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Abstract

Ž .The generalized rank annihilation method GRAM is a method for curve resolution and calibration that uses two bilinear
matrices simultaneously, i.e., one for the unknown and one for the calibration sample. A GRAM calculation amounts to solv-
ing an eigenvalue problem for which the eigenvalues are related to the predicted analyte concentrations. Previous studies
have shown that random measurement errors bring about a bias in the eigenvalues, which directly translates into prediction
bias. In this paper, accurate formulas are derived that enable removing most of this bias. Two bias correction methods are
investigated. While the first method directly subtracts bias from the eigenvalues obtained by the original GRAM, the second
method first applies a weight to the data matrices to reduce bias. These weights are specific for the analyte of interest and
must be determined iteratively from the data. Consequently, the proposed modification is called iteratively reweighted GRAM
Ž .IRGRAM . The results of Monte Carlo simulations show that both methods are effective in the sense that the standard error

Ž .in the bias-corrected prediction compares favourably with the root mean squared error RMSE that accompanies the original
quantity. However, IRGRAM is found to perform best because the increase of variance caused by subtracting bias is min-
imised. In the original formulation of GRAM only a single calibration sample is exploited. The error analysis is extended to
cope with multiple calibration samples. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The generalized rank annihilation method
Ž .GRAM enables the prediction of analyte concentra-

w xtion in the presence of unknown interferences 1 .
From the analytical perspective, it is desirable that the
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predicted analyte concentrations be labelled with a
measure of their uncertainty. However, to assess this
uncertainty, one has to investigate how measurement
errors propagate through the GRAM eigenvalue
problem, which is cumbersome owing to the com-
plexity of the algebra involved. While most re-

Žsearchers have focused on prediction variance see
w x .Ref. 2 and references therein , Booksh and Kowal-
w x w xski 3 and Faber et al. 4 have shown that random

measurement errors also bring about a prediction bias.

0169-7439r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0169-7439 00 00117-9



( )N.M. Faber et al.rChemometrics and Intelligent Laboratory Systems 55 2001 67–9068

ŽVariance quantifies the spread of an individual pre-
diction around the mean or expected value; in con-
trast, bias constitutes a systematic deviation of the

. w xmean value from the true value. Faber et al. 4 have
derived expressions for estimating and correcting bias

Ž . Ž .Fig. 1. Straight-line fitting with a zero and b substantial error
in the x-variable. The true intercept and slope are zero and unity,

Ž .respectively. In the first case, the line estimated using OLS — is
unbiased whereas in the second case a bias-correction is required.
For the current example, a successful bias-correction is obtained

Ž .using corrected least squares - - - .

in the eigenvalues which seem to work well if the bias
does not exceed 15%. However, the Monte Carlo

w xsimulations performed by Booksh and Kowalski 3
clearly demonstrate that bias may be as large as 20%.
Consequently, bias correction as proposed by Faber

w xet al. 4 is not generally applicable.
It is emphasised that the bias encountered in

GRAM is a general phenomenon. It can, for exam-
ple, be compared to the bias in the regression coeffi-

Ž .cients estimated by ordinary least squares OLS
when the predictors carry a non-negligible error. A
correction for bias is required to improve the regres-
sion coefficient estimates. This is illustrated in Fig. 1
where the results of fitting a straight line using OLS

w xand corrected least squares 5 are compared. For a
recent example in analytical chemistry, see Riu and

w xRius 6 who have studied this problem in the con-
text of method comparison.

The objective of this study is to develop an effec-
tive bias correction procedure. The adequate han-
dling of bias in the eigenvalues of GRAM would
constitute an important step towards the construction

Ž .of prediction interval and limit of detection LOD
estimators. Currently, these estimators are non-ex-
istent for the analytical problem at hand, namely, the
determination of analyte concentration in the pres-
ence of unknown interferences.

2. Notation and terminology

The following notation and terminology are main-
tained throughout Parts 1 and 2 of this series. To
simplify the presentation, additional notation for
showing a dependency on the weight factor is avoided
throughout. The identity of the analyte of interest is
not made explicit either.

2.1. General

Boldface uppercase letters represent matrices, e.g.,
A. The n=n identity matrix and n=m null matrix
are denoted by I and O , respectively. Columnn nm

vectors will be indicated by boldface lowercase let-
ters, e.g., a. Scalars are indicated by italic uppercase
or lowercase letters, e.g., A and a. Transposition of
a matrix or vector is symbolised by a superscripted
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‘T’, e.g., AT and aT. The Euclidean norm of a vector
v5 5or matrix is symbolised by . The trace and the

Ž . Ž .principal diagonal of a matrix are indicated by Tr P
Ž .and diag P , respectively. Vectorisation of a matrix

Ž .i.e., stacking its columns from left to right is indi-
cated by ‘vec’. The Kronecker product is symbolised
by ‘m’. For a given matrix A, the matrices Ay1 and

q Ž .A stand for its inverse and unique Moore–Penrose
pseudoinverse, respectively. The ‘inverse transpose’
and ‘pseudoinverse transpose’ of a matrix A are de-

yT Ž Ž y1.T Ž T .y1. qT Žnoted by A s A s A and A s
Ž q.T Ž T .q.A s A , respectively. Measured quantities
are distinguished from their errorless counterparts

˜Ž .true values by adding a ‘tilde’, e.g., A. It is impor-
tant to note that the notation for true and measured

w xquantities has changed relative to Ref. 4 . Likewise,
ˆestimated or predicted quantities carry a ‘hat’, e.g., A.

Expected value, variance, standard deviation, bias and
Ž . Ž .root mean squared error RMSE are denoted by E P ,

Ž . Ž . Ž . Ž .V P , s P , B P and RMSE P , respectively.

2.2. Net analyte signal

It has been shown that the variance expressions
w xoriginally derived for GRAM 2,4,7 can be simpli-

fied considerably using consistently defined analyti-
w xcal figures of merit for bilinear matrix data 8 . These

figures of merit are based on a suitable generalisa-
Ž .tion of Lorber’s scalar net analyte signal NAS for

w x Ž .vector data 9 i.e., multivariate calibration . The su-
perscripted ‘) ’ is used to symbolise the NAS, e.g.,
r).

2.3. The method of error propagation for obtaining
approximate expressions for bias and Õariance

The method of error propagation deals with the
way uncertainties in the input data are carried over or
propagated to the uncertainty in the final result of a

Ž .calculation estimate or prediction . The rationale can
be understood by considering the bias and variance in

˜ ˜the linear function aXqbY where a and b are con-
˜ ˜stants and X and Y random variables with expecta-

˜ ˜Ž . Ž .tions X and Y and variances V X and V Y , re-
˜Žspectively. The exact bias is zero because B aXq

˜ ˜ ˜ ˜ ˜. Ž ) Ž . Ž .bY 'E aXqbY yaXy bYsaE X q bE Y y
aXybYs0. Moreover, the exact variance is given

˜ ˜ 2 ˜ 2 ˜Ž . Ž . Ž .by V aXq bY s a V X q b V Y . For simple

non-linear functions, such as a x 2 random variable,
it is often possible to obtain exact bias and variance
expressions by calculating moments of its distribu-
tion. Unfortunately, the GRAM eigenvalue p is aˆ
complicated non-linear function, hence, its distribu-
tion is untractable and exact results for bias and vari-
ance are out of reach.

The method of error propagation handles this
non-linearity by expanding the eigenvalue as pspˆ
qdpqd2pq . . . where the prefix symbol dn is used
to symbolise the nth differential. The first differen-
tial constitutes a linear approximation of p while theˆ
higher-order terms describe the curvature. Thus, by
considering one term beyond the linear one, an ap-
proximate bias for p follows asˆ

B p 'E p ypŽ . Ž .ˆ ˆ

fE pqdpqd2p ypŽ .

sE d2p 1Ž . Ž .

Ž .where it has been used that E dp s0, which holds
Žbecause dp is a linear function of the input data see

Ž . w x.Eq. 21 in Part 2 10 , which are assumed to be un-
biased.

Likewise, an approximate variance for p is ob-ˆ
tained by truncating after the first-order term, which
is often referred to as local linearisation, i.e.,

2
V p 'E pyE pŽ . Ž .Ž .ˆ ˆ ˆŽ .

2fE pqdpyE pqdpŽ .Ž .Ž .
2sE dp 2Ž . Ž .Ž .

In summary, the method of error propagation
yields approximations to bias and variance by trun-
cating a series expansion. While the variance expres-
sion follows from a first-order approximation, a sec-
ond-order approximation is required to obtain a bias
expression. Vectors and matrices are handled in
straightforward fashion by applying similar expres-

w xsions to the individual elements 11 . The adequacy
of the obtained bias or variance expression is conve-
niently tested using Monte Carlo simulations.
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3. Theory

In this section, only the main results of the deriva-
tions are presented. The expression for determining
the bias in the eigenvalues is derived in Appendix A
while Appendix B deals with the uncertainty in the
formula-based bias estimates. For convenience, it is
assumed throughout that the measurement errors are

Ž .independently and identically distributed iid . The
handling of heteroscedastic and correlated errors,
which is the practical condition, is outlined in Ap-
pendix C. The fact that the generalization of the de-
rived expressions is straightforward can be seen as an
indication that the currently developed error analysis
is more than an exercise in futility. A simulation
technique, based on adding noise to the data, is de-
tailed in Appendix D. This technique is useful for as-
sessing the adequacy of approximate expressions in
practice.

3.1. Preliminaries

Accurate analyte determination requires that the
predicted value, c , falls close to the true value, c .ˆu u

A quantitative measure for the expected deviation
from the true value is given by the RMSE, which has
a variance and bias contribution:

2
RMSE c ' E c yc(Ž . Ž .ˆ ˆž /u u u

2 2
s E c yE c q E c yc( Ž . Ž .ˆ ˆ ˆŽ . Ž .ž /u u u u

2(s V c qB c 3Ž .Ž . Ž .ˆ ˆu u

Ž .Eq. 3 suggests a natural criterion for assessing
the effectiveness of bias correction. Correction for

Žbias leads to an increased standard error square root
.of the variance because a number is subtracted that

carries an uncertainty. Thus, a bias correction method
can only be called effective if the standard error in the
bias-corrected quantity compares favourably with the

ŽRMSE that characterises the original quantity see
.Fig. 2 . For the reason of assessing the effectiveness

of bias corrections, considerable attention will be
given to variance and standard error in the remainder
of this paper.

