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ABSTRACT 

Esbensen, K. and Geladi, P., 1989. Strategy of multivariate image analysis (MIA). Chemometrics and Intelligent 
Laboratory Systems 7: 67-86. 

Bilinear decomposition (soft modelling using principal component analysis) of multivariate imagery results in: score 

and loading plots, score images, classification projections and residual images in the scene space. Feature space score 

plots are used as a starting point for pixel class delineations, followed by iterative scene space evaluation. This is a 

reversal of traditional image processing practice, which selects training samples in the scene space. The present feature 

space class definitions can be shown to have certain optimality characteristics with respect to traditional scene space 

delineations. 

After problem-dependent relevant pixel class delineations have been obtained, one can compute corresponding local 

class PC-models that serve as an alternative basis for problem-dependent classification and sequential segmentation. 

Multivariate image analysis (MIA) allows interactive exploration and classification of most types of technical 
multivariate imagery. We present a general strategy for multivariate image analysis, illustrated by a remote sensing 

showcase. 

INTRODUCTION 

Most contemporary image processing (IP) im- 
poses constraints on the types of image processing 
strategies possible. This is intimately related to the 
type of IP hardware architecture and software that 
has traditionally been employed. IP makes exten- 
sive use of three or more image and bit planes for 
image arithmetics, overlay displays etc. There is 
also a strong tradition for primary consideration 
of the image, or scene space. While this is indeed 
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central to image processing, this has also - and 
probably largely unwittingly - resulted in a 
dominant emphasis on image plane operations, 
which has somewhat restrained the full potential 
of the application of unsupervised data analysis in 
IP. Unsupervised classification and exploratory 
data analytical methods are very useful in situa- 
tions characterised by sparsity, or even complete 
absence, of domain-specific knowledge, such as, 
for example, when analysing a LANDSAT scene 
without previous ‘ground truth: knowledge. 
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An important distinction here is that between 
image processing (IP), i.e. mere image manipula- 

tions - however complex - and image analysis 
(IA), relating to a user-defined objective. Based on 
more than 10 years’ accumulated chemometric 
experience with multivariate statistics and data 
analysis for a number of problem types, we show 
how an analogous strategy can be devised for the 
case of explorative multivariate image analysis, 
MIA. We show how these methods also allow 
supervised results, e.g. classification and pattern 
recognition. 

EXAMPLE 

Below we make extensive use of one particular 
LANDSAT remotely sensed multivariate image. 
This is intended as a Kuhnian exemplar for pur- 

poses of illustration only: We trust that our read- 
ers will willingly relate this work to their own 
subject matter. We specifically wish to demon- 
strate a completely general methodology, not just 
another specific image analytical application. 

MULTIVARIATE IMAGERY 

A graylevel image is comprised of two geomet- 
rical dimensions (x and y) for indexing individual 
pixels, each of which is characterised by an inten- 
sity level. This constitutes the simplest digital 
image unit. Alternatively one could call this a 
univariate image. The number of pixels is usually 
very large: 512 x 512, 1024 X 1024 and higher. 
Only univariate statistical methods are required to 
give a complete description of the intensity distri- 

bution. Ail the remaining information in this type 
of image resides in the spatial correlation, or 
contextual correlation. 

A multivariate image may conveniently be 
viewed as a stack of such univariate images, each 
plane now representing one such intensity variable 
[1,2]. Alternatively, and more useful for data ana- 
lytical image decomposition, one may view such 
an image as an array of pixels (e.g. with two 
geometrical dimensions), each associated with a 
p-dimensional vector of variables (p univariate 

image planes). In the case of remote sensing each 
such variable would correspond to a radiometric 
wavelength (or wavelength band). The possibilities 
for multivariate image analysis hinge critically 
upon correlations between these p variables. In 
this case, multivariate methods will be required in 
order to characterize the covariance, or correlation 
structure between these p variables. A very im- 
portant distinction is that between spatial correla- 
tion (inter-pixel correlation) and the statistical 
correlation (inter-variable correlation). An image 
is thus characterised by a complementary set of 
spatial and statistical correlations; multivariate 
image decomposition addresses the interplay be- 
tween these two types of ‘spaces’. 

