
Abstract Partial least squares (PLS) models were used to
examine the relationships between the distributions of el-
ements in different compartments of a river. These rela-
tionships, if existing, enabled predictions to be made of
the element concentrations in one compartment by know-
ing the concentrations in another compartment. The sub-
jects of the study were the element concentrations mea-
sured in the water and the sediment of the river Saale as
well as in the water and the suspended matter of the river
Elbe. Special emphasis was placed on a comparison be-
tween two-way and three-way PLS.

Introduction

Within the framework of a research project concerned
with an evaluation of the water quality of the catchment
area of the river Elbe and its tributaries, several sampling
campaigns on the longitudinal profile of the rivers Saale
and Elbe [1–4] have been carried out. The concentrations
of certain elements in the sediments, the suspended matter
and the dissolved matter were determined and addition-
ally some sum parameters in the river water. One aim of
the project was to examine whether a relationship be-
tween these compartments of the river water can be
shown and if it is possible to deduce the contents of ele-
ments in one compartment from known contents of ele-
ments in another compartment.

As an example, predictions of element concentrations
in the sediments of the river Saale were made from a
knowledge of the concentrations in the river water. In the
same way, element concentrations were predicted in the
suspended matter of the river Elbe from the known con-

centrations in the water. For this purpose, two- and three-
way partial least squares regression models were used.

Theory

It is becoming more and more common in analytical
chemistry to calibrate an analytical method by multivari-
ate calibration [5, 6]. A relatively modern method in this
field is partial least squares regression (PLSR or PLS).
The strength of this method is the ability to eliminate
collinearities and noise within the matrix of predictors X
[7]. This is achieved by extracting partial matrices Xp
from X, where Xp contains – in the optimum case – only
such information that is relevant for the description of the
matrix of the predictants Y. Each partial matrix Xp is rep-
resented by a set of orthogonal vectors t and w. The vec-
tor t contains the scores of the objects in Xp on the latent
variable w. Likewise two orthogonal vectors u and q are
calculated to reproduce Yp as a partial matrix of Y. Fur-
thermore, the latent variables are computed under the con-
straint of maximum covariance between t and u, in order
to optimize the predictive capability of the regression
model (Fig.1, Eq. 1, 2). For a more detailed description of
the theory and algorithms see [8–10].

xij = tiwj + rxij (1)

yij = uiqj + ryij (2)
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Fig.1 Reproduction of the partial matrices Xp and Yp with sets of
orthogonal vectors t, w and u, q, respectively



(3)

xij and yij are the matrix elements of X and Y, tiwi and uiqi

are the calculated values of the PLS model and rxij, ryij are
the differences between the model and the real data matri-
ces. Thus, partial matrices Xp are successively extracted
from the initial X matrix by minimizing the residuals be-
tween the matrix elements in X and Xp by the least
squares method. Finally, the partial matrices of X are uni-
fied into a model matrix Xmod, which is used to perform a
calibration with Y.

In order to decide which model matrices, represented
by a certain number of latent variables, are the best for

predicting unknown y values, the root mean squared error
of prediction (RMSEP) is a useful tool [5]. It contains the
differences between the measured and the predicted y val-
ues (ymeas, ypred):

(4)

The model that generates the lowest RMSEP is the best
one for the particular calibration problem.

Apparently, for validating the model one needs to ob-
tain a Y matrix with known values. For this purpose one
can use the same Y matrix as for calibration or, if avail-
able, a test Y matrix (Fig.2).

As shown in Fig.3 and Eq. 5 and 6, PLS theory can
easily be extended to treat a three-dimensional X matrix.
The difference is that two loading weights vectors have to
be calculated for each latent variable instead of one
[10–14]. The idea behind this extension of the PLS algo-
rithm to three or n-way modeling is comparable to some
other n-way decomposition methods such as Tucker3 or
PARAFAC [15–17].

xijk = tiwJ
jwK

k + rxijk (5)

(6)

It is, of course, also conceivable to perform a calibration
with a three-dimensional Y matrix, but this was not inves-
tigated in this study, because it is not relevant for this par-
ticular practical application.

Experimental

Sampling in the river Saale

In the river Saale 17 variables in the sediments and 24 variables in
the water at 23 sampling locations along the river were measured
[1, 2]. Samplings of the sediments were executed in October 1993,
June 1994 and in June 1995, and of the river water monthly be-
tween September 1993 and August 1994. The measured element
concentrations that have been drawn up as variables in matrices are
listed in Table 1.

