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The kinds of individual differences in perceptions permitted by the weighted euclidean model 
for multidimensional scaling (e.g., INDSCAL) are much more restricted than those allowed by 
Tucker's Three-mode Multidimensional Scaling (TMMDS) model or Carroll's Idiosyncratic Scal- 
ing (IDIOSCAL) model. Although, in some situations the more general models would seem desir- 
able, investigators have been reluctant to use them because they are subject to transformational 
indeterminacies which complicate interpretation. In this article, we show how these indeterminacies 
can be removed by constructing specific models of the phenomenon under investigation. As an 
example of this approach, a model of the size-weight illusion is developed and applied to data from 
two experiments, with highly meaningful results. The same data are also analyzed using 1NDSCAL. 
Of the two solutions, only the one obtained by using the size-weight model allows examination of 
individual differences in the strength of the illusion; INDSCAL can not represent such differences. 
In this sample, however, individual differences in illusion strength turn out to be minor. Hence the 
INDSCAL solution, while less informative than the size-weight solution, is nonetheless easily 
interpretable. 

Key words: individual differences, multidimensional sealing, three-mode factor, INDSCAL, size- 
weight illusions. 

Introduction 

Models for three-way MDS 

Several models have been proposed for studying individual differences in multidimen- 
sional scaling. The first such model was the Tucker and Messick [1963] "points of view" 
approach, based on an Eckart and Young [1936] resolution of the N by n(n - 1)/2 matrix 
of interpoint distances. This model has been superceded by more general models which 
have overcome weaknesses pointed out by Ross [1966]. 

The weighted euclidean model. Horan [1969] proposed an individual differences 
model for multidimensional scaling in which the subjects gave different weights to the axes 
of a common stimulus space. Thus ifdjki is the psychological distance for person i between 
stimulusj and stimulus k, then the model can be written as 

d~ 2, = ~ w~(bit -- bk,) 2 (1) 
t = l  

where bit is the projection of stimulus j on dimension t, and wit is a weight indicating the 
importance person i gives to dimension t. This representation has come to be known as the 
weighted euclidean model. Horan [1969] developed a procedure for estimating the con- 
figuration of points (i.e., a set of b jr values) given dissimilarity matrices from several subjects, 
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but his procedure did not estimate the subject weights. Carroll and Chang [1970] devel- 
oped an iterative procedure called INDSCAL (for Individual Differences Scaling) which 
would estimate both the common stimulus projections and the subject weights. Bloxom 
[1968] also developed an estimation procedure for this model. Procedures which fit the 
weighted euclidean model have an important special property; they provide a unique 
solution under quite general conditions, when some minor indeterminacies are arbitrarily 
removed. [For further discussion and/or proofs of this uniqueness property see (Harshman, 
1970, 1972; Harshman & Berenbaum, 1981; Kruskal, 1976, 1977; Harshman, Note 1.)] 

The weighted euclidean model has proved very popular, as indicated by at least fifty 
applications in the literature. This popularity would seem to be due, in part, to the fact that 
there are no "rotational" indeterminacies to resolve, and also to the fact that its solutions 
have proved interpretable in a wide range of multidimensional scaling applications. Re- 
cently, new methods of fitting the model to data have been developed, including Ramsey's 
[1977] maximum likelihood procedure and Takane, Young, and de Leeuw's [1977] non- 
metric procedure. Thus, there is every reason to expect that the use of this model will 
continue to increase. 

More 9eneral models. Several models have appeared in the literature which allow for 
individual differences more complicated than the simple differential weighting of dimen- 
sions permitted by the weighted euclidean model. Carroll and Chang [Note 2] and Carroll 
and Wish [1974] have presented a model called IDIOSCAL Tucker [1972] has developed 
a model called three mode multidimensional scaling (TMMDS) as a special case of three 
mode factor analysis in which two of the modes are identical. Harshman [1972] has 
proposed a model called PARAFAC2, as a generalization of his three-way factor analysis 
model PARAFAC [Harshman, 1970]. 

The IDIOSCAL, TMMDS and PARAFAC2 models can all be considered special 
cases of the following very general expression: 

Xi = BHI B' (2) 

where Xl is the ith subject's scalar products matrix (normally derived from a matrix of 
judged dissimilarities by adding a constant, then squaring all entries and double-centering 
the matrix), B represents a common stimulus space, and Hi, named the individual charac- 
teristic matrix by Tucker, relates the common stimulus space to the scalar products. 

The three models differ in the way in which the Hi matrices are constrained. In all 
three models, the Hi are symmetric positive definite or semidefinite matrices. The IDIO- 
SCAL model places no additional restrictions on the parameters in H~, but in the TMMDS 
and PARFAC2 representations the H~ become increasingly constrained. In TMMDS, the 
H~ matrices are computed from estimates of the core matrix and person space of a three 
mode factor analysis [Tucker, 1972]. That is 

hpp, i = ~ 9pp,qzqi (3) 
q=l  

where Opp,q is taken from the core matrix and zqi is from the person space matrix. In essence, 
this relation requires that each subject's H~ be some linear combination of a set of matrices 
Gq, which are slices of the core matrix. Consequently, the variations in I-It are more 
constrained in TMMDS than in IDIOSCAL unless there are a large number of Gq, i.e., 
unless s, the dimensionality of the person space, is greater than or equal to r(r + 1)/2, where 
r is the dimensionality of the stimulus space. Finally, the PARAFAC2 model places the 
most severe restrictions on H~. It requires that all H~ = D~HD~, where H is a matrix of 
dimensional interrelationships common to all subjects and Di is a diagonal weighting 
matrix specific to the ith subject. (For discussion of further models that can be considered 
part of this same series, see Harshman, Note 1). 
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IDIOSCAL, TMMDS and PARAFAC2 also differ in the way in which the Hi matrices 
are interpreted. In the IDIOSCAL model, the Idi matrices are interpreted in terms of an 
orthogonal rotation of the common stimulus space, followed by a weighting of the rotated 
dimensions. That is 

H, = TiW~ZT~ (4) 

where Ti is an orthogonal matrix and W~ is diagonal. 
In the TMMDS and PARFAC2 models, the Hi matrices are interpreted as weighted 

cosine matrices, that is 

Hi = W~RiWi (5) 

where W~ is a diagonal weight matrix and Ri is a matrix of cosines showing the ith subject's 
perceived relations among the dimensions of the weighted object space. In TMMDS the R~ 
can differ across subjects, but in PARAFAC2 a common matrix of cosines among dimen- 
sions is assumed to hold for all subjects. 

