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Industry and academe are characterized by steadily increasing huge amounts of data with very
different data structures. Both static and dynamic data contexts need to be addressed. A new generic,
flexible and comprehensive general data-modelling concept is needed to cope with these demands.
During the past 20 years, object-oriented programming (OOP) has become a de facto industry
standard of how programming tasks should be defined and carried out in the context of deterministic
data modelling. We present here a first framework of analogous ideas for multivariate data analysis.
A new strategy, object-oriented data modelling (OODM), is proposed which is invariant with respect
to the specific data structures and the practical data context. We present a first delineation of meta-
principles, ideas and stimulants for tomorrow’s possible development paths of modelling, in which
the fundamental data analysis unit is the generalized ‘PLS object” in the OOP sense. The key novel
aspect concerns inter-object information transfer, facilitated by ‘root-sum-of-squares averaging’
(RSSA), which uses w loading weights as between-object transfer agents. These features allow a
powerful generalization beyond multiblock as well as hierarchical bilinear modelling to be laid out.
The present part I outlines a first framework for the new data-modelling approach, while part II
forms a complementing catalogue of specific options and possibilities when implementing the new
principles. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION —-STATUS QUO FOR
DATA ANALYSIS

1.1. Statistical data modelling versus the
chemometric approach

Statistical methods for data modelling have been well
established over the last 100 years. The focus of the statistical
sciences has been to establish methods describing the
behaviour or properties of populations. Thus it is common
to use separate notation for the population properties and
the observed samples. The argument is that the population
properties are fixed, while the samples vary from time to
time (from one sample to another). Each internal data setis a
rectangular table (matrix), where each row (observation) is
specifically viewed as a representative for repeated sampling
of the variables that represent the table columns. Very often
the assumption is that of the multivariate normal distribu-
tion, from which the data values for each object of the data
table are viewed specifically as but random fluctuations
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around a certain average or ‘expected’ level; the levels of
course differ from column (variable) to column. The
objective of most applied statistical methods is to identify
the mean value structure of the variables. The motivation for
this modus operandi is to generalize the laws of physics to
other scientific or technological phenomena. Philosophically,
as well as practically, there would appear to be a certain risk
for reductionism here.

Opposing this is the well-known chemometric approach,
which aims at modelling covariance data structures as
presented by the available variables and with a distinctly
different view on the role of the objects; these now represent
individual measurements per se (which may be correlated or
not, as the case may be). The sample-population aspect is
specifically not carried over to multivariate data analysis in
the chemometric context [1,2].

1.2. Industrial, practical requirements of data
modelling

There is today a tendency towards a growing contradiction
between statistical, properly researched methods and the
immediate needs in practical, industrial data modelling.
Industry views data-modelling procedures in a quite distinct
way, looking for tasks which have certain directly identifi-
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able—and practically useful —purposes. For example, we
may need to calibrate an on-line measurement instrument,
predict a quality parameter, evaluate a new sample or
monitor/control a complex production process, etc. If the
data-modelling procedure used fulfils the practical task at
hand, the concern is not focused on the statistical assump-
tions of the procedure. If for example the procedure used
requires that assumptions of multivariate normality be
fulfilled, we can of course test for multivariate normality
(and statistical data analysis program packages are flush
with tests of this kind); but what if the requirements are not
fulfilled? In spite of the results of such tests, very often the
specific procedure is used anyway, because it works in the
industrial context.

1.3. On-line measurements —increasing
responsibilities

As a generic example from the process industries, the Toyota
automotive company has the motto “all components are to be
measured’. Car makers have had great success in securing
that all components have absolutely correct dimensional
tolerances —for obvious reasons. Very many other types of
companies are now also investing in similar on-line
measurement equipment. Another important aspect is that
experience has shown that it is important to detect as soon as
possible when a process has gone off-spec or become
defective. Industry is increasingly interested in methods
that can be used on-line for optimal real-time process
monitoring and control. Clearly such approaches are both
data-intensive as well as heavily computer-demanding.
From the point of view of today’s computer facilities it is
fully possible to set up the necessary advanced procedures
for monitoring and control of industrial productions. Thus
many companies within—and outside — the process industry
sectors have made large investments with the purpose of
automatic process control. Industry is demanding more from
the present monitoring and control technologies. When a
construction engineer computes the strength of a specific
construction, his/her company relies upon the results of the
method employed. Similarly, when decisions are made on
the basis of data modelling, one needs to be able to rely on
the recommendations of the software engineer or data
analyst who has carried out the analysis.

1.4. Latent data structures

Today’s industrial data are always multivariate, not only
representing many variables related to each instrument
(sensor), but also in the sense that it is necessary that a wide
series of measurement points cover the entire process. An
emergent concept of whole-plant coverage can be clearly
seen. Typically this kind of variable set is invariably highly
correlated. It will not be possible to construct effective
monitoring systems which are based only on specific,
selective signals. On the other hand, there will always be a
massive redundancy in these types of measurements. This
implies that we usually cannot find a simplistic data model
which includes all the measured variables or where we can
work with each variable separately. Instead we must identify
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the latent data structures and explain changes in the
monitoring and control signals in relation to this structure.
One of the most important guiding principles of chemo-
metrics is the imperative of visual inspection/understanding
of the complex data structures involved (scores, loadings,
residual variances, etc.). Clearly the latent variable concept
comes to the fore with particular force here. This concept is
of course the very essence of chemometric bilinear data
modelling, which needs no further introduction in the
present context.

