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Abstract

A proof is given that a recently introduced univariate presentation of a multivariate calibration model is exact, i.e., there
Ž .are no approximations involved. The proof is based on: 1 previously proposed definitions of multivariate net analyte signal

Ž . Ž .and multivariate calibration factors sensitivity in classical model and inverse sensitivity in inverse model and 2 the geo-
metrical property of the true regression vector in inverse multivariate calibration that it must be proportional to the true mul-
tivariate net analyte signal vector of a particular sample. The extension of the proof to multiway calibration is briefly dis-

Ž .cussed. A practical example from near-infrared NIR spectroscopy is used to illustrate that the proposed univariate presenta-
tion may give more meaning to the term ‘spectral overlap’. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In general, univariate calibration is much better
understood than multivariate calibration. One of the
main reasons for this situation may well be the fact
that univariate data can be presented in an intuitively
appealing scatter plot of analyte concentration vs. net
analyte signal. For example, the most suitable exper-
imental design for the calibration set is easily ex-

w xplained from such a plot 1 . In addition, the different
Žcontributions to prediction intervals concentration

.and signal error can be clearly distinguished this
way. In the classical model, net analyte signal is ex-

) Department of Veterinary Anatomy and Physiology, Utrecht
University, PO Box 80157, 3508TD Utrecht, Netherlands. E-mail:
m.faber@vet.uu.nl

pressed as a function of analyte concentration. The
slope of the calibration graph is identified as the sen-
sitiÕity of the analytical determination; a high sensi-
tivity is desirable since it leads to a small amount of
signal error propagation. In the inÕerse model, ana-
lyte concentration is expressed as a function of net
analyte signal. Now the slope of the calibration graph
is identified as the inÕerse sensitiÕity and, in con-
trast, a low inverse sensitivity is desired for the same
reason.

It should be clear that the understanding of multi-
variate calibration methodology can be improved by
a suitable generalisation of the concepts that have
demonstrated their utility in the univariate context.

w x Ž .Lorber 2 has defined the multivariate net analyte
signal Õector as the part of the gross signal vector that
is useful for calibration. From this definition, it fol-
lows that the net analyte signal vector must be or-
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thogonal to the signal vectors of the interferences.
w xLorber 2 has further proposed to calculate the ana-

logue of the univariate net analyte signal, which is a
scalar, as the Euclidean norm of the multivariate net
analyte signal vector. This procedure leads to the
multivariate scalar net analyte signal. 1

Recently, a framework has been developed of an-
alytical figures of merit for multilinear data that is
based on Lorber’s definition of scalar net analyte

w xsignal 3 . This framework incorporates multivariate
data as a special case. In particular, it is proposed to

Žpresent multivariate models and models obtained for
.data of higher complexity as a univariate calibration

graph of analyte concentration vs. scalar net analyte
signal. Such a presentation for the training and pre-
diction samples should be more informative than the

Ž .usual plot of known ‘lab value’ vs. fitted or pre-
dicted analyte concentration, since the amount of
spectral error propagation is visualised. Spectral er-
ror propagation is a key issue when, for example, se-
lecting a proper pre-treatment method. The proposed
‘pseudo-univariate’ calibration graphs have proved to

Ž .be insightful in this respect for a near-infrared NIR
w xapplication 4 . However, no rigorous proof is given

w xin Ref. 3 to show that this univariate presentation is
exact, i.e., no approximations are involved. Such a
proof is relevant, since the validity of this claim is not
self-evident. This paper aims to show that only defi-
nitions and a fundamental geometrical property are
involved, hence the claim is valid. The utility of the
proposed univariate presentation is illustrated on the
NIR spectroscopic prediction of the oxygenates

Ž .methyl-tert-butyl ether MTBE and ethanol in stan-
dard reference material gasoline.

2. Theory

In the current presentation, the data follow Beer–
ŽLambert’s law for spectroscopy linear and additive

.signal . As correctly noted by one of the reviewers,
this may help in understanding what is going on, but
it is not really needed for the concepts proven in the

1 In the literature confusing terminology can be encountered.
Ž .Often the term multivariate net analyte signal is used to denote

the vector as well as its norm.

paper. Indeed, since the development is purely alge-
braic, the concepts can be applied to regression mod-
els in general.

