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Abstract

Principal Component Analysis (PCA) is a well-known technique, the aim of which is to synthesize huge amounts of numerical data by

means of a low number of unobserved variables, called components. In this paper, an extension of PCA to deal with interval valued data is

proposed. The method, called Midpoint Radius Principal Component Analysis (MR-PCA), recovers the underlying structure of interval

valued data by using both the midpoints (or centers) and the radii (a measure of the interval width) information. In order to analyze how MR-

PCA works, the results of a simulation study and two applications on chemical data are proposed.
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1. Introduction We can formalize an interval valued datum as x =
In conventional data analysis, the variables are repre-

sented by single valued vectors (numerical vectors). How-

ever, in several substantive applications, the utilization of

single valued variables may bring about a heavy loss of

information. For example, in chemometrics, we may study

the mineral concentrations of food products analyzed at

different times or in different experimental situations; in

meteorology, we may consider the daily temperature, hu-

midity and wind speed registered in different places; in

environmetrics, we may refer to the pollutant concentrations

of SO2, CO, NO, NO2 and O3 recorded at various places; in

finance, we may examine the daily rate of exchange

between euro–dollar or euro–sterling; in medicine, we

may make reference to daily systolic and diastolic pressure,

pulse rate, temperature of patients; and so on. In all the

previous cases, it is more interesting to take into account the

minimum and maximum values registered in the considered

period rather than the average one because they offer more

detailed and complete information about the phenomenon

under examination.
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[xij, x̄ij], i= 1,. . .,I and j = 1,. . .,J, where xij represents the j-th
interval valued variable observed on the i-th observation

unit; xij and x̄ij denote, respectively, the lower and upper

bounds of the interval; in particular, they represent the

minimum and maximum values registered for the j-th

interval valued variable with respect to the i-th observation

unit. Notice that, in the general case of J interval valued

variables, each observation unit can be represented geomet-

rically by a hyperrectangle in RJ
having 2J vertices. The set

of the 2J vertices corresponds to all the possible (lower

bound, upper bound) combinations. In particular, in R
( J = 1), the generic object is represented by a segment; in

R2
( J = 2), it is represented by a rectangle with 22 = 4 vertices,

and so on. See also Refs. [1,2]. Moreover, see, in the fuzzy

data framework, Refs. [3,4].

In many real situations, as it happens with traditional

single valued data, it is desirable to compress interval valued

data losing relevant information as little as possible. When

the data set is numerical valued, this can be done by means

of Principal Component Analysis (PCA). Let X be the

numerical data matrix of order (I� J). We have

X ¼ ABVþ E; ð1Þ

where A is the component scores matrix of order (I�P), B

is the component loadings matrix of order ( J�P), E (I� J)
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is the residual matrix and P (V J) is the number of extracted

components. Notice that ABV provides the best approxima-

tion of rank P of the original data matrix X.

The popularity of PCA (and its three-way extensions) in

chemistry is recognized. For instance, it is used for second-

order calibration, fluorescence spectroscopy, chromatogra-

phy, food quality evaluation (see, e.g., Refs. [5–7]). In this

paper, we propose suitable extensions of conventional PCA

when the data are intervals.

The paper is organized as follows. In Section 2, we recall

Vertices Principal Component Analysis (V-PCA) and Cen-

ters Principal Component Analysis (C-PCA). They are,

probably, the two most popular methods which detect the

underlying structure of interval valued data. In Section 3, we

propose our method. In Section 4, we propose how to plot

the observation units in the obtained low-dimensional space.

In Section 5, we give the results of a simulation study

carried out in order to compare our method with C-PCA and

V-PCA. Finally, in Section 6, we show two applications of

our method on two chemical data sets.
2. V-PCA and C-PCA

V-PCA and C-PCA are multi-step procedures, which aim

at detecting the underlying structure of two-way interval

valued data sets [1,2]. Let us consider to deal with I

observation units characterized by J interval valued varia-

bles. The data are stored in the interval valued matrix X, the

generic element of which is xij ¼ txij; xijb; i ¼ 1; . . . ; I and

j ¼ 1; . . . ; J .
The first step of both methods consists of replacing the

interval valued matrix by a single valued one. In V-PCA,
XV�PCAV XV�PCA ¼ 2J�2

2
XI
iþ1

ðx2i1 þ x̄2i1Þ
XI
i¼1

ðxi1 þ x̄i1

XI
i¼1

ðxi2 þ x̄i2Þðyi1 þ x̄i1Þ 2
XI
i¼1

ðx2i2 þ x̄

] ]

XI
i¼1

ðxiI þ x̄iIÞðxi1 þ x̄i1Þ
XI
i¼1

ðxiI þ x̄iI

2
66666666666664
this is done by transforming the original data matrix of order

(I� J) into a numerical one of order (I2J� J). In the original

interval valued matrix X, the generic i-th row pertains to the

i-th observation unit. Each row is transformed into the

submatrix iX of order (2J� J) in which each row refers

exactly to each vertex of the hyperrectangle associated to the

generic i-th observation unit. Thus, with regard to observa-

tion unit i, if we have J = 2 variables, the coding procedure

leads to

iX ¼

xi1 xi2
xi1 xi2
xi1 xi2
xi1 xi2

0
BB@

1
CCA ð2Þ

and the new data matrix is

XV�PCA ¼
1X
]
1X

0
@

1
A: ð3Þ

V-PCA is nothing but performing PCA on the matrix

in Eq. (3). It should be clear that V-PCA is computa-

tionally cumbersome when the data size is huge because

the number of rows of the matrix in Eq. (3) is exponen-

tially related to the number of variables. However, the

computation of the component loadings matrix can be

simply obtained, because it is based on the eigendecom-

position of the cross-products matrix XV-PCAV XV-PCA,

which can be easily computed. In fact, it can be shown

that
Þðxi2 þ x̄i2Þ : : :
XI
i¼1

ðxi1 þ x̄i1ÞðxiJ þ x̄iJ Þ

2
i2Þ : : :