3.2. Gram eigenÕalue problem

The input of a GRAM calculation consists of J1

=J bilinear data matrices,2

˜ TR sXC Y qE0 0 0

˜ TR sXC Y qE 4Ž .u u u

˜ ˜where R and R are measured for the calibration0 u
Ž . Ž .and unknown sample, X J =K and Y J =K1 2

Žcontain the column and row profiles K is the num-
.ber of constituents , C and C are K=K diagonal0 u

matrices of concentrations, and E and E are J =J0 u 1 2

error matrices. For convenience, it will be assumed
throughout that the elements of E and E are inde-0 u

Ž .pendently and identically distributed iid with con-
˜ ˜ ˜Ž . Ž . Ž .stant variance V R sV R sV R . In addition, it0 u

is assumed that X and Y are full column rank matri-
w xces. Kiers and Smilde 12 give a separate treatment

of the case where some of the columns of X and Y
are completely overlapped with the remaining ones.
The current analysis still holds for the analyte of in-
terest if it is not involved in a so-called rank overlap.
For the results to carry through, one must replace the
profiles of the constituents that are involved in a rank
overlap by a correspondingly smaller number, and
adapt C and C accordingly. This can be done0 u

Žwithout changing the notation. For example, K now
denotes the number of constituents minus the num-

.ber of rank overlaps.
Ž .GRAM is a principal component analysis PCA -

based curve resolution method: In the first step,
Ž .orthogonal factors scores S and loadings L are

estimated by decomposing a data matrix using the
Ž .singular value decomposition SVD . In the second

step, which amounts to solving an eigenvalue prob-
lem, these factors are transformed to obtain estimates

Ž .for the column and row profiles X and Y . The main
difference with other PCA-based curve resolution

Žmethods e.g., evolving factor analysis or iterative
.target testing factor analysis is that the transforma-

tion step involves a second data matrix, namely, from
the calibration sample. This difference enables one to
obtain the quantitative information as well, since the
eigenvalues are directly related to analyte concentra-
tions in the unknown sample.
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ŽFig. 2. Illustration that bias-correction yields an increase of standard error. This numerical example will be treated in detail in the Results
. Ž .and discussion section. The probability density function of the original prediction c s28.96"1.58 is narrower than those for the twoˆu

Ž bc bc . Ž .bias-corrected predictions c s11.10"1.71 and c s14.46"3.39 . Since the true analyte concentration c is 10, both bias correctionsˆ ˆu u u

are successful in the sense that the increased variance is more than offset by the reduction of bias. However, one bias correction can be
regarded as more effective because the increase of the standard error is smaller.

In the general case, both samples contain sub-
stituents that are not present in the other one. Conse-

˜ ˜quently, neither R nor R alone can be used for the0 u

construction of the factor space. Sanchez and Kowal-´
w xski 1 have suggested decomposing the sum matrix

˜ ˜ ˜ ˜QsR qR , and projecting R onto the factoru 0 u

space to obtain the desired resolution for the analyte
of interest. Our proposed modification simply

˜ ˜ ˜amounts to decomposing QsR qaR , where au 0
1 w x/0 . It is noted that Leurgans et al. 13 discuss a

bilinear calibration method similar to GRAM where
˜ ˜weights can be applied to R and R . They also state0 u

a requirement on algebraic grounds, but choose the
Žvalue unity for the actual calculations. Here the

˜ .weight for R is unity. Only the main steps leadingu

to the modified GRAM eigenvalue problem are given

1 ˜Since R takes part in the decomposition as well as the pro-u
˜jection step, its weight is arbitrary as long as the weight for R is0

˜adjusted accordingly. To simplify the presentation, R has re-u

ceived the weight unity.

here to introduce the necessary quantities. For more
w xdetails about GRAM, see Refs. 1,12 .

For what follows, it is convenient to express the
˜ ˜relevant data matrices Q and R asu

˜ ˜ ˜ TQsR qaR sHY qEu 0 Q

˜ TR sHPY qE 5Ž .u u

Ž . Žw here H s X C q a C and P s C qu 0 u
.y1aC C .0 u

˜The SVD of Q yields

˜ ˆ ˆ ˆ T ˆQsUQV qE 6Ž .Q

ˆ ˆŽ . Ž .where U J =F and V J =F contain the left and1 2
ˆright singular vectors, Q is the F=F diagonal ma-

ˆtrix of singular values in non-increasing order, and EQ

denotes the residual matrix from the SVD model fit
˜ Žof Q only F significant factors are retained; F is an

.estimate of K . The SVD provides a convenient way
to perform a PCA, since the score and loading matrix
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can be expressed as SsUQ and LsV T, respec-
w xtively. Faber et al. 14 have listed several variations

of the GRAM eigenvalue problem. The following
form,

ˆ y1 ˆ T ˜ ˆ ˆ ˆ ˆQ U R V TsTP 7Ž .ž /u

is particularly attractive because it gives simple
transformation formulas for the factors resulting from
SVD, i.e.,

ˆ ˆ ˆ ˆHsUQT

ˆ ˆ ˆyTYsVT 8Ž .

ˆIt is seen that the F=F eigenvector matrix T
ˆ ˆ ˆtransforms the score matrix SsUQ, while its ‘in-

verse transpose’ transforms the transpose loading
ˆmatrix V.

The predicted analyte concentration, c , is ob-ˆu

tained as

c sac pr 1yp 9Ž . Ž .ˆ ˆ ˜ ˆ ˆu 0

where c and p denote the measured analyte con-˜ ˆ0

centration in the calibration sample and the associ-
ated eigenvalue, respectively. Estimation of a is a
key topic in the current paper.

Ž .Application of Eq. 9 implies that individual
eigenvalues can be identified as belonging to a par-
ticular analyte. In practice, this is achieved by com-

Ž .paring the estimated profiles e.g., the spectrum with
w xa reference profile 1 .

3.3. Bias in the eigenÕalues and predictions

The purpose of deriving bias expressions is to en-
able improving the predictions by correcting for bias.
It is shown in Appendix A that the bias in the eigen-
value p is given byˆ

2 ˜B p fvc 1y 1qa p V R 10Ž . Ž . Ž .Ž .ˆ

y1Ž .Ž . y1Žwhere vsJ J yKy1 J yK qJ J yK1 1 1 2 2
.Ž .y1 J yK and c is the associated diagonal ele-2

Ž T .y1Ž T .y1ment of Cs H H Y Y . This expression is
w xmore accurate than the one given in Ref. 4 .

Ž .Eq. 10 shows how the bias depends on the char-
acteristics of the data and the weight a , namely:

v size of the matrices and number of constituents:
Žexplicitly through v and implicitly through c c

tends to decrease with increasing J and J1 2
.while it tends to increase with increasing K ,

v overlap among the profiles: explicitly through c ,
v amounts of analyte in unknown and calibration

Žsample: explicitly through c , since HsX Cu
.qaC and explicitly through the eigenvalue0
Ž .psc r c qac ,u u 0

v level of the noise: bias is proportional to the
noise variance,

v Žthe weight a : explicitly through the term 1q
2 .a , H, and the eigenvalue p .

It will be detailed below how the weight can be
utilised to optimise the prediction.

It is noted that the presence of H and Y is some-
what misleading in the sense that it suggests that
profile estimates for all constituents are required for

Ž .the evaluation of Eq. 10 . However, it is shown in
w xRef. 15 that a diagonal element of C can be evalu-

ated using information pertaining to the analyte of
interest only. In short, the overlaps between the pro-

Ž .files of the analyte of interest h and y and the spaces
Žspanned by the profiles of the interferences the re-

.maining columns of H and Y are the relevant quan-
tities. Clearly, these overlaps do not depend on the
individual contribution of the interferences to these
spaces.

Ž .Starting from c sac pr 1yp , an exact ex-u 0

pression for the bias in the predictions is obtained by
adding a bias to the true eigenvalues, i.e.,

pqB pŽ .ˆ
c qB c sac 11Ž .Ž .ˆu u 0 1y pqB pŽ .Ž .ˆ

from which it follows that

ac B pŽ .ˆ0
B c s 12Ž .Ž .ˆu 1yp 1ypyB pŽ . Ž .Ž .ˆ

Ž .Two remarks seem to be in order. First, Eq. 12
holds independent of the method that is used to ob-

Ž .tain p . Second, Eq. 12 can be rewritten asˆ
c B pŽ .ˆu

B c s 13Ž .Ž .ˆu
p 1ypyB pŽ .Ž .ˆ
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and it is found that the percentage bias in c will beˆu
Ž .greater than the percentage bias in p if B p )yp .ˆ ˆ

Ž .Unfortunately, Eq. 13 does not give a solution for
c s0, and is therefore not suitable for actual calcu-u

lations.

3.4. Variance in the eigenÕalues and predictions

w xIt is derived in Part 2 10 that, assuming that the
measurement errors in the calibration sample matrix,
˜ ˜R , and the unknown sample matrix, R , are iid with0 u

˜ ˜ ˜Ž . Ž . Ž .variance V R sV R sV R , the variance in the0 u

eigenvalue p is given byˆ
y2 2

) 2 2 ˜V p f r 1yp qa p V R 14Ž . Ž . Ž .Ž .Ž .ˆ Q

) Ž .where r is the associated net analyte signal NASQ
Ž ) .y2in the decomposed matrix Q. The factor r hasQ

Ž .the interpretation of a variance inflation factor VIF
for the eigenvalues, because it quantifies the amount

Ž .of instrumental error propagation. Using Eq. 14 , it
w xis derived in Part 2 10 that the variance in the pre-

diction c is given byˆu

y2 ˜V c fs 1qh V R qh PV c 15Ž . Ž .Ž .Ž . Ž .ˆ ˜u u u 0

w xwhere s denotes the sensitivity 8,9 and h su
Ž .2 w xc rc is the unknown sample leverage 8 . Whenu 0

focussing attention to the instrumental errors, the fac-
tor sy2 has the interpretation of a VIF for the predic-

Ž .tions. Unlike the prediction bias Eq. 10 , the predic-
Ž .tion variance Eq. 15 does not depend on the weight

Ž .a to the order of the approximation, of course .