The water matrix served as matrix of predictors X for the pre-
diction of the single sediment matrices one after another; for the
two-dimensional models the yearly medians of the variables in X
were used (Fig.4).
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Fig.2 Validation of the PLS models

Fig.3 Reproduction of a three-dimensional partial matrix Xp by a
set of orthogonal vectors t, wj, wk

Table 1 Variables used for the
models of the river Saale Variables in the Redox potential, pH value, conductivity, dissolved oxygen, temperature,

river water DOC, AOX, suspended matter, As, Fe, Mn, Cu, Cr, phosphate, chloride,
nitrite, nitrate, sulfate, Mg, Ca, Na, K, Zn, Ni

Variables in the Hg, As, Se, Cd, Zn, Pb, Ni, Cr, Cu, Co, Mn Fe, Mg, Ca, Na, K, TOC
sediments



Sampling in the river Elbe

Whereas for validating the Saale models only full cross validation
was possible, as there was only one X matrix, the Elbe models
could be validated with test sets, because an X and a Y matrix ex-
isted for each campaign [3, 4]. For modeling the river Elbe 43 vari-
ables in the suspended matter and 25 variables in the river water at
44 sampling locations along the river Elbe were used. These were
measured in four campaigns in autumn 1993, spring 1994, autumn
1994 and autumn 1995 (Table 2, Fig.5).

Before constructing the PLS models, the matrices had been
centered and scaled in such a way that the mean of all variable
columns was zero and their standard deviation was one, whereas
two versions of calculating the variable means and standard devia-
tions were possible: They could be calculated over sampling loca-
tions and sampling dates or over sampling locations only. As the
former produced PLS models with a higher prediction ability this
method was preferred.

Results and discussion

Models of the sediments in the river Saale

Using the yearly medians of the variables in the river wa-
ter as X matrix, the best PLS model resulted from the sed-
iment matrix of June 1994. This is due to the fact that in
April 1994 there was high water in the river Saale, which
caused the sediment to be washed out and newly formed
by the Saale water. The relationship between the water
and the sediment – necessary for modeling – was there-
fore clearer in June 1994 than in September 1993 when
the Saale water flowed over old sediment layers [18]. The
reason why the prediction of the element concentrations
in the Saale sediments of June 1995 becomes poor again
is probably related to the time interval between the two
sampling events. Even better were the fully cross-vali-
dated predictions of the sediment matrix in June 1994
when information about temporal variance of the samples
was introduced to the model (Table 3). Hereby, all the
monthly measured values were used instead of the yearly
medians. This can be done in one of two ways: Either the
12 monthly data tables with the 24 variables measured at
23 sampling locations are strung in a row. This results in
a matrix with 23 rows and 288 columns, that can be used
to perform a two-way PLS regression (Fig.1). The other
possibility is to stack the 12 data tables together to form a
cuboid and to apply a three-way model such as three-way
PLS (Fig.3). However, the prediction ability of the three-
way model is not clearly superior to the two-way PLS
model with the two-dimensional 23 × 288 matrix. The
lowest achievable RMSEP by the three-way model is 0.85
in contrast to 0.86 achievable by applying two-way PLS
to the two-dimensional complete matrix.

In Table 3 the differences in predictive quality between
the two-way (medians) and the three-way model are quan-
tified as the mean percentile differences between pre-
dicted and measured element concentrations mDiff% in
the sediment of June 1994 (Eq. 7). The elements Cd, Ni,
Co, Fe, Mg and K are taken as examples.
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Fig.4a, b Two (a)- and three (b)-way-PLS models for the river
Saale

Table 2 Variables used for the
models of the river Elbe Variables in the Li, B, Na, Mg, Al, S, K, Ca, Ti, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Mo, Sb,

river water Ba, content of suspended matter, temperature, dissolved oxygen, pH value, 
conductivity

Variables in the Li, Na, Al, Mg, K, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Zn, As, Rb, Sr, Y, Nb,
suspended matter Mo, Ag, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 

Lu, Hf, Ta, W, Th, U

Fig.5a, b Two (a)- and three (b)-way-PLS models for the river
Elbe



(7)

ymeas, ypred are the measured and the predicted element
concentrations; I is the number of sampling locations.

The quality of the prediction is not the same for each
variable in Y, but for most of the variables it can be seen
that the model is able to reproduce the longitudinal
curves. The condition for a good model is that the distrib-
ution of the variable contents along the river is systematic
and not random. This is the reason why the model for e.g.
Cr yields very bad results. The predictions for Hg are a lit-
tle better. However, there is a huge deviation at km 100. In
this area the sediment contains much more Hg than in the
other part of the river because of the former chlorine alka-

line electrolysis in the chemical factory at Buna [1, 2, 18].
This indicates that it is problematic for the model to fol-
low large changes in the sediment body caused by a
strong influence of point sources on the condition of the
water body. As a result, the extremely high content of Hg
at the above sampling location cannot be caught by the
model. Examples for a good fit of the modeled data with
the real data are represented by Fe and K.

Figure 6 shows the measured and the predicted values
of Cr, Hg, Fe and K in the sediment of June 1994 in the
longitudinal profile of the river Saale. The predictions
were made with the three-dimensional PLS model as de-
scribed above. The bright markers represent the modeled
values and the dark markers the measured ones with an er-
ror bar of 15%, which corresponds to a mean total mea-
surement uncertainty.

