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Abstract

In a groundbreaking paper, Linder and Sundberg [Chemometr. Intell. Lab. Syst. 42 (1998) 159] developed a statistical

framework for the calibration of second-order bilinear data. Within this framework, they formulated three different predictor

construction methods [J. Chemom. 16 (2002) 12], namely the so-called naı̈ve method, the bilinear least squares (BLLS) method,

and a refined version of the latter that takes account of the calibration uncertainty. Elsewhere [J. Chemom. 15 (2001) 743], a

close relationship is established between the naı̈ve method and the generalized rank annihilation method (GRAM) by comparing

expressions for prediction variance. Here it is proved that the BLLS method can be interpreted to work with vectorised data

matrices, which establishes an algebraic relationship with so-called unfold partial least squares (PLS) and unfold principal

component regression (PCR). It is detailed how these results enable quantifying the effects of vectorising bilinear second-order

data matrices on analytical figures of merit and variance inflation factors. D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Second-order bilinear calibration; PARAFAC; Vectorisation; Analytical figures of merit; Variance inflation factors; BLLS; PLS;

PCR; GRAM

1. Introduction

Vectorisation, i.e., stringing out an N-way array

into a vector is a routine operation in multiway data

analysis [1]. For example, the so-called unfold partial

least squares (PLS) and unfold principal component

regression (PCR) transform the N-way data arrays of

the calibration set into vectors that are subjected to

standard PLS and PCR, respectively [2]. In contrast,

the generalized rank annihilation method (GRAM) is

a second-order bilinear calibration method that oper-

ates on the original data matrices [3].

The purpose of this paper is to investigate the

effects of vectorising the data matrices of the calibra-

tion set under the second-order bilinear assumption.

These effects are to be studied for performance char-

acteristics such as analytical figures of merit and

variance inflation factors, because these quantities

are related to the standard error of prediction. Under-

standing the effect of vectorisation on these perform-

ance characteristics should be useful for understanding

the behaviour of calibration methods. In this way, one

expects to reveal essential differences between unfold-

PLS and unfold-PCR on one side (vectorised matri-
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ces), and GRAM on the other (original matrices).

GRAM has been claimed to be inferior to alternating

least squares (ALS) [4]. However, Monte Carlo sim-

ulations [5] have shown that GRAM not only com-

pares well with ALS, but also with recently proposed

alternatives to ALS, namely alternating trilinear de-

composition, alternating coupled vectors resolution,

alternating slice-wise diagonalization, alternating

coupled matrices resolution, self-weighted alternating

trilinear decomposition, and pseudo alternating least

squares. These results justify including GRAM in the

comparison.

Analytical figures of merit are performance char-

acteristics of an analytical determination. They can be

used to select between potentially useful methods or

to evaluate or optimise a method that is already in use

[6]. Analytical figures of merit such as net analyte

signal (NAS), sensitivity, selectivity, signal-to-noise

ratio (SNR), and limit of detection (LOD) are well

defined for univariate or zeroth-order calibration.

Lorber [7] has extended these figures of merit to the

multivariate or first-order domain. The resulting quan-

tities are based on a particular definition of NAS.

According to Lorber, ‘‘net analyte signal for a com-

ponent is equal to the part of its spectrum which is

orthogonal to the spectra of the other components’’.

This definition is based on a uniqueness concept:

‘‘Only the orthogonal part is unique to the sought-

for component and, therefore, useful for quantita-

tion’’. Interestingly, Morgan [8] presents equations

for projections to essentially compute the NAS vector.

This NAS vector is transformed into a scalar NAS by

taking the Euclidean norm and the first-order figures

of merit follow by inserting the scalar NAS in the

formulas for the zeroth-order analogues. For example,

selectivity is defined as the ratio of the NAS and the

total analyte signal. It ranges between zero (complete

overlap between analyte of interest and interferents)

and unity (no overlap). Sensitivity is defined as the

ratio of the NAS and the analyte concentration. This

figure of merit is encountered in the less common

classical model, where instrument responses are

expressed as a function of analyte concentrations,

while the ‘inverse sensitivity’ (size of the regression

vector) is defined for the inverse model [9], where the

roles of analyte concentrations and instrument res-

ponses are interchanged. Kalivas and Lang [10,11]

have discussed interrelationships between Lorber’s

first-order analytical figures of merit and the variance

inflation factors known from statistics. The latter

quantities are often used to describe the stability of

a system of coupled equations.