XI
i¼1

ðxi2 þ xi2Þðx̄iJ þ x̄iJ Þ

O ]

Þðxi2 þ x̄i2Þ : : : 2
XI
i¼1

ðx2iJ þ x̄2iJ Þ

3
77777777777775
: ð4Þ
See, for further details, Ref. [2].

In C-PCA, each element of the interval valued matrix X

is replaced by the midpoint (or center) of the associated

interval. Thus, we get the (I� J)-matrix

XC�PCA ¼

m11
: : : m1J

] O ]

MI1
: : : mIJ

0
BBBB@

1
CCCCA; ð5Þ
where mij

xijþxij

2
, for i = 1,. . .,I and j= 1,. . .,J. Now, classical

PCA is performed on XC-PCA.

Using both methods, we can represent each observation

unit as a low-dimensional hyperrectangle. When the

loadings are columnwise orthonormal, the scores provide

the projection of the observation units in the low-dimen-

sional space spanned by the loadings. With respect to V-

PCA, the scores give the coordinates of the vertices for

all the observation units in such low-dimensional space.

Unfortunately, the projected vertices do not define exactly
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a hyperrectangle. This problem can be solved by consid-

ering the maximum covering area rectangle (MCAR), that

is considering the hyperrectangle (the rectangle if we

extract P= 2 components) which encloses all the projected

vertices. If we are performing C-PCA, the low-dimension-

al hyperrectangles can be found by noting that the

coordinates of the midpoints are enclosed between the

lower and upper bounds and that the principal compo-

nents are linear functions of the mij’s. See, for further

details, Refs. [1,2].

So far, we recalled the two most popular methods to

analyze the underlying structure of interval valued data sets.

Further extensions of PCA for interval valued data can be

found in Refs. [8,9]. In Section 3, we provide a different

approach to the problem.
3. Principal component analysis for interval valued data

3.1. The model

We already noticed that each observation unit can be seen

as a hyperrectangle in R J
. Let M be the midpoints matrix as

given in Eq. (5), the generic element of which is the

midpoint of the associated interval. Moreover, let R be the

radii matrix of order (I� J)

R ¼

r11 : : : r1J

] O ]

rI1 : : : rIJ

0
BBBB@

1
CCCCA; ð6Þ

the generic element of which is rij ¼
xij�xij

2
, for i = 1,. . .,I and

j = 1,. . .,J. Thus, the radius is the half-width of an interval.

The principal component model for interval valued data

is given by:

M ¼ M*þ EM; ð7Þ

M* ¼ AMBV; ð8Þ

R ¼ R*þ ER; ð9Þ

R* ¼ ARBV; ð10Þ

M þ RHk ¼ M*þ R*Hk þ Zk k ¼ 1; . . . ;K; ð11Þ

where M* and R* are the matrices of order (I� J) of the

estimated midpoints and radii, respectively. AM and AR are,

respectively, the component scores matrices for the mid-

points and for the radii of order (I�P), B is the component

loadings matrix of order ( J�P). Finally EM, ER and Zk are

residual matrices of order (I� J). We refer to the model in
Eqs. (7)–(11) as Midpoint Radius Principal Component

Analysis (MR-PCA).

In MR-PCA, we assume that different scores are

determined for the midpoints and the radii, whereas the

loadings are the same. Thus, the proposed model is based

upon the assumption that the midpoints and the radii are

modelled by means of the same components. It follows

that the MR-PCA model can be seen as a special case of

Simultaneous Component Analysis with invariant Pattern

(SCA-P). SCA is a generalization of PCA proposed in

Refs. [10–12] when observations on the same variables

have been registered in more than one population. Instead

of analyzing the observations separately, the idea is to find

components that explain as much variance as possible in

all populations simultaneously. In SCA-P [12], a special

version of SCA, the number of component scores matrices

is equal to the number of populations, while one common

loadings matrix is constructed. It is well-known that the

same components can be always extracted from different

populations and, indeed, in the MR-PCA method, from the

midpoints and radii matrices. However, one can argue

whether such components are able to synthesize simulta-

neously both the midpoints and the radii in a satisfactory

way. In Section 5, we aim at answering this question. In

particular, we will give the results of a simulation study

carried out in order to assess whether our method recovers

the underlying structure in the data better than C-PCA and

V-PCA.

It is fruitful to observe that the model in Eqs. (7)–(11)

is the same as the one for fuzzy data proposed in Ref. [4].

It is recognized that the analysis of interval valued data

can be considered as a sub-domain of fuzzy set theory.

