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Abstract

While a multitude of expressions has been proposed for calculating sample-specific standard errors of prediction when using

partial least squares (PLS) regression for the calibration of first-order data, potential generalisations to multiway data are lacking

to date. We have examined the adequacy of two approximate expressions when using unfold- or tri-PLS for the calibration of

second-order data. The first expression is derived under the assumption that the errors in the predictor variables are

homoscedastic, i.e., of constant variance. In contrast, the second expression is designed to also work in the heteroscedastic case.

The adequacy of the approximations is tested using extensive Monte Carlo simulations while the practical utility is

demonstrated in Part 2 of this series. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Applications of multiway data analysis are rapidly

increasing. This development has prompted research-

ers to develop methods for exploiting the full infor-

mation content of these intrinsically rich data

structures. In a seminal paper, Wold et al. [1] gener-

alised standard (i.e., linear) partial least squares (PLS)

to the calibration of multiway data. Their method is

known as unfold-PLS, because it amounts to unfold-

ing or matricising the I� J1� J2� . . .� JN stack of

predictor arrays, X, to obtain an I� J1J2. . .JN matrix

X. This matrix is subsequently modelled using stand-

ard PLS in terms of I� 1 score vectors ta (a = 1,. . .,A)

and J1J2. . .JN� 1 weight vectors wa (a = 1,. . .,A).
Bro [2] introduced multilinear PLS as a powerful

alternative to unfold-PLS. Multilinear PLS derives

its name from the fact that it models X in terms

of I� 1 score vectors ta (a = 1,. . .,A) and Jn� 1

(n = 1,. . .,N ) weight vectors wa
n (a= 1,. . .,A). Stated

differently, multilinear PLS is a genuine Nth-order

approach, because weights are calculated for each

individual mode (n = 1,. . .,N ), whereas unfold-PLS

amounts to a pseudo first-order one. Depending on the

particular number of modes of X, multilinear PLS is

called tri-PLS (N + 1 = 3), quadri-PLS (N + 1 = 4), etc.

For a variety of applications, an improvement over the

unfold-PLS results could be reported [2–4], while

Smilde [5] and De Jong [6] detailed theoretical

advances with respect to multilinear PLS.

From a practical point of view, it is desirable to

have a quantitative measure for the uncertainty in
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predictions obtained when applying a multiway cali-

bration model. The subject of sample-specific stand-

ard errors of prediction has attracted considerable

attention in the first-order case and a multitude of

expressions has been proposed for standard PLS [7–

20]. In contrast, potential generalisations to multiway

data have not been reported to the best of our knowl-

edge. Here it is proposed to build on an expression

that has been derived for standard PLS [12]. This

particular expression, which results from applying an

additional approximation to the so-called local line-

arisation of the PLS regression vector, is attractive in

the sense that it accounts for all sources of (random)

error variance in the predictor and predictand varia-

bles. Its adequacy has been thoroughly tested using

Monte Carlo simulations [19]. It is reasonable to

expect this expression to work to the same extent

when using unfold-PLS, because the intrinsic struc-

ture of the multiway array is lost owing to the

unfolding operation. A drawback of this approach is

that the original expression is derived under the

assumption that the errors in the predictor variables

have constant variance (the homoscedastic case). Its

application is further restricted because estimates are

required of the error variances for both predictor and

predictand variables. To overcome part of these

limitations, a second expression is derived. This

expression is designed to also work in the hetero-

scedastic case and its application only requires an

estimate of the variance of the measurement error in

the predictand. We conjecture that both expressions

are valid using multilinear PLS.

The adequacy of the proposed expressions is

verified using simulated X’s that follow the trilinear

model (i.e., PARAFAC structure) while in Part 2 of

this series [21] we will test the practical utility on

experimental excitation emission matrix (EEM) data.

The reason for focussing on the calibration of second-

order predictor arrays is that data of higher order still

form the exception. The particular choice for trilinear

X is motivated by the fact that many instruments

generate data that approximately follow this model

(see Ref. [22] and Table 2 in Ref. [23]). Moreover,

making this assumption about the true structure allows

one to discuss the PLS results with respect to the

calibration framework recently developed by Linder

and Sundberg [24,25]. Characteristic for this frame-

work is that it explicitly takes account of the bilinear

structure of the individual predictor arrays. Finally, the

trilinear assumption enables one to interpret the qual-

ity of the prediction results in terms of analytical

figures of merit [26–29]. The expressions underlying

these figures of merit reflect the trilinear structure of

the data too.

2. Theory

2.1. Preliminaries

Calibration can be performed in two modes,

namely according to the classical or the inverse

model formulation, respectively. In applied work,

the inverse model is often preferred over the classical

model, because it is more flexible. Thus, in the

remainder of this paper focus will be on the inverse

calibration model. For convenience, and also because

many applications follow this description, it is

assumed that the goal of calibration is to replace a

reference method by predicting the analyte concen-

tration in an unknown (chemical) sample from instru-

ment responses. Each analyte is modelled separately.

There are two reasons for considering this scenario.

First, modelling each analyte separately (i.e., PLS1)

is often favoured over constructing a single model for

all analytes (i.e., PLS2). Second, the proposed

expressions for sample-specific standard error of

prediction are based on an expression that has been

derived specifically for PLS1 [12]. In the remainder

of this paper, the acronym PLS stands for PLS1.

Finally, because focus is entirely on second-order

arrays, the general notation for the numbers of

variables, i.e., Jn (n= 1,. . .,2), is dropped in favour

of J and K. The two corresponding modes are

conveniently denoted as J-mode and K-mode, respec-

tively.

2.2. Model, prediction and prediction error

The inverse multiway calibration model for the

unknown sample is written as:

y ¼ xTb þ e ð1Þ

where y is the true analyte concentration, x and b are

the unfolded JK� 1 arrays with true instrument
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responses and regression coefficients, e is the residual,

and the superscripted ‘‘T’’ denotes transposition. It is

stressed that the model equation relates the true

quantities rather than the measured, estimated or pre-

dicted ones.

It is important to note that the term residual is often

used to denote the difference between the measured

and fitted or predicted data. The current terminology

is borrowed from the errors-in-variables literature (see

Van Huffel and Vandewalle [30] for an excellent

discussion of these models). Eq. (1) constitutes a so-

called general regression model with errors in the

variables, when x and y are observed with measure-

ment errors. This model corresponds to a non-zero

residual problem, because the true values for x and b
do not reproduce the true y. The residual e could, for

example, summarise a deviation from Beer–Lam-

bert’s law owing to turbidity of the sample solution; it

can be treated as a zero-mean random variable if a

suitable background correction has been applied.

(Beer–Lambert’s law states that an exact relationship

holds between the true concentration and absorbance.)

The residual is often confused with a measurement

error. A major difference between the two is that the

residual can only be made smaller by including

informative x-variables, whereas the measurement

error is only reduced by improving the measurement

itself (see Van Huffel and Vandewalle [30], p. 229).

The residual is also different from a model error. An

example of the latter arises when fitting a straight line

where a parabola would better describe the data.

Model errors can only be countered by changing to a

more appropriate model. Eq. (1) is general in the sense

that it covers numbers (univariate calibration) and

vectors (multivariate calibration) as special cases.

A prediction for the unknown sample is obtained

as:

ŷ ¼ x̃Tb̂ ð2Þ

where the ‘‘hat’’ (^) signifies prediction of a random

variable (e.g., y) or estimation of a parameter (e.g., b),
and the ‘‘tilde’’ (f ) indicates that the associated

quantity is measured (here the instrument responses

for the unknown sample).