2. A CURRENT TECHNOLOGY CHALLENGE

It will be instructive to look closer at how companies are
using, or planning for, on-line data collection and adminis-
tration. We shall look at a current example from one specific
company and at the tasks facing the responsible process
engineers and data analysts. The organization of data
collection is shown in Figure 1 (the illustration has been
stripped of proprietary specifics).

At any given time there are around 30000 units in
production or in the inventory. For each unit the value of
the raw material and labour costs comes to between 500 and
5000. Each unit is to be furnished with an MSM mobile
phone. The status of each of the 30000 units is reported
through the GPRS net and the Internet to the M2M host. The
status and production information is stored in the M2M
database. In the SAP R/3 database there are approximately
12000 data tables, necessary for administrating the produc-
tion. These describe the production conditions at each step.
The “users’ can supervise the production and inventory at
any stage, from any point. The customers can see the status
of any-and-all orders, etc. Workstations are designed for the
floor-workers.

Each of the 12000 tables is a possible X data matrix. The
corresponding Y matrices relate to various quality indices
which are reported by the MSM clients. Besides analysing
each product, there is a need for numerous supervising tasks
that can be translated into data analysis tasks of the type
presented in the present and the sequel paper. The major
issue here is not only the massive data volume relative to
ordinary chemometric standards, but also that the data
structures met with take on a completely new complexity.
There is not only a massive number of on-line measurements
from a concomitant large number of variables, there is also a
vast number of individual simple PLS regression relation-
ships, or between overlying block or hierarchical relation-
ships —all of which is fairly standard except for the sheer size
and volume. However, there can also be seen principally
whole new types of more complex block, hierarchical and
recurrent looping relationships. The need for more general
data structure-modelling tools should be clear. It could
perhaps be expected that whole new data-modelling
principles would also be called for in this context, but we
have chosen to stay within the broad confines of chemo-
metrics and bilinear modelling in what follows. It would
appear that it is fully possible to augment the current data
analysis potentials —almost at no end—without straying
from these familiar territories.
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Figure 1. Large-scale data collection and organization. A real-world example showing the need for more
evolved and comprehensive data modelling principles and methods.

3. NEW REQUIREMENTS FOR DATA
ANALYSIS—AND OLD INVARIANTS

In developing such new data analysis approaches, there are a
few prerequisites which are invariant and which need only
be briefly commented upon.

It is important to distinguish between redundancy in data
and no information. Redundancy in data appears as variables,
or measurements (objects), which are highly correlated. It is
often advantageous to compute score vectors on the basis of
such highly correlated variables. Score vectors have very
useful averaging properties over the set of many correlated
variables and consequently acquire large ‘sums-of-parts’
sizes in contrast to the individual variables. They are thus
reliable for predictions. No information in data means that
there is no correlation between the specific parts of data we
are modelling and/or the so-called residual complements.

It is critically important to detect outliers in calibration data
as well as in new measurements, because of the intrinsic least
squares properties of bilinear modelling. Therefore it may be
necessary to store more data than actually used in the
contemporary modelling procedure in order to be able to
evaluate new measurements in relation to the entire, relevant
data history. New evolving features in the data structures
often imply that modelling fit and/or prediction errors
change in quantity or quality. It will always be necessary to
update models—it is only a matter of the time periods
involved in which any particular model will remain stable.

Similarly, when there is an underlying trend (drift) in data
which has not been picked up in the model, it will of course
be necessary to revise the model, etc. We can detect changes
in model parameters by many means, but usually some form
of validation is employed, e.g. test set validation, cross-
validation, etc. For process modelling, an often-invoked
scheme is that of estimating the parameters for the first, say,
50% of the data and then for each new sample of similar size.
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Alternatively we may wish to re-estimate the model par-
ameters at regular intervals (as measured in proper process
time, not in chronological time), or we can detect changes in
the model structure by examining the residuals. If the
residuals e.g. stop displaying the signature of ‘random
noise’, this would indicate important changes in the model
structure, etc.

One of the most important tasks in modern industrial
process analysis is to be able to detect changes in the mean
levels of key informative variables. Univariate statistical
process control (SPC) used to be the industry standard;
today, MSPC (multivariate SPC) is increasingly substituting
for more involved tasks. Process analytical chemometrics looks
to be a good front-line prospect for many years ahead.

Even when employing latent variable descriptors, it is
often still a challenging task to detect changes in the levels of
the individual variables. Recent developments within
process chemometrics have resulted in useful, very user-
friendly graphic solutions and software, however, which are
now typically developed in collaboration with the respon-
sible process and production engineers. It is more and more
accepted by all parties that it is distinctly advantageous to
look both at the task-related score vectors and at the residuals
involved, as these two descriptors reflect the complementary
process-related phenomena (model fit) as well as the errors
(model misfit) involved.

3.1. New approaches to process data modelling
In chemometric data modelling, we often either focus on one
block of data (X) and carry out a typical PCA type of analysis,
or we are interested in two data blocks (X,Y), most often in
the context of multivariate regression analysis. Chemo-
metrics must be fully aware of the existing body of very
accomplished and powerful systems analysis, process-
monitoring and process control disciplines. Recently an
overview was published taking on the entire established
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statistical theoretical and practical context, in a comprehen-
sive reinterpretation of the essentials of the chemometric
approach, constructed around a novel compound optimiza-
tion concept, the H-principle [1]. This unified approach may be
carried over to dynamic data modelling only to some extent,
however. A comprehensive attempt at bridging the gap
between these fields and chemometrics was published
recently, termed ‘dynamic systems multivariate calibration’
[3], written from the dynamic systems point of view. These
theoretical developments are aimed directly towards prac-
tical industrial usefulness, however, and lie in this fashion
also squarely within the chemometrics playing-field.