If in addition there are more than, say, four or 
five such image planes (more variables than four 
or five for each pixel), MIA will be appropriate 
for .image decomposition. As in any data analyti- 
cal situation, there is a strong obligation upon the 
user to pose the scientific problem at hand in a 
relevant manner. We discuss in depth those re- 
quirements that are especially relevant for the case 
of multivariate image analysis in ref. 3. There is a 

complete progression from the simplest two-di- 
mensional multivariate image unit upwards to- 
ward more complex higher-order data arrays, with 
higher meta-dimensionalities in both variable di- 
rections as well as in pixel directions [3]. An 
overview of methods of multi-way data analysis is 
given in ref. 4. The strategies for multivariate 
image decomposition developed below will also be 
relevant to these higher-order applications; the 

present paper will mainly address the basic type of 
two-dimensional imagery, however. 

Many types of scientific and industrial en- 
deavors produce output of a two-dimensional 
image nature; any such array can be viewed as an 
image, if its size is large enough [2]. Multivariate 
image analysis is an important part of multi-way 
analysis with some special properties that make it 
particularly user friendly. 

EXPERIMENTAL 

The example used in the present paper for 
illustration is a LANDSAT scene in 7 wavelength 
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Fig. 1. One channel image (Riyadh scene) for reference to scene space displays below (here used as the red channel of the RGB 

display). Developed urban areas in left center; low elevation areas running diagonally NW-SE (cf. Figs. 4 and 5); high elevation 

shield areas in upper right part. Scene-space class of Figs. 6 and 7 is seen here as white overlay. 

bands of the city of Riyadh and parts of the 
surrounding desert in Saudi-Arabia (Fig. 1). The 
size of the scene is 512 X 512. The analysis was 
done one a Compaq 386 20 MHz microcomputer 
with math coprocessor and EGA screen. The mi- 

crocomputer was enhanced with a REVOLU- 
TION ‘Number Nine’ [5] hardware card for 
graphics processing, giving RGB output for the 
video monitor. A high resolution Mitsubishi col- 
our monitor was used for image display. Hard 
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copy dumps of the images were made on a 
Tektronix 4693 D colour plotter; all figures in this 
paper (except Fig. 2) were created in this fashion. 

Data bookkeeping and image processing was 
done using the ERDAS software package [6]. The 
MIA module that fits together with this package 
was written by us in FLEX, a particularly useful 
FORTRAN dialect. This FLEX is especially de- 
veloped by ERDAS for the MS-DOS operating 
system in a package called TOOLKIT [6]. 

MULTIVARIATE IMAGE ANALYSIS (MIA) APPROACH 

We present below our approach towards MIA. 
What may at first look like just another applica- 
tion of the well-known principal component (PC) 
transform in the area of image prosessing, will 
turn out to encompass a complete reversal of its 
traditional use. We want to be specific here: the 
MIA approach is unequivocally distinct from the 
mainstream image processing tradition. MIA con- 
stitutes a much more versatile and flexible tool for 
the creation of one’s own image analysis strategy. 

The MIA approach contains the following op- 
erations: 

calculating principal component scores (score 
images) and loadings (vectors); 
scatter plots of scores (or loadings) against each 
other; 
selection of classes on the score plots by 
user-defined masking; joystick or keyboard 
arrows; 
brushing of classes in multiple score plot split- 
sceen display; 
projection (transfer) of the pixels in the 
feature-space classes to the corresponding scene 
space locations; 
calculation of local PC-models, as determined 
in the score plots; 
calculation of residual images with respect to 
such local models; 
auxiliary functions for overlay masking, overlay 
toggle, colour slicing etc. 
The essential capabilities of the MIA approach 

are shown in the illustrations below. 
It has been a prime objective of the develop- 

ment of MIA that it should be able to run on all 
available hardware that is dedicated to IP/IA. We 
have focused in particular on the possibilities for 
carrying out IA on IBM PC/AT compatible 
hardware in order to develop an ‘image analysis 
Volkswagen’, if possible. In spite of the large 
amounts of data treated in image processing and 
the intensity of some of the more intricate, neces- 
sary calculations, MIA has reasonable processing 
times, even on modest microcomputers. For a 
7-channel image of size 512 X 512, it takes less 
than 15 minutes to go from the raw data to score 
and loading plots on an IBM AT; this constitutes 
the heaviest calculation demand in MIA. These 
processing times are at least halved on the 386 
series computers. (If mini or mainframe com- 
puters are available, processing time is an irrele- 
vant issue.) 