Models of the suspended matter in the river Elbe

When the sediment lies in the river bed with the water
flowing over it, the suspended matter is transported along
with the water body for some distance. One can therefore
suppose that a relationship between the suspended matter
and the water of a river is more likely than between the
sediment and the water. Therefore, the modeling of the
Elbe data was expected to produce better results. The two
compartments had been separated by filtration immedi-
ately after sampling to conserve this relationship as well
as possible.
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Table 3 Mean percentile differences for certain elements in the
sediment matrix of the Saale campaign in June 1994 calculated
with the two-way PLS model applied on the yearly medians of the
parameters measured in the river water (mDiff%1), and with the
three-way PLS model (mDiff%2)

Cd Ni Co Fe Mg K

mDiff%1 41.41 25.53 23.44 10.79 22.31 24.10
mDiff%2 36.87 21.69 21.41 10.62 18.94 21.29

Fig.6 Four examples for the prediction ability of the three-way-
PLS models for the river Saale



It is, of course, also true for the modeling of the sus-
pended matter in the river Elbe that it is difficult for the
model to grasp large changes in the condition of the water
body, as could be seen in the models computed with the
data sets of the river Saale. Between the German-Czech
border and the weir at Geesthacht the water body is more
or less homogenous. In the upper part of the river Elbe the
water body is different to that in the middle part because
the river is carrying little water and is influenced by a
large number of different point sources. In the lower part
the influence of the North Sea dominates the water body
[3, 4]. Omitting the upper and the lower part and comput-
ing a model just for the middle section, which represents
the longest part of the river with the most sampling loca-
tions, can improve the predictions significantly, as illus-
trated for Sc in Fig.7.

So far, the models have only been validated by the full
cross-validation method. A better indication of the applic-
ability of the models in practical use is obtained when
they can be tested by a test set. For this purpose a regres-
sion was executed for the suspended matter and the river
water of a certain campaign. The resulting correlation co-
efficients matrix was applied to the water matrix of an-
other campaign to calculate the accompanying suspended
matter matrix and to compare it with the measured values
of this campaign.

It was found that the deviations became larger when
predicting the suspended matter of an autumn matrix with
a model computed with a set of matrices of another au-
tumn campaign and even worse when predicting the same
matrix with a model computed with spring matrices. This
is the result of differences between the condition of the
water body at the time when the samples for the modeling
are taken and when the predictions for another campaign
are made. The differences in the condition of the river are
obviously larger between an autumn and a spring cam-
paign than between two autumn campaigns. So, for exam-

ple, the deviation between the predicted and the measured
values in the suspended matter of autumn 1995 is larger
when the regression model to perform these predictions is
computed with water and suspended matter measured in
spring 1994 than with those measured in autumn 1994
(Table 4).

One can also distinguish between variables whose dif-
ferent behavior in spring and autumn is clearly visible and
those whose behavior is similar in spring and in autumn.
For the first group of variables the predictions for the sus-
pended matter of autumn 1995 with the model of spring
1994 are very poor (Fig.8a). However, the other group of
variables can be predicted in the matrix of autumn 1995
with tolerable deviations even with the model of spring
1994 (Fig.8b).

Furthermore, computation of a three-way PLS model
as described before was performed for the river water
measured in autumn 1993, spring 1994 and autumn 1994
as X and the suspended matter measured in autumn 1994
as Y matrix. The resulting correlation coefficients matrix
then was used to predict the element concentrations in the
suspended matter of autumn 1995. In this three-way
model the variable temporal behavior of the elements was
taken into account. This caused a significant improvement
in the prediction of the concentrations in the suspended
matter, in particular for those elements that could not be
modeled by the two-way method since they showed dif-
ferent behavior in autumn and spring (Fig.8).
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Fig.7a, b Full cross-validated two-way-PLS models for Sc in the
suspended matter of the campaign of autumn 1995. Comparison
between the model of the whole river (a) and the middle section (b)

Table 4 Mean percentile differences for certain elements in the
suspended matter matrix of the Elbe campaign in autumn 1995 cal-
culated with the PLS models of autumn 1994 (mDiff%1), spring
1994 (mDiff%2) and with the three-way PLS model (mDiff%3)

Li Fe Sr Mg Nd Zn Sc

mDiff%1 18.9 13.1 24.4 19.3 16.4 39.0 21.7
mDiff%2 35.7 32.0 31.5 29.9 36.1 40.0 41.9
mDiff%3 23.1 14.4 20.4 20.8 18.6 23.5 22.9
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Fig.8a, b Influence of temporal variability of element concentra-
tions on the predictive ability of a two-way PLS model and its

compensation by applying a three-way PLS model, illustrated us-
ing the examples of Li (a) and Zn (b)



Conclusions

In principle, PLS is suitable for quantitative descriptions
of the relations between the different compartments of a
river and to predict certain element concentrations along
the longitudinal profile. As expected, the modeling of the
river Elbe yields more accurate results than the modeling
of the river Saale because of the greater correlation be-
tween the river water and the suspended matter (Elbe
data) than between the river water and the sediment (Saale
data). It is not possible to predict values that differ too
much from the other values in the data set. Further, mod-
eling becomes problematic if the condition of the river in
its longitudinal profile is too variable or if the condition of
the river is too different at the time the modeling is per-
formed and at the time when the predictions are made. Es-
pecially the latter effect, however, can be tempered by us-
ing a three-way PLS model. In any case, for any particu-
lar problem, it is necessary to check whether and under
what conditions PLS is applicable.
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