By contrast, a theoretical scientist often describes changes
in form of one or more differential equations, signifying a
simplifying law-like relationship, often expected to be valid
over the whole range of possible measurement values. In
industrial environments it is usually unrealistic to expect the
data to follow a set of differential equations, because the
situation is usually much more complex than in the typically
controlled experimental laboratory set-ups. However, one
would still like to be able to carry out an analogous data
modelling, typically described by a number of ‘process
stages’, and to study the changes from stage to stage. One
powerful approach is path modelling.

There is thus an emerging challenge in trying to
encompass all of the above with just one set of overlying
meta-principles for data modelling, which is the precise task
of the present paper.

4. THE CONCEPT OF OBJECT ORIENTATION

The software industry has adapted the ideas of object-oriented
programming with enthusiasm. The basic concept of object
orientation is to look at a programming task as an
independent object. The technical details of the task are
implemented in the object itself. When the object is used
(‘called”’) in a program, the object is initiated by a declaration.
Thereafter we can freely use the different functions belong-
ing to the object. The idea of object orientation is to put
together everything that is needed (data values, parameters,
functions, links to other objects or functions) to complete the
specific task. When an object is initiated, the program
typically uses only a few of the totality of available features
of the object. When an object-oriented program is executed, it
will often take up a lot of RAM, because many objects may
have to be initiated, although the task itself may be small.
Several related objects may be organized or derived from a
single class. A class typically describes an overall given task.
It contains data and shows how the individual objects are
organized. There are many important features included in
object-oriented programming. An example would be poly-
morphism, where methods and functions are context-sensitive
in the sense that their behaviour may depend on their
specific usage. Different functions may have the same name,
but the one chosen in an actual case is dependent on the
contextual usage. Object-oriented programming (OOP) is now a
generally widely accepted programming methodology. By
utilizing objects, the programmer has to ask questions of the
type: what should be included in this object if it is to function
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according to its primary as well as its secondary, tertiary
objectives in this and that contfext, etc.

There is much more to be said about object-oriented
programming [4,5], but suffice here to state that the results
have been very successful in the form of well-tested and
more reliable software applications and programs, both
because of the ingenious object orientation itself and because
of the inherent obligations to think deeply about the complex
sets of tasks to be faced, indeed well before any programming
can start.

The above OOP paradigm has inspired us to conceive of a
new concept of the ‘data analytical object’. We are looking
for a data analytical unit operation which ideally should be so
general that all that is needed in order to cover any data
analysis task is the way in which these unit operations (OOP
objects) are to be interrelated. While this object analogy is to
be developed as completely as possible, the data analytical,
task-specific interrelations are always closely problem-depen-
dent. Thus the analogy with object-oriented programming
cannot necessarily be expected to be fully complete.

4.1. Contents of an ‘object’

e Start the object with the relevant parameters.

e Initialize the object (initialize internal parameters, carry
out consistency checks, etc.).

e Parameters as an integral part of the object.

e Inheritance and ‘friendship’.

e Local functions.

e Visibility of parameters/functions.

5. TOWARDS A NEW DATA ANALYSIS
OBJECT-ORIENTED APPROACH

Classical statistical methods are all based on the strategem
‘model — compute — result’. This is a direct, deterministic
approach which presupposes that one knows that the model
will be more or less in principal correspondence with one’s
data analysis problem. Classical statistics works on the
premise of a set of well-understood and well-characterized
distribution models. One also needs to know the task flow
sheet thoroughly before one can program the task, etc. The
only “problem’ is that there would appear to be a virtual
plethora of ‘methods’ pertaining to each of the seemingly
isolated, non-overlapping different data-modelling objec-
tives, e.g. discrimination, classification, regression, time
series analysis, forecasting, etc. [6].

If we look at data modelling in a similar way to object-
oriented programming, there are still many familiar tradi-
tional issues involved, but they may now also be appreciated
in a distinctly new fashion. We shall consider some of these
central issues below in a bird’s-eye perspective in order to
establish a first framework for this ‘new way’ to view data
modelling.

5.1. Validation

Whenever data modelling is carried out, a proper perfor-
mance validation is mandatory. Validation should always, as
far as practically possible, reflect the future situation in which
the data model is supposed to function—often termed the
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“test set’ context. This is termed proper external validation
(‘external’ in relation to the training modelling activities). In
many situations in which automatic process control is on the
agenda, there may be no time or no possibility for this
approach, however, in which case some form of internal
validation (cross-validation, etc.) must be invoked. The
validation issue is covered in more detail elsewhere [2,7].

5.2. Warnings

Special features in the actual data structures (as opposed to
the model assumptions) that might invalidate the modelling
results must be detected. There is a need for proven and
completely reliable outlier and upset detection methods. It is
important to work out completely reliable procedures for
detecting outlier cases, as these will wreak havoc with any
multivariate modelling. On the other hand, it is equally
disastrous to base faulty outlier detection on an invalid data
analysis rather than on an actual outlier control signal.

5.3. Expert validation

When a domain expert looks at the results of a particular
data analysis, he/she may have some important ‘ex-data
analysis” opinions as to the quality of the results. It would be
very useful for the user if such expert opinions could be
formalized as concrete measures, e.g. correlation coefficients,
scores in sensory profiling, etc. There are many ways to go
about this endeavour, but all are by necessity closely
problem-specific.

