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GENERALIZED RANK ANNIHILATION METHOD: STANDARD
ERRORS IN THE ESTIMATED EIGENVALUES IF THE
INSTRUMENTAL ERRORS ARE HETEROSCEDASTIC AND
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SUMMARY

The generalized rank annihilation method (GRAM) is a method for curve resolution and calibration that uses two
data matrices simultaneously, i.e. one for the unknown and one for the calibration sample. The method is known
to become an eigenvalue problem for which the eigenvalues are the ratios of the concentrations for the samples
under scrutiny. Previously derived standard errorsin the estimated eigenvalues of GRAM have very recently been
shown to be based on unrealistic assumptions about the measurement errors. In this paper a systematic notation
is introduced that enables the propagation of errors that are based on realistic assumptions concerning the data-
generating process. The error propagation will be performed in detail for the case that one data order modulates
the second one. Extensions to more complicated error models are indicated. © 1997 by John Wiley & Sons,
Ltd.
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INTRODUCTION

Building on the work of Ho et al."* and Lorber,* Sanchez and Kowalski® developed a method for
guantitative and qualitative multicomponent analysis. Their method, the generalized rank annihilation
method (GRAM), performs the task of calibrating for the desired analytes in the presence of unknown
interferents. This property is the so-called second-order advantage. An important characteristic of
GRAM isthat the second-order advantage is obtained with only one calibration sample. The complete
solution consists of the ratio of concentrations of the desired analytes for the unknown and calibration
sample as well as the pure analyte profiles. The method is known to become an eigenvalue problem
for which the eigenvalues are the concentration ratios and the eigenvectors define the transformation
matrix that is needed to rotate the abstract profiles, found by a singular value decomposition (SVD),
to the pure analyte profiles. Rigorous treatments of the properties of GRAM in the absence of
measurement errors have recently been given by Leurgans er al.’ and Kiers and Smilde.”

Since the introduction of the rank annihilation concept there has been great interest in determining
the relibility of the quantitative results, i.e. the concentration ratios or eigenvalues, obtained by this
principle. The statistical properties standard error and bias in the estimated eigenvalues have been
studied by several researchers either by simulations®® or by a theoretical approach.? %% In addition,
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Mitchell and Burdick™ have recently compared GRAM and the alternating least squares (ALS)
algorithm for the analysis of second-order data. The theoretical approach for determining the
reliability of the obtained results is based on making certain assumptions about the measurement
errors and propagating these (idealized) errors through the SVD and the eigenvalue problem.*
Recently a reformulation of the eigenvalue problem has led to a simplification of the error
propagation.® Irrespective of the differences in approach taken in these theoretical contributions, they
all have in common that the measurement error is assumed to be uncorrelated and homoscedastic. The
advantage of this assumption is that it leads to arelatively simple expression for the standard error in
the estimated eigenvalue. A definite disadvantage of this assumption is that many analytica
instruments do not produce data that can be adequately described in this way.

An example of data for which a more complicated error model is necessary is the data that are
obtained by a ‘hyphenated’ type of instrument, e.g. high-performance liquid chromatography with
ultraviolet detection (HPLC-UV) or gas chromatography combined with mass spectrometry (GC—
MS). Such instruments can actually be interpreted as a combination of two instruments. In the above
examples the first instrument is a chromatograph and the second one is a multichannel detector. At
regular time intervals a complete spectrum is measured and the data are conveniently cast into a
matrix. If the data are collected from such an instrument, the first order (e.g. a chromatograph) is said
to ‘modulate’ the second one (e.g. a multichannel detector). A direct consequence is that disturbances
in the chromatography result in a random fluctuation of a complete spectrum. Furthermore,
independently of this error, the detector contributes to the total uncertainty in the data. Booksh and
Kowalski® have shown by means of simulations that the uncertainty in the final result, i.e. the
estimated eigenvalues, can no longer be quantified by means of propagating uncorrelated,
homoscedastic errors through the model. The complete mechanism behind the total measurement error
has to be accounted for. Thus the practical usefulness of existing expressions for the standard errors
in the eigenvalues of GRAM is heavily compromised.