2.1. UniÕariate calibration

To prove that the proposed univariate presentation
of a multivariate model is exact, it is convenient to
first consider the univariate zero-intercept inverse

Žcalibration model a complication due to mean cen-
.tring will be discussed later . Under this model, the

analyte concentration, c, and the net analyte signal,
rU , are related for a particular sample as

csbrU q´ 1Ž .
Žwhere b denotes the ‘inverse sensitivity’ the calibra-

.tion factor and ´ is a residual. The net analyte sig-
nal is obtained by correcting the gross signal, r, for
the background contribution, d, as rU sryd. It is
seen that analyte concentration is the predictand while
net analyte signal is the predictor. Under the classical
model, the roles of net analyte signal and analyte
concentration are reversed, which is consistent with
the causal relationship between these variables, i.e.,

rU sscq´ 2Ž .
Žwhere s denotes the sensitivity the calibration fac-

.tor . The relationship between the two modes of cali-
bration is summarised by the identity

bs1rs 3Ž .
It is emphasised that this expression holds for the

true quantities, not for specific estimates. Estimates
are arbitrary in the sense that they depend on the noise
in the data as well as the estimation procedure.

2.2. MultiÕariate calibration

Under the multivariate zero-intercept inverse cali-
bration model, the analyte concentration is given by

csbTrq´ 4Ž .
where b is the regression vector, r is the instrument
response vector and the superscript ‘T’ symbolises
vector transposition.

Ž .It is important to note that Eq. 3 is also valid for
multivariate models if the corresponding calibration
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Ž .factors sensitivity and inverse sensitivity are con-
w xsistently defined 5 . Thus, a rigorous proof, which

covers both modes of calibration, should demonstrate
Ž . Ž .that Eq. 4 can be brought in the form of Eq. 1

without approximation.
The required proof proceeds as follows. The in-

strument response vector is expanded in two orthog-
onal terms as

rsrU qr H 5Ž .
where rU denotes the net analyte signal vector and
r H is the vector orthogonal to the net analyte signal

Žvector it lies in the space spanned by the spectra of
.the interferences . The true regression vector should

not pick up a signal contribution of the interferences,
hence, it should be orthogonal to the space spanned
by the interferences’ signal vectors. It follows that the
regression vector is proportional to the net analyte
signal vector; for more details about this proportion-

w x 2 Ž .ality, see Ref. 6 . Using this property, Eq. 4 is
worked out as

csbT rU qr H q´sbTrU q´ 6Ž . Ž .
The inner product on the far right-hand side of Eq.
Ž .6 is simplified by using the geometrical property
that the regression vector is a scalar multiple of the
net analyte signal vector, hence

T U 5 5 5 U 5 U 5 5 5 U 5b r s b P r cos b ,r s b P r 7Ž . Ž .
5 5 Ž U .where P denotes the Euclidean norm and cos b,r

is the cosine of the angle between b and rU. The last
Ž .step in Eq. 7 follows from the observation that for

a zero-intercept model the scalar multiplier is strictly
positive, since analyte concentration is strictly posi-

Ž U .tive, hence, the angle must be 08 and cos b,r s1
Ž Ž .for general vectors, Eq. 7 can be used to derive the

w x.well known Schwarz inequality 9 .

2 As an aside, it is noted that this proportionality implies that the
wavelength selection procedures introduced by Xu and Schechter
w x w x7 and Spiegelman et al. 8 are strongly related. In both methods,
wavelengths are ranked according to the size of wavelength-
specific signal-to-noise ratios. While Xu and Schechter calculate
these ratios from the net analyte signal vector, Spiegelman et al.
use the regression vector instead. Clearly, owing to the constant
proportionality, the ranking should be identical if these vectors are
consistently estimated.

The multivariate inverse sensitivity and the scalar
w xnet analyte signal are defined as 2,3,5

5 5bs b 8aŽ .
U 5 U 5r s r 8bŽ .

Ž . Ž .and it is easily verified by combining Eqs. 6 , 7 ,
Ž . Ž . Ž . Ž .8a and 8b that Eq. 4 takes the form of Eq. 1 ,
which completes the proof.

If mean centring is applied, deviations from the
mean analyte concentration are modelled, hence the
angle between b and rU must be 08 for analyte con-
centrations larger than the mean and 1808 for analyte
concentrations smaller than the mean. In the latter

Ž .case, the far right-hand side of Eq. 7 obtains a mi-
nus sign and it follows that for a mean-centred model,
a univariate calibration graph is obtained, which is

Žshifted with respect to a zero-intercept model the
.mean is the origin . However, it is customary to re-

port absolute values for analyte concentration rather
than deviations from the mean. The common univari-
ate calibration graph with zero as the origin is ob-
tained by simply adding in the means for analyte
concentration and net analyte signal. For more de-

w xtails, see Ref. 10 .