Ho et al. [12], Wang et al. [13], and Messick et al.

[14] have proposed generalizations of the figures of

merit to higher-order multilinear (i.e., PARAFAC

structure) data arrays. These generalizations have

been compared by Faber et al. [15]. Two major

conclusions from that work are that (1) the general-

ization due to Wang et al. [13] is less useful because it

does not account for the influence of interferents, and

(2) the generalization due to Messick et al. [14]

amounts to vectorising the data arrays. A direct

consequence is that GRAM is connected with the

generalization of Ho et al. [12], while the general-

ization proposed by Messick et al. [14] is appropriate

for unfold-PLS and unfold-PCR.

Linder and Sundberg [16,17] have recently intro-

duced a statistical framework for second-order bilin-

ear calibration. This framework is of considerable

interest because it aims at a low standard error of

prediction while taking account of the special struc-

ture of the data. (The latter property sets it somewhat

aside from unfold-PLS and unfold-PCR.) It centres on

three approaches, namely the so-called naı̈ve, bilinear

least squares (BLLS), and refined approach. The first

one is inferior while the latter two perform similarly.

In fact, the BLLS and refined predictors are identical

when calibration is error-free: in that ideal scenario

they are best (minimum variance) linear unbiased

(BLUE) under the assumption of homoscedastic white

noise in the prediction sample responses. GRAM

strongly resembles the naı̈ve approach with respect

to standard error of prediction [18]. Despite its poor

statistical efficiency, GRAM is a viable method

because it works with a single calibration sample.

Moreover, by constructing a common model for the

calibration and unknown sample, it achieves the so-

called second-order advantage. The second-order

advantage may be essential when analysing complex

samples, because it ensures correct prediction in the

presence of unknown interferents. In contrast, the

BLLS and refined predictors require at least as many

calibration samples as constituents and do not have

the second-order advantage, see Ref. [18] for further

discussion. Here it is shown that the BLLS approach

can be interpreted to work with vectorised data
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matrices. In this way, an algebraic relationship is

established with unfold-PLS and unfold-PCR. Owing

to these connections with GRAM, unfold-PLS, and

unfold-PCR, the framework of Linder and Sundberg

provides a formal basis for discussing the effect of

vectorising bilinear second-order data matrices on

before mentioned performance characteristics.

This paper focuses on analytical figures of merit

that have been shown to directly relate to standard

error of prediction, i.e., ‘inverse sensitivity’ [9] and

sensitivity (the reciprocal of the ‘inverse sensitivity’)

[15]. The current analysis is restricted to the calibra-

tion of second-order bilinear data matrices. However,

the generalization to Nth-order multilinear data arrays

is straightforward, since one may vectorise along each

individual order, independent of the others.

2. Theory

2.1. Preliminaries

2.1.1. Vectorisation operator

The vectorisation operator converts a matrix in a

vector by stacking the columns from left to right. An

extremely useful relationship for performing algebraic

manipulations involving the vectorisation operator

is [1]:

vec FGH ¼ ðHT � FÞvec G ð1Þ

where vec stands for vectorisation, F, G, and H are

general matrices, the superscript ‘T’ denotes matrix

transposition, and ‘�’ symbolises the Kronecker prod-

uct. This relationship holds whenever the product

FGH is defined. It simplifies in straightforward fash-

ion when scalars or vectors are involved.