The goals of this paper are to (1) revisit previously derived equations** for the case where the
instrumental errors are uncorrelated and homoscedastic, (2) introduce a consistent notation that allows
for the generalization of these equations to cases where the instrumental errors are correlated and
heteroscedastic and (3) solve for the case where the first instrumental order modul ates the second one.
The solution will be given for Lorber’s rank annihilation method,* the generalization of Lorber’s
method by Sanchez and K owal ski® and the modification of Sanchez and K owalski’s method by Wilson
et al."”

For reasons of clarity it will be assumed in the remaining part of this paper that a data matrix is
measured by a hyphenated method and the rows and columns will be denoted by spectra and elution
profiles respectively. This assumption will not affect the generality of any of the obtained results.

NOTATION AND CONVENTIONS

Boldface uppercase letters represent matrices, e.g. A. Column vectors will be indicated by boldface
lowercase |etters, e.g. a. Scalars are indicated by italic uppercase or lowercase letters, eg. A and a.
Transposition of a matrix or vector is indicated by a superscripted ‘T', eg. A" and a'. For a given
matrix A the matrices A~* and A* stand for its inverse and pseudoinverse respectively. The ‘inverse
transpose’ and ‘ pseudoinverse transpose’ matrices will be denoted by A~ "(=(A"*)"=(A") !) and
A*T(=(A*)"=(A")") respectively. The matrix element in row i and column j of A will be specified
by arow and columnindex asA;;. The ith row and jth column of A will be denoted by A, _,,, and A, _

* In aformal sense one deals with uncertainties in the method of error propagation. The terms error and uncertainty will be used
interchangeably in this paper.
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respectively. Additional notation is necessary in order to perform the error propagation in a
straightforward way. First, one needs to make a distinction between the true, i.e. errorless, quantities
on one hand and the measured and estimated quantities on the other hand. A measured quantity is
symbolized by adding a ‘tilde’ to the unadorned symbol for the true quantity, e.g. A. An estimated
quantity is denote by a ‘hat’, e.g. A. Finally, in the error propagation of GRAM it is convenient to
distinguish between the uncertainty in a measured quantity and the uncertainty in an estimated
guantity. The prefix symbol d is used to denote the uncertainty in a measured quantity, e.g. dA,
whereas the prefix symbol A is used to denote the resulting uncertainty in an estimated quantity, e.g.
AA. Much of the present confusion in previous derivations of standard errors in the estimated
eigenvalues™** might have arisen by not making this distinction explicit in the notation.

LORBER'S METHOD

In Lorber’s method it is assumed that the components contributing to the calibration sample are a
subset of the substituents of the unknown sample.* The modificationsinvolved in going from Lorber’s
method to generalizations thereof are not complicated and therefore only this case is treated in detail.
Furthermore, in order to illustrate how the error propagation can be carried out for another error
model, most equations are worked out for the simplest error model, i.e. uncorrelated and
homoscedastic instrumental noise.

Model without error in the instrument responses
The I'xJ unknown sample data matrix M is given as

M=XYT (1)
where X (Ix K) contains the errorless elution profiles of the K chemical components and Y (Jx K)
contains the corresponding errorless spectra. It is seen that the rows are spectra measured at different
times(i=1, ..., ) andthecolumnsof M correspond to elution profiles at different wavelengths (j=1,

..., J). The spectrain Y are normalized so that the concentration dependence is absorbed in X.
The I'x J calibration sample data matrix N is given as

N=XIIY” 2

where Il is a K x K diagonal matrix that contains the ratios of concentrations in the two samples, i.e.
=M =cy /cy . From the assumption about the presence of the substituents it follows that the
diagonal of IT may contain zeros.

