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Abstract: Multiple Factor Analysis (MFA) studies several groups of variables (numerical and/or 
categorical) defined on the same set of individuals. MFA approaches this kind of data according 
to many points of view already used in others methods as: factor analysis in which groups of 
variables are weighted, canonical analysis, Procrustes analysis, STATIS, INDSCAL. In MFA, 
these points of view are considered in a unique framework. This paper presents the different 
outputs provided by MFA and an example about sensory analysis of wines. 
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1. Introduction to the method 

1.1. Introduction-summary 

Multiple Factor Analysis (MFA) studies several groups of variables defined on 
the same set of individuals. 

The core of the method is a factor analysis applied to the whole set of 
variables in which each group of variables is weighted. This point of view leads 
to a representation of individuals and variables, as in any factor analysis. 

Owing to the weighting, this factor analysis can be interpreted as a canonical 
analysis. This point of view induces a display in which representations of the set 
of individuals associated to each group of variables are superposed (these 
displays are akin to that of procrustes analysis). 
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Fig. 1. Data set. 

This factor analysis induces a global analysis of groups of variables in which 
each group is represented by the scalar product matrix it defines on the set of 
individuals. This point of view leads to a global representation of groups and to 
an estimation of INDSCAL model parameters. 

After describing data and notations, we present different aspects of MFA. 
For each one, we set the problem, and indicate the MFA solution. 

A complete presentation of MFA is included in Escofier and Pages (1990). 

1.2. Data 

MFA analyses data tables in which a set of individuals (in rows) is described by 
several groups of variables (in columns), i.e., tables as shown in Figure 1. 

Variables may be of two types: numerical (= quantitative) or categorical 
(= qualitative). Each categorical variable is to be coded by the set of indicator 
variables of its categories. Thus, later on, the word ‘variables’ designates either 
a quantitative variable or a indicator variable. Variables belonging to the same 
group should be of the same type. 

Individuals and numerical variables may be weighted by the user. 
Group of variables can get the status ‘active’ or ‘illustrative’ (an ‘illustrative’ - 

or supplementary - group does not influence factors). 
Missing data are allowed in the case of categorical variables. Concretely, an 

individual which does not have any category for the variable k, has 0 for all the 
indicator variables associated to variable k. 

1.3. Notation 

We consider an 
I 
K 
J 

Ki 
X 

xi 
M 
D 
wj = XjMXj’ 

array without supplementary elements. 
number of individuals, 
number of variables, 
number of groups, 
number of variables belonging to the group j, 
data matrix (dimension: I, K), 
data matrix restricted to group j (dimension I, Kj), 
variables weights matrix (diagonal; dimension K, K), 
individuals weights matrix (diagonal; dimension I, I>, 
scalar products matrix associated to group j. 
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All elements (individuals, variables, groups) are represented in Euclidean 
spaces. These spaces are named according to the objects they include: 

RK individuals space (defined by all the variables), 
RF individuals space defined by group j variables, 
RI variables space, 

4 sub-space of R’ spanned by variables of group j, 
RIXt groups space (a group is represented by ?D: dimension I, I). 

1.4. General problem and weighting of variables groups 

1.4.1. Problem 
The problem can be roughly decomposed through three items, each one corre- 
sponding to a point of view: 
(a) typology of individuals described by the whole set of variables, 
(b) overview of relationships between variables, 
(cl comparison of variables groups. 

Items (a) and (b) are classic in factor analysis (Principal Components Analy- 
sis: PCA; Multiple Correspondence Analysis: MCA). Item (c) overlaps several 
objectives described afterwards. 

Whatever the point of view, weighting of variables groups is necessary to 
make the influence of each group comparable in a global analysis. Concretely, 
according to the factor analysis point of view, we want to avoid the possibility of 
a single group having a dominant influence on the first factor (nothing can be 
required for further factors because a multidimensional group will always 
influence more factors than an unidimensional one). 

1.4.2. Simultaneous analysis of numerical and categorial variables 
This problem seems independent of the previous one but can be solved also by a 
weighting of variables. This follows from the following property. 

On the condition that indicator variable k is weighted by the proportion of 
individuals which do not possess the character k, PCA applied to a in indicator 
matrix is equivalent to MCA. That equivalence allows to apply the same 
technique (PCA) to numerical or categorical variables. 