5.4. Problem-specific model reliability

In industrial implementations it is often a critical issue
whether the data model is appropriate for all parts of the
data. For example, if a model is established from a random
half of the data, a reliable model should produce closely the
same model parameters if it is applied to the other half. This
50% sampling may relate to e.g. chronologically sampled
data or spatially sampled data, or it may be expressed e.g.
with respect to proper process time or some other relevant
process reference. The simple 50/50 internal division is of
course only one of many possible cross-validation model
reliability scenarios which can be envisioned, but all again
hinges on the specific, practical situation context.

6. THE H-PRINCIPLE

The H-principle, or the Heisenberg principle of data modelling,
has been formulated as a basis for general prediction data
modelling [1]. The basic idea is to carry out the modelling in
sequential steps or stages. At each step a balance is sought
between the estimation and prediction optimizations of the
modelling procedure being used, as prescribed by a suitably
chosen optimality criterion [1]. In practical terms this means
that we should scale data appropriately in relation to the
specific data modelling being used, and for the scaled data
we should optimize the covariance at each step. We stop
modelling when we can no longer detect any significant
covariance. A series of exhibitions of these general data-
modelling principles and their specific manifestations have
been published in the literature [1,8-10].

Copyright © 2003 John Wiley & Sons, Ltd.

6.1. One data block

Suppose that we are given a singular data block X. In general
we want to find a score vector t, given by t=Xw, subject to
some pertinent optimization criterion. If there are no special
preferences, the consensus recommendation is to choose w
such that the score vector has maximal variance, ie. to
maximize (t't)%. In other words, we are to find a weight
vector w of unit length that maximizes the (squared) length
of t. This procedure leads to the well-known principal
component analysis (PCA). For the sake of a unifying
systematic terminology, to be used below, we may also
choose to speak of this as maximizing the ‘covariance’ (t't)?,
and thus include PCA in the context of “prediction data
modelling’ without risk of confusion; see further below.

6.2. Two data blocks

Suppose that we want to describe a data block Y by another
data block X, e.g. as a regression analysis, X—Y. One
approach would be to ask for an X-weight vector w and a
corresponding Y-weight vector q such that the associated (X,
Y) score vectors (t,u) have maximal covariance:

maximize (t'u)%; t=Xw
and u =Yq, with |w|=|q|=1

This result is of course the well-known PLS regression (PLS-
R). This result may easily be generalized.

6.3. Three data blocks

The need for generalizations of the basic two-block PLS
layout occurs often, as soon as more complex data structure
models appear on the agenda. References [1,8-10] describe
the necessary technical background. Suffice here to focus on
three data blocks, each carrying specific information (in the X
vs Y regression sense, etc.), which cannot be concatenated
(eg. X, Y) > Z).

Thus suppose that we are given three data blocks X, Y and
Z, each having the same number of rows (objects). Consider
three potential score vectors t =Xw, u=Yq and v =Zr, one
from each data block. If for example we want to know how
the X and the Y block describe the Z block simultaneously, one
possible optimization criterion would be to find weight
vectors w, q and r of unit length such that (t'v)? + (u"v)? is
maximized. However, one could also have chosen alter-
native criteria. It is clear that the choice of which optimization
criterion to use is intimately related to the known or
expected ‘data path’ characterizing the three-block set-up.
With three blocks we face for the first time this multiple-
choice alternative regarding which compound optimization
criterion to use.

6.4. Multiblock data modelling

For multiblock (>2 blocks) data scenarios there is no trivial
solution to the data-structuring problem; it is not always
appreciated that even in comparatively simple situations
there is no single, solitary “solution” which only needs to be
implemented —indeed, here we meet the all-important
‘problem-specific’ characterization at full force. Thus multi-
block relationships must have very problem-specific pre-
scriptions concerning which score vectors are related to
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which across the block boundaries, etc. In this situation we
may thus use similar sums of squared covariances to
measure the strength of the modelled relationship, as was
indicated above. If at some stage in this procedure there is no
covariance left between any two data blocks, we must stop
modelling this particular relationship, etc. This procedure
was the one adopted by Herman Wold in his modelling of
causal structures —also known as path modelling.

7. WEIGHTING PROCEDURES

7.1. Internal weights

A score vector t can be computed as t=Xw, where w is a
weight vector of length one in a specific data-modelling
context. In PCA, for example, w:= p. In the regression
context it is important that the computed score vector
describes both Y and X. Although the primary interest is
often Y (e.g. Y is desired to be predicted), the score vector
should still be reliable in the sense that it should also reflect a
maximal part of X for stability and reliability reasons.

Similarly, a corresponding loading vector p is typically
computed as p = X'v, where v can also be viewed as a similar
weight vector of length one, or—for the most well-known
chemometric methods (PCR, PLS-R)—the lengths of these
score vectors are not normalized, eg. v:=t or u, etc. In
general we may look at these w and v variables as internal
weighting operands, in the sense that they are wholly
derived internally as part of the algorithms performing data
modelling of one particular data structure pertaining to the
corresponding matrices X and Y.

In the case of one data block the stepwise computational
scheme makes for the so-called updating (or deflation)
stepping-stone to the next stage: X is reduced by rank one
in the relation X «— X — dtp’, where d is computed as d =1/
t'v. Similar deflation is usually also employed in the context
of regression modelling, although there are contemporary
theoretical discussions within chemometrics as to the
advantages of this. This difference of opinion is of no
substantive relevance for the present developments, as it
pertains only to the technical computation issues.