2.1.2. Second-order bilinear model

The bilinear assumption implies that the errorless

data matrix of a pure analyte can be written as the

outer product of two vectors. Thus, the model equa-

tion for the measured J�K data matrix for an M-

component mixture is

X ¼
XM
m¼1

ymamb
T
m þ DX ¼ AYBT þ DX ð2Þ

where A ( J�M) and B (K�M) are matrices that

contain the column and row profiles at unit concen-

trations, {am} and {bm}, respectively, Y is the M�M

diagonal matrix of concentrations { ym}, and DX is a

J�K error matrix.

2.1.3. Second-order bilinear model and vectorisation

Applying Eq. (1) to X gives, after rearrangement

x ¼
XM
m¼1

ymðbm � amÞ þ Dx ¼
XM
m¼1

ymdm þ Dx

¼ Dyþ Dx ð3Þ

where x = vec X, Dx= vec DX, D contains the pure

analyte ‘pseudo first-order’ profiles at unit concen-

tration, {dm = bm�am}, and y = diag(Y). Eq. (3) is

relevant in the context of unfold-PLS and unfold-

PCR, because these methods amount to applying the

standard algorithms after vectorising the data matrices

of the calibration set.

2.2. Crude expression for standard error of prediction

The goal of any instrument calibration is to predict

a property of interest, e.g., analyte concentration, for

an unknown sample. This is achieved by constructing

a model from data obtained for a calibration set. Two

modes of calibration are possible, namely by con-

structing a classical or an inverse model. The inverse

model is more flexible, because it allows one, among

others, to predict individual analytes without requiring

the explicit modelling of interferences. We will carry

out the derivations within the inverse model formal-

ism and clarify the connection with the classical

model afterwards.

The parameters of an inverse model are collected in

a regression vector and focussing on the analyte of

interest (index m), prediction proceeds as

ŷm ¼ ĥT
mx ð4Þ

where ĥm is the estimated regression vector.

From Eq. (4), it is clear that the standard error of

prediction must have two contributions, namely one

from the regression vector estimate (ĥm) and one from

the prediction sample responses (x). Assuming that

the prediction sample is not an extreme outlier, the

contribution of the regression vector estimate will be
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relatively small. When ignoring the contribution of the

regression vector estimate, Eq. (4) yields

rŷmcNĥmNrX ð5Þ

where rŷm
denotes the standard error in the prediction

ŷm (square root of the variance), NhN2 =hMh, and rX

is the standard deviation of the measurement errors in

the prediction sample responses. These measurement

errors are assumed to be independently and identically

distributed (iid).

Eq. (5) illustrates that the length of the regression

vector estimate is a performance characteristic for the

analytical determination. It has been termed the ‘inverse

sensitivity’ [9], because it is the reciprocal of the

sensitivity defined for the classical model. It can be

interpreted as the square root of a variance inflation

factor, because NĥmN
2 quantifies the inflation of the

input variance rX
2 when considering the prediction ŷm.

Berger and Feld [19] have reported on a Raman

application where Eq. (5) was an excellent approxima-

tion of the true standard error of prediction, while

Garcı́a et al. [20] have calculated limits of detection

for beta emitter (14C) activity from liquid scintillation-

counting data that were consistent with Eq. (5).

Although not being concerned with the calibration of

second-order bilinear data, these studies demonstrate

that Eq. (5) can be adequate for real applications.

It is worth mentioning that the iid requirement is not

necessary for deriving expressions for standard error of

prediction. In fact, the ‘iid expressions’ result from

simplifying expressions that completely account for

heteroscedastic and correlated measurement errors [9].

Moreover, Eq. (5) may still be useful for semiquantita-

tive understanding if the measurement noise is not iid.

MonteCarlo simulations can be used to investigate how

the impact of heteroscedastic noise relates to simply

multiplying the length of the regression vector with the

average standard deviation of the measurement errors.

For the GRAM analysis of the data obtained by

monitoring a chemical reaction by UV–VIS spectro-

scopy, it was found that the impact was higher by

approximately 10–30%, see last two columns in Table

5 in Ref. [21]. It is reasonable to assume that vectoris-

ing the arrays has little influence on the increased

impact due to heteroscedasticity. In other words, this

increase can be considered to be a constant factor in

the comparison.