3.5. Practical eÕaluation of bias and Õariance ex-
pressions

Ž . Ž . Ž .The practical evaluation of Eqs. 10 , 12 , 14
Ž .and 15 amounts to inserting measured, estimated

and predicted quantities. However, the correct prac-
tical evaluation is essentially different for bias and
variance expressions. This can be understood as fol-
lows. Bias quantifies the deviation of the mean from
the true value, whereas variance is defined as the
spread around the mean. As a result, bias expressions
contain true values, whereas variance expressions
contain expected values. Practically, this amounts to

correct evaluation of bias expressions by inserting
bias-corrected quantities, whereas variance expres-
sions should be evaluated with quantities that carry a
bias.

Thus, the bias in p should be estimated asˆ

2ˆ ˆ ˆ ˆ ˜B p svc 1y 1qa pyB p V RŽ . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆŽ .
16Ž .

y1Ž .Ž . y1Žwhere vs J J yFy1 J yF q J J yFˆ 1 1 1 2 2
ˆ.Ž .y1 J yF in which FsK is the estimated di-2

mensionality of the GRAM model. It is recom-
mended to estimate K by building GRAM models of
increasing dimensionality and comparing the results.
When increasing F beyond K , the general features
of the estimated profiles will remain the same, but
their variance will increase. In addition, the predic-
tions will stabilise. Estimating the dimensionality of
a GRAM model is much easier than estimating the
pseudorank of a single data matrix, i.e., its mathe-
matical rank in the absence of noise, because the re-
sults of the GRAM calculation provide useful diag-
nostics.

It is emphasised that only the eigenvalue p isˆ
ˆcorrected for bias. The bias factor c need not be cor-

ˆ ˆrected for the bias in H and Y, owing to their inter-
Ž Ž Ž ..dependency see discussion of term in Eq. 44 in
.Appendix A . These considerations lead to

2ˆ ˆ ˜vc 1y 1qa p V RŽ . Ž .ˆ ˆ ˆ
B̂ p s 17Ž . Ž .ˆ

2ˆ ˆ ˜1yvc 1qa V RŽ . Ž .ˆ ˆ

It is noted that bias correction during the practical
w xevaluation of bias expressions is ignored in Ref. 4 ,

Ž .hence, Eq. 17 constitutes an improved calculation
method, which is applied to an improved formula.
Replacing the true values by bias-corrected quanti-

Ž .ties in Eq. 12 yields

ˆac B pŽ .ˆ ˜ ˆ0
B̂ c s 18Ž .Ž .ˆu ˆ1yp 1ypqB pŽ . Ž .ˆ ˆ ˆŽ .

Ž .and one observes that evaluating Eq. 12 without bias
ˆŽ .correction would have led to a minus sign for B p̂

in the denominator. Depending on the relative size of
ˆŽ .B p , the difference can be noticeable.ˆ
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In contrast, the estimated standard errors in p andˆ
c simply follow asˆu

1r2ˆs p sV pŽ . Ž .ˆ ˆ ˆ
1r2y1 2

) 2 2 ˜s r 1yp qa p s RŽ . Ž .Ž .ˆ ˆ ˆ ˆ ˆQ

19Ž .

and

1r2ˆs c sV cŽ . Ž .ˆ ˆ ˆu u

1r2
y2 ˆ ˆ ˜ ˆ ˆs s 1qh V R qh PV cŽ . Ž .ˆ ˜Ž .u u 0

20Ž .

˜ ˜ 1r2Ž . Ž . Ž . Ž .where s R sV R . Unlike Eq. 15 , Eq. 20
implicitly depends on the weight because a sensitiv-
ity and leverage are inserted that carry a weight-de-
pendent bias.

3.6. Bias-corrected predictions

A bias correction amounts to subtracting the ap-
proximate bias from the biased quantity, i.e.,

ˆac pyB pŽ .ˆ ˜ ˆ ˆŽ .0bc ˆc sc yB c s 21Ž .Ž .ˆ ˆ ˆu u u ˆ1ypqB pŽ .ˆ ˆŽ .
Since the subtracted bias carries an uncertainty,

this must be accounted for by an appropriately in-
creased variance of the bias-corrected prediction. To
first order, the variance in the bias-corrected predic-
tion is approximated by

2 2bc bcEc Ecu ubcV c f V a q V cŽ . Ž .ˆ ˆ ˜Ž .u 0ž / ž /Ea Ec0

2 2bc bcEc Ecu u ˆq V p q V B pŽ . Ž .ˆ ˆŽ .ž / ž /Ep EB pŽ .ˆ
22Ž .

Ž bc .where the partial derivatives Ec rEP are evaluatedu
Ž .at the errorless data R , R and c . The first term0 u 0

Ž .on the right-hand side of Eq. 22 is zero because,
with errorless data matrices, a variation of a is can-

Žcelled by the resulting variation in p a/0 by as-

.sumption . The remaining terms can be evaluated us-
ing

Ecbc
u y1sg a pyB pŽ .Ž .ˆ

Ec0

Ecbc
u y1 bcsg ac qcŽ .0 u

Ep

Ecbc
u y1 bcsyg ac qcŽ .0 u

EB pŽ .ˆ

Ž .where gs1ypqB p .ˆ
The variance in the analyte concentration of the

calibration sample, c , can be obtained by replica-˜0

tion, the variance in the eigenvalue, p , is given byˆ
Ž .Eq. 14 , and the variance in the bias in the eigen-

ˆŽ . Ž . Ž .value, B p , follows from Eq. 64 . Since Eq. 22ˆ
yields a variance, no bias-correction is applied to the

Ž .inserted values see Section 3.5 .

3.7. Weights for the data matrices

w xIn the original formulation of GRAM 1 , both data
matrices receive an equal weight, namely, as 1
Ž .fixed . However, the bias correction with as1 may
be inefficient when bias dominates variance. The
reason for this is that subtracting a large bias intro-
duces a large uncertainty. A potential improvement is

Ž .derived as follows. Eq. 10 reveals that the weight
a has a profound influence on the bias in p . In par-ˆ
ticular, approximate bias disappears altogether when

1qa 2spy1 s1qac rc 23Ž .0 u

from which it is immediate that the ideal value for a
is given by

a sc rc 24Ž .opt 0 u

Clearly, eliminating bias from p by direct appli-ˆ
Ž .cation of Eq. 24 is impossible because c is un-u

known. This implies that an iterative procedure
should be used to estimate a : Start with a Ž0.s1,ˆopt

which leads to the ‘ordinary’ GRAM eigenvalue
Ž0. Ž0. Žproblem. This yields the prediction c sc p r 1ˆ ˜ ˆu 0

Ž0..yp , from which the first update of the weight isˆ
calculated as a Ž1.s c rc Ž0.. Performing a newˆ ˜ ˆ0 u
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GRAM calculation with a Ž1. gives the updated pre-ˆ
diction cŽ1., and so on. At convergence, one has esti-ˆu

mates for a , p and c that are related asopt u

asc rcˆ ˜ ˆ0 u

psc r c qacˆ ˆ ˆ ˆ ˜Ž .u u 0

c sac pr 1yp 25Ž . Ž .ˆ ˆ ˜ ˆ ˆu 0

The method where the weight a is estimated to
reduce the bias in p will be referred to as iterativelyˆ

Ž .reweighted GRAM IRGRAM . It has to be repeated
for each analyte.

The following remarks concerning the ideal
weight, a , seem to be in order. First, it is easilyopt

verified that a GRAM prediction based on QsR u

qa R and R is equivalent to a GRAM predic-opt 0 u

tion based on Qsc R qc R and c R . In otheru u 0 0 u u

words, this weight amounts to weighing each data
matrix according to the analyte contribution to the
data, which is attractive from a symmetry point of
view. Second, to the authors’ best knowledge this
weighing procedure has no analogue in the univari-
ate and multivariate domain.2 In this paper we use
Monte Carlo simulations to demonstrate its viability.
Third, the ideal weight requires that c /0. Whenu

predicting a strictly positive quantity such as analyte
concentration, this condition reduces to c )0. Con-u

sequently, application of IRGRAM becomes prob-
lematic when the analyte is present at trace levels. We
are currently investigating alternatives to deal with
this problem. Fourth, it is noted that, at convergence,

Ž .the estimated bias in p will be zero exactly . How-ˆ
ever, the true bias in p will not be zero because Eq.ˆ
Ž .10 is approximate and the ‘ideal’ weight has been
determined from the predicted analyte concentration,
which is certainly not free from error. It is seen that,
in essence, IRGRAM amounts to subtracting an un-
certain zero from p . This uncertainty is effectivelyˆ

2 For example, the seemingly related method of locally weighted
regression has an entirely different background. However, Linder

w xand Sundberg 16 have developed a method for the calibration of
bilinear data where a similar weighing plays a key role. Interest-
ingly, the weights are based on considerations about prediction
variance; they follow from solving a least-squares problem. No
weight is applied to the unknown sample, because it is not in-

w xcluded in the modeling step. For more details, see Ref. 16 .

accounted for in the variance of the bias-corrected
Ž .prediction through the last term in Eq. 22 . Fifth, in

certain applications, such as quality control, the same
calibration sample is used several times. Under these
circumstances, it could be worthwhile in terms of re-
duced prediction variance to measure the calibration
data matrix to a higher precision than intended for the
unknown samples. It is easily verified that the ex-
pression for the ideal weight changes to a sopt