The prediction error (PE) is defined as:

PE � ŷ� y: ð3Þ

In practice, the prediction error is unknowable

since y is unknown. However, using certain assump-

tions, one may derive an expression for determining

its expected size. The relevant statistics are mean

squared error of prediction (MSEP), prediction error

variance and prediction bias. MSEP is defined as:

MSEP � E½PE2	
¼ E½ðŷ� E½ ŷ 	Þ2	 þ ðE½ ŷ 	 � yÞ2

¼ varianceþ ðbiasÞ2 ð4Þ
where E[
] denotes expected value.

MSEP contains a variance and a bias contribution.

In the next sections we will focus on deriving approxi-

mate expressions for the standard error of prediction,

which is defined as the square root of the prediction

error variance. The handling of prediction bias is

integrated in these derivations.

2.3. General expression for standard error of pre-

diction

A general expression for standard error of predic-

tion is derived as follows. The PE is a non-linear

function of the input data, which are assumed to be

unbiased (all errors are considered to be zero mean

random variables). Every differentiable function can

be approximated using a Taylor series expansion.

Truncating this expansion after the linear term is

known as local linearisation (in statistics) or error

propagation (in chemistry). Such a first-order approx-

imation is useful, because it is relatively easy to derive

a variance expression for linear functions. This ap-

proach does not, however, account for bias. The

subject of prediction bias is taken up in Section 2.4.1.

Using local linearisation and neglecting the prod-

ucts of error terms, the prediction error is approxi-

mated as:

PE � ðxþDxÞTðb þDbÞ � xTb � e

� xTDb þ ðDxTÞb � e ð5Þ

where the prefix ‘‘D’’ signifies the error in the

associated quantity. Taking expectation of the squared

linear approximation of PE yields the approximate

prediction error variance as:

VPE � xTVDbxþ bTVDxb þ Ve ð6Þ
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where VDb=E[DbDbT] is the covariance matrix for

the regression coefficient estimates, VDx=E[DxDxT]

is the covariance matrix of the measurement errors in

the instrument responses, and Ve =E[e
2] is the var-

iance of the residual. The general expression for

standard error of prediction follows as:

rPE � ðVPEÞ1=2 � ðxTVDbxþ bTVDxb þ VeÞ1=2:
ð7Þ

It is seen that the (approximate) standard error of

prediction has two distinct contributions, namely the

model contribution from the calibration step, i.e.,

xTVDbx, and the unknown sample contribution from

the prediction step, i.e., bTVDxb +Ve. The first term

depends explicitly on the estimation method, whereas

the second term is, in principle, method-independent.

When it is evaluated, however, the true values for b
have to be replaced by their respective estimates so

that the practical value is method-dependent.

Because local linearisation amounts to a first-order

approximation of an uncertainty, it yields promising

results only if this uncertainty is small. In other words,

the parameter estimates and the measurements should

not be too noisy, otherwise the method breaks down

and higher-order approximations must be considered.

The latter is prohibitive for complicated estimation

methods such as PLS. The level of bias, e.g., of the

regression coefficients, on the other hand, is not

essential for the quality of the linearisation because

it is based on variances in which the bias does not

appear.

2.4. Specific expressions for standard error of pre-

diction

Eq. (7) is general in the sense that no assumption

has been made about the estimation method (or

number of analytes modelled simultaneously). We

now proceed by finding suitable expressions for

xTVDbx.

2.4.1. Homoscedastic errors in the predictors

For pseudo first-order calibration using unfold-PLS

one has several expressions at one’s disposal that have

been proposed for standard PLS [7–20]. Of special

distinction is the work of Phatak et al. [10] and

Denham [13] who performed local linearisation of

the PLS model to obtain expressions for VDb in the

case of negligible errors in the predictor variables.

This work has been extended by Faber and Kowalski

[14] to include errors in the predictor variables and to

principal component regression (PCR). Generally,

these expressions, which accommodate for heterosce-

dastic and correlated errors, are difficult to interpret.

Simply ignoring the most complicated terms and

assuming that all errors are independently and identi-

cally distributed (iid) yields the first specific expres-

sion for standard error of prediction as:

rPE � ½hðNbN2
VDx þ Ve þ VDyÞ

þ NbN2
VDx þ Ve	1=2 ð8Þ

where the scalar h is the unknown sample leverage

with respect to the origin, N
N denotes the Euclidean

norm, VDy=E[(Dy)2] is the variance of the measure-

ment error in the reference method (uncertainty in

y-values for the calibration set), and VDx is the iid

simplification of VDx. For zero-intercept models, the

leverage is calculated as h = tT(TTT)� 1t, where t is

the A� 1 unknown sample score vector, likewise the

rows of T (I�A) for the calibration set. Mean

centring is accounted for by adding 1/I. The different

terms in Eq. (8) correspond to similar parts in Eq. (7).

In the case of negligible predictor noise, ignoring

the most complicated terms has been labelled the

‘‘naive’’ approach by Denham [13]. To the best of

our knowledge, it was first proposed by Höskuldsson

[8]. A simple interpretation of the ‘‘naive’’ approach is

as follows. PLS regression can be thought of in two

stages. The first stage constructs a set of scores as a

linear transformation of the predictor variables. The

second stage relates the predictand to the scores using

ordinary least squares (OLS). The ‘‘naive’’ approach

essentially ignores the uncertainty in the scores. In

other words, the resulting expression for standard

error of prediction is identical to the well-known

OLS formula applied to the scores (see Eq. (9) in

Ref. [13]). The reasoning extends in straightforward

fashion to the case of non-negligible predictor noise

[14]. It is important to note that OLS assumes the

predictor matrix to be of full column rank. However,

for rank-deficient predictor matrices all results carry

through for the minimum length least squares (MLLS)

solution.
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It is reiterated that Eq. (8) is obtained by ignoring

the uncertainty in the scores. This implies that it can

be used in connection with any method that amounts

to regression onto a subspace generated by scores,

unfold-PCR being another example of the family.

(The only difference arises in the numerical values

inserted for h and b.) Covering a broad range of

methods can be seen as an intrinsic advantage of the

‘‘naive’’ approach. Formally, it amounts to a zeroth-

order approximation, because first-order terms are

discarded. It is important to note that these terms tend

to vanish if the model approaches the OLS or MLLS

limit [14]. Practically, this situation is indicated when

the model explains most of the systematic variance of

X, which is often the case when the predictor varia-

bles constitute spectroscopic measurements. Thus, the

practical significance of the additional approximation

may be quite small in many applications. To distin-

guish the expressions derived in Refs. [10,13,14] from

Eq. (8), they are referred to as the ‘‘full linearisation’’

results in the remainder of this paper.

The model contribution from the calibration step,

i.e., h(NbN2VDx +Ve +VDy), has a very simple inter-

pretation. The leverage quantifies the distance of the

unknown sample to the calibration samples in A-

dimensional space (A is the number of PLS factors).

A small leverage corresponds to positions sufficiently

close to the average calibration sample. Owing to this

closeness, the model is precisely estimated at these

positions and, consequently, the model contribution to

Eq. (8) is small. The converse holds for high-leverage

points. Extensive Monte Carlo simulations have

shown that Eq. (8) performs better than expressions

implemented in certain commercial software systems

[19]. Unfortunately, the practical utility of Eq. (8) is

limited because the iid assumption may not be real-

istic for the predictor variables. (The iid assumption is

believed to be realistic for the data studied by McCue

and Malinowski [31], but they designed an instrument

with specific properties.) Another drawback is that

estimates are required of the error variances for both

predictor and predictand variables [16].