7.2. [External weights
In practical implementations (in industrial or other contexts)
it is often relevant to allow for differences in the ‘quality” of
different samples. Such a quality notation will be closely
problem-dependent. In many situations, domain experts can
in fact assign very meaningful quality measures (absolute or
relative), e.g. in the sense that samples which are charac-
teristically close to a specified optimal product quality are
more ‘important” than other samples. This type of external
weight is tentatively very ‘subjective’, but also a very
relevant feature in many situations. It may in fact be
quantified in an external object weight vector r. As will
become apparent shortly, there are many situations in which
a problem-relevant updating of such an external weight
vector may be required, whether automatically or as a result
of operator intervention, etc.

The first option, automatic updating of external weights as
part of the data modelling, will play an integral role in the
new data-modelling approach we present below.

Copyright © 2003 John Wiley & Sons, Ltd.
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8. H-OBJECTS

The introduction of the H-principle [1] was the first time that
chemometric bilinear data modelling was augmented by this
optional external object weight concept. We shall now
propose another related feature, the H-object, which we shall
introduce by way of an illustrative example.

H-object. Together with matrix X there are now always
associated a pair of external weights (r, s) (r, object weight; s,
variable weight), prescribing how the X rows (objects) and
the X columns (variables) should be weighted respectively.

The H-object is the triplet (r,s,X)

The H-object is the weight-augmented data matrix X, or
some similar data matrix Y, Z, etc. Note, however, that it is
not always needed that these external weights be used —it is
simply their potential use which allows for (far) more
complex data modelling.

Illustration. In on-line environments a data model per force
has to be calibrated on the basis of historical data. At any one
time there may only be the accumulated historical array of
data upon which to calibrate the data model in question. As
more and more new data arrive, however, in principle, better
contemporary knowledge about the system is obtained. As
time passes, there may now be new requirements to the
model, which may or may no longer be satisfied for the data
in question. Specifically, there may now be information as to
which of the objects carry the most valid, relevant, important
information, etc. This is precisely the kind of information
which may be encoded into an external, dynamically updated r
vector.

The corresponding variable weight vector, the s vector, is
well-known in chemometrics. In a typical static context, s can
take any number of preprocessing forms, e.g. the all-important
standardization (1/std), or a transformation form, e.g.
log(X), etc. Note that for such simple applications the action
of the external weighting operands is carried out once and
for all; that is, once the X matrix has been scaled or
transformed, this action need not be repeated, since the
otherwise standard chemometric methods will simply be
performed on the transformed (X, Y) matrices. This global
multiplicative weighting is well known to the data analysis
communities, and we shall not be interested in these aspects
in the discussions further below. Instead we shall devise a
more dynamic ‘soft’ approach to invoke the same type of
‘external’ weighting information, but in a distinctly new
fashion, the RSSA information exchange agent (root-sum-of-
squares averaging).

9. Hy: THE GENERALIZED PLS OBJECT

9.1. External H-object weights (s) as data path
‘gluons’

We shall now present a self-contained and comprehensive
context in which to conceptualize general data structure
models in the form of interrelated, or hierarchical, H-objects.
This concept is general enough to encompass PCA, PLS,
multiblock PLS and hierarchical multiblock PLS but is
mainly aimed at extending general data modelling beyond
these established methods. It also encompasses some three-
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Figure 2. The generalized Hy object (the full PLS/PCA object). Hy is always in
principle assigned a pair of external weights (r, s), whether to be used actively or not

in a specific situation; see text.

way and multiway data-modelling aspects [11]. The general
concepts of the new H-object approach may — presumably —
be generalized also into these multiway regimes, along the
same principles as presented by Esbensen ef al. [6] in which
the data array organization was generalized. See also the
seminal parallel development overview on multiway mod-
elling by Alsberg [12], from which we have also been greatly
inspired.

Reference [1] described systematic bilinear data modelling
for two-way matrices. Specifically, it was explained how
PCA may also be viewed as but a marginal case of two-block
PLS regression modelling. From a purely data-modelling
point of view we may opt to view PCA as a special X - X
regression modelling case in which the covariance maxi-
mization takes the special form of maximizing the ‘covar-
iance’ (tTt)z. Thus, without loss of generality, below we shall
speak mostly in general terms of ‘PLS regression modelling’,
keeping in mind this special ‘PCA-R’ as a specific possibility
if the data-modelling objective so demands.

The new ‘unit operation” of general data modelling will
thus be the standard PLS regression data model, but
augmented as the complete H-object triplet (r,s,X)—indeed,
also the corresponding (1,s,Y) if need be. This basic unit is
termed the H, object (Figure 2).

The above situation in which was illustrated the need for
updating of these weight vectors can now be illustrated in
terms of a data path graph with the corresponding terminol-
ogy ‘external updating of the Hy r, s vectors” (Figure 3). In
this particular case the updating could be automatically
performed, or it could be related to some monitoring and/or
user-defined activity. Figure 3 particularly lays the founda-
tion for external updating of the Hy s vector, which is going to
play a central role in what follows. Note how the usual
company of PLS weights and scores w,t,p,u,q all reside inside
the Hy object at all times, i.e. the conventional PLS algorithm
runs according to all standards. The only difference—so
far—concerns how the external weight information is to be
invoked in the internal H-object algorithm.

Copyright © 2003 John Wiley & Sons, Ltd.

The objective of inducting external information, e.g. in
the form of a particular s vector, is to establish a basis for
guiding the internal data modelling—guided by informa-
tion from other objects. In its simplest form, such guidance
could be in a similar fashion as pertaining to the w vector
in ordinary PLS regression, e.g. t=Xw. Thus one possi-
bility would be that s (or r) may represent the internal
weight w (or t) from ‘external’ H-objects, i.e. from a
separate bilinear H-object pertaining to another object
(which in its simplest manifestation could be just another
variable block). It is easy to envisage how one may build up
interrelated sets of such H-objects, ‘pathed’ by a specific data
analysis objective. This data path always needs to be
defined before it is possible to consider how to interrelate
the blocks involved.