The Problems of Indeterminacy and Interpretation 

The greater generality of the IDIOSCAL and TMMDS models entails a substantial 
indeterminacy in the form of the solution. This indeterminacy complicates the job of 
interpreting the results of an IDIOSCAL or TMMDS analysis, since it means that part of 
the interpretation will presumably involve transformation of the solution to a "preferred" 
form. This problem is analogous to the rotation problem in factor analysis, but in two 
respects is even more acute in three-way MDS: (a) the principles (such as simple structure) 
which are used to guide selection of a preferred solution in factor analysis are often less 
clearly applicable to multidimensional scaling studies; and (b) the transformational pos- 
sibilities for IDIOSCAL and TMMDS are more numerous and more complex than in 
traditional two-mode factor analysis. Any nonsingular transformation of the stimulus space 
B is permissible, provided the compensatory inverse transformations are applied to the H~. 
One can also consider transformations of the person characteristic space (defined by the set 
of W~); indeed, such a transformation will be used in the size-weight analysis presented later 
in this article. Finally, one might seek transformations of the TMMDS solution which 
result in a core matrix that has some desired form, e.g., approximately "diagonal" (Cohen, 
Note 3; McCallum, 1976b). 

On the other hand, the lack of indeterminacy of the INDSCAL model can cause 
consternation when it appears that a much more interpretable solution might be obtained 
by a rotation of the solution. Rotation is only possible within the INDSCAL model for 
those dimensions whose weights exhibit what Carroll and Wish [1974] call a parallel 
pattern, implying a reduced rank in the weight matrix. Obviously, some deviations from 
perfect parallelism might be attributed to random error and the solution still subjected to 
permissible rotations, but just how much deviation is acceptable, and in what other condi- 
tions, if any, it might be justifable to rotate an INDSCAL solution, are issues which deserve 
further study and discussion. 

PARAFAC2 is not subject to the same degree of indeterminacy as IDIOSCAL and 
TMMDS. In general, transformations or rotations of the common stimulus space will not 
preserve the proportionality relationships among the H~ matrices specified by the PARA- 
FAC2 model. It has been conjectured that PARAFAC2 possesses the same kind of unique- 
ness as INDSCAL [Harshman, 1972 but cf. Carroll & Wish, 1974] but proving this has 
turned out to be more difficult than expected, as has the development of a "well behaved" 
algorithm for fitting the model to data. (However, some recent theoretical results appear 
encouraging, see Harshman, Note 1). In any case, it is clear that PARAFAC2 has much less 
indeterminacy than IDIOSCAL and TMMDS;  it is also a less general model, not permit- 
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ting the range of individual variations allowed by IDIOSCAL and TMMDS. But the 
size-weight model depends on transformation of an indeterminate general solution to a 
special form. Consequently, PARAFAC2 is unsuitable for the development of such a model 
and will not be considered further in this article. 

We have seen that those general purpose models which provide the richest description 
of individual differences in perceptions of the stimulus space (IDIOSCAL and TMMDS), 
do so at the expense of introducing indeterminacy problems which have not been ad- 
equately solved. The present study is aimed, in part, at presenting a method of dealing with 
such problems, in cases where one has some a priori theories concerning the perceptual 
processes involved. By considering the types of individual differences anticipated in the 
specific domain under study, it is sometimes possible to construct "special purpose" models 
of intermediate generality between INDSCAL and IDIOSCAL or TMMDS. Such models 
can be tailored to represent the psychological processes under investigation, and can test 
for patterns of individual variation more general than the weighted euclidean model would 
permit, while avoiding many of the problems associated with indeterminacies of the un- 
restricted IDIOSCAL or TMMDS models. As an example of this process, we shall develop 
a "special purpose" three way multidimensional scaling model of the size-weight illusion. 

Theoretical Development of the Size-Weight Model 

Lifted Weights Experiments and the Size-Weight Illusion 

The size-weight illusion is the well known phenomenon in which small objects feel 
heavier than large objects having the same mass. (In the discussion that follows, the term 
"heaviness" will be used to refer to the subject's perception of an object's downward pull, 
under the influence of the size-weight illusion; "weight" will be used to refer to the subject's 
perception of an object's downward pull, in the absence of the size-weight illusion e.g., when 
size and weight are not perceived simultaneously.) Since this effect of size on heaviness is 
likely to vary from one subject to the next, it seems likely that an adequate multidimension- 
al scaling representation of the size-weight illusion will require patterns of individual differ- 
ences in perception more complicated than those permitted by the weighted euclidean 
model. At the same time, the phenomenon may be simple enough to permit a "special 
purpose" model to be constructed to deal with these patterns of inter-subject variation. 
Consequently, the size-weight illusion would appear to provide an appropriate domain for 
demonstrating our proposed approach to overcoming the indeterminacies of the very 
general three-way scaling models. We shall begin by briefly reviewing the previously pu- 
blished one-mode and two -mode studies of the illusion before proceeding to develop our 
proposed three-mode model. 