We present the workings of MIA as a top-down 
illustration of how one uses the implemented 
software; this article thus both details the theory 
behind, and the practical use of, the MIA ap- 
proach. 

BILINEAR DATA ANALYSIS OF MULTIVARIATE 

IMAGERY 

The starting point for MIA is a traditional 
principal component analysis of the image to be 
analysed [7]. The PC scores are used to construct 
2-D scatter plots (Fig. 2). The score plots allow 
the user to inspect the inherent data structure in 
the image. Fig. 2 shows two examples of such a 
PC-plot, here component 2 against component 1 
(termed PC12). Obviously, the data analytical in- 
terest will, in many problem formulations, not 
necessarily be addressed to these two first compo- 
nents alone, but will also require higher-order 
components, e.g. PC13, PC14, PC23. 

It is better for visual assessment to use a col- 
our-slicing scheme for these score plots. We use a 
self-explanatory succession of colours to represent 
an increasing density of pixels with identical 
score-pairs. A grading from cold colours at the 
margins towards warm colours at the centers of 
the score distributions reveals modes and ‘back- 
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Fig. 2. Scatter plots of PC2 vs. PC1 from a standard LANDSAT scene. Figs. 2A and B represent PC12 
LANDSAT scenes with two different bimodal distributions. The most coherent modes have been desig 

(triangular envelope in Fig. 2A) by the image analyst; in Fig. 2B another class has been masked completely. T 

histograms have been colour-sliced to contour modes and trends of distributions; see text for details. 

plots of two differe :nt 
nated as a pixel clr i.SS 

‘hese three-dimensior Ial 
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Fig. 3. Split-screen option of four matching PC-plots, cf. Fig. 2. The IP software used to construct this display layout makes for a 
downward orientation of the Y-axis. PC-axes have been numbered at their positive margins, respectively. This example, Riyadh scene 

cf. text and Fig. 1, is used for the remaining examples below. Note the detailed statistical data structure in this PC-score space, which 

forms the basis for delineating data classes. 

bones’ in this type of three-dimensional histo- 
gram. This colour-slicing is illustrated in Fig. 2, 
where, in this particular example, one observes a 
typical bimodal distribution, i.e. water vs. land- 

cover in LANDSAT scenes. (Note: Fig. 2 is the 
only plot not from the Riyadh scene, but is used 
for its particularly excellent illustrative character- 
istics.) 
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Fig. 4. Detailed PC23 score plot of the Riyadh scene. Class-masking of the upper lefthand mode (masked in olive), cf. upper right 

panel in Fig. 3. 

Fig. 3 shows how a split-screen option is used 
for displaying four PC-plots, viz. PC12, PC13, 
PC14 as well as PC23 (default in MIA). The MIA 
implementation allows either this standard four- 
panel setup, or any specific combination of two 

component scores in a bivariate display (default: 
PC12), cf. Fig. 4. 

The image analyst may delineate any ‘interest- 
ing’ pixel aggregation in this plot. In effect, one is 
delineating a tentative data class corresponding to 
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Fig. 5. Scene-space image of the class masked in Fig. 4. See Fig. 1 for a reference overview of the Riyadh scene. 

pixels with similar spectral fingerprints. Fig. 4 display, in which all the pixels corresponding to 
shows one such pixel class. This class definition this tentative class are flagged, as shown in Fig. 5. 
takes place in what we have termed the score These two ‘projections’ (score space/scene 
space. This step constitutes the salient backbone space) are complementary throughout any MIA 
of the ‘reversed’ mode image analysis in MIA. The image analysis. No score space class can be con- 
complementary scene space information is subse- sidered without its complementary scene space 
quently presented to the user by a scene space layout. (There does not always appear to be a 
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Fig. 6. Class-mask for a low-density area in the same PC23 plot as in Figs. 3 and 4. 

similar obligation in the traditional IP approach, 
in which one may sometimes observe how a train- 
ing class selected in the scene image is used as 
input for a ‘classifier’ algorithm etc. without proper 
evaluation in the converse feature/score space.) 
The MIA approach is intrinsically based upon this 
duality of representations of both feature/score 

space as well as scene space: the feature space is 
treated below in more detail. 