Figure 3. lllustration of internal versus external H-object
parameters. The external weights (r, s) are the only carriers of
information to be inducted into the object. In OODM this can only
happen via the ‘soft’ RSSA procedure (see Box 1 and text for
details).

J. Chemometrics 2003; 17: 34-44



9.2. Constraints in the standard multiblock
concepts (path modelling)
Consider the situation in which we have a data path
consisting of two Hj objects (two simple PLS-R as it were),
each complete with their respective internal scores (t, u) and
loadings (w, p, q) as well as their corresponding external
variable weights s (Figure 4). In the chemometrics literature
so far, all interrelations between “data blocks’ (path modelling)
have exclusively taken place as direct interchanges of score
vectors (t, u), or loading vectors (w), between blocks. The
point here is that in both cases of multiblock PLS general-
izations the operative interchanges occur only via direct
score/loading vector interchanges from one internal algo-
rithm to the other, and vice versa. After one of these types of
‘external” weight vectors is received and substituted for the
pertinent ‘internal’ counterpart, the particular internal
algorithm continues according to the standard PLS scheme.

In these previous endeavours, however, there are two
characteristics which would appear to constrain more
complex data modelling rather severely: (1) only direct
score/loading vector interchanges are invoked; (2) all
generalizations presented address only a very specific and
limited data-modelling objective, e.g. multiblock PLS (inter-
related via object scores) or the ‘symmetric’ variable multi-
block PLS (interrelated via variable loadings). All these
direct vector exchange multiblock schemes were recently
presented in one unifying theoretical context [13]. There have
also been presented attempts at dealing with what has been
termed ‘hierarchical PLS’, employing a multilayer, multi-
block organization, but again relying on interchanged or
concatenated score or loading vectors upon which a ‘meta-
PCA’ is carried out, or a ‘meta PLS. Thus in all these
generalizations the information flow between blocks only
takes place via interchanged weight vectors (scores/load-
ings).

However, if there is no objective data analytical corre-
spondence between any two or more blocks, the entire

Figure 4. lllustration of a specific data path consisting of two
objects. In the situation depicted, an internal weight w from H3 is
connected to Hg,, where it is functioning as an external s weight
(in contrast to the alternative direct exchange as the equivalent w
vector in the Hy object).

Copyright © 2003 John Wiley & Sons, Ltd.
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compound data path model breaks down, because the
empirical data in fact constrain the specified meta-model in
a very restrictive fashion. The inheritance from earlier
statistical data modelling, ‘model — compute — result’, is
clear. We are still in this particular sense in a ‘fixed model’
situation. Here we do not wish to pursue this avenue further,
however.

In the new object-oriented approach we now offer the
alternative possibility of external information exchange be-
tween blocks via the external H-weights (r,s). This is crucial
for understanding what comes e.g. in relation to hierarchical
H-object loops.

H-objects can be organized freely in any pertinent fashion,
path modelling and hierarchical organization being only the
two most obvious. Any (more complex) data path inter-
relationship can be modelled by a connecting graph of the type
indicated in Figure 4, either via direct score vector informa-
tion transfer (as before) or via the new dynamic information
transfer concept RSSA.

9.3. RSSA: root-sum-of-squares averaging

Box 1 illustrates the inner workings of RSSA. The point of
departure for RSSA is where two vectors (of equal
dimensionalities) exist which are to be ‘combined’. The
combination is based on the familiar RMS concept, but in a
slightly modified fashion. In Box 1, w represents the internal
weight, while s represents the external counterpart. We only
develop the RSSA facility for w-like weight vectors for
reasons which will become clear immediately.

Case 1. Identical signs, s; and w;, Vi
Wi(x) = sign(Wi) /(7 + W)

Case 2. Mixed signs, s; and w;:

Wi(+) = sign(IW;),/max(S2, W?) — min(S?, W2)
w:(*) is normalized to length one.

Box 1. RSSA ‘soft’ combination of two weight vectors, one
‘external’, s, and one ‘internal’, w. The new combined w(*)
weight vector is normalized to length one before it is returned
to the two parent H-objects. Compare Figure.

RSSA is designed to allow the larger (absolute sense) w
elements to play a more dominating role than their smaller
counterparts; hence averaging of the sum-of-squares expres-
sions is not pre-divided by two, but is carried out by taking
the square root directly of the sum of squares—followed by
normalization to length one. This new ‘soft’ combination
objective allows that the derived RSSA vector is substituted
for both the external and internal weight vectors in their next
respective iterations in their separate H-object contexts.
Hence that which is returned to both H-objects for one more
internal iterative run is the same w(*). This updated w weight
vector will now guide the resulting data decompositions
differently according to the individual empirical data
structures in these two separate H-objects, i.e. the RSSA
w(®) will take part in the otherwise ‘standard’ internal H-
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object next iterations. Another iteration results in a new w
vector, which is again refurned for a new RSSA combination
iteration, etc. This next RSSA pass will reflect a more
covariant interconnection between these two H-object data
structures, depending on the objective between-block data
structure (correlations) present in the two H-objects.

