signal rather than noise, perhaps by 
doing a GPA or Peay’s analysis in that space [A.4.3]. We 
must now modify the remarks on initial scaling given 
in [A.2.1], for dividing by the square root of Pk as 
recommended there will give different scalings for each 
(x, y) pair, depending on how many variables there are 
in each X,. In the current context this will tend to 
obscure the consensus signal, but this would be 
restored by estimating optimal isotropic scaling factors 
pk; alternatively, it might be better to eliminate their 
need for isotropic scaling by omitting scaling altogether. 

A.4.5 Individual differences scaling 
Another method which deserves mention here is 
Individual Differences Scaling (INDSCAL) of Carroll 
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and Chang (1970). Like GPA, this handles sets of data 
for individuals and essentially operates on distance 
matrices defined for each individual. Like GPA, a central 
feature is the calculation of a groupaverage matrix; 
unlike GPA, the axes associated with the R dimensions of 
the group-average matrix are not arbitrary. Associated 
with each axis is a weight, one for each individual. The 
axes may be regarded as representing latent variables, 
which are often reified, and the weights as the scaling 
each individual gives to each latent variable. These 
weights can be compared with the anisotropic scaling 
pjk of [A.2.1], that the kth individual might give to the 
jth substantive variable. Directions in the space of the 
GPA group average are also sometimes reified, but 
in these cases the directions are arbitrary and there is 
certainly no need to use only the principle axes, or 
indeed any orthogonal axes, as is so often done. It seems 
to be a general feature of models with anisotropically 
weighted latent variables, not just the INDSCAL model, 
that they induce unique axes (Commandeur, 1991). 

A.5 Criteria, models and algorithms 
The important thing to emphasise about all the methods 
described above is that just because they handle similar 
kinds of data and do superficially similar things, they 
should not be regarded merely as variant forms of 
analyses. Not only may they use different kinds of 
goodness-of-fit criteria, or loss functions, as they are 
often termed, but more important they are trying to 
expose different features of the data. We have already 
explained what these different features are ( [2], [k4.1], 
[A.4.4], [A.4.5]). In a more traditional statistical con- 
text it would be said that each is fitting a different 
model, rather than that all are fitting the same model 
by different methods. The basic idea in all the models 
considered here is that each data-set X, may be parti- 
tioned into signal and noise and the signal modelled in 
terms of a group average and deviations from it. The 
essential component of the model(s) has already been 
written down in [A.1.2] and may be more fully treated 
as follows. Consider 

X$-I, = X,t& QJ = &K &QI) fork=1,2,...,K 

where H, is an orthogonal matrix, which expresses that 
it is only the distances generated by X, that are being 
modelled. The partition H, = (Rk, Qk) gives a part Rk 
representing projections onto an R-dimensional space 
and a part Qk representing the complementary projec- 
tions onto the remaining (Pk - R)dimensions. The 
first term in the partition is modelled by 

XJR,=X+E, (Al) 

where X is the group average in the space of the projec- 
tions and E, represents the deviations of the projected 
data-set for the kth individual from the group average. 
All the models share this common framework; the 

differences lie in the interpretation of the terms in the 
models and, in particular, what terms are regarded as 
noise. In GPA there is no term XkQb and E, alone takes 
on the role of noise; in Peay’s model, both Ek and X,Qk 
are implicitly regarded as noise; and in the Green and 
Gower model, only E, is regarded as noise while X 
(agreement or consensus) and X,QI (disagreement) 
model different aspects of the signal. The term X& 
may be partitioned into exhibited and unexhibited 
dimensions X&R and X&Q, say, with corresponding 
group averages XR and XQ ([2.6], [A.4.2]). Here R 
and Q are matrices projecting into independent sub 
spaces, so that R’Q = 0. In GPA, R and Q are normally 
taken to be the principal components of X, but R and 
Q may be chosen in other ways and their use is not 
confined to GPA. Further, X,Q1 may itself be modelled 
similarly to eqn (Al). As described in [2.4], isotropic 
scaling is included in the models by replacing X, 
elsewhere above by p&. An alternative model for 
scaling that does not seem to have been considered, 
but which sometimes might be more realistic, is to 
attach pk only to the signal X&. 