Propagation of uncorrelated, homoscedastic instrumental errors

This is the case that has previously been considered in the literature.>**** With uncorrelated,
homoscedastic (i.e. constant variance) measurement noise the unknown sample data matrix can be
expressed as

M =M +dM (3)

where dM denotes the 7xJ matrix of measurement errors in M. The assumption of uncorrelated,
homoscedastic measurement noise implies that

* In astrict sense Lorber* considers the case where the calibration sample contains only one analyte. The eigenvalue problem,
however, remains essentially the same under the current, more general, assumption.
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E[dMleerjr]Z 0-12W5’8 (4)

(g

where E[-] symbolizes taking the expectation, o, denotes the standard deviation of the measurement
noisein M and 6 is the well-known Kronecker delta. Analogously, the calibration sample data matrix
is expressed as

N=N+dN (5)
where dN denotes the IxJ matrix of measurement errorsin N and
E[dN,dN;;1=038;:5; ©)

(i

where o, stands for the standard deviation of the measurement noise in N. The assumption of
uncorrelated, homoscedastic noise implies that the noise is sample-independent. It follows that
ON=0y. .

In order to derive the eigenvalue problem defining GRAM, M is decomposed according to the
singular value decomposition (SVD)

M=U0U6VT" 7)
where U and V are matrices that contain the estimated left and right singular vectors respectively and
O is the diagonal matrix with estimated singular values. M may be approximated by the first A
singular vector dyads or principal components (PCs):

MAzoAéA\?I 8
where the subscript indicates that only the first A PCs are involved in the approximation. In fact, A is
an estimate of K, the number of chemical components that (significantly) contribute to the signal. One
makes the important assumption here that the K-term SVD fit of the experimental data matrix is
optimal. This is certaintly true if the instrumental errors are uncorrelated and homoscedastic (see
equation (4)), but some data preprocessing, e.g. scaling, may be necessary in the general case (see
Discussion).

It is noted that several variations of this eigenvalue problem are possible. These transcriptions give
rise to the same eigenvalues, but the corresponding eigenvectors are different. Since the eigenvectors
are needed for the reconstruction of the column and row profiles, i.e. X and Y, the reconstruction
equations will aso be different. By using the SVD representation of M, the following eigenvalue
problem is obtained:

6, 'UINVHT=TTI 9)
where IT and T are the estimated eigenvalues and eigenvectors respectively. The elution profiles and
spectra are found as

x=0,6,T (10)
Y=v,T°7 (11)

These equations show that the eigenvector matrix rotates the abstract decomposition of M, i.e.
equation (7), into the physical decomposition, defined by equations (1) and (3). Further inspection of
equations (9)—(11) shows that the solution for the concentration ratios can be written as*

M=X*NY"*T (12)

* This fact is easily established by noting that X and Y are products of a column orthogonal and an invertible matrix (see
Reference 18, page 34, exercise 8). It is emphasized that the reverse order law for inverse matrices, (AB) “*=B~*A~?, does not
aways hold for the pseudoinverse.
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Reformulating the eigenvalue problem as a regression problem makes the error propagation more
transparent, primarily because one has to deal with the physical decomposition of M instead of the
abstract one. Especialy the derivation of the bias in the estimated eigenvalues is facilitated in this
way.* There is, however, an important difference with the usual regression problem, e.g. encountered
in multivariate calibration. In the usual regression problem the pseudoinverse of a matrix enters the
calculation. Here one has the pseudoinverse of two matrices, both of which are estimated by GRAM.
It follows that, as afirst step in the error propagation, one has to focus on the reconstruction errors
in X and Y instead of the measurement errors in X and Y. (The relation with the total measurement
error in M will become clear later.) The task of propagating the reconstruction errors is easily
accomplished by recognizing that the following holds for the reconstructed unknown sample data
matrix:

M, =XYT=(X+AX)(Y +AY)" (13)
By combining equations (12) and (13), the uncertainty in the estimated eigenvalues* is expanded in
terms of the uncertainties in the measured calibration data matrix and the reconstructed profiles as
TI=IT+ATI=(X +AX)* (N+dN)(Y +AY)*T (14)
Multiplying out the far right-hand side of equation (14) and neglecting terms that contain products of
errors resultsin
ATI=X*(@N)Y *T+(AX*)NY T+ X *NAY 7 (15)