RMSA is designed to open up a ‘soft’ information transfer
capability, which is impossible with direct (‘hard’) vector
substitutions, in which an internal vector is substituted in
toto by the corresponding external counterpart, and wvice
versa. With the RSSA concept the external and internal
vectors both contribute on an equal footing. The ‘star-vector’
represents the RSS-averaged go-between between an inter-
nal and an external loading weight. This serves as a new way
to derive a compromise between the two data structures. If
the two data structures correspond well to each other, if
indeed the expected data path corresponds to the objective
correlation to be observed between the H-objects, the RSS
averaging will converge to a stable w(*), which will then
represent both data structures equally well. If/when
convergence is achieved, i.e. when stability of the RSSA star
vector is obtained, this vector performs much as if an
ordinary direct weight vector interchange is taking place.
This stable end-result of the inter-object RSSA calibration
may then be used as the pertinent w loading weight for both
objects, etc. There is thus no problem with the RSSA concept
if a specific simple multiblock or hierarchical data model
assumption holds up to the data reality.

However, the benefit of the RSSA transfer function
capability perhaps shows itself even more clearly in the
situation(s) in which there is less direct transferability of the
between-block information to be found. For the sake of
argument we shall assume that the well-known NIPALS
algorithm is being used for all internal H-object PLS. For
each iterative loop in the separate H-object algorithms, both
the internal and external weight vectors are dynamically
updated by the RSSA procedure. This means that neither of
them passes back in their respective next NIPALS iterations
without this updating. They may be greatly or less affected
or they may be only insignificantly affected (i.e. close to or at
convergence/stability). This ensures that the internal data
structures as well as the ‘between-block” data structure are
now equally respected in each iterative loop in all objects (two
or more; see below), provided that there indeed is a common
intercorrelated between-block data structure. However, in
the event of a significant degree of mismatch, this is
immediately reflected by the RSSA procedure, which will
simply grind to a halt in the case of no objective compati-
bility between the inner and outer vectors (there will be no
convergence no matter how many iterations).

Thus whether the RSSA process is succeeding or not is a
good measure of the objective compatibility of the two (or
more) data structures involved. This means that the simple
RSSA information transfer facility will suffice to reveal
whether there is agreement between the empirical data
structures involved and the a priori specified path model. In
either event (success or failure) this will furnish a very
important consistency check of the a priori established path
model. Indeed, it is precisely this degree of possible
mismatch which is the quality left out by all the previous
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‘fixed” vector exchange block specifications described
above.

9.4. OODM —a new data-modelling pathing
platform

By invoking the RSSA procedure for ‘soft’” between-block
information transfer, facilitated by (s,w) weight vectors,
while making full use of augmented generalized PLS H-
objects as the data analytical unit operation, it is now
possible to depict a wider scope of data model complexities
in which the pertinent data paths can be expressed by RSSA s
vector interconnections.

So far we have only conceived of these three components
in the data path schemes in object-oriented data modelling
(OODM) (Figures 2-4). All types of complex two-way
interconnected data modelling can be graphed within this
new concept. It is highly likely, however, that only seldom
(very seldom indeed) will all the (r,s) weights, potentially
available for all (X)Y) matrices, have to be invoked
simultaneously —i.e. many will take the ‘neutral form” of
suitably dimensioned 1-vectors in many specific situations —
but the possibility of using the full apparatus of fully (r,s)-
armed multiblock interrelated and/or hierarchical H-object
data modelling is potentially very powerful.

9.5. r weight information exchange—an
asymmetric issue

In the present new OODM context it is still required that N,
P, Q be equal between all OOP objects which are to be
interrelated (N:=number of measurements in X, Y;
P: = number of variables in X; Q ditto for Y). It is well known
that it is only within e.g. the NIPALS algorithmic calculation
context there would appear to be a symmetric relationship
between measurements (objects) and variables (carried over
to scores and loadings/weights). Philosophically, as well as
in practice, there is a world of difference between these
categories, however [1,2,6]. This is e.g. manifested in the
different transformation, scaling and normalization schemes
used for objects and variables respectively. This fundamen-
tal distinction actually demands that the information transfer
mechanism for s and r weight vectors also be different. It
would be distinctly incorrect and futile to even try to apply
the RSSA formalism on an external r vector and a pertinent t
vector (internal score vector). Indeed, this would not even be
possible, the reason being that scores (and score weights) are
not similarly normalized. In fact, scores are never normalized
to length one —at least in all standard chemometric bilinear
data modelling (disregarding analyse correspondence, etc. for
the moment). Normalizing would eliminate the entire
information carried by the length of a score vector, some-
thing which would be akin to projecting the entire (measure-
ment, object) data space onto a P-dimensional hyper-
sphere —resulting in a tremendous loss of information [1].
For this reason we do not foresee RSSA being applied
symmetrically in this fashion in OODM. Rather, the r weight
information exchange issue needs to find its very own
solution. Once-and-for-all multiplication is certainly one
option, as is direct score substitution, but what form could
one imagine for the pertinent r weight RSSA equivalent — if it
even exists? This fascinating teaser we leave to the first
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fellow chemometricians taking up the present gauntlet—it
will not detract from the feasibility of the overall OODM
proposal if such minor side-issues are not all worked out in
every detail.

We can summarize the definition of PLS H-object data
modelling as a new generic multipurpose concept for graphic
data path modelling, in which the elemental building blocks
can be expressed by two new elements and one traditional
element: the unit operator is the individual, generalized PLS
Hj objects, interconnected by transfer functions in the form of
dynamically updated external (r,s) weighting vectors.
Specification of a data model always begins with the
pertinent data path graph. This specification is very much
analogous to using a visually oriented programming
language, e.g. ‘G’ in the LabView context, only here we are
not depicting the algorithm(s) at the programming level —
we are depicting the overlying data path directly as a set of
(two-way) matrices interconnected by RSSA (s) or other
information transfer/substitution ties (r).