In order to take the two kinds of variables into account simultaneously, we 
have to balance their influence, that is to say their inertia. This is an important 
aspect of the weighting of groups of variables. 

1.4.3. Solution 
Before the weighting of groups, let us denote: 

- a(k) the weight of the variable k. Generally, for quantitative variables, 
a(k) = 1 for all k. Concerning qualitative variables, a(k) is the proportion of 
individuals which do not possess category k. 

- A(j, 1) the first eigen value of factor analysis applied to the single group j 
(this factor analysis is PCA in the case of a quantitative group and MCA in the 
case of a qualitative group). 
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The weighting of groups consists of attributing the weight a(k)/h(j, 1) to 
each variable of the group j. By this way, the first eigen value of factor analysis 
applied to the single group j becomes 1. Therefore, groups are balanced in the 
following sense: in any direction, maximum inertia of the sub-cloud associated to 
one group is 1. Thus, in a global factor analysis, it is impossible for a single 
group to give rise to the first factor. 

Of course, group contributions to global analysis are not similar: an unidi- 
mensional group cannot exert an important influence on more than one factor; a 
multidimensional group will influence several factors. 

This weighting is a specific characteristic of MFA; it induces many properties 
described later. 

1.5. Representation of individuals and variables 

1.5.1. Problem 
These representations correspond to the classic aim of factor analysis, that is to 
say: 
- typology of individuals, 
- typology of variables, 
- links between the two typologies. 

1.52. Solution 
MFA is a factor analysis applied to the array including all groups of variables. 
Roughly, the behaviour of the method is equivalent to PCA (concerning quanti- 
tative variables) or to MCA (concerning qualitative variables). 

The use of weights l/h( j, 1) balances inertia between the different groups 
and thus balances their influences. Taking account of the PCA-MCA equiva- 
lence previously mentioned, this weighting allows applications in which some 
groups are quantitative and other qualitative. 

1.6. Setting up common factors 

1.6.1. Problem 
Let us recall, schematically, that a group of variables forms a multidimensional 
structure. In this sense, a common factor is a dimension common to these 
structures. 

Search for factors which are comon to several groups of variables is a problem 
frequently encountered in data analysis. It refers to canonical analysis. In the 
case of more than two groups, the most interesting generalization is, doubtless, 
due to Carroll (1968). 

Carroll measures the relationship between a factor and a group of variables 
through the multiple correlation coefficient. In case of a group including 
strongly related variables, this measure does not give satisfaction because it does 
not consider relationships between the variables and lacks for stability (the 
sub-space spanned by the variables of the group is itself unstable). 
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The problem is to propose a method which follows the general principle of 
Carroll but uses a more stable measure of relationship between a variable and a 
group. 

1.62. Solution 
MFA can be considered like a canonical analysis in the sense of Carroll since it 
follows the principle: 
(a) setting up general variables, each one related to all the groups, 
(b) for each general variable t, search for the canonical variable in each group j, 
that is to say, linear combination of group j variables, related to z. 

The main differences between the two methods are: 
(a) to measure the relationship between variable z and group j, MFA uses _fZ 

(z, j), projected inertia of group j variables along the direction defined by z. 
This measure possesses some interesting properties: 
- Taking the weighting of variables into account: 0 I_Y(z, j) _< 1; _Y(z, j) = 0 

if z is orthogonal to the sub-space spanned by group j variables; _Y(z, j) = 1 
if z is confounded with the first principal component of group j. If all 
variables of group j are orthogonal to one another, L?(z, j) is confounded 
with multiple correlation coefficient. 

- In MFA, the general variable z, related to all the groups, satisfies the 
criterion: Zj._Y(z, j) maximum. This criterion leads to the first principal 
component of X. 

- Owing to weighting of variables, inertia of the variables of the same group can 
be interpreted as a relationship measure. This allows to interpret the same 
criterion from a PCA point of view or from a canonical analysis point of view. 
(b) In Carroll’s method, a canonical variable of group j, associated to the 

general variable z, is Pi(z), projection of z on the sub-space Ej generated by j. 
About this point, MFA calculates yD(z); compared to Pi(z), lJ$D( z) extracts 
more inertia, and leads to a representation of individuals more easily inter- 
pretable. This point appears more precisely in Section 1.7.2. If all the variables 
of group j are orthogonal to one another, Pj is equal to TO and the two ways 
are equivalent. 