˜ ˜Ž . Ž Ž . Ž ..c rc r V R rV R .0 u 0 u

3.8. Multiple calibration samples

GRAM is often discussed as a method that can
only exploit a single calibration sample. However, a
straightforward generalisation to multiple calibration
samples is obtained by adding the calibration sample
data matrices to emulate the single calibration sam-

w x Ž .ple case 13 . Thus, similar to Eq. 5 , the relevant
matrices are

N
T˜ ˜ ˜QsR qa R sHY qEÝu n Q

ns1

˜ TR sHPY qE 26Ž .u u

where N denotes the number of calibration samples,
R is the data matrix for the nth calibration sample,n

HsX C qaÝN C in which C contains theŽ .u ns1 n n

concentration for the nth calibration sample, and
Ps C qaÝN C

y1
C .Ž .u ns1 n u

All main results derived for the single-calibra-
tion-sample case carry over to the multiple-calib-
ration-samples case after making the following sub-
stitutions:

v Ž .Eq. 10 : insert the appropriate expressions for c
and p .

v Ž .Eq. 12 : replace c by the average analyte con-o

centration for the calibration set, c, and insert the
Ž .adapted Eq. 10 and the appropriate expression

for p .
v Ž .Eq. 14 : insert the appropriate expressions for

r ) and p .Q
2 2

v Ž .Eq. 15 : replace c by Nc in the expression foro

the leverage. It is noted that this substitution is
w xat variance with the formula given in Ref. 8 .

v Ž .Eq. 24 : the ideal value for a is given by aopt

scrc .u
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The effect of increasing the calibration set on aopt
Ž .is immediate, whereas the consequences for Eqs. 10 ,

Ž . Ž .12 , and 14 are less clear. Straightforward manipu-
lations show that the approximate prediction vari-

Ž .ance Eq. 15 will decrease if the analyte concentra-
wŽ 2tion in the additional sample exceeds the value N

1r2. xqN yN c. For Ns1, one obtains the value
'Ž .2 y1 c f0.4c , while for large N, this expres-0 0

sion converges to 1r2c. These relationships should
be useful for the design of calibration samples.

4. Experimental

Monte Carlo simulations are performed to test the
adequacy of the proposed handling of prediction bias.
These simulations amount to generating a series of
independent data sets with artificially added noise.
Bias can be determined from the deviation of the
mean from the true value, while variance follows
from the spread around the mean. The large number
of replicates used in this work, namely 10000, en-
sures that the simulation results are much more pre-
cise than the formula-based quantities.

4.1. Construction of the data matrices

Three-component systems are simulated by multi-
Ž .plying Gaussian elution profiles Table 1 by experi-

Ž .mentally obtained ultraviolet UV spectra of ade-
w x Ž .nine, cytidine and guanine 17 Fig. 3 . Thus, the

column profiles are elution profiles while the row
profiles constitute spectra. In the remainder of the
paper, it should be clear from the context what is
meant by the term ‘profile’. The spectra are nor-
malised to make the contribution to the total variance

Table 1
Description of simulated elution profiles

Simulation parameter Adenine Cytidine Guanine

Peak position 300 400 500
Standard deviation peak 120 120 120
Peak height calibration sample 100 100 100
Peak height unknown sample 200 100 10

proportional to the square of the peak height. Nor-
mally distributed noise is added with the standard

˜Ž .deviation s R taking the values 0.5, 1 and 2, re-
Ž .spectively. The number of spectra or time steps J1

is 800, while the number of elution profiles or UV
Ž .channels J is 36.2

4.2. Variances of the measurement errors

The practical evaluation of expressions derived in
˜Ž . Ž .this paper requires estimates for V R and V c . It˜o
˜Ž .is noted that for all calculations, V R is kept fixed

˜Ž . Ž .while V c s0. Maintaining a fixed value for V R˜o

is based on the consideration that the formula-based
quantities are validated with the results of extensive
Monte Carlo simulations. Stated differently: the pur-
pose of the Monte Carlo simulations is to verify that
the predicted amount of error propagation is correct,

Ž .given the size variance of the error. As long as both
Ž .approaches formula and Monte Carlo simulations

˜Ž .use the same value for V R , it is immaterial whether
this variance is estimated or fixed.

Often, good noise estimates can be obtained using
w x w xreplication 18 . However, Wang and Hopke 19 have

shown that one can also estimate the noise from the
residuals of SVD. The underlying assumption of their
method is that the data sets are large enough so that
the standard deviation of the noise is constant over a
small region. Then, averaging the squared residuals of
a certain number of neighbours yields a variance es-
timate for the data element under consideration. Al-
though their method only leads to estimates of het-
eroscedasticity, it is easily adapted to account for
correlations by also averaging cross products of the
residuals. Formally, correct application of this
method requires that the dimensionality of the SVD
model be known, e.g., from prior knowledge about
the constitution of the sample.

Ž .The condition V c s0 amounts to not investi-˜o

gating the effect of the uncertainty in the concentra-
tion in the calibration sample. The reason for doing
so is that this uncertainty invariably contributes

Žthrough terms that are not specific for GRAM. It is
immaterial which method yields the concentration ra-
tio, which now follows from solving an eigenvalue

. Ž .problem. Moreover, the contribution of V c be-˜o
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Ž . Ž . Ž . Ž . Ž .Fig. 3. a Simulated elution profiles and b real UV spectra of adenine — , cytidine - - - and guanine PPP . The elution profiles are
normalised to remove sample-dependency through peak heights.

comes apparent through manipulating scalar expres-
sions. It is reasonable to assume that the approxima-

tions involved need not be validated, since they are
fairly standard.
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4.3. Calculations

All calculations were performed in Matlab version
Ž .4.2c The Mathworks, Natick, MA . A copy of the

program is available on request.

5. Results and discussion

The simulations are designed to produce the
largest relative bias for guanine; hence, most atten-
tion will be directed to this analyte. It is further noted
that, when using IRGRAM for optimising the weight
factor for guanine, the results may deteriorate for
adenine and cytidine. This effect is not shown, since

Žit is implied by the procedure. IRGRAM should be
.applied to each analyte separately.

5.1. Description of the data matrices

Inspection of variance and bias expressions shows
that the quality of the data is determined by the com-
bination of overlap and level of the noise; hence, the

Žindividual characterisation of elution profiles Table
. Ž .1 and spectra Fig. 3 only yields limited insight.

Useful summary statistics are the analytical figures of
w x Ž .merit proposed by Faber et al. 8 Table 2 . The NAS

specifies the amount of the pure analyte data matrix
Ž .that contributes to the model. According to Eq. 14 ,

it determines how instrumental errors propagate to the
variance in the eigenvalues. The sensitivity, being the
ratio of NAS and analyte concentrations, can be
compared with the slope of a univariate calibration

w x Ž .graph 8 . According to Eq. 15 , it determines how
instrumental errors propagate to the variance in the
predictions. For convenience, peak height plays the

Table 2
Analytical figures of merit for data matrices

Figure of merit Adenine Cytidine Guanine

NAS calibration sample 148 156 112
NAS unknown sample 296 156 11.2
Sensitivity 1.48 1.56 1.12
Selectivity 0.10 0.11 0.08

Žrole of analyte concentration in this work. Thus, the
sensitivity is obtained as the ratio of the NAS, given
in Table 2, and the appropriate peak height given in

.Table 1. Finally, the selectivity gives the fraction of
the pure analyte data matrix that contributes to the
model. It is observed that approximately 90% of the
pure analyte data matrices does not contribute to the
model because of overlap with the interferences. The
selectivity values can be used to assess to what ex-
tent propagation of instrumental errors can be re-
duced, which is important information if a method is
to be designed or optimised to meet specific needs.

5.2. Bias in the estimated profiles

It is derived in Appendix A that bias in the profile
estimates does not contribute to bias in the predic-
tions, which is somewhat counterintuitive. The valid-
ity of this result is, however, easily verified by in-

Ž .serting bias-corrected profiles in Eq. 17 . Since we
have not been able to derive an expression for this
bias, we resort to the simulation method detailed in
Appendix D. Using the setting N s1000, V s0.1add 1

and V s0.2, the largest effect of the bias correction2
˜Ž .is observed at the intermediate noise level, i.e., s R

Ž .s1 and weight 10 or 9.76 : the RMSE is reduced
Ž .by a factor 3 Fig. 4 . Even for this rather extreme

case, inserting the bias-corrected profile estimates in
Ž .Eq. 17 did not have a palpable effect.

5.3. Bias in the eigenÕalues if ideal weight is used

IRGRAM is based on the assumption that bias
vanishes if the ideal weight is used. This assumption
is easily verified by applying the standard GRAM to
cytidine, since the true cytidine peak heights are
identical for the calibration and unknown sample. The
Monte Carlo simulations show that prediction bias is
orders of magnitude smaller than the standard error;

Žthe RMSE is hardly affected by prediction bias Ta-
.ble 3 . The standard error in the estimated bias is cal-

culated as the standard error in the mean from which
the bias is calculated. Since the mean is based on
10,000 replications, this standard error is 1% of the

Žstandard error in a single replication. The latter stan-
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Ž . Ž . Ž . Ž . Ž .Fig. 4. Errors in estimated UV spectra of adenine — , cytidine - - - and guanine PPP : a without bias correction, and b after bias
correction.

.dard error is reported in the next column. Taking into
account that these simulations are designed to pro-

Ž .duce a large prediction bias see below , it can be in-
Ž .ferred that the cancellation in Eq. 10 is effective.
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Table 3
Ž .Monte Carlo estimates of errors bias, standard error and RMSE

Ž .in estimated eigenvalues for cytidine asa s1 . The numbersopt

in parentheses denote the standard error in the last reported digits.
The symbols are explained in the text

a˜ ˆ ˆŽ . Ž . Ž . Ž . Ž . Ž . Ž .s R B p % s p % RMSE p %ˆ ˆ ˆ ˆ
Ž .0.5 q0.002 2 0.23 0.23
Ž .1 q0.008 5 0.46 0.46
Ž .2 q0.029 9 0.94 0.94

a Ž .Calculated using Eq. 3 .