Eq. (8) only accounts for variance, not for bias, cf.

Eq. (4). However, methods such as PLS derive much

of their popularity from the ability to trade off

variance against bias. By selecting fewer factors (A)

than the number of independently contributing ana-

lytes (M), a prediction bias is introduced. This bias–

variance trade-off is profitable if the increase of

squared prediction bias is more than offset by the

reduction of prediction variance. The importance of

incorporating non-negligible prediction bias in pre-

diction intervals has been recently discussed [15,18].

We have accounted for prediction bias as follows.

Höskuldsson presents a formula for estimating pre-

diction bias (see Eq. (8.24) on p. 248 in Ref. [32]).

The bias is simply calculated by summing the con-

tribution of the factors that are left out in the regres-

sion. This is done by estimating the full PLS model,

where all components are included. The estimated

bias is then the sum of the scores not used for

prediction weighted by their corresponding regression

coefficients. However, including the contribution of

the ‘‘noise factors’’ leads to a bias estimate with

relatively high uncertainty. Thus, we have modified

this formula by restricting the summation to the

factors that give a systematic contribution to the

predictor array. The motivation is that the pseudo-

rank of the predictor array (a single number) is an

upper bound for the number of factors required for

prediction (possibly different for individual analytes).

The resulting bias estimate is added to the result of

Eq. (8). This modification is generally applicable to

score-based methods (for PCR, the relevant prediction

bias formula is given by Næs and Martens [33]).

Finally, it is noted that this approach provides a

sample-specific root mean squared error of prediction

rather than a standard error of prediction. However, to

simplify the presentation, this distinction is not made

in the rest of the paper.

2.4.2. Heteroscedastic errors in the predictors

An expression that is designed to work in the

heteroscedastic predictor error case as well is derived

as follows. First, it is observed that, in the absence of

bias, the mean squared error of calibration (MSEC)

estimates NbN2VDx+Ve+VDy [34], so that Eq. (8) can

be rewritten as:

rPE � ½ð1þ hÞMSEC� VDy	1=2: ð9Þ

For zero-intercept models, the MSEC is obtained in

the usual way from the squared fit errors as:

MSEC ¼

XI

i¼1

ð ŷi � ỹiÞ2

I � A
ð10Þ
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where ŷi and ỹi denote the fitted and measured

reference value for the ith calibration sample, respec-

tively. A division by I�A, rather than I, is required to

account for loss of degrees of freedom (one for each

factor). For mean-centred models, the denominator in

Eq. (10) is I�A� 1 (the additional one is for the

model centre).

It is reiterated that MSEC estimates NbN2VDx +

Ve + VDy in the absence of bias. However, if the

calibration and prediction samples are exchangeable,

Eq. (9) implicitly accounts for prediction bias through

the incorporation of fit bias in MSEC. For a rigorous

underpinning of this property, see Eqs. (6) and (7) in

Denham [17]. (Although Denham assumes errorless

predictor variables, the argument holds more gener-

ally.) The study of Denham is concerned with select-

ing the number of PLS factors without resorting to an

independent test set. The latter is often referred to as

external validation. To achieve this goal twelve esti-

mators of mean squared error of prediction (MSEP)

are compared. Some afterthought shows that Eq.

(9) is intimately related to the estimator denoted

as MSEPrss1. For both examples considered by Den-

ham, the behaviour of MSEPrss1 did not reveal the

correct number of factors (see Tables 1 and 3 in Ref.

[17]). Consequently, MSEPrss1 should not be used to

select the optimum model dimensionality. However,

MSEPrss1 was close to the true MSEP for the correct

number of factors. These results lend credibility to

using Eq. (9) for calculating sample-specific standard

errors of prediction when the model dimensionality

has been selected using a dependable method. Den-

ham concluded that cross-validation and bootstrap-

ping methods are the best alternatives to external

validation.

It is seen that by substituting the expression for

MSEC, one effectively eliminates the error variances

that are associated with both model and unknown

sample term in Eq. (8). The measurement error in the

reference values only contributes to the model term.

As a result, VDy is the only measurement variance

present in Eq. (9). Although Eq. (9) is derived under

the iid assumption, we conjecture that it applies to

most types of heteroscedasticity (e.g., in spectro-

scopy). This conjecture is believed to be reasonable

if the measurement noise is the same during the

calibration and prediction stage: it is merely the total

effect of the measurement noise that counts, rather

than the specific property of the individual measure-

ment errors. In the case that predictor noise increases

with signal amplitude, Eq. (9) should work best if the

variation in signal amplitude is limited. (In the current

work, the validity of Eq. (9) is tested using propor-

tional noise.) A rigorous approach to deal with he-

teroscedastic errors in the predictors is the full

linearisation, as done in Ref. [14] for standard PLS.

Obviously, the extreme simplicity of the current

approach comes at a certain price.

Monte Carlo simulations, as conducted in this

paper, are ideally suited for testing the validity of

conjectures that are hard to verify theoretically. Eq. (9)

is intended to be more generally applicable than Eq.

(8), but it has a distinct disadvantage. Subtracting VDy

may yield negative variance estimates if VDy is rela-

tively large. Moreover, even if this subtraction leads to

an admissible value, constructing a prediction interval

on the basis of Eq. (9) is complicated, because the

prediction variance need not be approximately dis-

tributed proportional to a simple v2. However, these
problems are not unique to the currently proposed

approach: they are generally persistent when estimat-

ing variance components [35].

2.5. Selection of optimum rank of PLS models

Faber [19] has found the performance of Eq. (8) to

rely heavily on the ability to correctly estimate the

optimum model dimensionality. The recent study of

Denham [17] puts the same demand on the use of Eq.

(9). We propose to verify the adequacy of the approx-

imations leading to Eqs. (8) and (9) using Monte

Carlo simulations. Since these simulations are per-

formed unsupervised, i.e., without intervention of a

human operator, the factor selection problem is not a

trivial one. A common procedure for selecting the

number of PLS factors is to monitor the average

prediction error for an independent test set. Many

researchers consider external validation to be wasteful

because samples are set aside that could be used for

model building [17]. Cross-validation or internal val-

idation is a popular alternative, but we did not con-

sider it here because it is very time-consuming.

External validation yields an estimate of root mean

squared error of prediction (RMSEP). The selected

optimum number of factors is the one for which

RMSEP is either a minimum or reaches a plateau.
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Chance effects owing to the uncertainty in the esti-

mated RMSEP values are likely to influence the

decision, especially when focussing on a minimum.

This reasoning suggests that, to avoid overfitting, PLS

factors should be added to the model only if RMSEP

decreases more than the associated uncertainty. Faber

[36] has found that, when extreme outliers are

excluded from the prediction set, the MSEP estimate

is approximately distributed proportional to a v2 with
degrees of freedom equal to the number of validation

samples (Ival). Applying a linear approximation to

standard expressions for mean and variance of a v2-
variable yields that:

rRMSEP

RMSEP
� 1ffiffiffiffiffiffiffiffiffi

2Ival
p : ð11Þ

For certain Monte Carlo trials we found two ad-

jacent RMSEP values differing less than their relative

uncertainty, as calculated from Eq. (11), after which

the RMSEP significantly dropped. In other words, a

plateau had not yet been reached. After some trial and

error we settled for the current Monte Carlo simula-

tions to demand that three successive RMSEP values

should differ less than their relative uncertainty. It is

conceivable that this selection rule depends on the

specific structure of the simulated data. However, this

is of little practical importance, because selecting the

number of factors is better not carried out unsuper-

vised in practice.