1.7. Superposed representation 

1.7.1. Problem 
Each group defines a structure on the individuals set. A structure defined by 
group j is expressed by the shape of cloud N/ which represents an individuals 
set in PCA of X. (N/ belongs to RKj> . 

In order to c6mpare clouds Nf’ one to another, we need a superposed 
representation of ZV/ which sets up the structure common to the different 
clouds. 

Classically, this objective refers to generalised Procrustes analysis (Gower, 
1975). In fact this objective is closely related to canonical analysis. The two 
methods express the same objective, one by the way of variables and the other 
by the way of individuals. 
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This duality does not appear in the classic approach of canonical analysis or 
Procrustes analysis. 

1.7.2. Solution 
MFA considers clouds (Nf’; j = 1, .J> inside the space RK defined by all the 
variables ( RK can be considered as the direct sum of R Kj>. In that space, which 
contains J images for each individual i, we are looking for a representation of 
all the N/’ such as: 
(a) this representation must be a projection upon a sub-space, 
(b) clouds Nf’ must be well represented (high projected inertia), 
(c) the J points representing the same individual must be close to one another. 

Let us denote i * the centre of gravity ( = centroid) of the J points represent- 
ing the same individual i (in RK>. MFA searches a sub-space which maximizes 
projected inertia of the J points i *. That criterion carries out a compromise 
between items (b) and (c). 

This criterion leads to the sub-space issued from the previous PCA. Conse- 
quently, inside MFA, the Procrustes point of view consists of projecting the N/ 
upon factorial axes (clouds N/ appear as ‘illustrative’ elements). 

Such a projection of Nf’ is equivalent to the canonical variables (B$Dz) 
calculated by MFA. MFA appears as a method giving a complete solution to the 
dual objectives of Procustes analysis and canonical analysis. 

1.8. Global representation of groups 

1.8.1. Problem 
In order to get an global comparison of groups, we need a display in which each 
group is represented by one point. This kind of representation was introduced 
for the first time in STATIS (Escoufier, 1980). 

The operator WjD is classically used to represent the group j: l4$D includes 
the whole structure of individuals defined by group j. WjD belongs to the space 
of I x I dimensions. Global comparison of groups consists of studying cloud: 
<TO; j = 1, j). 

This study is worked out inside STATIS. But, in this method, the main 
objective of that study is building a structure common to all the groups. Hence, 
the WjD are projected onto a sub-space, but the directions of that sub-space are 
quite impossible to interpret because they are not clearly reliable to variables. 

Studying the cloud (WjD; j = 1, J) we want to single out a display of groups. 
This display must be a projection onto interpretable directions. 

1.8.2. Solution 
In the space of I x I dimension, MFA searches a sequence of dimensions such 
as each one: 

- is associate to a single direction of the variables, space R’. That constraint 
necessarily reduces the goodness of fit but ensures the interpretability of the 
dimensions. 
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- maximizes, with usual orthogonality conditions, sum of projections (and not 
sum of squares). This criterion has a meaning because projection of I4$D onto 
such a dimension is always positive. It possesses the disadvantage, very unpleas- 
ant from a theoretical point of view, of being satisfied only by dimensions and 
not by sub-spaces. But this disadvantage is the price to pay in order to obtain 
properties, analogous to duality relationships in factor analysis, which ensure 
coherence with previous points of view. 

Those properties are the following: 
- The s-order axe found in the space RIX1 is the scalar product matrix 

associated to the s-order principal component of X (which can be also inter- 
preted as a general variable of a canonical analysis) found in RI. Hence, these 
directions have the same interpretation. Denoting z a principal component (in 
R’), the corresponding axe in RIX’ is zz’D. 

- The coordinate of I+$D with respect to the s-order axe (in RIx’) is equal 
to projected inertia of group i variables along the direction defined by the 
s-order principal component in R’. Thus, it is equal to the relationship measure 
_Y( z, i) used in the canonical analysis point of view. So, a proximity between two 
groups along direction s indicates that the common factor s has the same 
importance in the two groups. 

1.9. INDSCAL model 

1.9.1. Problem 
The usual algorithm for computing INDSCAL parameters does not ensure basic 
properties, that is to say, mainly: convergence, positive weights, orthogonality of 
dimensions (Carroll, 1981). 