5.4. Bias in the eigenÕalues as a function of the se-
lected weight

The results for guanine are summarised in Table
4. The second column gives the value for the weight
factor. Since the eigenvalue itself varies with the

Žweight, all uncertainties bias, standard error and
.RMSE are reported as a percentage of the true value

to enhance the interpretability. Selecting the weight
unity, which amounts to the standard GRAM calcula-
tion, yields a large bias in the eigenvalues. A weight
of 10 is ideal for guanine, since the peak heights are
100 and 10 for the calibration and unknown samples,
respectively. The values 9.96, 9.76 and 9.01 are the

Žestimates produced by IRGRAM. Convergence is
obtained in 5, 7 and 11 iterations, respectively, when
iterating until the relative change in the weight falls

y6 .below 10 . As expected, the deviation from the
ideal value of 10 tends to increase with increasing
noise level. It is important to note, however, that the
weight 9.01 has led to results that are quite similar to
the ones obtained using the ideal weight. This obser-
vation suggests that the results are not very sensitive
with respect to the value of the weight, which lends
support to IRGRAM.

Using the ideal weight of 10 leads to a small bias
at all noise levels: the Monte Carlo estimates are
hardly larger than the associated standard error. Esti-
mating the ideal weight yields a zero bias estimate,
which is indicated by the associated standard errors.
It seems that these standard errors are less influenced
by the exact value of the weight than the bias esti-
mates themselves.

w xThe old calculation method for bias 4 yields the
values q11.1%, q29.8% and q49% for the stan-

Ždard GRAM no standard error was derived in Ref.
w x. Ž . Ž .4 , instead of q 12.8 9 % , q 45 6 % and

Ž . Ž . Ž .q108 26 %, when using Eqs. 17 and 64 . The im-
provement is obvious from a comparison with the

Ž . Ž .Monte Carlo results: q12.94 4 %, q47.26 7 % and
Ž .q140.0 1 %. Only for the highest noise level, the

Ž .estimate obtained from Eq. 17 is somewhat too
small. The excellent agreement between the formula-
based bia and the Monte Carlo values as the lowest
two noise levels suggests that adequate bias correc-
tion is feasible during the practical evaluation of bias
expressions.

Table 4
Ž . Ž .Estimated eigenvalues and associated error estimates bias, standard error and RMSE for guanine a s10 . The numbers in parenthesesopt

denote the standard error in the last reported digits. The symbols are explained in the text

y2 y2 a˜ ˆŽ . Ž . Ž . Ž .Ž .s R a p =10 p =10 Formula Monte Carlo RMSE p %ˆ ˆ ˆ
b cˆ ˆŽ .Ž . Ž .Ž . Ž .Ž . Ž .Ž .B p % s p % B p % s p %ˆ ˆ ˆ ˆ ˆ ˆ

Ž . Ž .0.5 1 9.09 10.3 q12.8 9 3.95 q12.94 4 3.93 13.5
Ž . Ž .10 0.99 0.99 y0.01 7 4.43 y0.05 4 4.42 4.42

Ž . Ž .9.96 0.99 1.00 0.00 7 4.43 y0.04 4 4.42 4.42
Ž . Ž .1 1 9.09 13.6 q45 6 7.17 q47.26 7 7.05 47.8
Ž . Ž .10 0.99 1.01 y0.2 6 8.71 y0.10 9 8.68 8.68

Ž . Ž .9.76 1.01 1.04 0.0 6 8.72 q0.05 9 8.68 8.68
Ž . Ž .2 1 9.09 22.5 q108 26 10.5 q140.0 1 10.4 140

Ž . Ž .10 0.99 1.07 y2 4 16.3 y0.2 2 16.2 16.2
Ž . Ž .9.01 1.10 1.22 0 4 16.3 q2.2 2 16.2 16.3

a Ž .Calculated using Eq. 3 .
b Ž .Calculated using Eq. 17 .
c Ž .Calculated using Eq. 19 .
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Close inspection of the Monte Carlo results shows
that the bias does not scale up as expected from Eq.
Ž .10 : doubling the size of the standard deviation of the
measurement errors does not quadruple the size of the
bias. The deviation from the ‘ideal’ behaviour is only
moderate for the intermediate noise level, which ex-
plains why the bias expression still works well in that
regime. However, this approximate formula must
break down when going to the highest noise level,
since bias scales up by a factor of three instead of
four. It follows that the formula-based standard error
cannot be trusted either, although it appears to be
reasonable.

ŽThe bias addition method N s1000, V s0.1add 1
. Ž . Ž .and V s0.2 yields the values 12.2 5 %, 40 2 % and2

Ž .84 5 %. Thus, only at the lowest noise level, this
method works well with the current setting. More-
over, the failure at the higher noise levels is not re-
flected in the standard error obtained as the square

Ž .root of Eq. 78 , which is somewhat disturbing. This
failure can, however, be conveniently explained.
When adding noise at two levels, one assumes that the
bias increases linear with variance. For the current
data sets, which are especially constructed to lead to
large biases, this assumption is not realistic. It seems
likely that the results can be improved by adding
noise at more than two levels. However, this possi-
bility is not pursued here, since the noise addition
method is merely used to confirm that bias in the

profile estimates does not contribute to bias in the
predictions.

5.5. Bias in the predictions as a function of the se-
lected weight

ŽIn Table 5, the uncertainties in the prediction bias,
.standard error and RMSE are reported as a percent-

age of the true values to facilitate the comparison with
the numbers in Table 4. The prediction bias follows
similar trends as the bias in the eigenvalues.

5.6. Standard error in the predictions as a function
of the selected weight

The formula-based standard error in the predic-
Žtions varies slightly with the applied weight column

.6 of Table 5 . This behaviour is not expected from Eq.
Ž . Ž .15 , which, unlike the bias expression 12 , does not
contain the weight. However, a slight dependence on
the weight is expected from the practical evaluation

Ž . Ž .of Eq. 15 using Eq. 20 . The reason for this is that
the inserted values for sensitivity and leverage are
biased. The excellent agreement between the for-
mula-based standard errors and the Monte Carlo val-
ues corroborates that biased values should be in-

Ž .serted in Eq. 20 . Since the leverage term only makes
a tiny contribution to prediction variance, the re-
mainder of the discussion focuses on sensitivity. The

Table 5
Ž . Ž .Estimated peak heights and associated error estimates bias, standard error and RMSE for guanine a s10 . The numbers in parenthesesopt

denote the standard error in the last reported digits. The symbols are explained in the text

a˜ ˆ ˆ ˆŽ . Ž .Ž .s R a H s Formula Monte Carlo RMSE H %ˆ ˆ
b cˆ ˆ ˆ ˆ ˆ ˆŽ .Ž . Ž .Ž . Ž .Ž . Ž .Ž .B H % s H % B H % s H %ˆ ˆ

Ž . Ž .0.5 1 11.48 1.13 q14.3 10 4.46 q14.44 4 4.43 15.1
Ž . Ž .10 10.04 1.12 y0.01 8 4.47 y0.05 4 4.46 4.46

Ž . Ž .9.96 10.04 1.12 0.00 8 4.47 y0.04 4 4.46 4.46
Ž . Ž .1 1 15.71 1.16 q52 7 8.73 q54.63 9 8.55 55.3
Ž . Ž .10 10.23 1.14 y0.2 6 8.80 y0.10 9 8.77 8.77

Ž . Ž .9.76 10.24 1.14 0.0 6 8.81 q0.06 9 8.77 8.77
Ž . Ž .2 1 28.96 1.31 q145 32 15.8 q179.2 2 15.4 180

Ž . Ž .10 10.86 1.22 y2 4 16.5 y0.2 2 16.4 16.4
Ž . Ž .9.01 11.10 1.22 0 4 16.5 q2.3 2 16.3 16.5

a Ž .Calculated using Eq. 3 .
b Ž .Calculated using Eq. 18 .
c Ž .Calculated using Eq. 20 .
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bias in the sensitivity becomes clear from the values
reported in column 4 of Table 5: sensitivity is biased

Župwards for all cases considered in this work the true
.value is 1.12, see Table 2 . As a consequence, the

propagation of measurement errors is smaller than
expected from the true value 1.12. In addition, it is
observed that the sensitivity is largest for the cases
with unity weight. Deriving a bias expression for the
sensitivity could lead to a better understanding of
these effects. This question is, however, not further
pursued here.

5.7. Adequacy of bias correction

The predicted peak heights in column 3 of Table
5 are bias-corrected using the bias estimates given in

Ž .column 5 of Table 5 see Table 6 . The standard er-
rors in the bias-corrected peak heights are given as
absolute values now because these numbers consti-
tute the final results. As expected from the results
presented above, applying IRGRAM is almost equiv-

Ž .alent to fixing the weight to the ideal value 10 at all
noise levels. At the lowest noise level, the original
GRAM performs as good as IRGRAM because the
subtracted bias carries an uncertainty that is negligi-
ble compared with the standard error in the original

Žquantity 0.10% in column 5 versus 4.46% in col-
.umn 6 . At the intermediate noise level, however, the

original GRAM leads to a 20% larger standard error
in the bias-corrected prediction because a bias is sub-

Žtracted that carries a relatively large uncertainty 7%

Table 6
Results of bias correction. The symbols are explained in the text

bca bc b˜ ˆ ˆŽ . Ž .s R a H s Hˆ ˆ

0.5 1 10.06 0.45
10 10.04 0.45
9.96 10.04 0.45

1.0 1 10.49 1.06
10 10.24 0.88
9.76 10.24 0.88

2.0 1 14.46 3.39
10 11.09 1.71
9.01 11.10 1.71

a Ž .Calculated using Eq. 21 .
b Ž .Calculated using Eq. 22 .

.versus 8.73% . Obviously, the difference between the
original GRAM and IRGRAM is most pronounced at
the highest noise level: the standard error in the
bias-corrected prediction is smaller by a factor of two
by applying the iteratively determined weight first
Ž .see Fig. 2 .