2.6. Criterion for assessing the adequacy of the

approximations

In Ref. [19], it is argued that a statistically sound

criterion for assessing the quality of an approximate

standard error of prediction is, that it should enable

the construction of prediction intervals. It was found

that, when applying Eq. (8) to standard PLS, the

random variable

t ¼ PE

r̂PE

ð12Þ

is approximately distributed as Student’s t with an

appropriate number of degrees of freedom. A quotient

is distributed as Student’s t if the numerator is

normally distributed and the squared denominator is

distributed as v2, independent of the numerator. While

the normal assumption is usually tenable, the v2

assumption may be reasonable only when using Eq.

(8). (See Ref. [15] for more details, such as degrees of

freedom.) When using Eq. (9), the v2 assumption is

too crude, unless VDy is sufficiently small. Conse-

quently, setting up generally applicable prediction

intervals on the basis of Eq. (9) is, at the time, too

ambitious.

Fortunately, Eq. (12) remains useful for validation

purposes, even if prediction intervals are out of reach.

This can be understood as follows: Clearly, one may

consider the approximations to be adequate if the true

prediction error is predicted correctly on average. This

much softer requirement leads to a suitable criterion,

because subtracting the measurement variance VDy in

Eq. (9) affects the shape of the distribution, rather than

the associated standard deviation. The standard de-

viation of a t-value with f degrees of freedom isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
. Consequently, demanding that the true

prediction error be predicted correctly on average

amounts to demanding the expected standard devia-

tion to approach
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
. This expected value is

easily obtained by averaging the standard deviations

obtained for a series of independent repetitions.

3. Description of the simulations

Four-component systems (M = 4) are simulated by

multiplying Gaussian elution profiles by experimen-

tally obtained ultraviolet (UV) spectra for adenine

(A), cytidine (C), guanine (G) and uracyl (U) [37]

(see Fig. 1). This automatically leads to zero-intercept

models. Not testing the influence of mean centring is

believed to be reasonable, because the contribution of

Fig. 1. (a) Simulated elution profiles and (b) experimental UV

spectra for adenine (A), cytidine (C), guanine (G) and uracyl (U).
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the intercept is rather trivial. (The intercept is ac-

counted for by adding 1/I to the leverage.) Normally

distributed noise is added at different levels (see

Tables 1 and 2). Various noise settings are considered

to thoroughly test the adequacy of the approximations

leading to Eqs. (8) and (9). The initialisation of the

pseudo-random number generator is identical for each

noise setting. In practice, one or more potential

sources of error variance may be negligible. For

example, ‘‘clean’’ bilinear data correspond to a zero-

residual problem (i.e., re = 0). Consistent with this

condition, the terms associated with re and rDy are

either zero or negligible in Refs. [38,39]. In contrast,

re dominates for the data analysed in Refs. [13,17,40].

Finally, Ref. [10] reports on an application where only

rDy is considered. All these examples deal with first-

order data, but the order of the data is irrelevant for

the relative importance of sources of error variance.

For each noise setting, 100 repetitions of three inde-

pendent data sets are generated, namely a calibration

set for model estimation, a validation set for factor

selection and a prediction set for prediction error

estimation (given the model). A fairly large number

of independent repetitions (100) is conducted to

reliably estimate the average standard deviation of

the ‘‘t-values’’. Both the sizes of the calibration and

validation set take values that can be considered

intermediate (30) and fairly large (50). The number

of prediction samples (2000) is chosen to be large

enough to allow examining distributions. It follows

that for each single case the evaluation of Eqs. (8) and

(9) is based on 100� 2000 = 2� 105 predictions. The

range of the predictand is chosen so that 20% of the

samples will fall slightly outside the calibrated space.

In this way, the adequacy to cope with mild extrap-

olation is tested. While the predictand is corrupted

exclusively by additive noise, the noise in the pre-

dictors is additive (cases 1–12) as well as propor-

tional (cases 13–20). Proportional noise is added to

test the validity of Eq. (9) when the predictor noise

depends on signal magnitude, which is often the

practical condition. The criterion for selecting the

level of the noise in the predictors is that it should

give an appreciable contribution to prediction error.

For additive noise, it follows from Eq. (8) that

NbN2VDx should be of the same order as Ve and/or

VDy . Table 3 lists the values for NbN that have led to

the selected variances. It is emphasised that different

regression vectors are obtained in the absence of noise

and using A=M = 4 factors. Elsewhere [41], it is

shown that under these circumstances unfold-PLS

yields the same regression vector as the bilinear least

squares (BLLS) method proposed by Linder and

Sundberg [24,25]. This observation is believed to be

of interest because the BLLS regression vector has the

Table 1

Simulation parameters

Number of constituents (M ) 4

Number of calibration samples (I ) 30, 50

Number of validation samples 30, 50

Number of prediction samples 2000

Range of predictand for calibration

and validation set

1–9

Range of predictand for prediction set 0–10

Number of J-mode variables ( J ) 20

Position of Gaussian peaks 3, 8, 13, 18

Standard deviation of Gaussian peaks 5

Number of K-mode variables (K ) 36

Identity of spectra A, C, G, U

Standard deviation of residual (re) 0, 0.1

Standard deviation of noise in

predictands (rDy)

0, 0.1

Standard deviation of noise in

predictors (rDx)

0, 0.01, 0.05,

0.1, 3%, 5%

Table 2

Noise settings for different cases. The symbols are explained in the

text

Case re rDy rDx

1 0 0 0.01

2 0 0 0.05

3 0 0 0.1

4 0 0.1 0

5 0 0.1 0.05

6 0 0.1 0.1

7 0.1 0 0

8 0.1 0 0.05

9 0.1 0 0.1

10 0.1 0.1 0

11 0.1 0.1 0.05

12 0.1 0.1 0.1

13 0 0 3%

14 0 0 5%

15 0 0.1 3%

16 0 0.1 5%

17 0.1 0 3%

18 0.1 0 5%

19 0.1 0.1 3%

20 0.1 0.1 5%
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smallest norm. The proper noise level in the hetero-

scedastic case is determined as follows. For the data

sets generated in 100 repetitions, the average standard

deviation of 1% proportional noise is 0.0178. Thus, to

achieve a comparable effect as homoscedastic noise

in the predictors, where rDx is 0.05 and 0.1, respec-

tively, 3% and 5% relative noise is added, yielding

average standard deviations of 3� 0.0178� 0.05 and

5� 0.0178� 0.09, respectively. All calculations are

performed in Matlab (Mathworks, Inc.) and copies of

the programs are available from the authors.

4. Results and discussion

Detailed results are presented only for the simu-

lations where the number of calibration and validation

samples is 30, because increasing the set sizes to 50

generally leads to similar results.