On the other hand, the INDSCAL model applied to several groups of 
variables is closely related to the other points of view, and usual programs do 
not care about that. The relationship between INDSCAL model and canonical 
analysis can be summarized with two points: 

- dimensions of INDSCAL model are common factors (general variables in 
Carroll’s canonical analysis). 

- INDSCAL weights are used to express general variables in each group. In 
other words, INDSCAL model can be viewed as a canonical analysis in which 
the s-order canonical variable has to respect the constraint to be proportional to 
the s-order general variable. 

Finally, we need a INDSCAL parameters estimation 
- related to the other points of view, 
- without technical problems (convergence.. . 1. 

1.9.2. Solution 
In MFA, the problem of global representation of groups corresponds to the 
INDSCAL model (in the INDSCAL model, individual weights are equal to 1 
and matrix D, equivalent to identity, does not appear: in that sense MFA 
provides a solution to a generalization of the INDSCAL model). As a matter of 
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fact, projection of each wj onto a sub-space spanned by S vectors, each one 
being associated to a single vector of R’, can be written as a decomposition 
identical to the scalar product form of the INDSCAL model: ~j = I$q(s, j>zszi 
with 

- .z,z:, direction of RIx’, is associated to z,, direction of R’ which is an 
unidimensional representation of individuals, 

- q(s, j), projection of I$ onto the s-order dimension, is the weight of 
dimension s for the group j. 

The INDSCAL parameters estimation provided by MFA does not satisfy the 
same criterion as usual techniques: MFA maximizes sum of weights and not sum 
of squares. 

We previously discussed advantages and drawbacks of the criterion. From an 
INDSCAL point of view, it seems that the technical advantages (for example 
getting weights always included in (0, 1) thus making their comparison easier) 
and relations to the other points of view are more important and useful than a 
theoretical property of the criterion. 

2. Characteristics of the computer program (AFMULT) 

2.1. Description of the algorithm 

The program first performs separate PCA for each group. The categorical 
variables are represented by their indicator variables. These indicator variables 
are weighted in such a way that their analysis by PCA is equivalent to a MCA. 
Thus, in each group, MFA works as PCA with numerical variables and as MCA 
with categorical variables. 

These analyses are useful to calculate the variables weights that permit a 
balance of groups in an overall analysis. They also permit the addition of the 
first factors of each group as supplementary variables. 

The overall analysis is a PCA applied to the entire table in which each 
column of the group j is weighted by the inverse of the first eigen value of 
separate PCA of group j. The PCA provides, in addition, displays and aids to 
the interpretation that are specific to the structure of groups of variables. 

Remark. The principal calculation of AFMULT researches eigen values of a 
symetrical matrix. Good algorithms are easy to find. AFMULT uses the House- 
holder method first and then the QL implicit method. 

2.2. Characteristics of the program 

AFMULT is written in FORTRAN. The PC version requires 512 K memory. 
Performing AFMULT requires a file which includes parameters introduced 

by keywords in free format. For example, NF = 5 means that the program will 
calculate 5 factors. 
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The data set must be a ASCII file. Each record represents an individual 
described by its name and its values for variables. Variables can be numerical or 
indicator variables. Rank orders of variables are independent of the structure of 
groups. 

The number of groups of variables have no theoretical limit. The practical 
limit only depends on the number of variables of the active groups (for the 
micro-computer adaptation, the limit is 150 active variables). 

2.3. Outputs 

The program supplies all the results previously described, that is, 
(a) classic results of PCA and MCA: 

- displays of the individuals, of the numerical variables, of categories, of 
categorical variables, 

- usual aids to the interpretation: quality of representation, contributions of 
lines and rows.. . 

(b) results that are specific to the multiway structure: 
- displays in which groups of variables are each represented by one point, 
- estimation of the parameters of the INDSCAL model, 
- the goodness of fit of the INDSCAL model from a global viewpoint, for each 

factor and each group, 
- the importance of the common factors in each group, 
- a simultaneous representation of the J clouds of individuals associated to 

each group, 
- aids to the interpretation, in order to evaluate the quality of the displays both 

from a global viewpoint and point by point. 

2.4. Availability of the program 

AFMULT is principally issued as part of the LADDAD package. The integra- 
tion of AFMULT inside the LADDAD package is due to M.O. Lebeaux. It is 
also possible to acquire the program separately. It is available from: ADDAD, 
22 rue Charcot, F75013 Paris. 