6. Conclusions and outlook

Substantial progress has been achieved with re-
spect to the handling of prediction bias when using
GRAM. In the current simulation study, IRGRAM
has performed best in the sense that the increase of
prediction variance due to subtracting bias is small-
est. The results suggest that the exact value of the
weight is not critical, which is important from the
practical point of view. Future research should be
concerned with testing the developed methodology in
practical situations where heteroscedastic and corre-

Ž .lated noise may be encountered see Appendix C . It
is expected that the improved handling of prediction
bias will impact method comparison studies. It should
be interesting to see, for example, how the improved
GRAM compares with a competing method such as

Ž .alternating least squares ALS .
The problem of determining bias in the profile es-

timates has been approached using a simulation tech-
nique where noise is added to the data matrices.
However, obtaining satisfactory results using noise
additions implies a considerable increase of work-
load; hence, it is desirable that bias expressions be
derived for the profile estimates as well.

It is remarkable that the prediction variance de-
pends only slightly on the weighing of the data; the
weight factor a primarily affects prediction bias.
There is a similarity between the currently developed
bias correction device and the method of principal

Ž . w xcovariate regression PCovR 20 because PCovR
also contains a weighing factor that is optimised with
respect to prediction error. In PCovR, an eigenvalue
problem is solved to calculate scores that yield an
optimal reconstruction of both the predictor matrix X
and the predictand matrix Y. Investigating how the
weight factor in PCovR affects prediction variance
and bias could be an interesting subject for future re-
search.
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( )Appendix A. Derivation of Eq. 10

Deriving an accurate expression for bias in the
eigenvalues is complicated. In fact, the purpose of the

w xcurrent derivation is to replace an earlier attempt 4
that was only partly successful. To better understand
the basic strategy, it is illustrative to look at a uni-
variate example first. Consider the problem of esti-
mating the quotient of two random variables, i.e., ẑ
s xry. This example is taken from the work of˜ ˜

w xMoran and Kowalski 21 who examined the effect of
random experimental error on variance and bias in the
initial concentrations calculated by the generalized

Ž .standard addition method GSAM . No assumption is
made about the shape of the distribution of x and y˜ ˜
Ž .e.g., normal or uniform . It is only required that the
variances be finite, the input data should be unbi-

Ž . Ž . Žased, i.e., E x s x and E y s y, and y/0 to˜ ˜
.avoid a possible divide by zero . Expanding z toˆ

second order yields

zs xqd x r yqd yŽ . Ž .ˆ

2y1 y2 y3s xqd x y yy d yqy d y y . . .Ž . Ž .Ž .

fzqd zqd2 z

2y1 y2 y3s xqd x y yy d yqy d y 27Ž . Ž . Ž .Ž .

This expansion holds provided the relative error
yy1d y is less than unity, which is a reasonable re-

Ž . Ž .quirement. The bias in z is defined as B z 'E zˆ ˆ ˆ
Ž .yz. Taking expectation of Eq. 27 shows that the

first-order terms will not contribute because the data
is unbiased by assumption. It follows that determin-
ing bias amounts to evaluating the second differen-
tial. Discarding terms of order higher than two gives

B z fE d2 zŽ . Ž .ˆ

2y2 y1 y1sz y E d y yx y E d xd yŽ . Ž .Ž .ž /
sz yy2 V y yxy1 yy1 C x , y 28Ž . Ž .Ž .˜ ˜ ˜Ž .

It is observed that the approximate bias in z con-ˆ
tains a variance as well as a covariance term that tend

to cancel. This behaviour is also expected for the
approximate bias in the eigenvalues because deter-
mining the desired concentration ratios can be in-
terpreted as a ‘division’ of matrices for which the in-
dividual elements are correlated for the currently
studied modification of GRAM.

The preceding discussion suggests that working
out the appropriate expression for the second differ-

w xential of the eigenvalue function 11 can yield an
approximate bias. However, working out this expres-
sion requires making the errors in the diagonalised
matrix explicit, which constitutes a formidable task,
since this matrix is a product of four matrices of
which three are estimated themselves. Thus, it is pre-
ferred to start from the expression that enabled the
straightforward derivation of variance expressions
w x2,4 , i.e.,

ˆ ˆ q ˜ ˆ qTPsH R Y 29Ž .u

ˆTo second order, P is approximated as

ˆ 2PfPqdPqd P 30Ž .

and the goal of the derivation is to determine the bias
ˆin P by working out

ˆ ˆ 2B P 'E P yPfE d P 31Ž . Ž .Ž . Ž .

First, we will introduce some notation that allows
Ž .the straightforward expansion of Eq. 29 . By com-

˜Ž . Ž .bining Eqs. 6 and 8 , Q is expressed as

˜ ˆ ˆ T ˆQsHY qE 32Ž .Q

so that

ˆ ˜ ˆ qTHsQY

ˆ ˜ T ˆ qTYsQ H 33Ž .

To second order, these profile estimates are ap-
proximated as

ˆ 2HfHqdHqd H

ˆ 2YfYqdYqd Y 34Ž .
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The key step in the derivation is to construct a de-
˜ Ž .composition of R that is similar to Eq. 32 , namely,u

˜ ˆ ˆ T ˆR sH PY qE 35Ž .u u u u

The requirement for the artificially constructed
ˆ ˆprofiles H and Y is that they capture all correlationu u

˜ ˜between the data matrices Q and R so that, eventu-u
Ž . Žally, the analogue of Eq. 28 can be obtained. In

particular, there should be no contribution from the
ˆ ˆ.residual matrix E . Some afterthought shows that Hu u

ˆ ˆ ˆ Ž .and Y are found, similar to H and Y in Eq. 33 , asu

ˆ ˜ ˆ qT y1H sR Y Pu u u

ˆ ˜ T ˆ qT y1Y sR H P 36Ž .u u u

The inverse eigenvalue matrix provides the cor-
rect scaling. It will cancel in the sequel so that a di-
vision by zero will not occur. Since the true eigen-

ˆ ˆvalues are involved, H and Y cannot be evaluated.u u

To second order, these artificial profiles are approxi-
mated as

ˆ 2H fHqdH qd Hu u u

ˆ 2Y fYqdY qd Y 37Ž .u u u

Ž . Ž .Inserting Eq. 35 in Eq. 29 yields

ˆ ˆ q ˆ ˆ T ˆ ˆ qTPsH H PY qE Y 38Ž .ž /u u u

which is worked out by expanding the estimated
pseudo-inverse matrices in terms of the differentials

ˆ ˆof H and Y. By assumption, H and Y are full col-
umn rank matrices. Unless the estimation errors are
so large that GRAM breaks down, this property car-

ˆ ˆries over to H and Y so that

y1
q T Tˆ ˆ ˆ ˆH s H H HŽ .

y1
q T Tˆ ˆ ˆ ˆY s Y Y Y 39Ž .Ž .

Ž .Using Eq. 34 , the first cross-product matrix in
Ž .Eq. 39 is approximated as

ˆ T ˆ T T T TH HfH HqH dHq dH Hq dH dHŽ . Ž .

qHTd2 Hq d2 HT H 40Ž . Ž .

Ž .It is important to note that Eq. 40 is different
w xfrom the expression given by Hodges and Moore 22

ˆin that the second differential of H is included. The
w xreason for this is that Hodges and Moore 22 are

concerned with quantifying the biasing effect of
measurement errors in the predictors when using
OLS. Measurement errors are completely described
with the first differential. In contrast, we are trying to
determine the biasing effect of estimation errors.
These errors should be approximated to second or-
der.

T T Ž T .Defining B sH H and D sH dHq dH HH H
Ž T . T 2 Ž 2 T .q dH dHqH d Hq d H H, one obtains that

y1 y1T y1 y1 y1ˆ ˆH H s B qD fB yB D BŽ .Ž . H H H H H H

qBy1 D By1 D By1 y . . . 41Ž .H H H H H

This expansion holds provided the eigenvalues of
y1 w xB D are less than unity in absolute value 22 .H H

Likewise,

y1 y1T y1 y1 y1ˆ ˆY Y s B qD fB yB D BŽ .Ž . Y Y Y Y Y Y

qBy1 D By1 D By1 y . . . 42Ž .Y Y Y Y Y

T T Ž T .where B sY Y and D sY dYq dY YqY Y
Ž T . T 2 Ž 2 T . Ž .dY dYqY d Yq d Y Y. Inserting Eqs. 34 ,
Ž . Ž . Ž . Ž . Ž .37 , 39 , 41 and 42 in Eq. 38 yields that

ˆ 2PfPqdPqd P

s By1 yBy1 D By1 qBy1 D By1 D By1Ž .H H H H H H H H H

=
T2 2HqdHqd H HqdH qd HŽ . Ž .u u

=
T2P YqdY qd Y qdRŽ .u u u

= YqdYqd2 Y By1 yBy1 D By1Ž . Ž Y Y Y Y

qBy1 D By1 D By1 43Ž ..Y Y Y Y Y
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and equating second-order terms leads, after direct
cancellation of a number of terms, to

d2Pf By1dHT dH PyBy1dHT dH PŽ . Ž .� H u H

qBy1 dHT P dH PŽ . Ž .H H

yBy1 dHT P dH PŽ . Ž .H H u

qHq dH Hq dH PŽ . Ž .

yHq dH Hq dH PŽ . Ž .u

qPdY T dY By1 yPdY T dY By1Ž . Ž .u Y Y

qP dY T P dY By1Ž . Ž .Y Y

yP dY T P dY By1Ž .Ž .u Y Y

qP dY T YqT dY T YqTŽ . Ž .
TT qT T qyP dY Y dY YŽ . 4Ž .u

q By1 dHT HP dY T YqTŽ .� Ž .H u

qBy1 dHT R dY By1Ž . Ž .H u Y

yBy1 dHT HPD By1Ž .H Y Y

qHq dH PY T dY By1 yHq dHŽ . Ž . Ž .u Y u

=PD By1 yBy1 D P dY T YqTŽ .Y Y H H u

yBy1 D PY T dY By1Ž .H H Y

qBy1 D PD By1 4H H Y Y

q yHq d2 H PyP d2 Y T YqTŽ . Ž .�
qHq d2 H PqP d2 Y T Yq)T 4Ž . Ž .u u

sAqBqC 44Ž .
where P sHBy1HT and P sYBy1Y T projectH H Y Y

onto the column space of H and Y, respectively.
The terms collected in A have in common that

they contain two first differentials on the same side
Ž .of P in Eq. 43 . Likewise, B is obtained by collect-

ing terms that have two first differentials on different
Ž .sides of P in Eq. 43 . Finally, C contains the terms

with second differentials. The terms with dR areu

omitted at this early stage: they vanish after taking
˜expectation because the entire correlation between Q

˜ ˆ ˆand R is accounted for by H and Y .u u u

Using straightforward manipulations, it can be
shown that, owing to extensive cancellation, B is

Žnegligible with respect to A. This is the reason why
the terms containing D and D are not furtherH Y

.worked out. Likewise, the four terms in C do not
contribute, which is proved as follows. The esti-

˜mated profiles must reproduce the SVD fit of Q, see
Ž .Eq. 32 . It is explained in Section 2.1 in Part 2 that

this fit is nearly unbiased if the signal-to-noise ratio
is sufficiently high. Thus, any bias in the column
profiles must be offset by the bias in the row profiles
or, in other words, the profiles are interdependent.
This suggests that decomposing the true data matrix
Q as

Tˆ ˆQs HqB H YqB YŽ . Ž .Ž . Ž .
TT Tˆ ˆfHY qH B Y qB H Y 45Ž .Ž . Ž .

could yield expressions for this bias. Replacing the
Ž .bias in Eq. 45 by the second differential and rear-

ranging yields

d2 HfyH d2 Y T YqTŽ .

d2 YfyY d2 HT HqT 46Ž . Ž .