Specifically, an interval valued number can be seen as a

fuzzy number with the so-called rectangular membership

function. See, for instance, Ref. [13]. However, in spite of

all that, we prefer to treat differently interval valued data

and fuzzy data. This is based upon the assumption that

methods suitable for fuzzy data should be constructed in

such a way that the role of the midpoints or centers (whose

membership function values are maximal) must be empha-

sized. This does not hold in the interval valued data

framework where all the points in the interval are consid-

ered on the same foot.

So far, we showed how to model the midpoints and the

radii. Following a least squares approach, the optimal

component matrices AM, AR and B are then obtained by

minimizing a suitable loss function, which compares the

observed and theoretical data as given in Eqs. (7)–(11).

Such a loss function is based on the distance measure

between observed and theoretical interval valued data that

will be proposed in Section 3.2.

3.2. The distance measure

In order to compare, in the least squares sense, two

observation units described by J interval valued variables,
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we suggest to consider all the vertices of the two hyper-

rectangles pertaining to the observation units involved.

Thus, we get the following squared distance:

D2ði V; iWÞ ¼
XK
k¼1

Nðmi Vþ ri V*hkÞ�ðmiWþriW*h kÞN2
; ð12Þ

in which miV and miU denote, respectively, the iV-th and the iU

rows of M and riV and riU those of R. The symbol * denotes

the Hadamard product, that is the elementwise product of

two matrices (vectors) of the same order. The vectors, hk,

k = 1,. . .,K, where K = 2J, help us to define every vertex of

the hyperrectangle associated to each observation unit

separately. In fact, their elements are equal to F 1 in order

to refer exactly to every vertex. The vectors hk, k = 1,. . .,K
are the rows of a new matrix, say H, of order (K� J). If

J = 3, we get:

H ¼

�1 �1 �1

�1 �1 1

�1 1 �1

1 �1 �1

1 1 1

1 1 �1

1 �1 1

�1 1 1

2
6666666666666666666666664

3
7777777777777777777777775

: ð13Þ

Using h1 (first row of H), we get the vector of the lower

bounds pertaining to the i-th observation unit:

ðxi1 xi2 xi3Þ ¼ mi þ ri*ð�1 � 1 � 1Þ ¼ mi � ri: ð14Þ

Analogously to Eq. (14), by means of h5, we obtain the

vector of the upper bounds:

ðxi1 xi2 xi3Þ ¼ mi þ ri*ð1 1 1Þ ¼ mi þ ri: ð15Þ

In order to compare a set of I observation units charac-

terized by J interval valued variables and a set of estimated

ones, the use of Eq. (12) leads to the following squared

distance:

D2 ¼
XK
k¼1

NðM þ RHkÞ � ðM*þ R*HkÞN2
; ð16Þ

where Hk, k = 1,. . .,K, are diagonal matrices whose diagonal

elements are equal to those of the vectors hk, k = 1,. . .,K.
It can be easily seen that the matrices Hk, k = 1,. . .,K,
satisfy the following properties that will be very useful in

order to simplify Eq. (16):

HkHk ¼ IJ ; k ¼ 1; . . . ;K; ð17Þ

XK
k¼1

Hk ¼ 0J : ð18Þ

Let us consider the k-term of the sum in Eq. (16). After a

little algebra, we get

NðM þ RHkÞ � ðM*þ R*HkÞN2

¼ NM � M*N2 þ trðHkRVRHkÞ þ trðHkR*VR*HkÞ
�2trðHkRVR*HkÞ þ 2tr½ðMVR þ M*VR*

�MVR*� RVM*ÞHk �: ð19Þ

By taking into account Eq. (17), Eq. (19) can be

simplified as

NðM þ RHkÞ � ðM*þ R*HkÞN2

¼ NM � M*N2 þ NR � R*N2

þ 2tr MVR þ M*VR*� MVR*� RVM*ð ÞHk½ �: ð20Þ

Upon substituting Eq. (20) into Eq. (16) and considering

Eq. (18), we obtain

D2 ¼
XK
k¼1

NðM þ RHkÞ � ðM*þ R*HkÞN2

¼ 2JNM � M*N2 þ 2JNR � R*N2

iNM � M*N2 þ NR � R*A2¼ D̃2: ð21Þ

We notice that Eq. (21) is the matrix generalization of the

distance between two vectors of fuzzy numbers proposed in

Ref. [14].

3.3. The solution

The solution of the model is obtained by means of

the Singular Value Decomposition (SVD) of the matrix

Y ¼ M
R

� �
of order (2I� J) that is decomposed as PDQ V

where P and Q are matrices containing the unit length

singular vectors of Y and D is the diagonal matrix displaying

the singular values of Y in decreasing order. The best P-rank

decomposition ofY is PPDPQP
Vwhere PP andQP are matrices

containing the first P columns of P and Q, and DP is the

diagonal matrix displaying the first P singular values of Y. In

fact, according to Eqs. (8) and (10), Eq. (21) can be written as

D̃2 ¼ NM � AMBVN2 þ NR � ARBVN2

¼
M

R

2
4

3
5�

AM

AR

2
4

3
5BV

����
��������
����
2

¼ NY � ABVN2

������
������ ð22Þ
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where A ¼
�

AM

AR

�
. We then get the following solution:

AM ¼ P1
PDP; ð23Þ

AR ¼ P2
PDP; ð24Þ

B ¼ QP; ð25Þ

where PP
1 and PP

2 contain, respectively, the first I rows and the

last I rows of PP.