4.1. Selection of optimum rank of PLS models

Since the simulations are carried out unsupervised,

one must critically examine the performance of the

factor selection rule. The optimum selected ranks for

unfold-PLS are summarised in Table 4. In all cases the

selected ranks range from 3 to 5. With few exceptions,

the selected rank for cytidine and uracyl is 4, which

equals the number of analytes. The same behaviour is

observed for all analytes when using tri-PLS (not

shown). In contrast, the calibration of adenine and

guanine using unfold-PLS often requires only three

factors. A typical example of the behaviour of

RMSEP is displayed in Fig. 2. For unfold-PLS, the

RMSEP values are 2.18, 1.33, 0.167, 0.151, 0.137,

0.138 and 0.138, while for tri-PLS one obtains 2.18,

1.69, 0.832, 0.088, 0.092, 0.095 and 0.095. A three-

dimensional model is selected for unfold-PLS because

adding the fourth factor yields a 9.6% decrease in

RMSEP and this value is smaller than the threshold

dictated by Eq. (11), namely 1=
ffiffiffiffiffiffiffiffiffiffiffi
2 
 30

p
¼ 12:9% .

Adding the fifth factor yields a further decrease in

RMSEP of 9.3%, which is not considered to be

significant either. It is noted that the same model

Table 3

Size of regression coefficient vectors (NbN) obtained with noiseless

data and A=M= 4 factors

Analyte Unfold-PLS Tri-PLS

Adenine 0.477 0.485

Cytidine 0.554 0.586

Guanine 0.803 0.904

Uracyl 0.720 0.827

Table 4

Optimum selected rank (A) for unfold-PLS (100 runs). The number

of calibration and validation samples is 30

Case Adenine Cytidine Guanine Uracyl

3 4 5 3 4 5 3 4 5 3 4 5

1 0 100 0 0 100 0 0 100 0 0 100 0

2 0 100 0 0 100 0 1 99 0 0 100 0

3 0 100 0 0 100 0 88 12 0 0 100 0

4 18 81 1 0 100 0 49 51 0 0 100 0

5 19 81 0 0 100 0 55 44 1 0 100 0

6 22 78 0 0 100 0 78 22 0 0 100 0

7 17 83 0 0 100 0 47 53 0 0 100 0

8 16 84 0 0 100 0 55 45 0 0 100 0

9 19 81 0 0 100 0 78 22 0 0 100 0

10 46 54 0 0 100 0 63 37 0 0 100 0

11 50 50 0 0 100 0 67 33 0 0 100 0

12 44 56 0 0 100 0 80 19 1 0 100 0

13 0 100 0 0 95 5 3 89 8 0 94 6

14 0 100 0 0 94 6 66 17 17 0 87 13

15 20 80 0 0 99 1 52 48 0 0 98 2

16 24 76 0 0 99 1 61 32 7 0 95 5

17 18 82 0 0 100 0 58 40 2 0 100 0

18 23 77 0 0 100 0 67 26 7 0 100 0

19 49 51 0 0 100 0 65 33 2 0 100 0

20 51 49 0 0 100 0 71 24 5 0 97 3

Fig. 2. RMSEP as a function of model dimension for guanine for a

single run of case 3 where the number of calibration and validation

samples is 30: unfold-PLS (6) and tri-PLS (*).
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dimension would have been arrived at when using the

threshold value for 50 validation samples, namely 1=ffiffiffiffiffiffiffiffiffiffiffi
2 
 50

p
¼ 10%. One might argue that, without prior

knowledge about the true underlying dimension, a

human operator would have selected 5 factors,

because this leads to an apparently stable minimum

in RMSEP. Thus, the currently deployed selection rule

seems to be somewhat conservative. This property

could, however, be an advantage for the current

evaluation study, because it leads to additional cases

where the incorporation of bias in Eqs. (8) and (9) can

be tested.

Despite the conservative character of the factor

selection rule, the true underlying dimension is over-

estimated in some cases (see Table 4). This phenom-

enon is most often observed for the cases where

proportional noise is added to the predictor variables

(cases 13–20). A plausible explanation is that struc-

tured noise ‘‘displaces’’ genuine predictive informa-

tion to the higher-numbered factors. For tri-PLS

one finds 9 + 5 + 16 + 5 = 35 of these cases against

1 + 13 + 50 + 29 = 93 for unfold-PLS. Thus, unfold-

PLS seems to be more prone to this effect than tri-

PLS, which is in agreement with the earlier observa-

tion that unfold-PLS is more likely to overfit than

tri-PLS [2]. This is especially true for the cases where

the effect of the noise in X is not diluted by the effect

of the noise in y (cases 13 and 14).

In summary, being able to find an explanation for

the optimum selected ranks suggests that these num-

bers are reasonable.

4.2. Predictive ability of unfold- and tri-PLS

Although we are not engaged in a method compar-

ison study, it is of practical interest to compare the

predictive ability of unfold- and tri-PLS. It turns out

that tri-PLS performs consistently better with the sole

exception of case 1, which is characterised by a low

level of the noise (Table 5). These results are in

agreement with the earlier observation that tri-PLS

is less sensitive to noise [2].

It is noted that the RMSEP values for cases 4–6,

10–12, 15, 16, 19, 20 are based on comparing

the predictions with ‘‘measured’’ reference values

(rDy = 0.1), rather than the true ones. DiFoggio [42]

has pointed out that this procedure leads to a so-called

apparent RMSEP. The apparent RMSEP systemati-

Table 5

Average RMSEP (100 runs). The number of calibration and validation samples is 30. The numbers printed bold mark the instances where tri-

PLS performs worse than unfold-PLS

Case Unfold-PLS Tri-PLS

A C G U A C G U

1 0.0053 0.0061 0.0088 0.0079 0.0054 0.0064 0.0097 0.0089

2 0.028 0.035 0.056 0.047 0.027 0.032 0.049 0.045

3 0.061 0.090 0.168 0.130 0.054 0.064 0.099 0.090

4 0.107 0.107 0.110 0.105 0.107 0.107 0.109 0.105

5 0.110 0.113 0.124 0.115 0.109 0.112 0.121 0.114

6 0.122 0.141 0.196 0.166 0.118 0.125 0.149 0.139

7 0.108 0.105 0.107 0.107 0.108 0.105 0.106 0.107

8 0.110 0.111 0.121 0.117 0.111 0.111 0.117 0.117

9 0.122 0.139 0.195 0.167 0.119 0.124 0.145 0.141

10 0.152 0.149 0.156 0.150 0.149 0.149 0.154 0.150

11 0.154 0.153 0.166 0.157 0.150 0.153 0.162 0.157

12 0.160 0.175 0.224 0.196 0.157 0.163 0.184 0.175

13 0.032 0.043 0.067 0.055 0.032 0.037 0.059 0.053

14 0.056 0.087 0.151 0.115 0.053 0.063 0.100 0.089

15 0.111 0.116 0.129 0.118 0.112 0.113 0.124 0.117

16 0.119 0.140 0.184 0.155 0.118 0.124 0.148 0.137

17 0.112 0.114 0.127 0.121 0.112 0.112 0.121 0.120

18 0.121 0.137 0.183 0.157 0.119 0.123 0.145 0.140

19 0.154 0.156 0.170 0.159 0.151 0.154 0.164 0.159

20 0.159 0.174 0.214 0.188 0.156 0.162 0.183 0.175
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cally overestimates the actual RMSEP, because the

measured reference values contain a spurious random

component that cannot be predicted. This random

component (measurement noise) is, unlike the residual

(e), not associated with the true value and its contri-

bution to the RMSEP estimate is therefore misleading.