MIA presupposes a series of iterations between 
these two spaces before ‘meaningful’ - i.e. prob- 
lem-dependent - class definitions are to hand: it 
is precisely this interactive evaluation of data 
structures in the complementary sets of score and 
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Fig. 7. Scene-space image of the class masked in Fig. 6. See Fig. 1 for a reference overview of the Riyadh scene, in which this class 

layout has been transferred to the overlay (white). 

scene spaces that allows the image analyst to use 
domain-specific knowledge in interpreting the 
‘meaning’ of each pixel class. The user assigns 
meaning to the class by his/her own particular 
domain knowledge. The MIA approach vehe- 
mently opposes any attempt at preconceived, algo- 

rithm-embedded substitutes for this crucial human 
analyst-graphic display interaction. This is per- 
haps the strongest aspect of how we intend MIA 
to be used in exploratory image analysis. 

This class ‘meaning’ is often obvious in the 
scene space when one or more of the dominant 
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Fig. 8. Enlarged lower left part of the scene in Fig. 7, with overlay of yet another illustrative outlier pixel class. This class apparently 
corresponds to the interiors of certain buildings, compounds etc. (The interpretation is not the issue here, whereas the possibilities of 
interpretation are.) A training sample delineation in this scene image - to follow the traditional IP approach - with similar 
modelling coverage would be extremely difficult to obtain; see also text. 

modes of the types presented in Figs. 2 and 3 have 
been designated. This use of MIA allows the user 
to ensure that all pixels are included in the rele- 
vant class. When delineating a class in the score 

plot, the user can be absolutely certain that all 
pixels belonging to the chosen class are included, 
no matter how they are distributed in the scene 
space. It is easy to see how the reverse IP ap- 
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Fig. 9. Composite display of matching sets of PC34 and PC35 score plots, co 
how the shift from principal component No. 4 to 5 gives way to an enormous 

to kill the myth that remote sensing imagery is characterised by ‘quasi-multi 

plot. 

rresponding to the same original scene (Riyadh). Note 

decrease in data structure. Figs. 3 and 9 go a long way 

normal’ distributions, except e.g. this fortuitous PC35 
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Fig. 10. Class delineation of a low-density area with ‘trend’ in the PC34 plot in Fig. 9. This class has been 

trend indication in the center part; cf. with and without class mask (olive). 

delineated because of the 
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Fig. 11. Scene-space image of the class masked in Fig. 10. 

preach can never be similarly certain that a par- 
titular scene space class delineation will be ab- 
solutely representative; indeed this is almost uni- 
versally uncertain, see Figs. 1, 8 and 11. 

Figs. 6 and 7 illustrate the delineation of a class 
with a very low density of pixels (cf. Fig. 3). Fig. 7 
gives the corresponding scene space layout for 

these pixels i compare this with the scene space 
layout in the original scene, Fig. 1. 

A similar, low-density class was also the basis 
for the zoomed scene space display in Fig. 8. 

Here one observes how it is possible to achieve 
a very detailed class definition with the MIA score 
space class concept. 
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Fig. 12. MIA module: ‘Overview’ display of the standard split-screen layout of four different aspects of the data structure in the 

Riyadh scene. The statistical feature space is to the left, with the corresponding scene space information to the right. PC-plot in the 
upper left pane1 (PC12 in the present example), with the corresponding loading plot in the lower left panel. The two panels to the 

right give a compressed version of the pertinent PC-score images. This layout of the decomposed image structure allows the user to 

concentrate on the problem-dependent interpretation. 