The cost of the whole LADDAD package is 18 000 FF and 4000 FF for 
AFMULT acquired separately. ADDAD allows universities special conditions. 

3. An example: Some red wines of Loire Valley 

3.1. Presentation of the example 

3.1.1. Introduction 
This example comes from C. Asselin and R. Morlat (INRA Angers, France) who 
study the influence of soil upon quality of wines in the Loire Valley. 
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wines i . . . . . . . . . . . . . . . . . . . . . . ..,..................... x(i.kk) 

Fig. 2. Data set. 

Initially, data were the following: 36 subjects judged 21 wines through a list of 
29 questions (= variables). The questions are characteristics of wines: the 
subject have to estimate the intensity of these characteristics by the way of a 
scale including 5 ordered modalities (null or very weak, weak, middle, strong, 
very strong) coded from 1 to 5. 

From these data, a matrix has been constructed (see Figure 2): for each wine 
and each variable, we computed the average of the intensities given by all the 
subjects. 

Furthermore, we added 2 variables which describe origin of the wines: 
‘appellation’ (the micro-region from which the wine comes from i.e. Saumur, 
Chinon, Bourgueil) and type of soil (reference, soil 2, soil 3, soil 4). One of the 
hypotheses of the agronomists is that the type of soil ‘reference’ provides the 
best wines. The 21 wines do not differ by other character than soil: they proceed 
from the same wine-plant and the same way of cultivation and wine-making. 

l<k<29 : sensory characteristics, 
x(i, kl : average of the intensities of the characteristic k, given by the 36 

subjects to the wine i, 
K= 30, 31 : origin (appellation, type of soil), 
x (i, k) : code of the category (of the variable k) to which the wine i 

belongs, 
remark : the wines named Tl and T2 are, in fact, the same wine 

proposed twice (Tl at the beginning of the test; T2 at the end 
of the test). 

3.1.2. List of sensory character-dim 
Wines characteristics are ordered according to the classic phases of tasting: 
these phases constitute groups of variables. 
- Group 1: olfaction at rest. 

Intensity of aroma, 
quality of aroma, 
fruit aroma, 
flower aroma, 
spice aroma. 

- Group 2: uision. 
Intensity, 
colour (from orange to purple), 
surface (legs and tears on the glass). 
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- Group 3: olfaction after agitation. (direct way: the subject smell, the wine 
which is in the glass: retronasal way: the subject smells the wine which is in 
his mouth.) 
Intensity of aroma (direct way), 
quality of aroma (direct way), 
fruit aroma, 
flower aroma, 
spice aroma, 
vegetal aroma, 
phenol aroma, 
intensity of aroma (retronasal way), 
persistence of aroma, 
quality of aroma (retronasal way). 

- Group 4: gustation. 
First intensity, 
acidity, 
astringency, 
alcohol (burning sensation), 
balance (between acidity, astringency and alcohol), 
velvety, 
bitterness, 
intensity (after some instants), 
harmony. 

- Group 5: general judgement. 
Global quality, 
typicalness. 

- Group 6: origin of wines. (Composed by two categorical variables.) 
appellation 
type of soil. 

3. I. 3. Problem 
- Setting up a typology of wines based upon the whole testing process (without 

general judgement). In this typology, the influence of each of the 4 first sets 
of variables have to be balanced. 

- Setting up common factors. What is common between the 4 ways of apprecia- 
tion (olfaction at rest, vision, olfaction after agitation, gustation)? 

- Comparison of factors issued of the separated analysis of each group of 
variables. 

- Global comparison of groups. What are the groups of variables which give a 
similar typology of the wines? 

- Comparison of typologies of wines provided by each group. If two wines are 
similar from one point of view (e.g. vision), are they similar from the other 
points of view (olfaction, gustation)? 
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Table 1 
Eigen values of factor analysis applied to each group 

axis 1 

eigen 
value 

eigen 
value 
(percent) 

axis 2 

eigen 
value 
(percent) 

cumulated 
percent 

axis 3 

eigen 
value 
(percent) 

cumulated 
percent 

l-olfaction 
at rest 2.24 44.8 30.3 75.2 16.3 91.5 

2-vision 2.83 94.5 5.0 99.5 0.5 100.0 
3-olfaction 

after 
agitation 4.70 47.0 24.8 71.8 10.5 82.3 

4-gustation 5.64 62.7 19.9 82.6 7.5 90.1 
6-general 

judgement 1.85 92.5 7.5 100.0 
6-origin 1.45 29.0 25.6 54.6 20.0 74.6 

3.2. Comments about the output 

AFMULT was applied to the whole set of data: groups 5 and 6 were introduced 
as supplementary elements: they do not contribute to the construction of axes. 

