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Abstract

In kinetic or equilibrium investigations it is common to measure two-way multiwavelength data, e.g. absorption spectra as
a function of time or reagent addition. Often it is advantageous to acquire experimental data at various initial conditions or
even on different instruments. A collection of these measurements can be arranged in three-dimensional arrays, which can
be analysed as a whole under the assumption of a superimposed function, e.g. a kinetic model, and/or common properties
of the subsets, such as molar absorptivity. As we show on selected formation equilibria (Zn2+/phen) and kinetic studies
(Cu2+/cyclam) from our own research, an appropriate combination of multivariate data can lead to an improved analysis of
the investigated systems.
Crown Copyright © 2003 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Increasing the dimensionality of measurements
from one-way to two-way and three-way data has
several obvious and also not so obvious advantages.
There is, at least potentially, more information if
additional data are available. It is less clear that radi-
cally different ways of analyses are applicable to the
differently dimensioned data sets[1].

A typical example of a one-way data set is a mono-
variate chromatogram, e.g. conductivity or absorption
at one wavelength versus retention time. Such data al-
low the identification of well-resolved peaks based on
retention time and quantitative analysis after appro-
priate calibration. Such data are efficiently arranged
as vectors, i.e. one-dimensional arrays. Two-way data
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can be arranged in matrices or two-dimensional arrays.
Analysis methods for two-way data can be much more
powerful than those for one-way data, e.g. in HPLC
with diode array detection or GC–MS, even severely
overlapped peaks of unknown components can be re-
solved automatically or model-free and identified via
their response, i.e. MS or UV-Vis spectrum. Note that
this is not generally possible for any two-way data set,
bilinearity is the precondition for such analyses[2,3].
Bilinear data sets are fairly common while two-way
data which are not bilinear are rather scarce (e.g. 2D
NMR spectra). As a convenient definition, the matri-
ces of bilinear data can be written as a product of two
usually much smaller matrices, seeEq. (1).

Three-way data can be written as three-dimensional
arrays. The equivalent to bilinearity is trilinearity.
However, it is not as straightforward to define trilin-
earity. Instead, an example may illustrate the concept.
Consider a set of samples which contains the same
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components in different concentrations. Imagine
each sample is analysed chromatographically, say by
HPLC, using an array detector. Each chromatogram
represents a bilinear data set, under ideal conditions
the collection of these bilinear data is trilinear. It
can be decomposed into three smaller matrices that
contain the molar absorptivity spectra and the chro-
matographic elution profiles for the pure components
as well as a matrix with the concentrations of the
components in each sample. If, however, chromato-
graphic conditions, such as temperature or solvent,
change trilinearity is lost as each chromatogram will
have different elution profiles for its components.

Three-way data allow additional more powerful
methods of resolution, particularly if they obey pre-
requisites such as trilinearity. However, such rather re-
strictive prerequisites rarely apply. Depending on the
nature of the data several straightforward model-free
data analysis tools are available which exploit the
specific advantages of three-way data sets, they in-
clude Tucker[4–6], PARAFAC [7–10], GRAM [11]
DTD [12] and ALS[13].

In this contribution, we will discuss a particular
family of three-way data sets that are formed by col-
lections of bilinear two-way measurements taken at
different experimental conditions. These three-way
data sets generally are not trilinear and, therefore,
the powerful algorithms for the decomposition of
trilinear data cannot be applied. Typical examples of
such collections are encountered in investigations of
solution chemistry such as kinetics and equilibrium
studies[14,15]. One two-way measurement consists
of a series of spectra acquired as a function of time
in the case of kinetics or of reagent addition in equi-
librium studies. With reasonably complex systems
it is often not possible to find one set of conditions
which allows the complete and robust analysis of the
whole system under investigation. As an example,
consider the determination of the formation kinetics
for an ML2 complex (M is a metal ion, L any ligand
interacting with M to form the complexes ML and
ML2). If M is mixed with 2 equivalents of L, the
intermediate ML might not be formed to a significant
extent and thus its properties are not well defined.
Measurements with 1:1 initial concentrations will not
reveal much about the formations of ML2. In order
to gain robust information about both steps it is im-
perative to perform the measurement under different

Scheme 1.

initial conditions. It is advantageous to analyse the
set of data globally, as one unit.

It is often possible to unfold three-way data into
two-way arrays in such a way that traditional two-way
analysis methods can be adapted and applied without
major difficulties (seeScheme 1). This idea applies
to hard-modelling[14,16] as well as soft-modelling
[8,13,17]approaches. Such unfolding can be regarded
as a matter of convenience or even cosmetics. The
important aspect of both soft- and hard-modelling is
the definition of the quality of fit as a function of
the parameters (hard-modelling) or the decomposi-
tion matrices (soft-modelling). The way in which the
software is written is not primarily relevant. For the
matrix based program MATLAB it is, for example,
most convenient to arrange the data in such a way
that the matrix operations can be used efficiently.