We notice that the solution in Eqs. (23)–(25) does not

guarantee that the estimated radii are non-negative. If

negative estimated radii occur, two possible approaches

can be adopted.

The first approach simply consists of replacing negative

estimated radii by zero. This is done under the assumption

that possible negative estimates of the radii correspond to a

lack of uncertainty. Thus, for any practical purpose, negative

estimated radii can be set equal to zero.

The second approach is based on the following rowwise

alternative least squares (ALS) algorithm that updates the

rows of the component matrices AM, AR and B by minimiz-

ing the loss function in Eq. (22) subject to the non-negativity

constraint on R*, as given in Eq. (10). Notice that the

updates of all the rows ofAM do not affect the non-negativity

of the estimated radii. Thus, in order to reduce computation

time, the updating of the entire matrix AM should be

considered. The algorithm involves the following steps:

Step 1 (initialization)

Consider a feasible solution such that ARBVz 0. It can be

randomly generated from the uniform distribution in [0,z],

z>0 or it can be obtained considering Eqs. (24) and (25) by

replacing negative values with random values from the

uniform distribution in [0,z], z>0.

Step 2 (updating)

Update AM and all the rows of AR (aRi’s) and B (bj’s) by

solving, for each row of each matrix, the following con-

strained problem:

minimize D̃2 ¼ NM � AMBVN2 þ NR � ARBVN2

subject to ARBVz0:

ð26Þ

Step 3 (convergence)

Check whether the loss function value decreased less

than a pre-specified percentage with respect to the previous

function value. If the decrease is negligible, conclude that

the algorithm has converged; otherwise, go to Step 2.

The problem in Eq. (26) can be solved by means of active

sets algorithms as described in Ref. [15]. In particular, the LSI

algorithm can be adopted. It solves the following problem:

minimize f ðxÞ ¼ NCx � dN2

subject to Sxzt:

ð27Þ
where C is a (n1� n2)-matrix, x a n2-vector, d an n1-

vector, S a (n3� n2)-matrix, t a n3-vector. The updating of

the generic i-th row of AR is obtained by setting x = aRiV,
C =B, d = riV(where ri is the i-th row of R), S =B and t = 0j.

The updating of the generic j-th row of B is obtained by

setting x = bVj, C =A, d = y j (where y j is the j-th column of

Y), S =AR and t = 0I. Finally, since AM does not affect the

estimated radii, AM is updated by solving an ordinary

regression problem. We thus have AM=MB(BVB)-1.
In fact, whenever a matrix or a row is updated, the loss

function to minimize does not increase. The expression in Eq.

(22) has a lower bound and therefore the function value

converges to a stable value. We notice that the above

procedure does not guarantee that the global optimum is

attained.

3.4. The goodness of fit index

In order to evaluate the goodness of fit of the model, we

suggest to compare the estimated and observed values by

considering the following performance index:

F ¼ 1� NM � M*N2 þ NR � R*N2

NMN2 þ NRN2

 !
100: ð28Þ

The index takes values from 0 to 100. Values near 100

show that the model fits the data well.

Section 3.5.: Preprocessing . In the MR-PCA method, if it

is desirable to preprocess the data, we suggest to standardize

each midpoint score by subtracting the mean and dividing

by the standard deviation of the variable at hand. The radii

can be preprocessed by dividing them by the standard

deviation of the related midpoints.
4. Graphical representation of the observation units

In several cases, it can be convenient to plot the entities of

the observation unit mode onto the low-dimensional space

spanned by the component loadings matrix B. This provides

a representation of each observation unit as a low-dimen-

sional hyperrectangle inRP
. In the MR-PCAmethod, as well

as for classical PCA and, indeed, for the C-PCA and V-PCA

methods, in order to have an adequate plot, B must be

columnwise orthonormal. If such a property does not hold,

the plot is distorted because the axes have unequal length.

See, for further details, Ref. [16].

The non-iterative algorithm guarantees that B is column-

wise orthonormal taking into account that, in the SVD

decomposition, QP contains the first P unit length singular

vectors of the matrix on which the SVD is performed. If

negative estimates of the radii occur, the iterative algorithm

must be run. In this case, the optimal loadings matrix B is

not columnwise orthonormal. Thus, we find a transforma-
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tion matrix T such that B̂ =BT is columnwise orthonormal

provided that A is postmultiplied by (TV)� 1, that is

Â=A(TV)� 1. In fact, this procedure does not modify the

fitting of the model taking into account that

ÂB̂V¼ AðT VÞ�1ðBTÞV¼ ABV: ð29Þ

It is well known that the matrix T can be found, for

instance, by means of the Gram–Schmidt orthonormaliza-

tion procedure.