The printout of AFMULT is voluminous, and cannot be reproduced in this 
text. We extract main results about each theme and show how these results take 
place in an interpretation. 

3.2.1. Eigen valus of separate analyses (cjI Sections 1.4 and 2.1) 
AFMULT begins with a separate factor analysis of each group. In the case of 
numerical variables (group 1 to 5), this analysis is PCA; in the case of categorical 
variables (group 61, this analysis is MCA. 

Eigen values of separate analysis (Table 1) induce several comments. 
Groups 1 and 5 are quite unidimensional. The others sensory groups have two 

(group 4) or three (group 1 and 3) important dimensions. 
Group 6 is particular, since it is composed of two categorical variables. If the 

design of experiments would be perfect, variables ‘appellation’ and ‘type of soil’ 
would be independant; thus, MCA applied to this two variables would provide 5 
equal eigen values. It is not the case here and the different types of soil are not 
equally distributed in each appellation. In fact this dependence is mainly due to 
the wine twice proposed (noted Tl and T2), which is the only wine belonging to 
the type of soil 4. 

In the overall analysis, each group is weighted with the inverse of the first 
eigen value of its separate analysis (cf. Section 1.4.3). One meaning of this 
weighting is that the first principal components of each group have an equal a 
priori influence in the overall analysis (MFA can be viewed as working with 
variables or with principal components (p.c.) of separate analysis). 
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Table 2 
Eigen values associated to the 3 first axis of MFA 

axis 1 axis 2 axis 3 

eigen value 3.46 1.37 0.62 
percentage 49.4 19.5 8.8 

Remarks about weighting. The strongest first eigen values belong to groups 3 
and 4 which contain the greatest numbers of variables. Without weighting, the 
first p.c. of these groups would dominate overall analysis, that is opposed to 
objectives. 

It should be noted that weighting the groups with the inverses of the number 
of variables (the number of variables of group j is equal to the global inertia of 
this group since variables are centred and reduced) is not suitable: in such a 
case, the first p.c. of group 2 would dominate the global analysis. 

3.2.2. Eigen values of global analysis 
The eigen value associated to an axis can be interpreted as a measure of 
relationship between this axis and all the groups (Section 1.6.2). 

The first eigen value is 3.46 (the possible maximum is equal to 4, number of 
groups): at least the first axis is strongly related to all the groups (see table 2). 

Considering percentages of inertia, we restrict this methodological presenta- 
tion to the two first axes. 

3.2.3. Canonical correlation coefficients 
The canonical correlation coefficient between axis s and group j indicates 
whether the structure defined by axis s may be induced by variables of group j 
(cf. Section 1.6.2.). 

Axis 1 may be considered as a factor common to the four groups; axis 2 may 
be considered as a factor common only to three groups (see Table 3). 

Axis 3 is common to groups 1 and 3. These coefficients prove its interest 
which was not perceived through eigen values. However it will not be com- 
mented here. 

This result is essential: it shows that there are structures common to the 
groups (if it is not the case, it is not useful to study these groups simultaneously). 

Table 3 
Canonical correlation coefficients between active groups and the 3 first factors 

groups 

olfaction at rest 
vision 
olfaction after agitation 
gustation 

axis1 axis2 axis 3 

0.89 0.96 0.89 
0.93 0.22 0.16 
0.97 0.89 0.90 
0.95 0.87 0.30 
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Table 4 
Inertia of the variables of each group along the two first factors of MFA (maximum = 1; cf. 
Section 1.4.3) 

olfaction at rest 
vision 
olfaction after agitation 
gustation 
2 ( = eigen value) 

global judgement 
origin 

axis 1 axis 2 

0.78 0.62 
0.85 0.04 
0.92 0.47 
0.90 0.24 
3.46 1.37 

0.62 0.25 
0.30 0.64 

3.2.4. Relationship measure between axis and groups 
The inertia of variables belonging to the same group j, projected onto axis s, 
can be interpreted as a relationship measure between group j and axis s (see 
Table 4). This measure completes the canonical correlation coefficients: it 
indicates whether structure induced by axis s corresponds, or not, to a high 
inertia dimension of the group j (cf. Section 1.6.2.). 