There is a relatively rich literature on soft-modelling
of three-way data. For example, see the review in[1]
or the special issue on multiway analysis[18]. Much
less is published on hard-modelling of such data sets
[14–16,19,20]. For this reason, we will concentrate
here on hard-modelling. Nonetheless, it is important
to stress that the advantages of three-way data sets
apply to both hard- and soft-modelling techniques.

2. Two-way analyses

The two-way analysis of bilinear data consists of
the decomposition of the matrixY of measured data
into the product of two smaller matrices. In the case of
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a series of absorption spectra,Y is decomposed into
the product ofC, containing concentration profiles,
andA of absorption spectra.

Y = C × A + R (1)

Due to experimental error the decomposition is never
perfect and the difference between the matrixY of
data and its decompositionC × A is a matrixR of
residuals.

Both hard- and soft-modelling methods aim at find-
ing those matricesC andA for which the matrixR
of residuals is minimal, or more precisely, for which
the Euclidean norm, the sum over all the squares of
the elements ofR, is minimal.

In hard-modelling, the sum of squares, ssq, is de-
fined as a function of a chemical model and its param-
eters.

ssq=
∑

R2
i,j = f(Y , model, parameters) (2)

In kinetics, the model is the reaction mechanism and
the parameters are the rate constants, in equilibrium
studies, the model is the collection of equilibria be-
tween the components and the parameters are the equi-
librium constants. It has been shown that the molar
absorptivities, the elements of the matrixA, are linear
parameters that can effectively be eliminated during
the fitting of the non-linear parameters[21,22]. An
important step is the calculation of the molar absorp-
tivities A as a function of the non-linear parameters,
which define the matrixC of concentrations. This is
a linear and thus explicit calculation.

A = C+ × Y (3)

There are powerful algorithms available for this task
and we refer to the literature for detailed descrip-
tions [23]. This computation also forms the core
of the ALS algorithm [13]. In the examples pre-
sented later, we used the common Newton–Gauss–
Marquardt/Levenberg algorithm for the non-linear
fitting [22]. In this context, the choice of the algorithm
is not crucial, any iterative non-linear least-squares
algorithm such as the simplex could be used. Apart
from differences in the computation times the results
will be identical.

The result of the fitting procedure is a set of
non-linear parameters, which define the matrixC,
and additionally the matrixA of molar absorptivity

spectra for all absorbing species. Often the most dif-
ficult aspect of the above procedure is to define the
correct chemical model. The fitting of the parameters
is usually comparatively fast and reliable. The pro-
cess of determining the correct model, e.g. the correct
mechanism, can be supported by prior model-free
analyses of the data. The resulting matrixC can often
be interpreted in terms of a chemical mechanism and
the spectra inA indicate the structure of the species.

In soft-modelling, decomposition according to
Eq. (1) is attempted without relying on a chemi-
cal model. Only straightforward physical restrictions
such as non-negativity of concentrationsC and molar
absorptivitiesA are applied. Often the decomposition
is not unique[24] and additional constraints such as
unimodality, etc. can be applied in order to reduce
the range of possible solutions[25]. There are several
model-free analysis methods, most prominent are:
ALS [13], EFA [26], RFA [27] amongst many others
[28].

It is important to be aware of the limitations and po-
tential difficulties of both hard- and soft-modelling ap-
proaches. Clear understanding only will allow the de-
velopment of improved methods. The main difficulties
encountered with both of the above analysis methods
include: (a) linear dependence or near linear depen-
dence of concentration profiles (columns ofC) [29];
this prohibits the calculation of the matrixA and thus
R, and the sum of squares (ssq). (b) Minor species,
or species, which only reach relatively low concen-
trations during the complete reaction. Their contribu-
tions, spectra and corresponding constants are only
poorly defined[15]. (c) There are special cases like
a reaction scheme of two consecutive reactions X→
Y → Z, where the sequence of the two first-order rate
constants is not defined[30]. In soft-modelling anal-
yses, we have to deal with the additional problem of
rotational ambiguity[31] due to non-unique solutions.