The preceding considerations have led to the fol-

lowing strategy: first, we derive the appropriate expres-

sions for the regression vector estimates (inverse

model). Next, the effect of vectorisation on the ‘inverse

sensitivity’ (size of the regression vector estimate) is

determined, from which the effect on sensitivity (clas-

sical model) is immediate. Finally, this result is trans-

lated to the effect on variance inflation factors.

2.3. Statistical framework for second-order bilinear

calibration [16,17]

2.3.1. Naı̈ve approach

An intuitive way to obtain a prediction of the

concentrations { ym} is to pre- and post-multiply Eq.

(2) with the Moore-Penrose pseudo-inverses of Â and

B̂. This procedure has been termed the naı̈ve approach

by Linder and Sundberg [16]. The reason for this

terminology (i.e., naı̈ve) is that it leads to a predicted

matrix, Ŷ, which unlike the (true) Y need not be

diagonal. Clearly, the naı̈ve approach is identical to

the unconstrained least squares (LS) solution [22],

because the latter also ignores the special form of Y.

For obtaining Â and B̂, Linder and Sundberg [16]

developed two methods, namely BLLS and the so-

called singular value decomposition (SVD) estimator.

The naı̈ve approach yields the prediction

ŷna1̈ve,m ¼ âþT
m Xb̂

þ
m ¼ ðb̂þm � âþmÞ

T
x ð6Þ

where âm
+ and b̂m

+ denote the associated columns of

Â + T and B̂ + T, respectively (the superscript ‘ + ’

symbolises the Moore-Penrose pseudo-inverse). The

first step requires Â and B̂ to be full column rank

matrices, whereas the second step in Eq. (6) follows

from applying Eq. (1).

A note seems to be in order with respect to the case

where some of the columns of A and B are completely

overlapped with the remaining ones. This situation is

sometimes referred to as rank overlap. It is easily

verified that the naı̈ve approach is still feasible if the

analyte of interest is not involved in a rank overlap. One

simply replaces in Eq. (2) the profiles of the compo-

nents that are involved in a rank overlap by a corre-

spondingly smaller one, and adaptsYaccordingly. This

can be done without changing the notation. (For

example, M now denotes the number of components

minus the number of rank overlaps.)
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By comparing Eqs. (6) and (4), the naı̈ve regres-

sion vector is identified as

ĥna1̈ve,m ¼ b̂þm � âþm ð7Þ

It is shown elsewhere [18] that there is a close

connection between the naı̈ve approach and GRAM:

both methods yield predictions by pre- and post-

multiplying the data matrix of the prediction sample

with the pseudo-inverses of Â and B̂. A major

difference, however, is that GRAM does not estimate

A and B from the calibration set data. Instead, the

required estimates are obtained by constructing a

joint model for the calibration and prediction sample.

One of the consequences is that the predicted matrix

Ŷ is diagonal.

2.3.2. BLLS approach

As an improvement over the naı̈ve approach, Linder

and Sundberg [17] proposed the BLLS predictor.

Focussing on the analyte of interest, this procedure

yields

ŷ
BLLS,m ¼ ½ðÂTÂ*B̂TB̂Þ�1

diagðÂTXB̂Þ	m ð8Þ

where ‘*’ symbolises the element-wise Hadamard

product. Without errors inA andB, the BLLS predictor

is BLUE under the assumption that DX contains

homoscedastic white noise.

The BLLS predictor differs from the naı̈ve

approach in that it takes account of the special form

of Y. Stated differently: the BLLS approach is a so-

called constrained LS solution [22], where the con-

straint is that Y be diagonal. It is clear from Eq. (3)

that vectorising X effectively eliminates the zeros

from Y. Thus, unfold-PLS and unfold-PCR respect

the special form of Y too. Moreover, Eq. (3) implies

that the unfold-PLS and unfold-PCR regression

vectors estimate the column of D + T that is associ-

ated with the analyte of interest (index m). Con-

sequently, one expects that Eq. (8) can be rewritten

in a form akin to that of prediction using unfold-

PLS and unfold-PCR. The proof of this conjecture is

straightforward. Using [1]