Case 4, where this measurement error is the only

source of error variance, represents the most extreme

example. The apparent RMSEP is bounded below by

rDy = 0.1, whereas the (unknown) actual RMSEP is

much smaller. DiFoggio has already pointed out that

model predictions can be much more precise than the

reference method. A simple correction procedure has

been proposed by Faber and Kowalski [43]. For a

recent critical review of the subject, see DiFoggio

[44].

4.3. Adequacy of approximations leading to Eq. (8)

The criterion for testing the adequacy of the

approximations leading to Eq. (8) is that the average

standard deviation of the ‘‘t-values’’ calculated using

Eq. (12) should be close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
. Since we

have evaluated Eq. (8) using the input values for the

error variances, the degrees of freedom are taken to be

infinite. This is not exact, because the uncertainty in

the estimates for h and NbN is ignored. Exact degrees

of freedom are only possible if the predictor variables

are error-free (rDx= 0). In practice, f would be esti-

mated as a function of the degrees of freedom of the

individual error variance estimates [15]. With the

postulated value for f, the average standard deviation

should approach unity. Three general observations can

be made from the results presented in Table 6: First,

the results are clearly best for tri-PLS. Second, incor-

porating bias often leads to standard deviations closer

to the target value, which is expected. Third, the

procedure is slightly conservative for tri-PLS. The

latter can be understood as follows: The standard

deviation of the ‘‘t-values’’ is systematically under-

estimated, which must be due to systematically over-

estimating the standard error of prediction when using

Eq. (8). However, the amount of overestimation does

not seem to be of practical importance.

For unfold-PLS, the standard deviations are too

large for cases 2, 3, 6, 9 and 12. This means that the

standard error of prediction is systematically under-

estimated when using Eq. (8). The explanation for this

behaviour is found by inspecting the regression coef-

ficient estimates. For the worst case encountered in

Table 6, namely case 3, these estimates are extremely

noisy for unfold-PLS while they are rather smooth for

tri-PLS (see Fig. 3). For linear methods such as PCR,

variance in the parameter estimates strictly increases

with increasing number of factors (complexity of the

model). This general rule for linear methods corre-

sponds to a strong tendency for non-linear methods

such as PLS (see Ref. [45] for an exception). Con-

sequently, the apparently high variance in the unfold-

PLS coefficient estimates is quite unexpected, because

unfold-PLS uses less factors than tri-PLS (see Fig. 2).

The excellent results obtained for tri-PLS suggest that

Table 6

Average standard deviation of ‘‘t-values’’ calculated using Eqs. (8) and (12) (100 runs). The number of calibration and validation samples is 30.

The numbers in parentheses are calculated without taking account of bias

Case Unfold-PLS Tri-PLS

A C G U A C G U

1 1.00 0.99 1.01 1.00 0.99 0.99 0.99 0.98

2 1.06 1.16 1.29 (1.30) 1.23 0.99 0.99 1.00 0.99

3 1.24 1.55 1.76 (2.12) 1.76 1.00 0.99 1.01 1.00

4 0.79 (1.22) 0.85 0.88 (1.28) 0.81 0.79 0.85 0.84 0.81

5 0.84 (1.13) 0.96 1.06 (1.28) 0.98 0.84 0.91 0.96 0.92

6 1.00 (1.20) 1.31 1.63 (1.90) 1.50 0.90 0.95 1.00 0.97

7 0.96 (1.03) 1.00 0.97 (1.02) 0.98 0.99 0.99 0.97 0.98

8 0.97 (1.03) 1.01 1.02 (1.08) 1.00 0.98 0.99 0.98 0.97

9 1.02 (1.08) 1.15 1.37 (1.50) 1.28 0.98 0.99 0.99 0.98

10 0.95 (1.10) 0.97 0.97 (1.05) 0.96 0.96 0.97 0.95 0.96

11 0.95 (1.11) 0.98 1.01 (1.09) 0.98 0.96 0.96 0.96 0.96

12 0.97 (1.11) 1.11 1.32 (1.46) 1.21 0.96 0.96 0.98 0.97
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the additional approximation leading to Eq. (8) is not

the basis of the problem. Apparently, the local linear-

isation of the model is not adequate for unfold-PLS at

the current level of the noise. (Recall that local

linearisation works best if the errors are small.) As a

result, the standard error in the parameter estimates

increases non-linearly with increasing standard devia-

tion of the noise, likewise the standard error of

prediction. The results are slightly better for unfold-

PLS when increasing the number of calibration sam-

ples to 50 (not shown). The preceding discussion is

subjective in the sense that it is not clear how one

should assess the coefficient estimates to be smooth

enough for Eq. (8) to yield trustworthy results. Thus,

an important subject for future research is to develop

diagnostics that indicate the onset of non-linear

behaviour with respect to predictor noise. An impor-

tant requirement for these diagnostics is that they be

reliably estimable from the data. Stewart [46] has

derived such a diagnostic for OLS with errors in the

predictor variables. This diagnostic is similar to a

signal-to-noise ratio; a basic ingredient is the smallest

singular value of the predictor matrix (full column

rank). It is consistent with a criterion that governs

asymptotic results for the singular value decomposi-

tion (SVD) (see Theorem 4 in Ref. [47]). While it

should be straightforward to generalise this diagnostic

to unfold-PLS (possibly rank-deficient X), a difficulty

arises in the case of tri-PLS when N > 2. In that

specific case, one needs a diagnostic that considers

the N-way structure of the predictors. Hopke et al.

[48] have recently generalised the matrix condition

number (ratio of largest and smallest singular value) to

N>2.

Unfold-PLS and Linder and Sundberg’s BLLS

method yield identical parameters in the absence of

noise and using A=M = 4 factors [41]. Consistent with

this result, it is observed in Fig. 3 that the unfold-PLS

parameters randomly scatter around the ‘‘true’’ BLLS

values. In contrast, the tri-PLS parameters are either

shrunk or expanded. This observation suggests that

some prediction bias may be present when using tri-

PLS with A=M = 4 factors. It is emphasised that this

additional source of bias has been ignored in the

currently proposed approach, because Höskuldsson’s

procedure [32] only accounts for underfactoring bias

(A <M). However, simulations without noise demon-

strated it to be negligible for the current structure of

the data (not shown). Investigating this phenomenon

theoretically as well as experimentally could be of

considerable interest, but is outside the scope of this

paper. It is worth pointing out that De Jong [49] has

shown the length of the regression vector estimated by

standard PLS to be shrunk in comparison with the

OLS estimator (or with PLS estimators based on a

larger number of dimensions) (see Ref. [50] for more

details). De Jong’s result should be contrasted with the

current observation that the norm of the tri-PLS

estimator exceeds the norm of the BLLS estimator.

This observation is believed to be relevant, because

the BLLS estimator is best (minimum variance) linear

unbiased (BLUE) when calibration is error-free and

the noise in the unknown sample predictor variables is

iid. In other words, the BLLS estimator has the status

of ‘‘golden standard’’ for second-order bilinear cali-

bration, similar to the OLS estimator for zeroth- and

first-order calibration.