To simplify the notation, let us suppose that B is

columnwise orthonormal. Going into detail, two plotting

procedures can be proposed. The first one consists of

projecting all the vertices pertaining to each hyperrectangle

in the low-dimensional space spanned by B. The matrices of

the estimated vertices of the i-th hyperrectangle, say Vi, of

order (K� J ), can be written as

Vi ¼ 1Mi*þ HRi*; ð30Þ

where H was introduced in Section 3, Mi* and Ri* are

diagonal matrices whose main diagonals are the i-th rows

of, respectively, M* in Eq. (8) and R* in Eq. (10), and 1 is

a matrix with unit elements of order (K� J ). The matrix

iA ¼ ViB ð31Þ

contains the coordinates of the vertices pertaining to the i-

th hyperrectangle in the low-dimensional space spanned by

B. As one may expect, the union of the points in Eq. (31)

does not define a low-dimensional hyperrectangle. The

problem can be solved by considering the hyperrectangle,

which encloses all the projected vertices. With respect to

the i-th observation unit and the p-th component, we have

the lower and the upper bounds, respectively, as

iap ¼ minðiapÞ; ð32Þ

iap ¼ maxðiapÞ; ð33Þ

where ia
p denotes the p-th column of iA.

In order to find exact low-dimensional hyperrectangles,

we also propose the following procedure. Let HC be the

matrix of order (2P�P) whose role is to define every vertex

of the low-dimensional hyperrectangles in RP
, similarly to

H with respect to the hyperrectangles in RJ
. The matrix H

refers to the variable space, whereas HC refers to the

component space. As the rows of AM and AR provide the

coordinates of, respectively, the midpoints and the radii in

the low-dimensional space spanned by B, the vertices of the

low-dimensional hyperrectangle pertaining to the generic i-

th observation unit are

iA ¼ 1CAM
i þ HCAR

i ; ð34Þ

whereAi
M andAi

R are diagonal matrices whose main diagonal

elements are, respectively, those of aMi, the i-th row of AM,

and aRi, the i-th row of AR. Finally 1C is a matrix of order

(2P�P) whose elements are 1’s. It is worth to notice that the
elements of Ai
R can be negative. It follows that the visuali-

zation tool loses the information about the signs of the

elements in Ai
R, i = 1,. . .,I, but it has no effects from a

graphical point of view. However, we suggest, using the

rotational freedom of MR-PCA, to find, if it exists, a

columnwise orthonormal rotation matrix W (it very often

suffices to use a diagonal matrix whose elements are F 1)

such that the coordinates of the radii are non negative

provided that the rotation is compensated by postmultipling

the loadings by (WV)� 1.
5. Simulation study

In this section, we give the results of a simulation study

carried out in order to compare MR-PCA to C-PCA and V-

PCA. Specifically, the simulation study aims at answering

whether the compromise structure obtained by means of

the MR-PCA method recovers better than C-PCA and V-

PCA the underlying structure (the component loadings B)

in the interval valued data. Notice that, in the C-PCA

method, only the information pertaining to the midpoints is

used in recovering the underlying structure of the interval

valued data set involved. The information about the width

of the intervals plays a relevant role just afterwards. In fact,

the radii help us in determining the size of the low-

dimensional hyperrectangles associated to the observation

units. Therefore, the simulation study also offers a com-

parison between MR-PCA and classical PCA applied on

the midpoints.

Moreover, we investigate about the cases in which

negative estimated radii occur. In these cases we apply the

iterative algorithm. In fact, we study the computation time

and the decrease of fit with respect to the solution of the

non-iterative procedure.

For each simulated data set, we randomly generate from

the uniform distribution in [0,1] the known component

loadings matrix, say B̃, and the component scores matrices

for the midpoints, say ÃM, and for the radii, say ÃR. Six

levels of noise (n = 0.1,0.3,0.5,1.0,1.5,2.0) are added to the

obtained data. Therefore, we get

M ¼ ÃMB̃Vþ nNM; ð35Þ

R ¼ ÃRB̃Vþ nNR; ð36Þ

where NM and NR are randomly generated matrices from the

uniform distribution in [0,1] for which the following rela-

tions hold:

NÃMB̃VN2 ¼ NNMN
2
; ð37Þ

NÃRB̃VN2 ¼ NNRN
2
: ð38Þ

By means of Eqs. (37) and (38), we are able to quantify

exactly the level of added noise according to the values of
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the parameter n. We construct data sets with three different

numbers of observation units (I= 12,18,24) and variables

( J = 6,9,12) and we consider three relative sizes of the radii

with respect to the midpoints (r = 0.25,0.5,1.0). Finally, we

use P= 2,3 components. For each condition (a combination

of the values pertaining to the five design variables), we
Fig. 1. Percentage of times in which one method recovers the known component lo

better, black slices =V-PCA works better, dark grey slices =MR-PCA works bette
generate ten data sets. Therefore, the simulation study is

done on 3.240 data sets.

It remains to show how to evaluate whether one method

works noticeably better than the other ones. Let BC, BV and

BMR be the estimated component loadings matrix obtained

performing, respectively, C-PCA, V-PCA and MR-PCA. To
adings matrix noticeably better than the others. White slices =C-PCAworks

r, light grey slices = the methods work equally well.



Fig. 2. Recovering performance of C-PCA (or PCA) in white, V-PCA in black and MR-PCA in grey, in terms of the PR index.
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deal with the rotational freedom in the models, we first

transform BC, BV and BMR in such a way that they are as

similar as possible to B̃. In fact, we seek the matricesWC,WV

and WMR for which, respectively, NBCWC � B̃N2 ¼ min
W

NBCW � B̃N2
;NBVWV � B̃N2 ¼ min

W
NBVW � B̃N2

, and

NBMRWMR � B̃N2 ¼ min
W

NBMRW � B̃N2
. The above min-

imization problems are simple regression problems that can

be easily solved.