Often it is possible to repeat the measurement under
different experimental conditions in such a way that
any of the above difficulties are avoided. Referring to
the earlier example of the formation of ML and ML2,
the concentration [ML] might not reach substantial
concentration under conditions of excess of L, while
[ML 2] will not form substantially if a 1:1 mixture is
analysed. Global analysis of both sets together will
result in a robust result as all species are well defined
in some part of the total measurement.
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3. Two-way analyses of three-way data sets

In order to allow the application of two-way soft-
ware, the three-way data sets have to be unfolded in
any of the three dimensions. Unfolding means rear-
ranging the data in such a way that the individual slices
of two-way arrays are combined into a large two-way
array[14,15]. For the analyses proposed here the in-
dividual matricesY i (seeScheme 1) are concatenated
into a long matrixY tot. Each submatrixY i is the prod-
uct of its corresponding concentration matrixCi and
the matrixA of molar absorptivities, which usually is
identical for all measurements; this is, however, not
a critical prerequisite[14] as can also be seen in the
kinetic example presented later.

The structure of the equation represented in
Scheme 2is essentially the same as inEq. (1). The
crucial difference between them is that it is possible
to perform the individual experimentsY i under con-
ditions which ensure thatY tot andCtot have full rank.
Thus, the calculation of the pseudo-inverseC+

tot is not
hampered by linear dependences between its columns,
as it would be for only one bilinear subsetCi in
Eq. (3). This alleviates most of the problems men-
tioned above. It often also narrows down the range of
solutions in non-unique model-free analyses[31].

It is the task of good experimental design to choose
the conditions under which the individual measure-
mentsY i are acquired. In fact one could use the con-
dition number of the matrixCtot as a measure for the
quality of the experimental design.

In the following, we will present two examples
of investigations undertaken as part of our research

Scheme 2.

on coordination compounds. They illustrate different
aspects of difficulties encountered with traditional
two-way data and how improved experimental design
and appropriate analyses can improve the quality of
the outcome. The first example is an equilibrium, the
second a kinetic investigation.

3.1. Zn2+/phenanthroline equilibrium investigation

The effects of combining measurements taken under
different conditions are demonstrated by the example
of an equilibrium study on the complexation of Zn2+
with 1,10-phenanthroline (phen) in aqueous solution.

Zn2+ compounds feature no d–d transitions and thus
do usually not absorb in a useful range of the UV-Vis
spectrum unless the ligand(s) themselves absorb in this
range. This is the case with phenanthroline, which fea-
tures a rich spectrum in the wavelength region from
270 to 340 nm. The absorption spectrum of phenan-
throline is influenced by protonation of the nitrogen
sites as well as by coordination with metal ions.

There are several protonation and complexation
equilibria. They are fully described byScheme 3. Note
that there is no measurable metal hydrolysis occurring
in the pH range of the measurements (pH< 6.5). This
is the case for the free metal as well as the partially
complexed metal for which the hydrolysis is weaker.

Phenanthroline and Zn(NO3)2 were from commer-
cial sources. Titrations were performed directly in
1 cm absorption cells. A Hitachi 220A spectropho-
tometer, a Metrom 665 Dosimat and the pH electrode
were under full computer control[32]. Different
ratios of M:L (metal:ligand) were investigated. In
all titrations, the initial concentration of phen was
[phen] = 3 × 10−5 M, while the concentrations of
Zn2+ were [Zn2+]: 0 M in the 0:1 titration, 3×10−5 M
in the 1:1 titration, 1.5×10−5 M in the 1:2 titration,
1×10−5 M in the 1:3 titration and 0.75×10−5 M
in the 1:4 titration. Acidified (HCl) solutions were
titrated with 0.1 M NaOH to cover a pH range of ap-
proximately 2–6.5. Spectra were measured between
272 and 340 nm at 4 nm intervals. The ionic strength
was adjusted to 0.1 M with KCl, the temperature was
maintained at 25◦C.

The most obvious experiment is the titration of
1:3 mixture of Zn2+ and phenanthroline, as under
such conditions ML, ML2, and ML3 are expected to
form. However, analysis of such a measurement fails
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Scheme 3.

Fig. 1. Result of the hard-modelling fit of a 1:3 mixture of Zn2+ and phenanthroline. (a) The concentration profiles for L and ML3 are
almost linearly dependent and, therefore, their spectra in (b) are not well defined.

because some of the concentration profiles of the
absorbing species are almost linearly dependent.

Fig. 1 displays the result of the hard-modelling fit.
Due to linear dependence, predominantly between the
concentration profiles of L and ML3, which are al-
most multiples of each other, the computation ofC+
is ill-conditioned and this results in obviously wrong
molar absorption spectra for those two species. We
have chosen not to apply the non-negativity constraint
to the calculated spectraA in Eq. (3). This leads to the
obviously wrong result as shown inFig. 1. Application
of a non-negative least-squares algorithm to calculate
A would result in physically possible spectra, but it
does not avoid the problem of linear dependence inC.