The distributions of the standard errors of predic-

tion and ‘‘t-values’’ are shown in Fig. 4 for the models

characterised in Figs. 2 and 3. The norms of the

regression vector estimates are 0.770 and 0.895 for

unfold- and tri-PLS, respectively (for ‘‘true’’ values,

see Table 3). As a result, 0.0770 and 0.0895 are hard

lower bounds for the results of Eq. (8). Clearly, Eq. (8)

Fig. 3. Top: regression coefficient estimates obtained for guanine for

a single run of case 3 where the number of calibration and validation

samples is 30. Bottom: same, but plotted against the ‘‘true’’ BLLS

values. The unfold- and tri-PLS models are constructed using A= 3

and A= 4 factors, respectively. The BLLS values are based on

A=M= 4 factors.
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predicts unfold-PLS to perform better than tri-PLS,

which is misleading because the unfold-PLS parame-

ter estimates do not respond linearly to predictor

noise. This is particularly obvious from the distribu-

tion of the ‘‘t-values’’, which is far too wide for

unfold-PLS.

Cases 4 and 5 require special attention because

some of the averages are much smaller than unity for

both unfold- and tri-PLS. This result implies that the

model contribution to Eq. (8) is seriously overesti-

mated. In other words, Eq. (8) is overly conservative.

We will focus on case 4, for which this behaviour is

most pronounced. It is observed that for case 4 the

model term is entirely determined by the measurement

error in the reference values. Since the prediction

sample term is absent, it is inferred that the leverage

captures between 79% and 88% of the true model

term. On first sight this may seem disappointing,

because developing expressions for the model term

has been the focus of this paper. However, it is

actually a promising result, because in practice the

model term is usually (much) smaller than the

unknown sample term. The reason for this is that,

unless the unknown sample is an extreme outlier, the

leverage, which largely determines the size of the

unknown sample term, is smaller than one. This can

be derived as follows. A rule of thumb for labelling a

sample as an outlier is that its leverage be larger than

three times the average leverage of the calibration set.

For zero-intercept models, the average leverage is A/I;

if mean centring is applied, A is replaced by A + 1.

For example, the current simulations (zero-intercept

models) lead to a maximum value for A/I of 5/

30� 0.17K1. It is noted that for case 5, where noise

is added to the predictors, the conservative character

of Eq. (8) is best observed for tri-PLS, because for

unfold-PLS the opposite tendency due to noisy regres-

sion coefficients is at work (see above). For case 6, the

latter effect even dominates which leads to results that

are difficult to interpret. Since tri-PLS yields rather

smooth parameter estimates for all noise settings, the

conservative character of Eq. (8) is most pronounced

for the cases where rDy = 0.1, i.e., cases 4–6 and 10–

12.

For cases 1–3 homoscedastic noise is added to the

predictors only so that Eq. (8) predicts RMSEP to

scale up linearly with the standard deviation of the

noise, the norm of the regression vector estimate

being the scale factor. This behaviour is correctly

predicted for tri-PLS, but not for unfold-PLS (see

Table 5). The norm of the regression vector estimate is

an analytical figure of merit, because it determines the

effect of homoscedastic predictor noise on prediction

error. Because of the homoscedasticity requirement, it

is known as the index of random error [51]. It has also

been termed the ‘‘inverse sensitivity’’, since it is the

reciprocal of the ‘‘sensitivity’’ encountered in the

classical model [29]. It is important to note that

currently two sets of definitions exist for analytical

figures of merit. This has led to some controversy in

the literature [29]. It is discussed in detail elsewhere

[41] that the definition of Ho et al. [27] should be used

in combination with the generalized rank annihilation

method (GRAM). By contrast, a calibration model

constructed using Linder and Sundberg’s BLLS

method, unfold-PLS or unfold-PCR is correctly char-

acterised using the figures of merit derived by Mes-

sick et al. [28]. The preceding discussion illustrates

that the ‘‘inverse sensitivity’’ is only informative if the

pertinent model is sufficiently smooth to yield a linear

response to predictor noise. Consequently, only for

case 1, the smaller ‘‘inverse sensitivity’’ or larger

‘‘sensitivity’’ of unfold-PLS (see Table 3) correctly

predicts the smaller RMSEP in Table 5. Bro has given

an example where the coefficient estimates are larger

Fig. 4. Distribution of standard errors of prediction calculated using

Eq. (8) and ‘‘t-values’’ calculated using Eq. (12) for guanine for a

single run of case 3 where the number of calibration and validation

samples is 30. The unfold- and tri-PLS models are constructed using

A= 3 and A= 4 factors, respectively.
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for multilinear PLS by approximately a factor of two

(see Fig. 7 in Ref. [2]). However, the coefficient

estimates are much noisier for unfold-PLS. The non-

linear response to predictor noise explains why for

that particular example the prediction results are better

for multilinear PLS.

The tri-PLS RMSEP values obtained for cases 13

and 14 show that the ‘‘inverse sensitivity’’ is a semi-

quantitative measure if the predictor noise is hetero-

scedastic. This is best understood by observing that the

RMSEP values for cases 3 and 14 are almost identical.

However, for case 14 the average standard deviation of

the proportional noise is 5� 0.0178� 0.09 (see Sec-

tion 3). In other words, it is approximately 10%

smaller than the standard deviation of the homosce-

dastic noise added in case 3 (rDX = 0.1). The inter-

pretation of this result is that, for the current

simulations, the effect of predictor noise is approx-

imately 10% larger if it is proportional. (A similar

result has been reported for the calibration of exper-

imental UV data using GRAM [52].) Consequently,

even in the heteroscedastic predictor noise case practi-

tioners may benefit from the enhanced interpretability

of Eq. (8) if the analytical determination is to be

customised to specific needs.

Finally, the distributions of the standard deviations

of the ‘‘t-values’’ (Figs. 5 and 6) illustrate why series

of independent repetitions must be performed to

assess the potential utility of Eq. (8). While the

distributions seem to be arbitrary for unfold-PLS, they

are more or less reproducible for tri-PLS. The latter

distributions are positively skewed so that the mode is

smaller than unity. In practice, one would use a single

model for many predictions. Depending on the partic-

ular quality of this (single) model, the use of Eq. (8)

would lead to systematically under- or overestimating

the prediction error. This problem is, however, hard to

avoid. Consider, for example, the current practice of

validating each individual prediction by the RMSEP,

calculated from the prediction errors for a validation

set. Since the RMSEP is a random variable, one will

continuously under- or overestimate the prediction

error too. In fact, the current approach is preferable

in this respect, because Denham [17] has shown that it

leads to RMSEP estimates with relatively low varia-

bility.

4.4. Adequacy of approximations leading to Eq. (9)

Eq. (9) is evaluated using the input value for

VDy. As a result, f equals the degrees of freedom

of MSEC and the standard deviation of the ‘‘t-

Fig. 5. Distribution of standard deviation of ‘‘t-values’’ calculated

using Eqs. (8) and (12) when using unfold-PLS for case 3 where the

number of calibration and validation samples is 30 (100 runs):

adenine (A), cytidine (C), guanine (G) and uracyl (U).

Fig. 6. Distribution of standard deviation of ‘‘t-values’’ calculated

using Eqs. (8) and (12) when using tri-PLS for case 3 where the

number of calibration and validation samples is 30 (100 runs):

adenine (A), cytidine (C), guanine (G) and uracyl (U).
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values’’ should be compared with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ðf � 2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI � AÞ=ðI � A� 2Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI �MÞ=ðI �M � 2Þ

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26=ð24Þ

p
� 1:04 . Although directly following

from Eq. (8) by a simple substitution, Eq. (9) differs

substantially in that it may lead to inadmissible

values for the standard error of prediction (square

root of a negative number) when the measurement

noise in the reference values is sizeable. We have

discarded models where such a situation arises (see

Table 7). The explanation of the results obtained

when using unfold-PLS is found in Section 4.3 for

cases 1–12, while for cases 13–20 it is obtained by

identifying these cases with cases 2, 3, 5, 6, 8, 9, 11

and 12, respectively. As for Eq. (8), the results are

consistently better for tri-PLS. However, contrary to

Eq. (8), Eq. (9) does not seem to be conservative: the

results are often quite close to the target value (1.04).