Unfortunately, the current approach does not lead
to a closed form expression for bias in the profiles. It
does, however, allow proving that C does not con-
tribute. Inserting the expression for d2 Y into the ex-
pression for d2 H and vice versa gives

d2 HfP d2 HH

d2 YfP d2 Y 47Ž .Y

which implies that d2 H and d2 Y lie in the column
space of H and Y, respectively, so that

d2 HfHTH

d2 YfYT 48Ž .Y

where T and T are non-singular. Combining Eqs.H Y
Ž . Ž .47 and 48 yields that

d2 HfyHTT 49Ž .Y

Ž . Ž .and comparison of Eqs. 48 and 49 shows that

T syTT 50Ž .H Y
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Ž . Ž .Using Eqs. 48 and 50 , the first two terms of C
can be expressed as

yHq d2 H PfyT PsTTPŽ . H Y
51Ž .

2 T qT TyP d Y Y fyPTŽ . Y

Ž T . Ž T .and, since diag T P sdiag PT , these terms doY Y

not contribute to the diagonal of d2P. The same rea-
soning applies to the last two terms of C, owing to

ˆ ˆthe special construction of H and Y .u u

Thus, within the currently used approximation, one
only has to deal with the first 12 terms after taking

Ž .the expectation of Eq. 44 . To work out terms 3
through 6 and 9 through 12, we need to bring the
constant matrices outside the expectation operator.

w xThis can be done using 22

E dHT P dH sKJy1E dHTdH 52Ž . Ž . Ž .Ž .H 1

and

E dH HqdH sJy1 HqTE dHTdH 53Ž . Ž . Ž .Ž . 1

where dH stands for dH or dH . Likewise,u

E dY T P dY sKJy1E dY TdY 54Ž . Ž . Ž .Ž .Y 2

and

TT qT T qE dY Y dY sE dY Y dYŽ . Ž .Ž .Ž .
Ty1 qT TsJ Y E dY dYŽ .Ž .2

sJy1E dY TdY Yq 55Ž . Ž .2

where dY stands for dY or dY . The validity of Eqs.u
Ž . Ž .52 – 55 is easily verified by equating a particular

Ž . Ž .matrix element, and using that Tr P sTr P sK ,H Y

the dimension of the column space of H and Y.
Ž .The result is that taking expectation of Eq. 44

yields that

y1 y1 TˆB P fJ J yKy1 B E dH dH PŽ .Ž . Ž .1 1 H u

y1 TyB E dH dH PŽ .H

y1 T y1qJ J yKy1 PE dY dY BŽ . Ž .2 2 u Y

T y1yPE dY dY B 56Ž . Ž .Y

The next step consists of working out the expecta-
tion of the cross products of the first differentials. At
this point, two—quite different—approximations
have been considered. The first one, which seems to
be the natural choice, is to insert the ‘full linearisa-
tion’ results derived in Section 2.3 of Part 2. The

Ž .second one, which has led to Eq. 10 , amounts to
Ž .keeping only the first term in Eq. 13 of Part 2. The

justification for doing so is that the remaining terms
tend to cancel. It can be shown that the second ap-
proximation is equivalent to neglecting the uncer-

ˆ qT ˆ qT Ž .tainty in Y and H in Eq. 33 , which yields

dHf dQ YqTŽ .

dYf dQT HqT 57Ž . Ž .

ˆ ˆFrom the special construction of H and Y , itu u

follows that

dH f dR YqTPy1Ž .u u

dY f dRT HqTPy1 58Ž .Ž .u u

Ž . Ž .Eq. 57 only differs from Eq. 58 with respect to
the data matrix and the scaling by the inverse eigen-
value matrix. It is important to note that a division by
zero will not occur because the inverse eigenvalue

Ž .matrix cancels in Eq. 56 . The expectation of the
cross product of the first differential for H gives

E dHTdH fYqE dQTdQ YqTŽ . Ž .

˜ y1sJ V Q B 59Ž .Ž .1 Y

T ˜ q qT y1Ž . Ž .since E dQ dQ s J V Q I and Y Y sB .1 J Y2

Likewise,

E dY TdY fHqE dQdQT HqTŽ . Ž .

˜ y1sJ V Q B 60Ž .Ž .2 H

E dHTdH fYqE dQTdR YqTPy1Ž . Ž .u u

˜ y1 y1sJ V R B P 61Ž .Ž .1 u Y

E dY TdY fPy1 HqE dR dQT HqTŽ . Ž .u u

˜ y1 y1sJ V R P B 62Ž .Ž .2 u H
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Ž . Ž . Ž .Inserting Eqs. 59 – 62 in Eq. 56 yields that

ˆ y1B P fJ J yKy1 J yKŽ . Ž .Ž . 1 1 1

= ˜ ˜V R CyV Q CPŽ .Ž .u

qJy1 J yKy1 J yKŽ . Ž .2 2 2

= ˜ ˜V R CyV Q PC 63Ž .Ž .Ž .u

Ž T .y1Ž T .y1 Ž .where Cs H H Y Y . Since diag CP s
Ž . Ž .diag PC , Eq. 63 simplifies when focussing on a

specific eigenvalue. The final simplifications that
Ž .lead, after rearrangement, to Eq. 10 , are obtained by

˜ 2 ˜ ˜ ˜Ž . Ž . Ž . Ž . Ž .inserting V Q s 1qa V R and V R sV R .u u
Ž .It is reiterated that Eq. 63 is obtained by insert-

Ž .ing a crude approximation in Eq. 56 , rather than the
w xfull linearisation results. Interestingly, Denham 23

has reported a similar simplification to work well
when applied to the covariance matrix of the regres-
sion coefficient estimates obtained by partial least

Ž .squares PLS .

Appendix B. Variance in bias obtained using Eqs.
( ) ( )17 and 18

Only the final expressions are given here, since
they are easily derived using earlier obtained results.

The variance in the bias in the eigenvalue, calcu-
Ž .lated using Eq. 17 , is approximated by

ˆV B pŽ .ˆŽ .
22

EB p EB pŽ . Ž .ˆ ˆ ˆf V a q V cŽ .ˆ Ž .ž / ž /Ea Ec

22
EB p EB pŽ . Ž .ˆ ˆ ˆ ˜q V p q V V RŽ . Ž .ˆ Ž .ž / ž /˜Ep EV RŽ .

64Ž .

There is no term that accounts for the uncertainty
in v. This is justified by the consideration that esti-ˆ
mating the correct model dimensionality is not a dif-

Ž Ž ..ficult task see the discussion following Eq. 16 . In
addition, often for data taken on modern instruments,
J 4F as well as J 4F, so that the actual value1 2

of F has little effect on v.ˆ
ŽThe first term does not contribute see the discus-

Ž ..sion following Eq. 22 , while the remaining partial
derivatives are found as

EB pŽ .ˆ
y1 2 ˜sg v 1y 1qa pyB p V RŽ . Ž . Ž .Ž .ˆ

Ec

EB pŽ .ˆ
y1 2 ˜syg vc 1qa V RŽ . Ž .

Ep

EB pŽ .ˆ
y1 2sg vc 1y 1qa pyB pŽ . Ž .Ž .ˆ˜EV RŽ .

2 ˜Ž . Ž .where gs1yvc 1qa V R .
In addition, three variances are required. Tedious

manipulations show that

ˆ ˜ TV c fV Q JJ 65Ž .Ž .Ž .

Ž T T T T . Ž T qwhere J sy2 j C Y m j C H y j Y m
T q. Ž T q T q.j CH y j CY m j H with j the K=1 vec-

tor with a one on the position associated with the an-
alyte of interest and zeros otherwise. The variance in

Ž .the eigenvalue is given by Eq. 14 . Finally, assum-
˜ 2Ž .ing that V R is distributed proportional to a x ran-

dom variable with n degrees of freedom, its variance
is found as

2ˆ ˜ ˜V V R s 2rn V R 66Ž . Ž .Ž . Ž .Ž .

Likewise, the variance in the prediction bias, cal-
Ž .culated using Eq. 18 , is approximated by

ˆV B cŽ .ˆŽ .u

2 2
EB c EB cŽ . Ž .ˆ ˆu u

f V c q V pŽ .Ž .˜ ˆ0 ž /ž /Ec Ep0

2
EB cŽ .ˆu ˆq V B p 67Ž . Ž .ˆŽ .ž /EB pŽ .ˆ
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where the partial derivatives are found as

EB cŽ .ˆu y1sg aB pŽ .ˆ
Ec0

EB cŽ .ˆu y1sg 2y2pqB p B cŽ .Ž . Ž .ˆ ˆu
Ep

EB cŽ .ˆu y1sg ac q py1 B cŽ . Ž .ˆŽ .0 u
EB pŽ .ˆ

Ž .Ž Ž ..in which gs 1yp 1ypqB p . For the vari-ˆ
Ž .ances, see Eq. 22 .