The first axis is highly related to the four active groups. The structure 
expressed by this axis, is not only present in the four groups (high canonical 
correlation coefficients) but, in addition, corresponds to an important structure 
of each group. 

The relatively strong relationship between ‘origin’ and axis 2 suggests that 
categories responsible of the dependence between ‘appellation’ and ‘type of soil’ 
are pointed out by this axis (cf. Section 3.2.1.). 

3.2.5. Contributions of individuals to axis 
The contribution of individual i to axis s, is the ratio between inertia (along axis 
s) of individual i and inertia associated to axis s. 

As in any factor analysis, contributions indicate if an axis is only due to some 
individuals or expresses a global structure. 

Two wines have a high contribution to the first axis: 32.8% + 26.4% = 59.2%. 
But taking into account the two first eigen values, the suppression of these two 
elements does not modify the rank order of this direction. This axis can be 
viewed as a global structure. 

Two wines have a high contribution to the second axis: 39.3% + 29.7% = 69%. 
The suppression of these two elements can modify the rank order of this 
direction. Moreover, these two points correspond to the same wine, proposed 
twice to judges (Tl and T2). The interpretation of this axis must be seen as the 
particular case of one wine. 

3.2.6. Variables display 
As in PCA, the coordinate of variable k with respect to axis s is the correlation 
coefficient between variable k and axis s. 
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Fig. 3. Graphical display of variables in the principal plane of MFA. 

As shown in Figure 3, variables which are highly correlated to axis 1 are: 
Olfaction at rest : quality of aroma, fruit aroma, 
Vision : surface (legs and tears), intensity, colour (purple), 
Olfaction after agitation : persistence of aroma, intensity of aroma (retro - 

nasal way), quality of aroma (direct and retronasal 
way), 

Gustation : intensity after some instants, harmony, first inten- 
sity, velvety, 

General judgment : global quality, typicalness. 
This first axis expresses concepts often involved in the words strength and 

harmony, which have positive connotations. Usually, these two words are not 
synonymous but, with regard to these wines, are related. 
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Fig. 4. Graphical display of wines in the principal plane of MFA. Each wine is represented by the 
first letter of its appellation (S = Saumur; B = Bourgueil; C = Chinon) followed by its type of soil 
(ref = reference; so2 = type of soil 2.. .). Four wines have also their name (lDAM, lPOY, Tl, 

T2). Besides, the centre of gravity of each category is displayed. 

Variables, the most correlated to the second axis, are: 
Olfaction at rest : spice aroma, intensity of aroma, 
Olfaction after agitation : spice aroma, vegetal aroma, intensity of aroma, 
Gustation : bitterness. 

This second axis is mainly due to one wine (twice proposed) which has a 
olfactive characteristic associated to words ‘vegetal’ or ‘spice’. It must be noted 
that the aromas ‘underwood’, ‘mushroom’, were spontaneously written on 
questionnaires concerning this wine. These data confirm the interpretation of 
this axis as an olfactive peculiarity. 

3.2.7. Display of individuals and categories 
The individuals display given by AFM, can be interpreted as those of PCA. 

Thus, as it is shown figure 4, wine 1 DAM was considered as the strongest 
and the most harmonious one. At the opposite, wines Cmi3 et Bmi2, having the 
highest coordinates, were perceived neither strong nor harmonious. 

A category of a categorical variable is represented by means of the centre of 
gravity of individuals which possess this category. 

The categories ‘Saumur ‘, ‘Chinon’ and ‘Bourgueil’ are near the origin of axis: 
appellation is not related to the main factors of variability of these wines. 
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Fig. 5. Superposed display of the wines 1DAM and lPOY, defined with respect to each of the 
four active groups of variables and the whole set of variables as well. lDAM, IPOY: wines 
perceived with respect to the whole set of variables; lDA1, 1POl: wines perceivedc with respect 

to the variables of group 1. 

The category ‘reference soil’, is far with respect to axis 1: this type of soil 
a priori, the best agronomical potential. This hypothesis is confirmed by 
place of this point. 

has 
the 

Remark. In MFA, numerical and categorical variables can be introduced simul- 
taneously as active ones. This possibility is not used here. 