Let B̃C =BCWC, B̃V=BVWV and B̃MR =BMRWMR. In

order to compare the estimated component loadings matri-

ces with the known generated one, we consider the follow-

ing index known as proportion of recovery measure (see,

e.g., Ref. [17]):

PR ¼ 1�
NB̃* � B̃N2

NB̃N2

 !
100; ð39Þ

where B̃* denotes the rotated estimated component loadings

matrix. The index in Eq. (39) takes values from 0 to 100.
Fig. 3. Number of times in which
Values near to 100 show that the method at hand recovers

the known component loadings matrix B̃ well.

5.1. Performance of the model

We assume that one method works noticeably better

than the remaining two when the PR value differs more

than 5% with respect to the ones pertaining to the remain-

ing two methods. The results are displayed in Fig. 1 for

each level of each design variable separately. On average,

in 28.8% of cases, MR-PCA recovers the underlying

structure of the data better than the other methods, whereas

C-PCA and V-PCA only in 3.1% and 0.3% of cases,

respectively.

Going into detail, we notice that MR-PCA works

noticeably better than C-PCA except when the level of

added noise is small. The size of the radii and the

number of extracted components do not affect the

results. The recovering performance of MR-PCA is better
negative estimates occur.
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when the number of observation units decreases or the

number of variables increases. The MR-PCA method

performs very well when the level of noise added is

higher than 0.5. In fact, on average, the PR values

pertaining to the MR-PCA method are considerably

higher in 56.2% of cases and C-PCA in 1.7% (V-PCA

only in 0.2%).

Further details are given by considering Fig. 2, which

gives the average recovering performance of C-PCA, V-

PCA and MR-PCA in terms of the PR index, for each

level of each design variable separately. According to Fig.

2, we can observe that the average PR value pertaining to

the V-PCA method is always the lowest except for

r = 0.25 when it is slightly higher than that pertaining to

C-PCA. The average PR values pertaining to the MR-

PCA method are very often higher than those pertaining

to C-PCA. Only when the levels of added noise are small,

the average C-PCA values are slightly higher. The average

PR value for MR-PCA is 88.6% versus 81.9% for C-PCA

and 75.7% for V-PCA. With respect to the MR-PCA

method, the average values seem to not depend on the

number of observation units, the number of variables and

the size of the radii. The highest difference between the

performance of MR-PCA and that of the remaining

methods is attained when the level of added noise is

the highest (n = 2.0).

Summing up, we can argue that the MR-PCA method

works better than C-PCA and V-PCA especially when the

level of added noise is high. In the remaining conditions, the

MR-PCA method should be preferable. However, the dif-

ferent levels of the remaining design variables slightly affect

the performance of the method.

5.2. Negative estimated radii

In this subsection, we aim at studying the occurrences in

which the estimates of the radii are negative by means of the

non-iterative algorithm given in Section 3.3.
Fig. 4. Computation time of
Out of 3.240 randomly generated data sets, we obtain

negative estimates only 60 times (1.9% of cases). Further

details can be found in Fig. 3.

The number of times in which negative estimates of the

radii occur increases when the number of observation units

increases or the number of variables decreases. As it should

be expected, when the size of the radii is small, the risk of

negative estimates increases. In fact, as the generated radii

are nearer to zero, the possibility to obtain negative esti-

mates increases. Analogously, when the level of added noise

increases or the number of extracted components decreases,

the number of times in which negative estimates occur

increases. In both cases, the fit of the model decreases

and, as a consequence, the risk of irregular estimates—in

particular, negative estimates—increases.

Whenever negative estimates of the radii occur, we run

the row-wise ALS algorithm given in Section 3.3 consider-

ing as starting point the non-iterative solution and replacing

negative component loadings and component scores for the

radii by randomly generated numbers from the uniform

distribution in [0,1] in order to deal with a feasible solution.

The need for the iterative algorithm leads to a negligible

decrease of fit (0.02% on average according to the index in

Eq. (28)).

The computation time of the algorithm is very low. In

fact, the average computation time is 1.8 s. It seems to be

affected only by the number of observation units and by the

level of added noise as we can observe in Fig. 4.

To sum up, the possibility of obtaining negative estimates

of the radii is very low. In such unlucky occurrences, the

iterative algorithm works very well: it converges quickly

and the decrease of fit is very small.
6. Applications

In this section, we give the results of two applications of

MR-PCA on chemical data. In the first one, the solution is
the iterative algorithm.



Table 2

Component loadings matrix

Mineral PC1 PC2

HCO3
� 0.50 � 0.05

Cl� 0.46 0.05

Na+ 0.16 0.62

Ca2 + 0.53 � 0.14

SiO2 � 0.10 0.77

pH 0.47 0.11

Table 1

Portuguese mineral water data

Water HCO3
� Cl� Na+ Ca2 + SiO2 pH

n.1 [21,41] [7,9] [10,16] [3,4] [23,29] [6.1,6.5]

n.2 [113,119] [16.5,17.5] [10.3,10.7] [15,21] [13.7,14.9] [6.7,7.1]

n.3 [2.2,4.2] [3.6,4] [2.8,3.8] [0.01,1.01] [5.8,7.8] [5.71,5.81]

n.4 [8,11.6] [4.1,4.7] [2.8,3.6] [1.9,2.9] [5.8,6.8] [5.6,6]

n.5 [4.6,5] [6.6,7.4] [5.4,5.6] [0.72,0.84] [16.7,18.3] [5.4,5.8]
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obtained running the non-iterative algorithm whereas, in the

second one, the iterative algorithm is necessary because

negative estimates of the radii occur.