Unidimensionat studies. While the size-weight illusion has been known for some time, 
it is only recently that quantitative models of the illusion have been experimentally tested. 
As a result of these tests some controversy has arisen as to whether an additive or a ratio 
model of the illusion is more appropriate. Sjoberg [1969], and Stevens and Ruben [1970] 
used magnitude estimation procedures and found that their data gave a good fit to a ratio 
or density model of the illusion. Ross and DiLollo [1968] proposed a "vector model" of 
psychophysical judgments and demonstrated that the model gave a good account of the 
data from three magnitude estimation experiments. Anderson [1970] used a category 
rating task and found that these data were more closely fitted by an additive model of the 
illusion. Birnbaum and Veit [1974] obtained category ratings of differences in heaviness. 
They found inconsistencies between both the ratio and additive models and their data. 
Feeling that the additive model was more plausible, they speculated that contextual effects 
might have produced the deviations from the additive model and proposed a study to test 
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for such contextual effects. Sarris and Heineken [1976] found that the additive model was 
supported by category rating data and the ratio model was supported by magnitude 
estimation data. Thus in the area of lifted weights experiments, as in other areas of psycho- 
physical experiment, two approaches to obtaining response scales (category ratings and 
magnitude estimation) give rise to contrary results. Because the additive model of the 
illusion is more congenial to the multidimensional scaling approach which we wish to 
adopt, we will emphasize this perspective and use the category scaling method of obtaining 
data for our tests. 

Multidimensional studies. Since the psychological processes involved in the illusion 
depend on both size and weight, some investigators have replaced the unidimensional 
analysis of subjective heaviness with multidimensional scaling techniques, in an attempt to 
understand better the relationship between size and weight in the production of the illusion. 

Donovan and Ross [1969] asked subjects to make magnitude estimations of differ- 
ences in heaviness. They carried out a multidimensional scaling analysis on the average 
matrix of difference estimates and found two (or more) dimensions. Although the results 
weren't completely clear, one dimension was apparently heaviness and the other dimension 
may have been density. 

Harshman (Note 4) considered the case where subjects made "global dissimilarity" 
judgments for pairs of lifted weights taking into account both subjective size and subjective 
heaviness. He pointed out that such a task could generate data which violated the weighted 
euclidean model, and that such violations could take at least two forms: (a) the composition 
of the perceptual dimensions of size and heaviness could vary from subject to subject (as the 
strength of the illusion varied); and (b) when assessing the dissimilarity between two stimuli, 
a subject might not utilize his subjective size and subjective heaviness dimensions indepen- 
dently, but instead a conceptual association between size and heaviness might result in 
oblique perceptual axes. To look for these effects, he conducted a lifted weights experiment 
in which subjects rated differences between stimuli varying in size and mass. He also had 
the same subjects do unidimensional scaling of size, heaviness, and weight (i.e., subjective 
heaviness when the stimuli were concealed behind a curtain). In all four tasks, category 
rating scales were used. Two-way multidimensional scaling was then applied separately to 
each subject's data to recover his or her stimulus configuration. By regressing the two- 
dimensional MDS solution for each subject upon his or her independent scales of size, 
weight, and heaviness, evidence for both types of violations of the weighted euclidean model 
was uncovered. There were moderate variations in the influence of the illusion on subjective 
heaviness and there were oblique relations among those directions in the MDS space which 
corresponded to size, heaviness, and weight. These oblique relations appeared to vary 
across subjects, and split-half analysis indicated that these individual differences were at 
least moderately reliable. 

Modelling the Size-Wei#ht Illusion 

Let us now develop a "special purpose" three-way multidimensional scaling model for 
size-weight illusion data. Assume that subjects are asked to give "global" dissimilarity 
ratings of pairs of stimuli varying in size and mass. The axes of the common stimulus space 
for such data should be some function of subjective size and subjective weight (in the 
absence of the illusion). If we assume an additive model of the illusion, then the trans- 
formation of the size-weight space to a size-heaviness space will be linear and hence the 
dimensionality of the space after the illusion exerts its effect will be unchanged. For sim- 
plicity, let us assume that the stimuli are constructed in a three by three factorial design, 
similar to that used by Birnbaum and Veit [1974] in their Experiment 1. The theoretical 
stimulus space, in the absence of the size-weight illusion, will thus be a rectangle. If the 
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levels of size and mass are chosen so as to be approximately equally spaced on a subjective 
scale, then the theoretical stimulus space will be approximately square. [This square stimu- 
lus space will resemble the theoretical stimulus space used by MacCallum (1976a) in his 
study of the effect of oblique-axis data on the INDSCAL solution.] This stimulus space is 
shown in Figure 1. In the present context, dimension 1 corresponds to the subjective size of 
the stimuli and dimension 2 corresponds to the subjective weight (i.e., in the absence of the 
size-weight illusion). If the three levels of size are called small (S), medium (M) and big (B) 
and the three levels of mass are called light (L), medium (M) and heavy (H), then the stimuli 
can be coded SL for small, light; BM for big, medium, etc. To develop a simple model of 
each individual's perception of this theoretical stimulus space, we will first assume that 
there is no weight-size illusion. That is, we assume that the mass of a stimulus does not 
affect its perceived size. Then the additive size-weight illusion can be represented as a 
rotation of dimension 2 in Figure 1 to 2'. Projections of the stimuli onto dimension 2' give a 
subjective heaviness dimension in the presence of the size-weight illusion. The angle of 
rotation 0g could be different for each subject and would be a measure of the extent to which 
the subject experienced the illusion. 