In line with the proposed globalisation of the anal-
ysis of a series of measurements, it is possible to anal-
yse the combined matrices, e.g. those for the titrations
of L only and the 1:3 mixture of M and L. The com-
bined concentration matrixCtot for this case can be
represented byScheme 4. Scheme 4.
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Table 1
Basicity and stability constants logKMLH for phenanthroline and
its complexation with zinc(II) at 25.0 (1)◦C

This work [33]

logK0 1 1([HL]/[H] × [L]) 4.84 (2) 4.93 (8)
logK1 1 0([ML]/[M] × [L] 6.58 (2) 6.4 (2)
logK1 2 0([ML 2]/[M] × [L] 2) 11.91 (12) 12.2 (4)
logK1 3 0([ML 3]/[M] × [L] 3) 17.12 (36) 17.1 (4)

The uncertainties are given in brackets and represent two standard
deviations of the last significant digit(s).

The linear dependence between the columns ofC1
are removed by the concatenation with matrixC2.
Only the shaded parts ofCtot have positive entries, the
white part only contains zeros. The complete matrix
has full rank and the spectra of all absorbing species
are well defined.

In order to improve the definition of all equilibrium
constants and all spectra and thus the robustness of
the analysis, we globally analysed a complete series
of measurements of compositions 0:1 (L only), 1:1,
1:2, and 1:4. The results are compiled inTable 1.

Potentiometric titrations are the standard method for
the quantitative determination of complexation equi-
libria. Spectrophotometric titrations deliver, in addi-
tion to the equilibrium constants, also absorption spec-
tra of all species and this provides a certain level of
structural information which is completely absent in
potentiometric investigations.Fig. 2 displays the cal-
culated absorption spectra.

Fig. 2. Calculated molar absorption spectra resulting from the
global analysis of the 0:1, 1:1,1:2 and 1:4 mixtures of Zn2+ and
phenanthroline.

All spectra are well defined. The most interesting
one is the spectrum of ML2 with a characteristic max-
imum around 290 nm. This unique feature is a strong
indication for a different structure of this complex,
it could be either a square planar or a tetrahedral
arrangement of the two phenanthroline ligands. The
square planar geometry allows a strong-interaction
between the two ligands via the central Zn2+-ion,
the tetrahedral geometry is very different from the
octahedral arrangement of the ligands in the other
complexes.

3.2. Cu2+/cyclam formation kinetics

Our second example involves a kinetic investiga-
tion. We have applied the idea to the determination
of the kinetics of the interaction between cyclam
(1,4,8,11-tetraazacyclotetradecane) and Cu2+ in aque-
ous solution. The rate of this reaction is very strongly
pH dependent as the relative concentrations of the dif-
ferently protonated forms of the ligand, LHx+

x , vary
dramatically with pH. The rate constantskLHx cover
several orders of magnitude with ligand protonation
equilibria coupled to the kinetics, seeScheme 5and
Table 2.

In this example, it is impossible to cover the com-
plete range of measurement times on one instrument.
At relatively high pH, measurements are required on
a time scale of seconds, whereas at low pH reaction
times are up to 8 h. Therefore, in order to investigate
the complete range of measurements we had to use
stopped-flow instrumentation at high pH and conven-
tional spectrophotometers at low pH (stopped-flow
instruments do not have a long-term stability compa-
rable to a double-beam spectrophotometer).

Scheme 5.
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Table 2
Basicity constants for cyclam and rate constants for its complex-
ation with copper(II) at 25.0 (1)◦C

This worka Other work

logK3 1.56 (1) 1.61 (2)b

logK4 2.34 (1) 2.42 (2)b

kLH [106 (s M)−1] 1.05 (5) 1.8 (4)c, 8.0 (10)d

kLH2 [(s M)−1] 0.135 (5) 0.39 (6)c, 0.076 (10)d

The uncertainties are given in brackets and represent two standard
deviations of the last significant digit(s).

a logK1 and logK2 could not be determined at the investigated
pH < 7 and have been fixed for the analysis to 11.59 and 10.62
according to[35,36]. The rate constantskLHx with x=0 andx > 2
cannot be observed.

b [35,36].
c [37].
d [38], I = 0.2(NaClO4).

Copper(II) perchlorate hexahydrate and 1,4,8,11-
tetraazacyclotetradecane (cyclam) were from commer-
cial sources. The copper salt was dried in a desiccator
under vacuum and solutions were standardised prior
to use. The ionic strength of all solutions was adjusted
to 0.5 M with NaClO4. All reactions were thermostat-
ted at 25◦C.