Fig. 9 illustrates the subtlety of the various 
PC-score plot options. Whereas the PC34 plot 
gives ample opportunity to evaluate the data 
structure, the equivalent PC35 shows a surpris- 

ingly homogenous distribution of scores. A strict 
‘exploration strategy’ for browsing through the 
higher-order PC dimensions is often very much a 
necessity here. 
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In Figs. 10 and 11 yet another ‘interesting’ data 
class has been delineated. Fig. 11 gives the corre- 
sponding scene space layout; cf. also Fig. 1. In 
these two figures (1 and 11) it is again particularly 
clear how the MIA approach allows a fundamen- 
tally superior class definition in comparison to 
that which can be obtained by the traditional 
scene space training sample delineations. With 
MIA, one obtains a guaranteed complete class 
containing all pixels with similar spectral sig- 
natures regardless of whatever diverse spatial 
layout these pixels may display in the scene space. 

Loadings from principal component analysis 
contain information about the importance of the 
original variables (channels) for each of the prin- 
cipal component dimensions. A very useful way of 
studying loadings is by plotting them against each 
other in 2-D (or 3-D) plots, which are only pro- 
jected graphic visualizations of the correlation ma- 
trix [S]. In these plots, the importance of loadings 
and the degree of (dis)similarity between variables 
can be evaluated. Loading plots results from any 
combination of two or three principal compo- 
nents. We term this the statistical feature space 
proper; usually, however, this term is used to 
connote both the score and loading space simulta- 
neously, i.e. in traditional IP parlance. 

It has been found particularly useful to adhere 
to a systematic evaluation of the rapidly bewilder- 
ing possible permutations of pairs (triplets) of 
such loadings. We recommend the use of a sys- 
tematic serial approach such as PC12, PC13, PC14, 
PC23, PC24 etc. which will tell the analyst all 
about the data structure of the original variables 
in a very few component dimensions. The inter- 
variable correlations are revealed in the loading 
relationships. We have designed a simple graphic 
loading plot assessment option in the MIA mod- 
ule as well (Fig. 12). Obviously this option in- 
creases in usefulness when truly multi-channel 
imagery is analyzed; the present 7-channel 
LANDSAT scene only serves as a modest low-di- 
mensional illustration. Technical imagery may cer- 
tainly be expected to display a (much) more multi- 
dimensional nature in this context. 

It may perhaps not be immodest to view the 
present approach towards multivariate image 
analysis as a signpost of a (new) methodology that 

is seeking suitably (highly) complex problems, cer- 
tainly both within as well as outside chemomet- 
tics. Whatever the dimensionality and the com- 
plexity of the problem formulation, MIA is ready, 
in theory. Of course, as the dimensionality of the 
imagery goes up, one may encounter specific 
hardware-constrained calculation time problems, 
but these are simply technicalities that can either 
be easily remedied by working on a more powerful 
computer, or by patience carrying you through on 
your modest PC. In both situations, the user meets 
the exact same MIA interface; the image analytic 
methodology is invariant. 

An image may thus be decomposed into the 
scene space (image space) and the statistical space; 
this latter comprises both the score space and the 
loading space. The statistical space is decomposed 
completely along the lines of bilinear decomposi- 
tion [S]. Fig. 12 shows how it is possible to employ 
both a score plot and the matching loading plot, 
as well as the two corresponding score images in 
the scene space. This is the most comprehensive 
assemblage of the decomposed information in an 
image. Each such four-panel ‘overview’ will allow 
the user to integrate the information gleaned from 
each of the partial decompositions, viz. the 
scores/loading decomposition vs. the PC-trans- 
formed scene imagery. We contend that this type 
of display will serve well for problem-specific in- 
terpretation and the like. 

STRATEGY OF MIA IN IMAGE DECOMPOSITION 

MIA can be used in identical fashion either to 
delineate a dominating mode in any particular 
score plot, or to delineate outlying classes, cf. 
above. These latter will of course be the ones that 
are not prominent in the image itself. Pixels be- 
longing to such classes will be optimally describ- 
able in the score space, precisely because of their 
sparsity and their irregular distribution in scene 
space. There is a complete gradation between these 
two situations. Experience from both data analysis 
in general and remote sensing IP show that this 
type of image analysis is very strongly problem 
dependent, i.e. the image data analyst is obliged to 
specify some form of objective for the image de- 
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Fig. 13. Residual image, resulting from subtraction of the first four components from the seven-channel LANDSAT Riyadh scene. 
Structural information (apparently both statistical and spatial) is still present in the residuals. Olive and brown: ‘within-model 
pixels. Black, blue and white: farther away ‘outside-model’ pixels. 

composition; just ‘playing around’ with the 
powerful IP tools is not advisable. 