This transformation of the theoretical stimulus projections, given by the columns of B, 
into stimulus projections B~ which include the effect of the size-weight illusion, is effected by 
a transformation matrix Tg for subject i. That is 

B; = B T  i. (6) 

Each Tg matrix is of the form 

['0 -  nO'l T, = cos Oi.]" (7) 

In making his or her judgments, each subject may give differential weights to the size and 

2 
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FIGURE 1 
Theoretical Stimulus Space: Dimension 1--Size; Dimension 2--Weight (without illusion). 
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heaviness of the stimuli. This differential weighting can be represented by a diagonal matrix 
W~ of weights for subject i. Then ifF~ gives the perceptual dimensions for subject i, 

F~ = B~Wt (8) 

and from (6) and (8) 

Fi  = BTiWi. (9) 

Now if we ignore for simplicity the possibility of oblique use of these dimensions, we can 
plot the two columns of Fi as orthogonal axes in a perceptual space. Figure 2 shows a 
hypothetical subject's perceptual space F~ under the model. Dimension 1 is a perceptual size 
dimension, and all stimuli having the same size have equal projections on the dimension. 
Dimension 2 is a perceptual heaviness dimension; because of the illusion, stimuli of differ- 
ent size, but the same mass, have different projections on the dimension, with smaller 
stimuli having higher projections. 

If we assume that subjects use the dimensions of the perceptual space independently 
(i.e., orthogonally) then we can write an expression for X~, the scalar product matrix for 
subject i, as follows: 

X~ = Fi F~ (10) 

(ignoring error terms for the moment). From (9) and (10) we can obtain 

Let 

then from (11) and (12) 

X, = BTIW2T~ B'. (11) 

H, = TtW/2Tt (12) 

X~ = BH~B'. (13) 

2 

I~BH 

MM 

~BM 
r 

ML r 

iBt. 

FIGURE 2 
Theoretical Perceptual Space: Dimension 1--Size; Dimension 2--Heaviness (with illusion). 
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Equations (6) through (13) develop a model for the size-weight illusion in which (12) gives 
the decomposition of the person characteristic matrices. While this resembles the IDIO- 
SCAL decomposition, it differs in that the transformation is not orthogonal. While the 
orthogonal transformation matrix of the IDIOSCAL model would be difficult to interpret 
in the context of the size-weight illusion, the oblique transformation matrix proposed in the 
present model is highly interpretable. In addition, the common stimulus space is deter- 
mined and is not arbitrary. Of course, the model is specific to the size-weight illusion and 
cannot be applied in general as the IDIOSCAL and TMMDS models can. Hence, this 
model will be referred to in the discussion that follows as the size-weight illusion (SWI) 
model. It is a representation of the perceptual process by which the perceived size and 
weight of an object interact to produce a perception of the size and heaviness of the object. 
The only requirement that the data must meet in order to fit the model is that the H~ 
matrices must be positive definite. Then an upper triangular matrix U~ can be found such 
that 

Let 

then 

so that 

Hi =UiU~. (14) 

W~ = diag(UiU~), (15) 

T~ = U/W/- 1, (16) 

Ui = TiWi .  (17) 

Substituting (17) into (14) produces (12). 

An Empirical Application of the Model 

Data Collection 

Data appropriate for the SWI model were obtained by having subjects rate the dis- 
similarity of pairs of stimuli varying in size and weight. 

Subjects. Two experiments were conducted using the same subjects in each. There 
were nineteen subjects (ten females, nine males). One was a graduate student, and the others 
were fulfilling an introductory psychology course requirement. 

Stimuli. There were nine stimuli arranged in a three by three, size by mass factorial 
design. The stimuli were plastic blocks, painted fiat black with metal lifting rings on top. 
The blocks were approximately cubic with sides 50, 65, and 88 millimeters. The three levels 
of mass were 100, 150, and 225 grams. 

Procedure. A similar procedure was used in both experiments. Each subject was tested 
individually with about one week between each experimental session. S sat at a table and 
was presented with a pair of stimuli. S picked up the stimuli one in each hand, keeping his 
elbows on the table. S then responded with a rating from a rating scale. Each session lasted 
for about one hour during which a short warm-up series of trials was presented, followed by 
two replications of the full set of stimuli. E shuffled cards specifying the stimuli pairs to 
randomize the order of presentation. S responded orally and E wrote the responses on the 
card. 

Experiment 1. In experiment one, subjects made dissimilarity ratings on a rating scale 
ranging from zero (exactly alike), through one (very similar) to nine (very dissimilar). Ss 
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were asked to pay equal attention to size and heaviness in making their ratings. There were 
72 ratings per replicate, as identical pairs of stimuli were not presented. 

Experiment 2. The rating scale was the same as that used in Experiment 1. Ss were 
allocated at random to two instructional conditions. Group H was instructed to make 
dissimilarity ratings paying more attention to heaviness, whereas Group S was instructed to 
pay more attention to size. As in experiment 1, there were 72 ratings per replicate. 

Analyses and Results--Experiments 1 and 2 

SWI model analysis. The data from Experiments 1 and 2 were analyzed both separ- 
ately and together. The combined analysis produced results that were nearly identical to the 
individual analyses, so only the combined analysis results will be presented here. 

Each subject's four ratings for each pair of stimuli were averaged to produce a nine by 
nine symmetric dissimilarity matrix with zeroes in the diagonal. (The averaging would 
presumably remove any order effects induced by subjects being biased toward one hand.) 
The stimulus space and person characteristic matrices were obtained using Tucker's [1972] 
TMMDS procedure. Preliminary TMMDS analyses indicated that the stimulus space was 
three rather than two dimensional, and that additive constants were required to convert the 
dissimilarites to distances. Additive constants for three dimensions were computed separ- 
ately using Cooper's [1972] procedure. Prior to input to the TMMDS procedure the scalar 
products matrix for each subject was scaled so that the entries had a variance of one. The 
nonzero eigenvalues for the stimulus space were 2151.62, 595.32, 178.60, 47.05, 30.70, 27.71, 
23.86, and 23.15. These eigenvalues decline more slowly after the first three, indicating a 
three dimensional stimulus space which accounted for 95.05 percent of the stimulus space 
variance. The first ten eigenvalues for the subject spaces were 2554.96, 287.16, 46.31, 35.86, 
23.28, 17.96, 16.34, 14.53, 13.80, and 9.75. These eigenvalues drop off gradually after the first 
two, indicating a two dimensional subject space which accounted for 92.34 percent of the 
subject space variance. Thus the core matrix was three by three by two. 