D̂TD̂ ¼ ½d̂1,: : :,d̂M 	T½d̂1,: : :,d̂M 	

¼ ½b̂1 � â1,: : :,b̂M � âM 	T½b̂1 � â1,: : :,b̂M � âM 	

¼

b̂T1 b̂1 
 âT1 â1 : : : b̂T1 b̂M 
 âT1 âM

] O ]

b̂TMb1 
 âTM â1 : : : b̂TM b̂M 
 âTM âM

0
BBBB@

1
CCCCA

¼ ÂTÂ*B̂TB̂ ð9Þ

and

âTmXb̂m ¼ ðb̂Tm � âTmÞx ¼ d̂Tmx ð10Þ

Eq. (8) simplifies to

ŷ
BLLS,m ¼ d̂þT

m x ð11Þ

where d̂m
+ is the associated column of D̂ + T. By

comparing Eqs. (11) and (4), the BLLS regression

vector is identified as

ĥBLLS,m ¼ d̂þm ð12Þ

which establishes an algebraic relationship with

unfold-PLS and unfold-PCR. The setup of the data

only (matrix or vector form) determines this relation-

ship. Clearly, differences arise because of the crite-

rion used for estimation of ĥm. Unfold-PCR generates

scores that maximise the explained variance of the

calibration set response matrices. Subsequently, these

scores are regressed onto the analyte concentration

using ordinary least squares (OLS) to generate a model.

Similarly, unfold-PLS scores have maximum cova-

riance with the concentration vector subject to being

orthogonal to each other. In contrast, the BLLS param-

eters result from fitting the calibration set data matrices

in the LS sense. It is important to note that this LS fit is

different from the one obtained using the common

alternating least squares (ALS) algorithm, because

the analyte concentrations are assumed to be known.

The BLLSmethodmay have an advantage over unfold-

PLS and unfold-PCR, because the latter do not utilise

the bilinear structure of the instrument data. (For

example, unfold-PLS and unfold-PCR do not yield

estimates of the profile matrices A and B.) This con-

jecture is an interesting subject for further study.
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2.4. Effects of vectorisation

2.4.1. Effect on analytical figures of merit

For convenience, the effect of vectorisation is

derived in a relative form. UsingNĥnaı̈ve,mN=
��
b̂m
+

�âm
+
	
T

�
b̂m
+�âm

+
		

1/2=
�
b̂m
+ Tb̂m

+ 
âm+ Tâm
+
	
1/2=Nâm

+ N

Nb̂m

+N gives

NĥBLLS,mN

Nĥna1̈ve,mN
¼ Nd̂þmN

NâþmN 
 Nb̂þmN
ð13Þ

which is rewritten by introducing the scalar NAS as

NĥBLLS,mN

N ĥna1̈ve,mN
¼ Nâm*N 
 Nb̂m*N

Nd̂m*N
ð14Þ

where âm*, b̂m*, and d̂m* are the net analyte contributions

to âm, b̂m, and d̂m, respectively. Lorber [7] has already

given their calculation from the pseudo-inverse matri-

ces, e.g., Nâm*N =Nâm
+N� 1. Dividing the numerator

and denominator in Eq. (14) by Nd̂mN=NâmN
Nb̂mN
yields that

NĥBLLS,mN

N ĥna1̈ve,mN
¼ ðNâm*N=NâmNÞðNb̂m*N=Nb̂mNÞ

Nd̂m*N=Nd̂mN

¼
n̂A,m 
 n̂B,m

n̂D,m
ð15Þ

where nV 1 denotes Lorber’s selectivity [7] and the

subscript refers to the associated profile.

Eq. (15) enables an interpretation of the relative

size in terms of the selectivities. The higher efficiency

of the BLLS approach, i.e., the smaller amount of

error propagation according to Eq. (5), is proved as

follows. Messick et al. [14] have shown that

n̂D,mzmaxðn̂A,m,n̂B,mÞ ð16Þ

with equality holding if and only if at least one of the

first-order selectivities (n̂A,m or n̂B,m) equals unity.