6.1. Portuguese mineral water data

In this subsection, the MR-PCA method is performed on

a data set describing I= 5 Portuguese mineral waters char-

acterized by J = 6 interval valued variables. In particular, the

variables are mineral concentrations of HCO3
�, Cl�, Na+,

Ca2 + and SiO2 (mg/l) and the pH value. The data are

summarized in Table 1.

After preprocessing the data as described in Section 3.5,

the MR-PCA method is performed extracting P= 2 compo-

nents. The non-iterative procedure is run. In fact, the esti-

mates of the radii are non-negative. We decide to extract

P= 2 components because the goodness of fit is very high

(following the index in Eq. (28), 96.6%) and the solution is

easily interpretable. Notice that each variable plays a relevant

role in exactly one component. In order to interpret the

solution, the matrix of the varimax-rotated component load-

ings and the low-dimensional representation of the waters in

the low-dimensional space spanned by the (orthonormal)
 

Fig. 5. Low-dimensional representat
loadings are given, respectively, in Table 2 and Fig. 5. Notice

that the low-dimensional configuration is obtained using Eq.

(34) and that the component scores matrix for the radii has all

non-negative elements.

From Table 2, we can easily assess the role of the

original variables in describing the extracted components.

The first component is strongly related to the concen-

trations of HCO3
�, Cl� and Ca2 + and the values of pH.

The remaining variables (Na+, SiO2) have a negligible

influence. On the contrary, Na+ and SiO2 help us to

define the second component. In fact, high second com-

ponent scores for the midpoints depend on high values of

Na+ and SiO2.

The low-dimensional representation (as rectangles be-

cause P= 2) of the waters is consistent with the above

interpretation of the components. The position of water

n.2 can be explained by considering the values of pH

and, above all, HCO3
�, Cl� and Ca2 + which are sensibly

higher than the ones pertaining to the remaining waters.

The same comments hold with respect to the second

component and water n.1. In fact, its position reflects

the values of Na+ and, above all, SiO2. Notice that waters
 

ion of the Portuguese waters.



Table 3

Component loadings matrix

Mineral PC1 PC2 PC3

K+ 0.02 0.39 0.39

Na+ � 0.09 � 0.07 0.68

Ca2 + 0.49 � 0.25 � 0.01

Mg2 + 0.39 0.27 � 0.19

Fe3 + 0.42 0.25 � 0.06

Cu2 + � 0.03 0.79 0.03

Mn2 + 0.41 � 0.16 0.16

Zn2 + 0.48 � 0.04 0.02

P5 + 0.14 0.03 0.56
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n.3 and n.4 are overlapped. This can be explained by the

observed interval valued scores of Na+, SiO2 and pH for

waters n.3 and n.4 which have not empty intersections.

Fig. 5 provides useful information by considering the

size of each rectangle which gives a measure of the

uncertainty associated with each observation unit. Water

n.1 is characterized by the biggest rectangle. In fact, the

radii of the intervals pertaining to water n.1 are the

highest ones except for Ca2 +. Water n.2 has the highest

first component score for the radii. It depends on the

radius of Ca2 +. Thus, the component scores for the radii

(e.g. the size of the low-dimensional hyperrectangles) can

be explained by considering the widths of the interval

valued variables, which play a relevant role in interpret-

ing the component at hand. It follows that the aim of the

low-dimensional configuration of the observation units is

to provide information about not only the similarities

among the observation units but also the uncertainty

associated to each observation unit. Hence, the structure

of the observation unit mode entities (as low-dimensional

hyperrectangles) in the principal space can be detected

considering their position, their size and, eventually, their

overlap.

6.2. Greek wine data

In this subsection, we illustrate the application of the

MR-PCA method on Greek wine samples [7]. Specifical-

ly, the data set involved describes I = 33 Greek red and

white commercial wines from the 1998 vintage charac-

terized by J = 9 mineral concentrations (K+, Na+, Ca2 +,

Mg2 +, Fe3 +, Cu2 +, Mn2 +, Zn2 +, P5 +). The available

information for the i-th wine with respect to the j-th

mineral concentration is the interval (mij� rij, mij + rij)

where mij denotes the mean value and rij the standard

deviation.

In Ref. [7], two different PCAs based on red wines and,

separately, on white wines are performed. The PCAs were

carried out considering the midpoints only. It can be

observed, as it is already noticed in Ref. [7], that the features

of red and white wines are very similar. With respect to the

red wines, P= 3 components are extracted: the first one is

highly related to Fe3 +, Cu2 + and Na+, whereas the second

and the third ones to Ca2 + and Mg2 +. Similar results were

obtained from PCA of white wines.

In Ref. [7], the authors did not describe how they

preprocessed the data. Here, we preprocess them according

to the procedure described in Section 3.5.