The next question to be dealt with was that of transformations. The third dimension in 
the stimulus space was found to be a second size dimension. The "size space" was two 
dimensional, with the points arranged in the shape of a triangle, rather than the unidimen- 
sional "size space" anticipated by the model of the size-weight illusion developed above. 
The second size dimension apparently arose because of nonlinearity in the contributions of 
levels of size to the dissimilarity ratings. The reason for this nonlinearity is not clear; 
however, as this dimension was considered to be less important than the first two dimen- 
sions, it was decided to find transformations that would minimize its influence on the 
modelling of the size-weight illusion. 

The first transformation carried out on the stimulus space was an oblique procrustean 
transformation. The target matrix comprised normalized contrast vectors for the three 
levels of size, the three levels of mass plus a vector contrasting the medium size with the 
small and large. After the procrustes transformation, the third dimension was further 
rotated in the plane of the first and third dimensions to minimize the sum of squares of 
off-diagonal entries for the third stimulus dimension in the core matrix. The final trans- 
formed stimulus space is shown in Table 1 and is plotted in Figure 3. The first two 
dimensions of the stimulus space seem to fit the theoretical space quite well, with the fit for 
the size dimension being particularly good. 

We next considered the person space. This space is described by a rectangular matrix 
with a row for each person and a column for each person-dimension or idealized person 
[see Tucker, 1972-1. Nonsingular transformations of the person space, followed by inverse 
transformations of the core matrix, leave the H~ person characteristic matrices unchanged. 
However, such transformations can be very useful in interpreting the subjects' behavior. 
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TABLE 1 

Final Transformed Stimulus Space 
SWI Analysis - Experiments i & 2 

Dimension 

Stimulus 1 2 3 

1 SL -.4097 -.4297 .1222 

2 SM -.3952 .0227 .0847 

3 SH -.4191 .4025 .0748 

4 ML -.0085 -.3782 -.4192 

5 MM .0012 -.0136 -.4395 

6 MH .0063 .4011 -.4764 

7 BL .4114 -.3719 .3295 

8 BM .4080 -.0839 .3051 

9 BH .4057 .4510 .4187 

Examination of the subject space showed that Group H and Group S subjects from 
Experiment 2 form two distinct clusters, with the Experiment 1 points in between. The 
subject space was rotated by putting axes through the centroids of the Group H and Group 
S points. Figure 4 is a plot of the transformed person space. Group H and S points are 
represented by the letters H and S respectively, and the Experiment 1 points are represented 
by l's. 

The core matrix was transformed by the inverses of the transformations applied to the 
stimulus and person spaces. The transformed core matrix is shown in Table 2. The core 
matrix can be interpreted in conjunction with the person space. Idealized person 1 corre- 
sponds to the Group H subjects and idealized person 2 corresponds to the Group S 
subjects. 

For both idealized persons, the off-diagonal entries for stimulus dimension 3 are quite 
small, indicating that this dimension was perceived as orthogonal to the first two stimulus 
dimensions. Thus in modelling the Hi matrices for stimulus dimension 3, it was only 
necessary to obtain a subject weight for the dimension. 

For idealized person 1, the plane of the core matrix corresponding to the first two 
stimulus dimensions shows large diagonal entries and a reasonably large negative off- 
diagonal entry. A negative off-diagonal entry is implied by the model of the size-weight 
illusion presented above, since an increase in stimulus size reduces stimulus heaviness. For 
idealized person 2, the diagonal entry for stimulus dimension 1 is larger and the diagonal 
entry for dimension 2 is smaller than for the first idealized person. Since the person space 
was transformed so that the first idealized person corresponds to the cluster of Group H 
subjects, (i.e., those who were instructed to pay more attention to heaviness) while the 
second idealized person corresponds to the cluster of Group S, subjects (i.e., those instruc- 
ted to pay more attention to size) we can see that the instructional conditions apparently 
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Final Transformed Stimulus Space SWI Analysis--Experiments 1 & 2: Dimension 1--Size (1); Dimension 2 - -  
Weight (without illusion); Dimension 3--Size (2) 

had the desired effect. It is important to note also that for idealized subject 2 the off- 
diagonal entry is smaller than that for idealized person 1, so that the ratio of the off- 
diagonal entry to the diagonal entry for the heaviness dimension is almost the same for the 
two idealized persons. This implies that the strength of the illusion was not modified by the 
experimental manipulation, (as will be discussed in more detail below). Finally, an interest- 
ing point that comes out of the similarity of separate and combined TMMDS analyses is 
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FIGURE 4 
Transformed TMMDS Person Space Experiments 1 & 2. 

that the behavior of the subjects in Experiment 1 can be represented as a linear combi- 
nation of the behaviors in Experiment 2. 

The person characteristic matrices were then factored according to the SWI model 
given in (12). The parameters of the model were obtained by the procedure set out in (14) 
through (17). Table 3 gives the parameters. The superscripts represent the experiment 
numbers. Thus ,xI~1~ S vv ~2 stands for the SWI-model weight for person i on dimension 2 in 
Experiment 1. Subjects 1 through 10 were in Group H and subjects 11 through 19 were in 
Group S in Experiment 2. The weights and the 0i varied with the experimental conditions. 
For Group H subjects, 0+ increases going from Experiment 1 to Experiment 2 as doesSW~2, 
while SW~ 1 and SW~ 3 all decrease. The opposite is true for the Group S subjects with the 
exception that SW/I and SW~ 3 decrease for subject 16. Thus in terms of the model of the 
size-weight illusion presented above, the parameters seem to suggest that the instructional 
conditions had the effect of increasing the influence of the illusion on the subject's ratings 
when they were told to pay more attention to heaviness, and decreasing the influence of the 
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TABLE 2 
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Transformed Core Matrix 
Experiments i and 2 

Idealized Person I 

1 

2 

3 

I 

18. 492 

-6.479 

-0. 138 

2 

-6.479 

21.096 

0. i16 

3 

-0.138 

0.116 

5.464 

Idealized Person 2 

i 2 3 

i 39.700 -2.111 0.102 

2 -2.111 7.828 0.007 

3 0.102 0.007 12.315 

illusion when they were asked to pay more attention to size. This point will be taken up in 
later discussion. 