2.3. Multiway calibration

w xThe framework developed in Ref. 3 includes data
types of higher complexity than vectors, i.e., matri-
ces, ‘cubes’, etc. The proof is easily extended to
multiway calibration by recognising that a multiway
array can be converted into a vector without loss of
information: the special structure of the multiway ar-
ray is reflected in a suitable structure for the result-
ing vectors. For example, for multilinear data, the
‘overall’ regression vector can be expressed as the
Ž .multiple Kronecker product of the regression vec-

Žtors associated with the individual modes see Table
w x. Ž2 in Ref. 3 . For general multiway models i.e., less

.restrictive than multilinear models , similar results
have not yet been reported to the author’s best
knowledge. The inverse sensitivity follows by apply-

Ž .ing Eq. 8a to the ‘overall’ regression vector, and
Ž .inserting the result in Eq. 3 yields the sensitivity.

These numbers can be used to construct a univariate
w xcalibration graph, see Ref. 11 for an example of a

univariate presentation of a bilinear model.
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The characterisation of multiway models in terms
of analytical figures of merit such as sensitivity can
lead to additional insight. This becomes clear from
close examination of the following example taken

w xfrom the literature. Bro 12 gives plots of regression
matrices obtained by tri-PLS and unfold-PLS for flu-

Ž . Žorescence excitation emission matrix EEM data see
Ž . Ž ..Fig. 7 ii and iii . It can be inferred from these plots

that the regression matrix obtained for the unfolded
w xdata has a larger variance. Bro 12 correctly at-

tributes the increased variance to the larger number of
fitted parameters, which is equivalent to a smaller
number of degrees of freedom. However, another as-

w xpect of unfolding, which is not discussed in Ref. 12 ,
is the decrease of the norm of the regression matrix

Žby approximately a factor of two. It will be proved
elsewhere that, unless analyte and interferences do
not overlap in both modes, the norm of the regres-

.sion matrix decreases upon unfolding. Applying Eq.
Ž . Ž . Ž .8a to the regression matrices of Fig. 7 ii and iii
leads to the interpretation that the inverse sensitivity

Ž .has decreased, hence, according to Eq. 3 , the sensi-
tivity has increased. It follows that unfolding is a

Žtrade-off process where a higher sensitivity favoura-
.ble effect on expected prediction error is obtained at

the cost of increased variance in the model parame-
Žters unfavourable effect on expected prediction er-

.ror . Thus, depending on the specific application at
Žhand, unfolding will either be beneficial or not for

this example, unfolding leads to inferior prediction
w x.results, see Ref. 12 .

3. Experimental

Full details on the NIR data are presented else-
w xwhere 13–15 . Calibration and test sets consist of 40

samples each. Calibration models are constructed us-
Ž .ing partial least squares PLS . All calculations are

based on 391 absorbance values evenly spaced in
wavenumber space between 6000 and 9000 cmy1.

Ž . Ž . Ž .Fig. 1. NIR spectra of ethanol — , MTBE — — and RF-A gasoline - - - .



( )N.M. FaberrChemometrics and Intelligent Laboratory Systems 50 2000 107–114 111

4. Results and discussion

In this paper, focus is on quantifying spectral
overlap. A detailed discussion of the consequences of
spectral overlap for uncertainty in predictions is given

Ž w xelsewhere and will not be repeated see Ref. 14 and
.references therein .

The signals of neat MTBE and the industry-aver-
Ž .age gasoline ‘RF-A’ used to prepare the mixtures

are severely overlapped over the entire spectral re-
gion while ethanol exhibits a broad characteristic ab-
sorption band between 7000 and 6000 cmy1 due to

Ž .hydrogen-bonded O–H stretch Fig. 1 . Conse-
quently, the hydrogen-bonded O–H stretch gives rise
to the main difference between spectra of mixtures of

Ž .ethanol and RF-A Fig. 2 . Spectral overlap between
two components can be conveniently quantified us-
ing the inner product or linear correlation coefficient
Ž .Table 1 . If the spectra are normalised to unit length