The first term is the contribution from the measured calibration data matrix N and the last two terms
are the contributions from the reconstructed unknown data matrix M ,. It is possible to combine those
two terms to obtain an expression where only AM contributes using the following expression for the
differential of the Moore—Penrose pseudoinverse of a matrix A:*®

AAT=— AT (AA)AT+ATATAAT)(I —AAT)+(1 —ATA)(AAT)ATTA* (16)

where | denotes an appropriately dimensioned identity matrix. For afull column rank matrix, e.g. X,
the third term on the right-hand side is identical to zero and for a full row rank matrix, e.g. YT, the
second term vanishes. Now, using AA*A=A gives

(AXF)NY *T= = X (AX)XXITYTY *T+X X T(AXT)(| — XX )XITYTY T

= — X (AX)IT (17)
XNAY *T=— X XIYTY TAYT)Y T+ X XIIYT(1 — Y TYT)AY)Y YT
=—TIX[X(AYT)]Y T (18)

Equation (17) is further manipulated by noting that only the diagonal elements are of interest. The
diagonal elements of a matrix do not change if the matrix is premultiplied by a diagonal matrix and
postmultiplied by the corresponding inverse. Therefore

diag[(AX*INY *T]=diag] — X * (AX)IT] =diag — IIX *[(AX)YT]Y "] (19)

where diag[ ] stands for a vector that contains the diagonal elements of a matrix. The reconstruction
error in M, isfound by multiplying out equation (13) and neglecting the cross-term AXAYT as

* |n the remainder of the paper focus is on non-degenerate eigenvalues. Degenerate eigenvalues lead to reconstructed profiles
which are linear combinations of the true profiles, since the associated e genvectors are not unique (rotation problem). Rigorous
discussions of the circumstances under which GRAM gives a unique solution for the analyte of interest are given by Leurgans
et al.® and Kiers and Smilde.”
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—

i

Figure 1. The total uncertainty @M, in an individual matrix element i/, can be represented as a vector, i.e. dM;.
It is seen that this vector is the sum of two distinct contributions. One part, i.e. AM;;, lies in the space spanned
by M and the other part, i.e. dA7I,,— AMU, is orthogonal to this ‘embedded error’.° Only the imbedded error is
explicitly propagated through the eigenvalue problem. The part of the total error that is projected out, i.e. the
‘extracted’ error, must, however, also be taken into consideration in order to establish the relation between the

standard error in an estimated quantity and the total measurement error

AM =M, —M =(AX)YT+XAYT (20)
Combining equations (18)—(20) yields
diag[(AX*)NY *T+X*NAY *T]=diag] — IIX* (AM)Y *T] (21)

Finally, equation (21) is seen to contain the projection of the reconstruction error AM onto the column
and row space of M (true vaues). It follows that errors that are orthogona to AM are eliminated by
the projection:

X (AM)Y T=X*(@M)Y *T—= X" (dM — AM)Y T=X* (dM)Y *T (22)

Thisisillustrated in Figure 1. However, any error that is projected out in this way but is present in
the original data must be added to the propagated reconstruction error. Thus equation (15) is reduced
to*

diag[AIL] =diag[X " (dN)Y *T — IIX* (dM)Y *7] (23)

Equation (23) shows the relative importance of the uncertainty in the calibration and unknown sample
data matrices. The minus sign is to be expected, since the unknown sample data matrix is ‘inverted’
in equation (9). It is emphasized that the total measurement error in M must be propagated although
a substantial part is not imbedded in the data. Equation (23) gives the variation in the diagonal of the
estimated eigenvalue matrix IT resulting from variations in the measured response matrices. By
introducing £ =(X*),_ s ad 1,=(Y*T),_ . the expression for an individual eigenvalue, 4,=I1,,,
becomes

Am,=£(dN)n,— m,&(dM)n, (24)

This equation is conveniently worked out by applying the vec operator. The vec operator * strings out’
a matrix columnwise to yield a single column vector. Magnus and Neudecker’® give an excellent
treatment of the use of the vec operator in differential calculus. First one uses the identity®