The perceptual spaces for subjects 1 and 15 in Experiment 2 were computed using (9) 
and are shown in Figure 5. The projections on the heaviness dimension for stimuli of the 
same mass decrease with increasing size, reflecting the usual size-weight illusion. The pro- 
jections on the size axis for stimuli of the same size are approximately equal. 

INDSCAL analysis. The data from Experiments 1 and 2 were also analyzed by the 
INDSCAL procedure. The stimulus space for a three dimensional solution is shown in 
Figure 6. Stimuli of the same size have approximately equal projections on dimension 1, 
and the projections on dimension 2 are proportional to "heaviness", i.e., stimuli having the 
same mass decrease with increasing size. Thus the INDSCAL stimulus space is quite 
interpretable. In fact, the INDSCAL stimulus space is similar in shape to the SWI percep- 
tual spaces shown in Figure 5. Weighting by the subjects' weights produces INDSCAL 
perceptual spaces that are quite similar to the SWI weighted perceptual spaces. Table 4 
shows the rank order correlations between the person parameters of the SWI and IND- 
SCAL models. These are computed across the 38 observations from the two experiments. 
The negative correlation between SW, and SW2 resulted from the constraints of the rating 
scale. If a subject paid more attention to size, it would be at the expense of heaviness. There 
are other necessary relations among the SWI parameters which arise because the rank of 
the person space was two. 

For dimensions one and two, the relationship between the INDSCAL subject weights 
and the SWI parameters are as would be expected given the similarity of the stimulus 
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TABLE 3 

Parameters for the Size-Weight Illusion 
Experiments 1 & 2 

Subject 0(i)i" 0(2)i" bWil̂ " (i) SW~) ~wi2~" (i) S~4(2)i2 Swi3. (i) ST~i3(2) 

i (20) 16.326 17.212 2.701 1.777 1.825 2.681 1.524 1.041 

2 (21) 15.687 16.988 2.702 2.249 1.452 2.396 1.519 1.287 

3 (22) 16.658 17.087 2.573 2.077 2.078 2.508 1.458 1.197 

4 (23 16.850 16.952 2.424 2.336 2.256 2.395 1.379 1.334 

5 (24) 16.648 17.148 2.582 1.992 2.072 2.645 1.463 1.155 

6 (25) 16.930 17.259 2.353 1.652 2.358 2.797 1.343 .979 

7 (26) 16.690 17.278 2.563 1.576 2.115 2.823 1.453 .940 

8 (27) 16.120 17.004 2.715 2.224 1.684 2.413 1.529 ]..274 

9 (28) 16.575 17.060 2.637 2.201 2.024 2.560 1.492 1.265 

i0 (29) 16.921 17.191 2.341 1.827 2.325 2.634 1.335 1.066 

ii (30) 16.164 14.517 2.718 2.833 1.715 1.176 1.531 1.589 

12 (31) 16.945 14.843 2.344 2.828 2.384 1.246 1.338 1.586 

13 (32) 16.682 15.119 2.552 2.811 2.094 1.311 1.446 1.578 

14 (33) 15.490 12.708 2.785 2.844 1.418 .924 1.564 1.593 

15 (34) 14.000 11.053 2.798 2.855 1.069 .797 1.568 1.598 

16 (35) 1.661 -14.729 2.858 2.827 .506 .364 1.599 1.583 

17 (36) 16.603 14.991 2.618 2.821 2.043 1.280 1.482 1.583 

18 (37) 16.542 13.271 2.629 2.844 1.981 .986 1.487 1.593 

19 (38) 16.286 15.218 2.675 2.799 1.776 1.335 1.508 1.571 

spaces obtained by the two procedures. The subject weights for the third INDSCAL 
dimension show only small correlations with the other subject parameters. This result is 
explained by the fact that the rank of the INDSCAL matrix of subject weights is three. 
Thus, in effect, there are more parameters in the INDSCAL solution than in the SWI 
solution. The inequality of numbers of parameters makes it a little difficult to compare the 
two models in terms of fit to the data. The correlations between the data and the predictions 
of the models were .956 for the SWI solution and .965 for the INDSCAL solution; but the 
slightly better INDSCAL fit may simply reflect the fact that INDSCAL used more param- 
eters. Alternatively, the difference might be due to the fact that the INDSCAL algorithm 
provides a least squares fit while the T M M D S  algorithm used to fit the SWI model 
provides a fit which is only approximately least squares. In any case the differences are quite 
small, and in general we can conclude that both models provide a good fit to the data. 

Discussion 

Analysis Using the SWI  Model 

This example has demonstrated how a special purpose model, such as the SWI model, 
can provide a means of dealing effectively with the indeterminacies of the T M M D S  or 
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Perceptual Spaces for Selected Subjects Experiments 1 & 2: Dimension 1--Size; Dimension 2 Heaviness with 
Illusion 

IDIOSCAL solutions. We began with a TMMDS analysis; from the initial, arbitrary, 
TMMDS solution, the SWI model led us directly to a meardrtgful stimulus space and 
person space, as well as a clearly interpretable core matrix. By computing person character- 
istic matrices H+ and transforming them to the special form of(12), we were able to obtain 
parameters that expressed the strength of the illusion for each subject. These parameters are 
harder to obtain in the weighted euclidean representation. Although there is a way of 
representing individual differences in illusion strength in terms of the weighted euclidean 
model, this would require an additional dimension which is lirtearly dependent on the first 
two in the stimulus space [Harshman, Note 2]; this approach does not seem advantageous, 
since it would reintroduce indeterminacies into the solution. The SWI model provides a 
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FIGURE 6 
INDSCAL Stimulus Space Experiments 1 & 2: Dimension 1--Size (1); Dimension 2--Heaviness (with illusion); 

Dimension 3---Size (2) 

viable method of maintaining the extra generality desired while overcoming the problem of 
indeterminacy. 