After preprocessing the data, we perform the MR-PCA

method. We extract P= 3 components. As some estimates of

the radii take negative values, we run the iterative algorithm

in order to find a feasible solution. According to the index in

Eq. (28), the goodness of fit of the model is 71.8% (58.9% if

P= 2 and 79.1% if P= 4). We rotate the components to

simple structure. The varimax-rotated component loadings

matrix is summarized in Table 3.
From Table 3, we can observe that the first component is

positively related to high values of Ca2 +, Mg2 +, Fe3 +,

Mn2 + and Zn2 +. The second component loadings show

the importance of Cu2 + and, to a lesser extent, K+, Mg2 +,

Fe3 +, Ca2 +(the last one is inversely related to the axis).

Finally, except for K+, the minerals Na+ and P5 + that play a

slight role in describing the first two components are strictly

related to the third one.

In Figs. 6 and 7, we provide the low-dimensional

representations of the wines according to Eq. (34). Notice

that the component scores matrix for the radii has all non

negative elements. Each wine is recognized by a letter

(‘W’ if it is a white wine, ‘R’ if it is red) and by a number

(from 1 to 33 following Ref. [7]). In Fig. 6, we plot the

wines on the two-dimensional space spanned by the first

and the second components. We can observe that the white

wines are on the low side and the red ones on the high

side. Thus, the second component can be interpreted as the

type of wine. Just one white wine (‘W19’ from Kefalinia)

is not consistent with the interpretation of the second

component.

Further information about the interpretation of the axes is

provided by Fig. 7 in which the wines are represented with

respect to the second and third components. The third

component seems to be related to the geographical position

of the production areas. More specifically, positive scores

pertain to wines the geographical origin of which is South

Greece or Greek islands while negative scores pertain to

wines from North Greece. Three areas of production are not

consistent with the above distinction. In fact, the scores of

the wines from Rapsani (in the geographical area above

Peloponnese, belonging to the North Greece group) are

higher than 0 and the wines from the island of Crete (three

out of four) and those from Mantinia (two out of three) have

negative scores. We also notice that the wines produced in

the island of Kefalinia have negative scores but this is

consistent with the island position.

Finally, we inspect Fig. 6 again, and see that the first

component seems to not be discriminated by geographical

origin, variety or type. It only provides a measure of the

dissimilarities among the (red and white) wines with respect

to the mineral concentrations that play a relevant role in

interpreting this component. For instance, notice that ‘R23’

is very far from the remaining wines. This can be explained



Fig. 7. Low-dimensional representation of the Greek wines (PC2 vs. PC3).

Fig. 6. Low-dimensional representation of the Greek wines (PC1 vs. PC2).
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considering that its observed scores are the highest ones

among all the wines. In fact, this observation unit can be

considered an outlier.

Let us now consider the uncertainty associated to the red

and white wines in the obtained low-dimensional space.

With respect to the first component, we observe that the

highest low-dimensional scores for the radii pertain to ‘W5’,

‘W16’, ‘R23’, ‘R30’ and ‘R33’. By considering the original

data set and the loadings (Table 3) we can state that the size

of ‘W5’ and ‘R23’ depends on high radii of Mg2 + (for ‘R23’,

also of Zn2 +); the component score for the radii of ‘W16’ is

related to Mn2 +. The component scores for the radii of ‘R30’

and ‘R33’ are affected by Fe3 + (‘R30’ also by Ca2 +).

Again, ‘W5’ and ‘R33’ have high second component

scores for the radii. The score of ‘R33’ can be explained by

the radius of Fe3 + and that of ‘W5’ by the radii of Mg2 + and

Cu2 +. The component score for the radii of ‘W5’ is related

to Cu2 + (in the data set, the associated uncertainty is the

highest one). As well as for ‘W5’ and ‘R33’, the second

component score for the radii of ‘R24’ is high. It depends on

the radius of Fe3 +.

With respect to the uncertainty associated to the third

component, three wines can be well distinguished: ‘W5’ and

‘R11’ (both wines have high radii of P5 +), ‘W16’ and ‘R33’.

In conclusion, this application shows that the compo-

nents are able to distinguish the wines according to the type

(red or white) of wine (second component) and to the

geographical position (third component) whereas the first

component reflects the chemical differentiation of wines.

Moreover, the size of the hyperrectangles in the low-

dimensional space provides a measure of the uncertainty

associated to the registered mineral concentrations. Specif-

ically, for each component, the scores for the radii give

information about the uncertainty of the mineral concen-

trations the role of which in interpreting the component at

hand is relevant.
7. Final remarks

In this paper, we proposed a principal component method

for two-way interval valued data matrices (observation

units� interval valued variables) based on a least squares

approach. The suggested method, called MR-PCA, is capa-

ble to find the underlying structure of the interval valued

data by using the midpoints and the radii information.

Moreover, in order to analyze how our method works, the

results of a simulation study and two chemical data appli-

cations have been shown.

In future works, it will be interesting to extend our data

reduction method to a three-way framework, in order

to synthesize three-way data arrays (i.e. observation

units� interval valued variables� occasions) by means of

three-way methods such as Tucker3 [18] and PARAFAC

[19]. In this respect, it will be also attractive to analyze the

situation in which the occasions are times, i.e. time intervals,
extending the so called dynamic factor analysis [20,21] to

interval valued time arrays. Moreover, other possible exten-

sions may concern the suggestion, in the two-way as well as

in the three-way framework, to make use of interval

arithmetic (see, e.g., Refs. [22,23]) in suitably generalizing

principal component methods to deal with interval valued

data. These will be the main issues of our future research in

this field.
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