For plotting axes [2.7], the coordinates given by the 
pth row of p&-I,, p&t& and p&R, whatever may be the 
projection under consideration, represent one unit of 
the scale of measurement for the @I property of X, as 
recorded by the kth individual. Axes joining these 
points to the origin may be plotted and the unit 
point(s) marked; axes should not be extended in either 
direction much beyond the range of measurement 
occurring in the data [A.3.1]. 

Writing IlAll to denote the sum-of-squares of all the 
elements of the matrix A, it turns out that with model 
eqn (Al), we have that ~~~,IIE,II is minim&d when 
C’L;xs\JK and then 

2 IIXJI = KIIXII + 2 IIEJI +; IIXkQ,lI (Aa 
k=l k=l k=l 

which is the basic Analysis of Variance, Total S.S. = 
Group Average S.S. + Individual Deviations s.s + Noise 
s.s., as shown in Tables 3 and A2, where the additional 
breakdown into exhibited and unexhibited parts is also 
shown. 

In all the above, the optimally criterion used to fit the 
models, is least-squares, where the sum of one term or 
more on the right-hand side of eqn (A2) is minimised, 
depending on the model being fitted (e.g. minimising 
T - M - S of Table 2). Other types of criteria may be 
considered: for example, weighted least-squares, in which 
differences are weighted by quantities provided, or even 
computed iteratively from the data (Verboon & Heiser, 
1991). Two examples are (i) when the elements of X, 
are means of replicates so that the number of replicates 
associated with each provides a natural system of 
weights, and (ii) when some objects are missing, which 
therefore may be given zero weight compared with unit 
weight for non-missing objects (Commandeur, 1991). 
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Another criterion, which itself has several variants, is 
to maxim&e some form of the correlation between X, 
and the model Yk, say, to be fitted. The inner-product 
criterion of ten Berge (1977) (see also ten Berge & 
Knol, 1984) is of this kind. Yh and X, may be regarded 
as being strung out of vectors, and then the criterion is 
to maximise the sum-of-products of corresponding 
elements. We have no fundamental objection to the use 
of this type of criterion but personally prefer the least- 
squares criterion with the attractive geometric simplicity 
of its distance interpretation. For us, this preference is 
reinforced when the fitted configurations are interpreted 
through distance concepts and summarised through 
an Analysis of Variance-recall that Table 3 and A2 
remain valid, however the configurations are derived. 
Forms of analysis which mix different optimality criteria 
have an element of inconsistency. 

Just as the above brief account of the different criteria 
that have, or might have, been considered, is useful for 
giving a general appreciation of how GPA fits into 
a wider framework of related types of data-analysis, 
similarly it is useful to have a general appreciation of 
some of the issues involved in computation. Some criteria 
and some models may lead to more simple computations 

than others; some may lead to faster computations than 
others; some may have better convergence properties 
than others; some may have a tendency to find sub 
optimal solutions; some may be easier than others to 
program; and some may use fewer computing resources. 
Even with a fixed criterion, one numerical process for 
its optimisation may have advantages relative to other 
numerical processes with identical objectives. Thus 
among methodologists and numerical analysts, there is 
a constant search for improved algorithms. Finally, 
different people programming precisely the same thing 
may write computer programs of differing utilities 
because of the effects of variant methods of organising 
the calculations and the degree of user-friendliness 
built into their programs and documentation. Good 
statistical methods can get a bad reputation merely 
because they are supported by poor software; bad 
methods may become widely accepted merely because 
they are well marketed; good methods not supported by 
any software are unlikely to gain much currency. The 
subject is too vast for us to give general advice here. 
Suffice it to say that GPA leads to reliable and acceptably 
efficient algorithms that are simple to program, and 
whose results are interpretable to the informed layman. 