Although the SWI model allows for individual differences in the strength of the illu- 
sion, it turned out that our analysis indicated only minor variations in the magnitude of the 
illusion across subjects (with one exception, the outlier subject 35; see line 16 of Table 3). 
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TABLE 4 

Rank Order Correlations Among SWI 
and INDSCAL Person Parameters - Experiments l&2 
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0 SW I SW 2 SW 3 IW 1 IW 2 IW 3 

0 1.000 

SW I -. 989 i. 000 

SW 2 i. 000 - . 989 i. 000 

SW 3 -.988 1.000 -.987 1.000 

IW I -.962 .969 -.961 .971 1.000 

IW 2 .998 -.988 .999 -.986 -.958 1.000 

IW 3 -.278 .274 -.278 .273 .128 -.292 1.000 

Although these variations were moderately reliable (the correlation between 0~ *) and 0~ 2) 
within each experimental group was .44 for Group H and ,75 for Group S, even with the 
outlier omitted), they were nonetheless quite small. Excluding the outlier subject, 0~ 1~ has a 
range of approximatel__y + 1.5 degrees, and a standard deviation of less than 0.7 degrees. 
Even with the manipulations of Experiment 2, the standard deviation of 012) is only 1.8 
degrees. Such consistency was not expected prior to performing the analysis. 

Analysis Using the Weighted Euclidean Model 

Despite its lack of generality, the weighted euclidean model also produced a highly 
interpretable (although somewhat less informative) solution. In fact, the SWI and IND- 
SCAL solutions were in most respects quite similar; both revealed a size and heaviness 
dimension, and the subject weights for both solutions were highly correlated. However, the 
weighted euclidean model has no means (within the three dimensions considered) of rep- 
resenting individual differences in the magnitude of the illusion. Consequently, the IND- 
SCAL stimulus space can be considered a transformation of the SWI theoretical space 
shown in Figure 1, which uses a single fixed 0 to approximate the various 0i of the SWI 
model. To make explicit what this single 0 would be, we transformed the SWI theoretical 
space via an oblique procrustean rotation, using the first two dimensions of the INDSCAL 
stimulus space as a target. This procedure produced a transformation matrix which ap- 
proximates that shown in (7), and for which the constant angle was 16.2 degrees. 

If there had been substantial individual differences in the strength of the illusion, these 
data might have provided an interesting test of the ability of INDSCAL to deal with 
violations of the weighted euclidean model. One wonders whether we would have obtained 
results similar to those of MacCallum [1976a] who found that oblique perceptual dimen- 
sions (a different but related form of violation of the weighted euclidean model) could cause 
the INDSCAL solution to be distorted, and could give rise to negative subject weights. He 
was only able to demonstrate these effects, however, with synthetic data. 

MacCallum introduced into his synthetic data large individual differences in oblique- 
ness among dimensions that were independent of individual differences in weights applied 
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to dimensions. This required that the rank of the person space be three. In our size-weight 
illusion data, however, the individual differences in the influence of the illusion were rather 
small and the rank of the person space was two. Furthermore, since the two planes of the 
core matrix were both positive definite, a unique transformation matrix could be found 
which would simultaneously diagonalize both planes of the core matrix, and hence an 
INDSCAL solution existed. (In MacCallum's synthetic data, where the dimensionality of 
the person space was three, an INDSCAL solution did not exist.) Consequently, the lack of 
negative subject weights or other anamolies with this data is to be expected, and tells us 
little about the behavior of INDSCAL with other data which might more seriously violate 
the assumptions of the weighted euclidean model. 

Comparison of the Two Solutions 

The SWI and the INDSCAL solutions provide similar descriptions of the perceptual 
dimensions employed by our subjects. In one sense, then, INDSCAL confirms the psycho- 
logical theory behind the SWI model: it indicates that the directions in the common 
perceptual space in which subjects tended to stretch or contract subjective distances corre- 
spond to the directions that would be predicted for such stretches or contractions on the 
basis of our theory of the size-weight illusion. Of course, given the simple psychological 
situation involved, this is not too surprising. Still, this verifies that size and heaviness (under 
the influence of the illusion) were indeed the perceptual dimensions used by the subjects in 
making their dissimilarity judgments. 

As we have already noted, there is a sense in which the SWI solution can be said to 
have been more informative than the INDSCAL solution. Only the SWI model allowed us 
to examine the individual differences in the strength of the illusion. Moderately reliable 
individual differences were, in fact, found, and in some psychological contexts these differ- 
ences might prove to be interesting (e.g., as correlates of other individual differences, such as 
differences in cognitive style, susceptibility to the Muller-Lyer illusion, etc.). However, it 
was interesting to discover that in the experimental situation used here, the differences in 
strength of the illusion were quite small. The INDSCAL solution would not have permitted 
us to make this observation. 

There is a further reason that the SWI model might be preferred. The derivation of the 
SWI model involves a theory of the perceptual process by which heaviness is derived from 
size and weight. Thus the SWI analysis provides a test (or at least an application) of this 
theory. Indeed, the SWI model is simply an extension of the additive contrast model of the 
size-weight illusion presented by Anderson [1970] and Birnbaum and Viet [1974]. In fact, 
the Anderson model can be considered as a special case of the SWI model in which all the 
subject weights for the size dimension are zero. In this way, the SWI model can represent 
subjects' judgments of dissimilarity even when size is not explicitly used. 