( )Appendix C. Generalisation of Eq. 10 to het-
eroscedastic and correlated measurement errors

Ž .Eq. 10 is derived under the iid assumption, which
is usually too restrictive in applied work. Neverthe-
less, this equation is believed to be of considerable
practical interest, since its generalisation to realistic
error models is easily obtained without additional ap-
proximations. Only the main steps are outlined here

Ž .to support the utility of Eq. 10 . The practical im-
plementation of the final result, which would by ne-
cessity be limited to a particular error model, is an
interesting subject for future research.

First, it is observed that the assumption about the
measurement errors enters the final stage of the

Ž .derivation of Eq. 10 , i.e., when inserting the results
Ž . Ž . Ž .of Eqs. 59 – 62 in Eq. 56 . The generalisation for

Ž .Eq. 59 follows; the manipulations are similar for
Ž . Ž . Ž .Eqs. 60 – 62 . Starting from Eq. 57 , and using the

Ž T . w xidentity vecABCs C mA vecB 11 , the first dif-
ferential of the k th column of H is approximated as

dh fI dQ yqs yqT mI vec dQ 68Ž . Ž .Ž .k J k k J1 1

where yq is the k th column of YqT. Next, usingk

straightforward manipulations involving the trace op-
w xerator and the Kronecker product 11 , a typical ele-

Ž T .ment of E dH dH is worked out as

E dHTdH sE dhTdhŽ . Ž .k l k l

T qfE vec dQ y mIŽ . Ž .ž k J1

= yqT mI vec dQŽ . /l J1

˜ q qTsTr V Q y y mI 69Ž .Ž . Ž .ž /k l J1

˜ TŽ . Ž Ž . .where V Q sE vec dQ vec dQ denotes the full
J J =J J covariance matrix for the measurement1 2 1 2

˜errors in Q.
Ž . Ž .Inserting the generalisations of Eqs. 59 – 62 in

Ž .Eq. 56 will yield the desired generalisation of Eq.
Ž .10 , without additional approximations. It is ex-
pected that the interpretability will be limited, unless
a special structure of the errors allows for further
simplification. Interpretability will be lost altogether

Ž .if, instead of the crude approximation Eq. 57 , the
ˆ ˆ Žfull linearisation result is used for H and Y see Eqs.

Ž . Ž . .11 and 13 in Part 2 .
A final remark about the handling of het-

eroscedastic and correlated errors is in order. It is ob-
served that the GRAM eigenvalue problem results

˜after decomposing Q using the SVD. The SVD is a
least-squares method, which implies that its optimal
fitting properties are only retained in the presence of
heteroscedastic and correlated measurement errors if
the data are properly pre-treated. Following Paatero

w x w xand Tapper 24 , Faber et al. 2 have suggested to
pre- and post-multiply the data with diagonal matri-

Žces D and D , respectively. For more details, see1 r
w x .Refs. 2,24 . Using such a scaling technique, model

Ž .Eq. 5 becomes
Tscl scl scl˜ ˜Q sD QD sH Y qD E DŽ .1 r 1 Q r

Tscl scl scl˜ ˜R sD R D sH P Y qD E D 70Ž . Ž .u 1 u r 1 u r

where H sclsD H and Y sclsD Y. Obviously, the1 r

scaling must be undone after solving the eigenvalue
problem to obtain the estimates for H and Y. In addi-
tion, the scaled measurement errors should enter the
bias expressions derived in this paper. Data pre-treat-
ment in the context of GRAM has received little at-
tention in the literature, which leaves room for future
research. Currently, the most detailed discussion of
data-pretreatment related to SVD is given by

w xWentzell et al. 25 .

Appendix D. The noise addition method for deter-
mining bias and variance

We have not been able to derive a closed-form
ˆ ˆexpression for the bias in H and Y, which is unsatis-

Ž .factory. To determine and correct for the bias in the
profile estimates, we have applied a simulation tech-
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nique that is based on adding noise to the experi-
mental data. The key assumption underlying this
technique is that the response of the system of equa-

Ž .tions to noise remains approximately constant when
adding noise. Clearly, the key assumption implies that
the simulation technique can be used to determine
bias as well as variance. Here, it will be used to

Ž .demonstrate the validity of Eq. 51 , while it is ap-
plied in Part 2 to test expressions for the variance in
the predictions and profiles estimates. For an excel-
lent discussion of the noise addition method applied

w x w xto variance estimation, see Ref. 26 . Derks et al. 27
have reported successful variance estimation in the
context of artificial neural networks. When applied to
bias estimation, the method is known as simulation

Ž . w xextrapolation SIMEX 28 . The principle is illus-
trated for the eigenvalue p , which is a scalar. How-ˆ
ever, the generalisation to vectors and matrices is
straightforward. Variance estimation is treated first,
not only because it is simplest, but also because the
result is used to determine the uncertainty of the bias
estimate.

When applied to variance estimation, it is as-
sumed that the variance in p can be approximated asˆ

˜V p fÕV R 71Ž . Ž .Ž .ˆ

which seems to be reasonable, because the squared
expectation of the first-order term of a Taylor series
expansion is the main contribution to variance. Like-

˜ ˜wise, adding noise to R and R with variance V0 u add

will yield eigenvalues p , with variance estimateˆadd

V̂ p fÕV 72Ž .Ž .ˆadd add

Ž .Eq. 72 will be a good approximation if the added
noise is small enough. It is important to note that the
noise already present in the data matrices does not
contribute to the variance of p , because it is con-ˆadd

Ž .stant during the noise additions it is ‘baked in’ .
Ž . Ž .Combining Eqs. 71 and 72 suggests that the vari-

ance of p can be estimated asˆ

ˆ ˜V RŽ .
ˆ ˆV p sV p 73Ž . Ž .Ž .ˆ ˆadd Vadd

For the current application, it is assumed that bias
scales up linearly with variance, which is a simplifi-

w xcation with respect to the example treated in Ref. 28 .
This assumption seems to be reasonable for p , but itˆ
must be verified for the profile estimates. Thus, the
bias in p is approximated asˆ

˜B p fbV R 74Ž . Ž .Ž .ˆ

Bias is different from variance in the sense that
adding noise will yield a composite bias,

B p fB p qbV 75Ž . Ž .Ž .ˆ ˆadd add

Ž . Ž .It is observed that, unlike Eq. 71 , Eq. 75 is an
Ž .equation with two unknowns, B p and b, whichˆ

implies that noise should be added at more than one
level. Adding noise at two levels,3 V and V , gives1 2

ˆ ˆŽ . Ž .average eigenvalues, E p and E p , which can beˆ ˆ1 2

approximated as

Ê p fpqB p qbVŽ .Ž .ˆ ˆ1 1

Ê p fpqB p qbV 76Ž . Ž .Ž .ˆ ˆ2 2

Ž . Ž .Combining Eqs. 74 and 76 suggests that bias
can be estimated as

ˆ ˆE p yE pŽ . Ž .ˆ ˆ2 1ˆ ˆ ˜B p s V R 77Ž . Ž .Ž .ˆ
V yV2 1

Ž .Eq. 77 has been successfully used, in a form
adapted to vectors, to correct the profile estimates for

Ž .bias see Fig. 4 .
Ž .It is important to note that Eq. 77 is an alterna-

Ž .tive to Eq. 17 . The foremost criteria for assessing
the utility of bias estimates are their interpretability

Ž .and relative uncertainty i.e., efficiency . With re-
spect to interpretability, expressions certainly have an
advantage. Knowing which factors influence bias en-
ables one to set up the experiments in such a way that
a significant bias can be avoided altogether. With re-
spect to the uncertainty of the bias estimate, simula-
tion techniques could have an advantage. The uncer-

3 In general, the relationship between noise and bias will be
more complicated so that one needs to add noise at more than two

w xlevels. For more details, see Ref. 28 .
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Ž .tainty in the estimate obtained from Eq. 77 is ob-
tained from a first-order approximation as

ˆV B pŽ .ˆŽ .
2˜V RŽ .

ˆ ˆf V E p qV E pŽ . Ž .ˆ ˆŽ . Ž .ž /2 1ž /V yV2 1

2
E p yE pŽ . Ž .ˆ ˆ2 1 ˆ ˜q V V RŽ .Ž .ž /V yV2 1

2˜V R 1Ž .
s V p qV pŽ . Ž .ˆ ˆŽ .2 1ž /V yV N2 1 add

2
E p yE p 2Ž . Ž .ˆ ˆ 22 1 ˜q V RŽ .ž /V yV V2 1

˜V qV V RŽ . Ž .2 1
f V pŽ .ˆ2V yV NŽ .2 1 add

2
E p yE p 2Ž . Ž .ˆ ˆ 22 1 ˜q V R 78Ž .Ž .ž /V yV V2 1

where, in the second step, the variance in the aver-
ages is replaced by the variance in a single replica-

Ž .tion, divided by the number of noise additions N ,add
2 ˆ ˜Ž . Žand the x assumption is applied to V R see Eq.

Ž .. Ž .66 . The last step results from inserting Eq. 73 .
Ž .Eq. 78 is useful for determining reasonable val-

ues for N , V and V . A sound criterion is thatadd 1 2
ˆŽ Ž .. Ž .V B p should be smaller than V p by a factor 10ˆ ˆ

Ž .say ; otherwise, the bias correction introduces an
unduly large uncertainty. Ignoring the term associ-

ˆ ˜Ž .ated with the uncertainty in V R , which is reason-
able if V is large, yields the condition that Nadd

˜ 2Ž .Ž . Ž .should exceed 10V R V q V r V y V . Fi-2 1 2 1

nally, choosing V s 2V yields the requirement2 1
˜Ž .N )20V R rV . The noise additions discussed inadd 1

˜Ž .this paper are carried out with V R rV s5, 10 and1

20. It follows that N s1000 is a reasonable choiceadd

for all noise levels, provided that adding noise at two
levels is sufficient of course. It turns out that this is
only the case for the lowest noise level.
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