Žthese quantities range between 0 and 1 all ab-
.sorbances are positive, see Fig. 1 . As expected, these

quantities are rather large for the overlap between

MTBE and RFA but only moderate for the overlap
between ethanol and MTBE and RFA. However, it is
well known that small two-component overlaps do
not preclude a large multicomponent overlap, which

Ž .is unsatisfactory. Eq. 6 shows that prediction is en-
tirely based on the net analyte signal vector. Thus, the
net analyte signal vector seems to be a useful basis
for the definition of multicomponent overlap. The net

Žanalyte signal for ethanol is surprisingly small Fig.
.3 . A qualitative interpretation of this vector is diffi-

cult owing to the orthogonality constraints. For ex-
ample, negative regions indicate wavelengths where
the contribution of the interferences is large.
Ž w xSeasholtz and Kowalski 16 have discussed the lim-
ited interpretability of the regression vector and their
arguments carry through as a result of the propor-

.tionality. Taking the Euclidean norm of the net ana-
lyte signal vector leads to the proposed univariate

Ž .calibration graph Fig. 4 . The slope in Fig. 4 is the
Žmultivariate sensitivity 0.048 absorbance units

Ž . .AU r% oxygen mass fraction . It is noted that the
univariate plot is presented as a classical model while

Ž . ŽFig. 2. NIR spectra of ethanol EtOH in RF-A gasoline at the 5.8% and 10.1% oxygenate weight levels 1.99% and 3.5% oxygen mass
.fraction .
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Table 1
Ž .Inner products left lower corner and linear correlation coeffi-

Ž .cients right upper corner for normalised spectra of ethanol,
MTBE and RF-A gasoline

Compound Ethanol MTBE RF-A gasoline

Ethanol 1 0.38 0.41
MTBE 0.57 1 0.88
RF-A gasoline 0.60 0.92 1

it is based on a multivariate inÕerse calibration model
Ž .eight-dimensional PLS . The reason for doing so is
that it facilitates a comparison with Fig. 2. It is seen
that the spectra displayed in Fig. 2 differ by approxi-
mately 0.2 AU over a range that contains more than

Ž .50 absorbance values, while the difference in scalar
net analyte signal is only approximately 0.1 AU. This
finding implies that Fig. 2 is misleading in the sense
that it suggests that the region between 7000 and 6000
cmy1 is rather unique for ethanol. The uniqueness of

a spectrum is conveniently measured in terms of
w xLorber’s selectivity 2 ,

U 5 U 5 5 5j sr rr s r r r 9Ž .k k k k k

where k denotes the analyte of interest, rU denotesk

the net analyte signal vector, and r is the analytek

contribution to the instrument response vector r. It
turns out that the selectivity of ethanol is only 0.068,
i.e., 93.2% of the spectrum displayed in Fig. 1 is lost
due to overlap with the interferences’ spectra. Fortu-
nately, the standard deviation of the spectral noise is

Ž y4 .small approximately 10 AU ; a detailed analysis of
sources of error variance shows that its effect on pre-

Ž . Ždiction is almost negligible compare columns four
w x.and six in Table 3 in Ref. 14 . From Fig. 2, one

might infer that a standard deviation of 10y3 AU
would still be negligible, which is incorrect. This is
easily verified by multiplying the numbers in column

w xsix of Table 3 in Ref. 14 by a factor 100: the spec-
tral noise would overwhelm the other sources of er-
ror variance. The advantage of a plot such as Fig. 4

Ž . Ž .Fig. 3. Comparison of NIR spectrum of ethanol — and net analyte signal at unit concentration — — . The net analyte signal is multiplied
by a factor 100 for visual clarity.
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Ž .Fig. 4. Univariate presentation of multivariate model for ethanol EtOH .

is that the contribution of spectral noise to prediction
Ž w xerror can be visualised see Fig. 6 in Ref. 4 for a

.practical example .

5. Conclusions and outlook

It has been shown that the univariate presentation
of a multivariate model may lead to useful insight re-
garding the amount of the data that effectively enters
the model. In this sense, more meaning is given to the

w xterm ‘spectral overlap’. Otto and Wegscheider 17
have listed practical selectivities based on the condi-
tion number for atomic and molecular spectroscopy,

w xand for electroanalytical methods. Lorber 2 has ex-
plained that selectivities based on the condition num-
ber are of limited utility because a characterisation of
individual analytes is not possible. However, contin-
uing the work of Otto and Wegscheider by listing

Žpractical selectivities and other analytical figures of
.merit based on Lorber’s definitions may, among

others, facilitate method selection in the future.
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