Other Issues 

Oblique vs. orthogonal axes. The results of this study in part support Harshman's 
[Note 4] finding that the size-weight illusion induces an oblique relationship between size 
and weight in the subject's perceptual space. However, the results reported here differ in 
two respects from Harshman's results. First, the SWI analysis indicated only small vari- 
ations in the angle between size and weight across subjects (with the exception of one 
outlier subject). Harshman reported "a wide range of individual variations in the angle 
between perceptual dimensions" (p. 51). Second, the SWI model proposed here assumes an 
orthogonal perception of size and heaviness dimensions, as implied by (10). Harshman 
found evidence of oblique perceptions of size and heaviness, as well as size and weight, in 
many of his subjects. Specifically, when he used regression to place unidimensional scales of 
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size and heaviness into each subject's perceptual space, the angle between the size and 
heaviness axes differed reliably from zero (for many subjects). 

There are, however, important methodological differences between the present study 
and the earlier study by Harshman. In Harshman's study, the weights being compared were 
lifted sequentially using only one hand. And although the subject was free to go back and 
forth between the two weights, (repeatedly lifting until he was confident of his dissimilarity 
judgment), the actual comparison was made in memory. This might have allowed a greater 
scope for subjective individual differences. Also, Harshman used a broader range of sizes 
and weights, so that subjects would be less likely to recognize a standard size and try 
somehow to standardize the response. Finally, Harshman directly measured unidimension- 
al scales of size, heaviness, and weight, for each subject; he also performed a separate 
multidimensional scaling of each subject's dissimilarity judgments, to obtain for each sub- 
ject an independent perceptual space. He then used regression to fit a given subject's 
unidimensional scales into that subject's multidimensional space. In the present study, no 
attempt was made to directly measure the unidimensional scales for size, weight, and 
heaviness. These were inferred from the multidimensional scaling analysis. Also, a common 
perceptual space was estimated for all subjects, allowing only those patterns of variation 
which were consistent with the three-way SWI model (e.g., the perceptual spaces of all 
subjects were constrained so that size and heaviness would be orthogonal; this restriction 
might have considerably reduced the individual variations in angles between size and 
weight). It is possible that one or more of these methodological differences may have caused 
the different results in the two studies. 

Other aspects of the S W I  solution. It appears from Table 3 that the manipulation of 
subjects' attention, (by directing group H to pay more attention to heaviness, and group S 
to pay more attention to size), has an effect on the strength of the size-weight illusion. 
Subjects asked to pay more attention to heaviness showed a greater illusion than those 
asked to pay more attention to size, since the 0! 2) values in group H tend to be larger than 
those in group S. However, the effect is modest in size, and might be due to characteristics 
of the estimation procedures used in fitting the SWI model. If, for example, the effects of 
individual differences in dimension weights were not perfectly estimated and completely 
removed from each individual's space, then a relationship such as the one observed would 
be likely to occur as an artifact. Subtle aspects of the SWI solution, such as this apparent 
effect of experimental instructions on 0i, should be checked in some independent fashion 
before they are taken as firm evidence of a psychological effect. Similarly, the perfect rank 
order correlation between 0t and S W  2 (Table 4) might at first seem to indicate a striking 
psychological relationship. However, there is an alternative explanation. 

If the 0i in the SWI analysis were to be exactly constant, the condition that would need 
to be met is that the ratios of the off diagonal to the diagonal elements for weight in the two 
planes of the core matrix would need to be exactly equal. These two ratios were -.31 and 
- .27 for idealized persons 1 and 2 respectively. Thus, the perfect rank order correlation in 
Table 4 between 0~ and S W  2 arises because the larger ratio occurs for the idealized person 
having the larger diagonal element for weight, and hence is probably artifactual. 

Constrained analyses. Although we have conceptualized our approach as one of fitting 
a model of intermediate generality between the weighted euclidean and the TMMDS or 
IDIOSCAL, in fact we have fit the TMMDS model and then used procrustes rotation 
based on the SWI model to transform the solution into maximum conformance with the 
SWI model. This shows how an a priori model can be used to deal with the indetertainacies 
of the most general three-way MDS procedures. If we wished to fit a more constrained 
model to the data directly, we might consider modified estimation procedures similar to 
those developed by Bloxom [1978], and Carroll, Pruzansky and Kruskal 1"1980] which 
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show how linear constraints can be placed on the projections in the object space. For  
example, constraints could presumably be incorporated  into T M M D S  procedures by 
methods  similar to those used by Carroll, et al. for the weighted euclidean model. Such 
methods  might then be employed, for example, to insure that  all stimuli of the same size 
have identical projections on the size dimension. Compar i son  of fit values for the con- 
strained and unconstrained solutions should provide further information on the appropri-  
ateness of  the SWI model  (or whatever a priori model  one is fitting) for a given set of  data. 
In any case, the use of constrained as opposed to unconstra ined solutions would not  change 
the basic points made in this article. 

Conclusion 

This study proposed a model  of  the size-weight illusion approached  from the view- 
point  of individual differences models in mult idimensional  scaling. By specifying in advance 
the stimulus space and the decomposi t ion  of the individual characteristic matrices, it was 
possible to eliminate the indeterminacies and problems of  interpretat ion associated with 
models such as I D I O S C A L  and T M M D S .  This procedure  was applied to data  f rom two 
experiments and compared  to an I N D S C A L  analysis of the same data. 

The size-weight illusion model  provided a more  informative solution, because it al- 
lowed an evaluation of  the individual differences in the strength of  the illusion. However,  
because such individual differences turned out  to be minor  in these experiments, the I N D -  
SCAL analysis was able to produce an interpretable solution which ignored inter-subject 
differences in magni tude of  the illusion. 

The size-weight illusion study provides an example of  how "special purpose"  theor-  
etical models tailored to represent the psychological  processes under  investigation can 
provide an effective way of  examining individual differences more  general than those al- 
lowed by the weighted euclidean model,  while avoiding the difficulties sometimes associated 
with the indeterminacies of the very general I D I O S C A L  and T M M D S  models. 
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