There also remains the interesting issue of exactly how to
include the direct between-block vector substitutions in the
simpler cases with proven data structure connections of the
OODM concept. Likewise it may turn out that other ‘soft’
between-object information transfer relationships than our
first foray, RSSA, will have to be studied. We shall further
explore these concepts in more depth elsewhere. Our main
thrust in this paper is only to point attention in the new
ODDM directions, RSSA only being the first landfall in these
new uncharted waters. We do not claim full conceptual, far
less implementation, completeness at this early stage —much
fascinating work remains. We believe, however, that
chemometrics needs a thorough discussion as to the future
data modelling quo vadis? — and thus present these reflections
as possible stimulants for this debate.

External r-weight vector

Multivariate data analysis. I

10. PATHING COMPLEX DATA MODELS IN
THE OODM CONTEXT

As an example of the ease of using this new graphic OODM,
consider the intricacies involved in generalizing a hierarchical
PLS objective. In the OODM context we may easily delineate
any number of iterative calls of the basic Hj object,
successively termed H;, Hj, etc. Note how each Hy object
can be outfitted with a full or reduced complement of the
associated (r,s) weight vectors, fully as determined by the
specific data analysis objective(s). Figure 5 shows this complete
generalized two-level hierarchical facility: easy using
OODM —not an easy thing to delineate in the case of a
hierarchical nested set of direct substitutions.

The above is but one example of how it will be relatively
simple to graph a complex data analysis objective by a data
path. If for example there also is a need for an additional,
external multiblock part, one possible solution will be by
graphing in a ‘direct connection’” to another H-object at the
appropriate level in the hierarchy, in this case as an r weight
(perhaps acting as a t vector in direct substitution, perhaps
used in a more elaborate way); see Figure 3. This combina-
tion of hierarchical and multiblock objectives may be
delineated in any degree of interrelated complexity using
this OODM meta-programming strategy. This is what we mean
by stipulating that complex data analysis objectives will be
far more easily grasped and mastered using this new graphic
meta-programming blackboard.

Observe how there apparently is no limit to the complex-
ity, i.e. the number of hierarchical levels, as well as the
number of ‘lateral” objects or blocks involved, which may be
invoked using this systematic OOP-inspired approach; there
is truly no upper complexity limit. Rather, there will
(probably very quickly) crop up limitations more to do with

- @
- (%)

Figure 5. Hierarchical PLS illustration, in which is also shown one option for
score information influx in the form of an external r weight (see text for details).
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the conceptual faculties of the data analyst, or, for sure, with
respect to specific software (and hardware) implementation
constraints, etc. However, these are ‘only’ technical issues
that sooner or later will be solved/solvable.

10.1. Resulting ‘behind screen’” programming
tasks

Ideally, once the H-objects and their specific data analytical
interconnections have been graphed properly (there are of
course certain rules governing how these interconnections
will have to be specified, etc., more of which will appear
elsewhere; see again also Reference [12]), we envisage an off-
screen programming engine which will translate the graph into
executable code in some suitable language, C++ or similar.
A good comparison would be the ‘G’ graphic programming
language in the LabView system, which encompasses such a
C++ translation facility, but the needs in the present
scenario are probably somewhat more complex. Of course,
it is not necessarily an easy task to translate pathing graphs
to the executive programming level, but at least this can
always be reduced to the relevant interconnection tasks only,
because of the pre-existence of the basic H-objects, the fully
complete Hy objects in the fully established OOP sense. We
fully expect that the analogy to object-oriented program-
ming, while not entirely complete, will allow this task to
be(come) doable in a very short time only.

It was noted by one of the referees that the analogy
between objected-oriented programming and object-or-
iented data modelling is halting in some respects. In object-
oriented programming there is typically a hierarchy of
classes that make up the tasks that are available. In object-
oriented data modelling, we are proposing new procedures
for data analysis using concepts and ideas borrowed freely
from object-oriented programming. However, it is beyond
the scope of this paper to explore further the differences in
detail —neither is it necessary. Much detailed programming
work remains in working out exactly what can (and what
cannot) be achieved within this new context. If the
accumulated development history of chemometrics is any-
thing to go by, these and related issues will first see their
final solution when the software implementation is swinging
into action.

10.2. Epilogue—a new data analysis freedom
The new OODM approach will offer the data analyst a new
“graphic programmers’ interface” —an OODM blackboard as
it were —which is invariant w.r.t. updating, or even substitu-
tion, of the underlying programming language—at least
from the point of view of the meta-programmer, i.e. the data
analyst, who is the entity responsible for setting up the data
path in the above sense, which corresponds to a particular
data-modelling problem. This is exactly the answer to the
emerging demands on data analytical modelling from
industry or from academe which were specified in the
introduction to this part I paper.

While it will be relatively easy to depict a multitude of
such relationships in a graph environment, it is emphasized
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that what is presented is not a data-modelling amusement
park to be used as a ‘connector set’ without a specific data
analysis objective. What is presented here is a first descrip-
tion of a new generic, multipurpose concept for data path
modelling, in which the elemental building blocks all are (r,
s)-weighted Hy objects, interconnected by ‘soft’ RSSA
transfer functions (augmented by standard vector substitu-
tions/exchanges and perhaps also yet-to-be-developed
further r vector transfer protocols). We have here only been
concerned with presenting the new conceptual object-
oriented pathing framework—hopefully pointing towards a
fruitful, continuously developing data analysis future.

In part II we shall give a thorough overview of the
necessary further ingredients of object-oriented data analy-
sis/statistical data modelling, together with objectives and
methods, organized as a series of ‘levels of modelling’.
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