The least interesting option of MIA is the above 
major mode modelling, Fig. 2. More subtle class 
delineations, e.g. those illustrated in Figs. 4, 6 and 

10, will do much more justice as illustration of the 
powerful possibilities for problem-dependent 
image analysis in MIA. 

Used in a first pass, these IA facilities serve to 
find the objective major classes present, which are 
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then immediately considered as objects for inter- 
pretation. Used in this fashion, MIA works in an 
interactive, exploratory mode. The results of this 
introductory analytical phase will be the segmen- 
tation of an image into several coherent, local data 
classes. 

In particular, any ‘interesting’ (understandable, 
interpretable) local PC-model may serve to reclas- 
sify an entire image. By reclassifying the whole 
pixel array in this fashion, the image can be 
segmented according to this local model only. By 
successive reclassifications based upon a series of 
all such local models found - and duly interpret- 
ed by the image analyst - the total image will 
gradually be segmented accordingly. It is im- 
portant to note that the final image classification 
reflects this gradual build-up of the interpretation 
of the total image structure, NOT a shotgun, 
once-only pass through a particular classification 
algorithm etc. The image analyst only has to watch 
her/his step in not allowing any overlap between 
different class delineations in the score space (at 
least not before acquiring some experience). Sim- 
ple Boolean image plane arithmetics may serve as 
a useful guardian in this context. (In the present 
ERDAS implementation one has ready access to 
suitable GIS facilities [6].) Used in this fashion, 
MIA works in a supervised, pattern recognition 
mode. 

For each individual local model, one may com- 
pute the corresponding residual images, which 
comprise a colour-sliced version of the residual 
distance for each pixel with relation to the local 
model. Fig. 13 presents one such image, in which 
one may assess the residual model distances for all 
pixels. The pixels present within the local model 
are distinguished by a neutral colour, while pixels 
with gradually greater residual distances are repre- 
sented by a grading ‘off-scale’ colour scale. The 
particulars of this colour scale are relatively unin- 
teresting; it is the spatial structure of the pixel 
layout in the scene space that will attest to the 
remaining data structure after the local model has 
been subtracted. 

This type of image is very useful during ongo- 
ing analysis of any complex image. The user may 
conveniently try out any apparently suitable 
class-complexity for a given local model of inter- 

est; the residual image will carry important infor- 
mation as to the validity of this choice. 

By diligent use of (combinations of) several of 
the above MIA options, the user will have ample 
freedom to choose her/his own particular ap- 
proach for image decomposition, relevant to the 
problem definition at hand. It is emphasized that 
the MIA approach is a flexible tool for the itera- 
tive creation of one’s own image analytical 
strategy, not another ready-made algorithm, or 
fixed methodology, for image processing. 

DISCUSSION 

We have not presented just another specific 
study involving dedicated image processing cum 
domain-specific interpretation. In the remote sens- 
ing literature, for example, examples abound which 
use a variety of standard multivariate statistical 
techniques (e.g. cluster analysis, discriminant anal- 
ysis, training sample distribution fitting etc.), on a 
variety of specific interpretative problem formula- 
tions, but which (very nearly) all stay in the 
scene-space training sample tradition. MIA should 
by now be clearly recognisable as the directly 
opposite approach. For this reason we have de- 
liberately left out many potential references, also 
because they mostly relate to other scientific com- 
munities, much more than to the readers of this 
journal (see below for a few, very important ex- 
ceptions [7-151). We are confident, however, that 
the principles behind the general MIA approach 
will have been appreciated even with the use of 
the remote sensing exemplar. 

An interesting point raised by an astute referee 
concerns the fact that the principal component 
score plots relate to more or less ‘abstract factors’ 
(in factor analytic parlance), with emphasis upon 
these being ‘not easily’ interpretable. The point 
here is exactly that in-depth interpretation of the 
principal components is not an absolute prere- 
quisite for the informed use thereof! If you can 
assign meaning to the MIA loading plot, this will 
most certainly assure a deeper insight into the 
data structures. If you, for some reason, cannot do 
so, the score and loading plots are still quite 
legitimate objective representations of these very 
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same data structures. Increased understanding and 
interpretability of the ultimately derived imagery 
is what constitutes the proof of the pudding. 