Inserting inequality (16) in Eq. (15) results in

NĥBLLS,mN

Nĥna1̈ve,mN
V

n̂A,m 
 n̂B,m
maxðn̂A,m,n̂B,mÞ

¼ minðn̂A,m,n̂B,mÞ ð17Þ

which, using n̂V 1, implies that

NĥBLLS,mNVNĥna1̈ve,mN ð18Þ

with equality holding if and only if both first-order

selectivities equal unity.

The connection with the classical model is estab-

lished by observing that the ‘inverse sensitivity’ is the

reciprocal of the sensitivity. It is immediate that

sBLLS,mzsna1̈ve,m ð19Þ

Thus, the BLLS approach is more sensitive than

the naı̈ve one. It is emphasised that sensitivity with

respect to changes in analyte concentration is meant

here, not sensitivity of the model parameters and

predictions with respect to predictor noise. In contrast,

the opposite is inferred from Eq. (5). For the other

figures of merit, namely NAS, SNR, and LOD, similar

inequalities can be derived. Clearly, a higher sensi-

tivity implies a higher NAS as well as SNR and a

lower LOD. It is interesting to note that the early work

of Appellof and Davidson [23] already implies that

vectorisation improves the analytical figures of merit.

However, they do not give a proof of this property.

Finally, an implication of the current work is that

recent advances with respect to calculation of first-

order figures of merit [24] have wide applicability to

the multiway domain.

2.4.2. Effect on variance inflation factors

Linder and Sundberg [17] have proved that the

BLLS predictor is more efficient than its naı̈ve coun-

terpart. In other words, the variance inflation factors

should decrease upon vectorising the data matrices of

the calibration set. However, the amount by which the

variance inflation factors decrease is not clear. The

purpose of the current derivations is to take the work

of Linder and Sundberg one step further by quantify-

ing this decrease in terms of characteristics that are

easily determined from the data.

Using previously defined quantities, it is straight-

forward to rewrite the two sides of inequality (18) in

terms of variance inflation factors. For the naı̈ve

approach,

VÎFna1̈ve,muNĥna1̈ve,mN
2 ¼ NâþmN

2Nb̂þmN
2

¼ ðÂTÂÞ�1
mmðB̂TB̂Þ�1

mm ð20Þ
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Similarly, using Eq. (9),

VÎFBLLS,muNĥBLLS,mN
2 ¼ Nd̂þmN

2

¼ ðD̂TD̂Þ�1
mm ¼ ðÂTÂ*B̂TB̂Þ�1

mm ð21Þ

Combining Eqs. (18), (20), and (21) yields that

VÎFBLLS,mVVÎFna1̈ve,m ð22Þ

The quantities in inequality (22) can be seen as the

extensions of the variance inflation factors defined for

the first-order calibration model. In particular, the

variance inflation factor for the naı̈ve approach is

the product of the variance inflation factors associated

with the individual modes. This result should be

contrasted with the form obtained for the BLLS

approach: now the invertibility of D̂TD̂ = ÂTÂ*B̂
TB̂

counts, rather than the invertibility of ÂTÂ and B̂TB̂

separately.

Finally, the generalization of inequality (22) to

Nth-order multilinear data is obtained by replacing

the single product by a multiple product (in which the

order of the factors is immaterial).

3. Illustrative examples

We have conducted a small simulation study with

noiseless predictor arrays to illustrate the potential

effect of vectorisation. This effect is quantified in

terms of the relative efficiency of the naı̈ve approach

(g), which is obtained by inserting the true column

and row profiles in Eq. (15).