3.2.8. Superposed display (cc Section 1.7) 
To each group j corresponds a representation of individuals noted Nf’. MFA 
provides a display of each Nf’ (for active groups only), superposed upon the 
previous individuals display. In this representation each wine appears by means 
of five poins: one point for each active group and one point from the previous 
display (Figure 4); these last points are confounded with the centre of gravity of 
the four first ones. 

Table 5 
Some values from the variables belonging to the group olfaction at rest, which are the most 
related to axis 1 

maximum 
1DAM 
1 POY 
mean 

Quality of aroma 

3.429 
3.429 
3.107 
3.046 

Fruit aroma 

3.154 
3.154 
2.731 
2.714 
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Table 6 
Some values from the variables belonging to the group gustation, the most related to axis 1 

maximum 
1 POY 
1DAM 
mean 

Velvety First intensity Harmony 

3.286 3.676 3.786 
3.231 3.667 3.786 
3.036 3.643 3.643 
2.674 3.166 3.148 

Figure 5 is extracted from the superposed display. For simpleness, it is limited 
to two wines: 1 DAM and 1 POY (the strongest and the most harmonious ones). 

Figure 5 suggests interpretations as the following: 
- From the point of view of olfaction at rest, wine 1 DAM has been perceived 

as the strongest and the harmonious one, and wine 1 POY has been perceived 
as mean. 

- On the other hand, from the point of view of gustation, 1 POY has been 
perceived as the strongest and the most harmonious one. But the difference 
between 1 POY and 1 DAM is smaller than before. 
This information can be corroborated directly from data (Tables 5 and 6). 

3.2.9. Global display of groups (ct Section 1.8) 

In this output (Figure 6), each group is represented by one point. Two kind of 
interpretations can be made. 

A: aid to the interpretation of the global PCA. The coordinate of the group j 
with respect to axis s is the inertia of the variables of the group j along axis S. 

According to this point of view, this display gives an illustration of Table 4. 
Thus the high coordinate of the four active groups with respect to the first 

factor (strength and harmony) shows that this factor corresponds to an impor- 
tant direction of each group of variables. 

The position of group 6 on axis 1 shows that origin of wines is weakly related 
to this factor. 

The second factor is mainly due to olfaction (groups 1 and 3) and weakly to 
gustation. It is related to origin of wines (let us recall that the wine noted Tl or 
T2 is the only one which posseses category ‘type of soil: 4’). 

6. 1. j 

3. , 

5. 4. : 

Fig. 6. Graphical display of groups in the principal plane of MFA. 
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Fig. 7. Graphical display of the two first principal components of each group, in the principal 
plane of MFA (GlF2 = second component of group 1). 

B: optimum display of groups. Figure 6 can be viewed as an orthogonal 
projection of the cloud of groups. In this cloud, two groups are close to one 
another if they induce the same structure upon individuals. 

Group 6 is far from the others: origin of wines is weakly related to their main 
sensory characteristics. 

The closest groups are olfaction after agitation and gustation; these charac- 
ters are evaluated quite at the same moment, especially characters of retronasal 
olfaction and gustation are perceived simultaneously. 

This display is precious when groups are numerous. 

3.2.10. Display of principal components of each groups (cc Section 2.1) 
AFMULT considers the principal components of each group as supplementary 
variables. 

Figure 7 shows the representation of these components upon the two first axis 
of MFA. This display can be superposed onto Figure 3. 

The first principal component of each group is highly correlated with the first 
factor of MFA. We already saw (cf. Section 3.2.4) that the four groups have a 
common direction associated with an important inertia; we see now that this 
common factor is, for the four groups, close to the direction associated with the 
most important inertia. 

The second factor of MFA is highly correlated with the second principal 
component of groups 1, 3 and 4. 

We already saw that this factor was common to these three groups; this new 
results gives information about the importance of this factor in each group. 

3.3. Conclusion 

There is a structure common to the four groups of variables. This structure 
opposes wines strong and harmonious from the four points of view to wines 
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neither strong nor harmonious. This common structure is also the main struc- 
ture inside each group. 

An other structure is common to three groups: the peculiar case of the wine 
noted Tl or T2 which presents a bad aroma perceived during olfaction and 
gustation but which does not influence vision. 

Appellation is not related to these structures; the type of soil ‘reference’ 
characterized by the first structure, has the best potential. 

This exemple shows that the main interest of MFA is an overall approach 
which includes all the aspects of the study of several groups of variables. 
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