For the record: we are not preaching a mind- 
less pragmatism in the above remarks. Without 
going into the depths of the factor analysis vs. 
principal components debate, we assure our read- 
ers that the chemometric experience behind the 
MIA image approach is indeed soundly based. We 
refer to refs. l-4 and 6-8 in which may be found 
all the necessary referenced substantiation. 

CONCLUSION 

We use the statistical correlation aspects of 
multi-channel spectral information in multivariate 
imagery to take over from data analytic experience 
some simple strategies for exploratory data analy- 
sis and classification, also for the image regimen. 
Principal component analysis allows data reduc- 
tion, where the most relevant information is con- 
densed in a few principal component (or score) 
images. Scatter plots in this score space allow 
optimal delineation of problem-relevant classes, 
which forms the backbone of the ‘reversed’ MIA 
approach. Overlays, colour slicing and many other 
techniques adapted from traditional image 
processing, enhance the visual content of this in- 
formation. A variety of derived imagery results 
from construction of local PC-models based upon 
the MIA concept. Loading plots allow the user to 
investigate the importance of the variables for the 
model constructed (this will become increasingly 
important for tomorrow’s multi-channel imagery). 
Residual imagery is also shown to be of great 
importance. We show that both unsupervised and 
supervised multivariate image analysis is feasible. 

These features are illustrated by a remote sens- 
ing example, but the general principles behind 
MIA are much more potent; indeed we perceive 
by far the broadest application field as being 
outside remote sensing, e.g. within chemometric 
analysis in optical and electron microscopy and 
other imaging techniques in the laboratory [1,2]. 

MIA data analysis is almost completely visually 
oriented, a factor that greatly contributes to its 
user-friendliness. We perceive MIA only as a first 

attempt towards a more human perception based 
general decomposition technique that we can now 
get only a few glimpses of [l-4]. This decomposi- 
tion may be directed towards typical imagery [1,2] 
or towards higher-order data arrays [3,4]. The 
salient aspects will be the availability of the kind 
of derived imagery illustrated in the present work. 
For example, we directly aim at the possibilities of 
‘slicing up’ higher-order imagery, with the present 
2-D multivariate image decomposition ‘units’ for 
higher-order data arrays of the ‘image type’ [3], 
while the opposite type of arrays, with more vari- 
able ways than object ways, need more formalised 
approaches [4]. 

RELATED WORK 

The gamut of contemporary image processing 
comprises a plethora of literature, most of which 
tends to fall outside the scope of this journal 
because of its subject matter (remote sensing, 
optics, tecnical IP etc.). With the risk of seeming 
almost offensive we originally presented only the 
first eight entries in the literature section below, 
for no other reason than that MIA was developed 
completely on this basis alone during the last 2-3 
years. Indeed one reviewer took offence, however, 
and demanded a computer literature search. We 
also give an additional 7 references, carefully 
screened from the list of 95 references that showed 
up. Well over 958, or more, of what’s catalogued 
under the heading multivariate (...) image (...) 
analysis still remains within the traditional IP 
regime, and is thus not relevant for comparison 
with the present approach. On the other hand, all 
due respect goes to refs. 9-15, which appeared in 
many a different setting than chemometrics and 
remote sensing, as focused on in this paper. 

The works [9-131 deal with various aspects of 
more or less similar approaches to that described 
here, though generally much imbedded in the 
particulars of their specific subject matters span- 
ning: electron microscopy/delineation of complex 
molecular structures [9,10]; technical image 
processing/unmixing of ‘component patterns’ [ll]; 
radiology/magnetic resonance imagery (MRI) 
[12]; LANDSAT MSS interpretations [13]. None 
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of these works comprise a matching general sys- 
tem cum computer implementation, as does MIA. 
Ref. 14 looks at computer analysis and biomedical 
interpretation of microscopic imagery with a phil- 
osophy of image processing and the need for 
dedicated image analysis and interpretation very 
much along the lines laid out above. Ref. 15 
addresses the issue of whether to use raw, i.e. 
unstandardised, or standardised (correlation- 
based) principal components, a point discussed by 
us in ref. 7. 
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