3.1. Extreme overlap in one of the modes

Inspection of Eq. (15) shows that a low relative

efficiency of the naı̈ve approach results if one of the

first-order selectivities is small. The reason for this is

that the signal in a highly overlapping mode does not

contain additional information, hence it will hardly

contribute to the overall second-order selectivity nD.
Consequently, nD must approach the first-order selec-

tivity of the other mode from above. Assuming almost

‘degenerate’ B-mode profiles yields that gc nD. With

these considerations in mind, a three-component sys-

tem is simulated by multiplying moderately overlap-

ped Gaussian elution profiles by the extremely

overlapped ultraviolet (UV) spectra of the proteins

myoglobin, a-chymotrypsin and carbon anhydrase

[25], see Fig. 1 ( J =K = 50).

3.2. Moderate overlap in both modes

This example is intended to yield a more favour-

able situation for methods such as GRAM, because

the overlap in the separate modes is less extreme. Fig.

2 shows the excitation and emission fluorescence

spectra of the amino acids tryptophan, tyrosine and

phenylalanine ( J = 61 and K = 201). These spectra

were obtained from a three-factor PARAFAC model

applied to the five samples contained in the data set

Fig. 1. (a) Simulated elution profiles and (b) experimental UV spectra for myoglobin (—), a-chymotrypsin (- - -), and carbon anhydrase (. . .).
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claus.mat, which is available in the N-way Toolbox

for Matlab [26].

4. Results and discussion

4.1. Extreme overlap in one of the modes

The characterisation of the elution profiles (col-

umns of A) and spectra (columns of B) as ‘moder-

ately’ and ‘extremely’ overlapped can be motivated

from their first-order selectivities (nA and nB, see

Table 1). For example, a value of 0.0282 for the UV

spectrum of myoglobin is equivalent to 2.82% of the

analyte spectrum being orthogonal to the space

spanned by the spectra of a-chymotrypsin and carbon

anhydrase [7]. Calibration of the resulting data matri-

ces using GRAM may be troublesome, because the

results depend on the overlap in the individual modes.

The true parameter vector is constrained not to pick up

signal from the interferences, since this would lead to

bias. As a result, it must be orthogonal to the space

spanned by the interferences. It follows that only

2.82% of the UV spectrum of myoglobin contributes

to the GRAM model. It depends on the amount of

predictor noise whether this amount of useful signal

suffices. One might argue that the selectivity values

for the spectra are unusually small. However, similar

values have been reported for applications of (first-

order) near-infrared spectroscopy [27,28]. For the

elution profiles, the effective loss of signal due to

overlap is less dramatic (nA is substantially larger than

nB). It is observed that the second-order selectivities

for the BLLS approach (nD) are slightly larger than

the first-order selectivities associated with the elution

profiles (nA), which is the expected behaviour. The

relative efficiency of the naı̈ve approach is poor; it is

‘best’ for a-chymotrypsin, which is explained from

the higher value for nB.
The selectivities can be used to customise an

analytical procedure to the specific needs of an

application, which is claimed to be one of the major

assets of analytical figures of merit. We will focus on

the effect of increasing the chromatographic resolu-

tion on the efficiency of the LS approach. (Kalivas

[29] has described how to improve the spectral

selectivity in high-performance liquid chromatogra-

phy (HPLC) with UV detection.) The nD values imply

that an analytical determination using the BLLS

approach is based on 34–50% of the total signal.

Increasing the chromatographic resolution to baseline

separation would yield nA values close to unity, which

directly translates to nD values close to unity. It

follows that the maximum reduction of standard error

of prediction is approximately a factor of two for

Fig. 2. (a) Excitation and (b) emission spectra for tryptophan (—), tyrosine (- - -), and phenylalanine (. . .).

Table 1

Selectivities and relative efficiency of naı̈ve approach for protein

data

Analyte Selectivity Relative

nA nB nA
nB nD efficiency

Myoglobin 0.499 0.028 0.014 0.502 0.028

a-Chymotrypsin 0.336 0.047 0.016 0.339 0.046

Carbon anhydrase 0.499 0.028 0.014 0.502 0.028

The symbols are explained in the text.
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myoglobin and carbon anhydrase and a factor of three

for a-chymotrypsin. Intermediate gain is obtained if

full baseline separation is not achieved. Fig. 5 in Ref.