The complex formation kinetics of copper(II)
(7.87 × 10−3 M) with cyclam were followed under
second-order conditions (10% excess of ligand). Four
measurements were performed under different total
proton concentrations [H+]tot = 1.73×10−3 M (mea-
surements 1 and 2); [H+]tot = 1.92× 10−2 M (mea-
surement 3); [H+]tot = 1.31× 10−1 M (measurement
4) on an Applied Photophysics stopped-flow spec-
trophotometer DX-17 MV (measurements 1 and 3) and
with a Hitachi 220-A UV-Vis spectrophotometer after

Scheme 6.

manual mixing (measurements 2 and 4). Stopped-flow
measurements were done using the “point by point”
method, where kinetic traces were acquired individ-
ually at the wavelengths 470≤ λ ≤ 605 nm (15 nm
intervals) for 1000 s at 1000 logarithmically spaced
times. The manual measurements were followed over
the wavelength range of 400≤ λ ≤ 800 nm (10 nm
intervals) for 8 h at up to 100 evenly spaced times.
The stopped-flow measurements cover the initial pe-
riod of the overall reaction; the manual measurements
cover the much slower parts of the reaction.

It has proven advantageous to globally analyse
measurements acquired on both instruments[34].
The individual matrices of measurements have dif-
ferent dimensions as they cover different time and
wavelength ranges. Thus, we need to generalise the
concept of three-way data sets in order to encompass
such collections. This is represented inScheme 6
for a collection of two measurements with different
numbers of rows (times) and columns (wavelengths).

Here, the chemical model combines two measure-
ments; in our example we combined four of them.
Fig. 3 displays the calculated concentration pro-
files, C1 and C2, of the absorbing species for the
stopped-flow and the manually mixed measurement at
[H+]tot = 1.73× 10−3 M. In Fig. 3(a), the pH drops
from approximately 6 to 3.5 and, inFig. 3(b), from
3.5 to 2.

In this instance, due to the different spectral ranges
measured, there are two matricesA1 andA2 of molar
absorptivity spectra.Fig. 4 shows that they are virtu-
ally identical in the range covered by both measure-
ments. Here, the problem solved by global analysis is
not linear dependence as the only absorbing species
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Fig. 3. Concentration profiles for Cu2+ (M) and Cu(cyclam)2+ (ML) for: (a) the fast stopped-flow and (b) the slow manually mixed kinetic
measurement at [H+]tot = 1.73× 10−3 M, covering different pH ranges.

are Cu2+ and Cu(cyclam)2+. The difficulty lies in the
very wide range of reaction rates which prevents the
acquisition of one particular measurement that covers
the whole reaction.

Note that the pH is changing during the reac-
tion as protons are released upon coordination of

partially protonated ligand. Thus, the reaction is
self-decelerating and this is the reason for the very
wide range of rates, which in turn requires measure-
ments at different instruments. The required software
as well as details for the analysis of such data have
been described elsewhere[34].
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Fig. 4. Molar absorptivity spectra for Cu2+ (M) and Cu(cyclam)2+
(ML) for: (—) the fast stopped-flow and (- -) the slow manually
mixed kinetic measurement at [H+]tot = 1.73× 10−3 M.

4. Conclusion

In the context presented here we define collections
of two-way data sets, acquired under different condi-
tions, such as initial concentrations, as three-way data
sets. We have generalised the definition of three-way
data to accommodate collections of two-way sets of
different dimension.

We have demonstrated that the global, model based
fitting of a complete three-way data set can result in an
improvement of the analysis and the quality of the fit-
ted parameters. This is because no individual two-way
measurement defines all the required parameters of the
model sufficiently. In the titration example, linear de-
pendences of the concentration profiles were success-
fully eliminated; in the kinetic example, the analysis
was only made possible by combining several two-way
measurements. The measurements at low pH do not
contain information about species that exist at high
pH. It is often impossible to completely separate the
different processes, i.e. there are minor effects which
only disturb the data without being visible enough for
proper definition. Global analysis combines all infor-
mation gathered in the individual measurements; each
parameter is defined in at least one of them.

It is convenient to unfold the three-way data sets into
arrays of two-way data sets. This allows the relatively
straightforward adaptation of existing fitting software.

The advantages of the globalisation are well
documented for self-modelling analyses with ALS.
Analysis of data sets with structures similar to the
one represented inSchemes 2 and 6clearly show that
globalised soft-modelling analyses are more robust
and results in narrower ranges of possible solutions
[13,39,40].
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