A tacit assumption underlying Eq. (9) is that the

predictor noise should have a similar effect for cali-

bration and prediction samples. The promising results

obtained for tri-PLS suggest that violation of this

assumption need not have serious consequences. This

is remarkable, because the size of the predictor noise

varies with signal amplitude, which, owing to the

large range of analyte concentrations, is highly sam-

ple-dependent for the current simulations. Clearly, a

more rigorous approach than the currently proposed

one is to carry out the ‘‘full linearisation’’ for tri-PLS.

Unfortunately, this is a cumbersome task. The reason

for this is that tri-PLS uses an SVD to calculate the

weight factors if N = 2 and local linearisation of SVD

is rather complex [14,47]. In addition, estimating a

PARAFAC model forms the heart of the method if

N>2. Linearisation results are just emerging for

PARAFAC models, see Refs. [53,54] for N = 3 and

Ref. [54] for N = 4. To the best of our knowledge,

results are lacking for N>4. An attractive feature of

the ‘‘naı̈ve approach’’ is that the order of the predictor

arrays is irrelevant. What counts is whether the

uncertainty in the scores can be ignored.

In addition, two difficulties are envisioned when

applying the ‘‘full linearisation’’ expressions in prac-

tice. First, the noise in the predictors must be fully

characterised. Performing replicate measurements is

the best way to do this, but this is obviously time-

Table 7

Average standard deviation of ‘‘t-values’’ calculated using Eqs. (9) and (12) (100 runs). The number of calibration and validation samples is 30.

The numbers in parentheses denote the number of models (out of 100) that have been discarded because negative values were encountered for

prediction error variance

Case Unfold-PLS Tri-PLS

A C G U A C G U

1 1.02 1.03 1.05 1.03 1.03 1.02 1.06 1.03

2 1.12 1.21 1.36 1.28 1.04 1.03 1.07 1.03

3 1.38 1.70 1.83 1.90 1.05 1.03 1.09 1.05

4 0.78 (37) 0.60 (52) 0.75 (33) 0.55 (55) 0.57 (49) 0.72 (51) 0.58 (42) 0.55 (55)

5 0.89 (42) 0.85 (46) 1.11 (25) 0.91 (45) 0.65 (44) 0.76 (41) 0.84 (29) 0.85 (38)

6 1.16 (39) 1.50 (42) 2.04 (2) 1.77 (25) 0.87 (23) 0.98 (18) 1.10 (1) 1.11 (7)

7 1.02 1.03 1.02 1.03 1.03 1.03 1.00 1.03

8 1.04 1.08 1.09 1.07 1.02 1.03 1.01 1.02

9 1.16 1.32 1.51 1.44 1.03 1.05 1.03 1.03

10 1.11 1.03 1.05 (1) 1.05 (2) 1.09 (1) 1.03 1.01 (2) 1.05 (2)

11 1.12 (1) 1.11 1.13 (1) 1.10 (2) 1.08 1.04 1.02 (1) 1.06 (2)

12 1.26 (1) 1.44 1.59 (1) 1.51 (1) 1.06 1.06 1.04 (1) 1.09

13 1.06 1.30 1.47 1.38 1.00 1.01 1.03 1.01

14 1.17 1.66 2.02 1.87 1.01 1.02 1.05 1.03

15 0.86 (36) 0.88 (46) 1.16 (19) 0.93 (46) 0.68 (38) 0.84 (36) 0.92 (17) 0.90 (31)

16 1.05 (28) 1.36 (32) 1.74 (12) 1.64 (23) 0.83 (21) 0.94 (21) 1.04 (4) 1.09 (10)

17 1.04 1.09 1.14 1.08 1.03 1.03 1.01 1.02

18 1.10 1.26 1.50 1.30 1.03 1.03 1.02 1.02

19 1.11 (1) 1.12 1.16 (2) 1.15 (1) 1.07 1.04 1.01 1.07 (1)

20 1.19 1.35 1.46 (5) 1.38 (5) 1.05 (1) 1.05 1.02 1.07

N.M. Faber, R. Bro / Chemometrics and Intelligent Laboratory Systems 61 (2002) 133–149 147



consuming. Alternatively, Wang and Hopke [55] have

proposed a method for estimating heteroscedastic

noise from the data. The assumption is that the data

array is large enough for the noise to be constant in a

small region. It works by averaging squared residuals

from an SVD in the neighbourhood of the target

element. The method can be easily adapted to estimate

correlations by averaging products of suitably neigh-

bouring residuals. The second difficulty concerns

storage and manipulation of the noise information. If

the noise is correlated, a covariance matrix must be

built that is dimensioned IJK� IJK. For the current

simulations, where the number of variables is rather

small, this already leads to a 30
20
36� 30
20

36 = 21600� 21600 matrix. Depending on the spar-

sity of this covariance matrix, storage problems can

occur. (Storing the full symmetric matrix in double

precision requires 1900 MB!) In addition, one would

have to evaluate the Jacobian matrices that contain the

partial derivatives of the parameter estimates with

respect to the predictand and predictor variables.

The Jacobian associated with the predictor variables

is the largest of the two: it is dimensioned JK� IJK. It

is an open question whether the increased accuracy of

the results outweighs the extreme ‘‘user-friendliness’’

of Eqs. (8) and (9). Finally, it is noted that similar

problems often impede estimation of multiway mod-

els using the maximum likelihood method [56].

5. Conclusions and outlook

Two approaches to estimating standard error of

prediction for multiway PLS have been investigated.

The first approach, which is derived for homoscedas-

tic predictor noise, requires estimates of all error

variances. In contrast, the second approach, which is

intended to work in the heteroscedastic case as well,

only requires an estimate of the standard deviation of

the measurement error in the reference values. Each

approach has its strengths and weaknesses. Interest-

ingly, both approaches are disfavoured by a relatively

large measurement error in the reference values.

While the first approach tends to be somewhat con-

servative, the second approach yields standard errors

of prediction that in extreme cases cannot be used to

construct prediction intervals in the usual way. For the

current simulations, tri-PLS performed better than

unfold-PLS. This cannot be expected to be a general

rule. However, the current research may lead to

insight that is required for carrying out a thorough

method comparison. Eventually, this may lead to

identification of regions where one PLS algorithm is

to be preferred over the other.

From the current work, the following directions for

future research can be given:

1. Demonstrate the practical utility of Eqs. (8)

and (9) on real data. Work is in progress to

apply the current error analysis to experimen-

tal EEM data [21].

2. Set up prediction intervals on the basis of Eq.

(9). This problem is general (see [35]).

3. Develop diagnostics that indicate the break-

down of local linearisation. Potentially suitable

precursors have been developed in connection

with the SVD.

4. Quantify bias in the tri-PLS regression vector

when A=M. This bias amounts to an identifi-

ability problem that does not seem to have an

analogue in the lower-order domain.

5. Carry out the full linearisation for tri-PLS.

This amounts to incorporating the results of

Paatero [53] and Liu and Sidiropoulos [54].
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