[15] describes the relationship between chromato-

graphic resolution and first-order selectivity: the latter

increases almost linearly to approximately 0.9 when a

resolution of 0.5 is reached, after which it levels off. It

follows that only 10% of the maximum efficiency is

lost when settling for a rather poor resolution of 0.5.

This is believed to be useful information from the

practical point of view.

4.2. Moderate overlap in both modes

As expected, the relative efficiency of the naı̈ve

approach takes much higher values for the amino acid

data set (Table 2). The smallest values are obtained for

tryptophan (0.26) and tyrosine (0.24), because of the

relatively poor selectivity of their excitation spectra. It

is worth mentioning that the nD values approach the

ideal limit (unity). Although the BLLS approach is

certainly preferable from a precision point of view,

GRAM can often be a reasonable choice in practice.

This can be understood as follows. Unlike conven-

tional calibration methods, which construct a model

from calibration set data, GRAM constructs a joint

‘model’ for the calibration and prediction sample data

matrices [3]. In this way, GRAM ensures that the

analyte can be determined in the presence of unknown

interferences. This so-called second-order advantage

is already obtained using a single calibration sample.

In contrast, the other methods require that there be at

least as many calibration samples as the number of

independently contributing constituents. The need for

a calibration set that adequately spans the variation

expected in the prediction samples introduces many

practical problems. It is not uncommon that the

instrument responses as well as the samples may

change over time. These circumstances seriously ham-

per utilising a model for prediction. However, when

using GRAM, measuring both samples (calibration

and prediction) with short time intervals automatically

solves these kinds of problems. It is emphasised that

correction procedures have been developed to perform

conventional calibration while keeping the second-

order advantage. Öhman et al. [30] have proposed

the so-called residual bilinearization (RBL) to be

used in combination with unfold-PLS. The resulting

method, RBL–PLS, was compared to GRAM by

Öhman et al. [31] and Gerritsen et al. [32] for quanti-

tation from HPLC–UV data. No clear winner

emerged from these studies. Linder and Sundberg

[17] developed a procedure similar to RBL and noted

that it is unknown how this correction will affect the

precision of prediction.

5. Conclusions and outlook

Performance characteristics have been compared

for the BLLS approach, which is related to unfold-

PLS and unfold-PCR, and the naı̈ve approach, which

is similar to GRAM. The BLLS prediction approach

has a clear advantage in terms of precision of pre-

diction. In principle, GRAM seems to be promising

only if the overlap among the separate modes is

moderate and the second-order advantage is strictly

required (i.e., getting a representative calibration data

set is not feasible). The latter requirement seems to

restrict correct application of GRAM to the analysis of

complex samples (food industry, environmental appli-

cations, biological samples). Of course, the relevance

of the current discussions depends on the adequacy of

the approximations leading to Eq. (5).

An interesting subject for future research is to

investigate how other calibration methods relate to

the framework of Linder and Sundberg. For example,

Bro [33] has introduced multilinear PLS as a powerful

alternative to unfold-PLS. Bro gives an example

where the coefficient estimates are larger for multi-

linear PLS by approximately a factor of two (see Fig.

7 in Ref. [33]). However, the coefficient estimates are

much noisier for unfold-PLS, which violates one of

the assumptions behind Eq. (5). This explains why for

that particular example the prediction results are better

Table 2

Selectivities and relative efficiency of naı̈ve approach for amino

acid data

Analyte Selectivity Relative

nA nB nA
nB nD
efficiency

Tryptophan 0.260 0.961 0.250 0.970 0.26

Tyrosine 0.285 0.761 0.217 0.918 0.24

Phenylalanine 0.735 0.785 0.577 0.945 0.61

The symbols are explained in the text.
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for multilinear PLS. More extensive simulations cor-

roborate these observations [34]. An interesting result

is that in the absence of calibration error the regres-

sion vector obtained using multilinear PLS is different

from the BLLS vector. We have only been able to

determine that some coefficients are expanded,

whereas others are shrunk. Consequently, at this stage,

we do not know how multilinear PLS relates to the

framework of Linder and Sundberg.
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