* The situation is similar to ordinary least squares (OLS) where the residuals of the dependent variable y have to be corrected
for the number of degrees of freedom in order to obtain an unbiased estimate of the total error iny, which is the sum of model
error and measurement error. This estimate can then be propagated through the model in order to obtain an estimate for the
standard error in the parameters.
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vec(ABC)=(C" ® A)vec B (25)

where ‘®’ denotes the Kronecker product. Given an nxm matrix A and a pxg matrix B, the
Kronecker product builds an np x mq ‘ supermatrix’ as follows:

AB ... A,
A®B=| : ; (26)
AB ... A,B

nl nm

Applying equation (25) to equation (24) resultsin
A7, =vec(Aw,)
=vec(£)(dN)n,) — vec(m,£,(dM)n,)
=(m; ® &)vecdN — (m; ® 7,£; )vecdM @7

In order to find the standard error in the estimated eigenvalue, one must first derive the variance. Using
the identity™®

(A®B) =(AT®B") (29)

an approximate expression for the variance is found by taking the expectation of the squared deviation
from the mean:

V(ir,) El(Am,)’]

=E[Am A7 ]
=(1; ® E)VIN)(m, ® &) +(n; @ 7,E)VM)(n, ® &,7,) (29)
where V(N) and V(M) signify the covariance matrices of the measurement errors in N and M

respectively. V(N) and V(M) are defined by
V(N)=E[vecdN(vecdN)'] (30)
V(M) =E[vecdM (vecdM)'] (31)
Since the measurement errors are assumed at this point to be uncorrelated and homoscedastic, the
expressions simplify to V(N) =3l and V(M) =01, where | isthe 17 x 1J identity matrix. Furthermore,

cross-terms containing the covariance between the measurement errorsin N and M are not present in
equation (29). By using'®

(A®B)(C®D)=AC®BD (32
the final result for the variance is obtained:
V(ir,) WEPIm)P(or+moy) (33)

This result can be further simplified by using o= o;,. The approximate expression for the covariance
between different estimated eigenvalues %, and 7r,.,

C(ir,, i) ElAmAm,] (34

isworked out in a similar manner. The standard error in 7r, follows as
o(#r,)=V(ir,)"” (35)
It is important to note that equation (33) gives an approximation to the variance in the estimated
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eigenvalue 7r,. It may not be equal to the true variance owing to the assumptions and approximations
made in order to obtain it. Additional approximations result from the practical evalution of equation
(33). It is seen that this equation contains quantities that are unknown and have to be replaced by
estimates. Thus the practical result of theoretical error propagation is the estimated variance in the
estimated eigenvalue, V(). It follows that the adequacy of equation (33) for predicting the true
variance has to be evaluated. The adequacy of equation (33) has been thoroughly tested by means of
Monte Carlo simulations for relevant noise levels.** An important rule of thumb emerging from that
study is that for data with a high signal-to-noise ratio, which is achievable with modern
spectrophotometers, the uncertainty introduced by inserting estimates for the standard deviations of
the measurement errors (o, and o;,) dominates the uncertainties associated with the other
approximations. In other words, the limits for the successful application of theoretical error
propagation results are not set by the approximations made during the derivation (only standard
assumptions are used in this work) but by the precision to which the measurement errors are known.

Another consequence of substituting estimated quantities in equation (33) is that the estimated
standard error 6(4r,) and the estimated eigenvalue 7r, are not independent. This is a requirement if a
traditional test for significance (e.g. a t-test) is to be used. A so-called variance-stabilizing transform
has been proposed to overcome this problem.*

Propagation of correlated, heteroscedastic instrumental errors

Booksh and Kowalski® have demonstrated that a realistic noise model for data obtained for a
hyphenated method is as follows:

M=(M +dX,YT)+dM =M +dM™ (36)
N=(N+dX,JIYT)+dN=N+dN™ (37)

where the matrices @X,, and dX,, denote the errors in the modulating order and dM '™ and dN** are the
total uncertainties in the measured data matrices M and N respectively. In the case of a spectro—
chromatogram the modulating order is generated by the chromatograph. At discrete time intervals a
complete spectrum is measured. A random error in the time domain will affect the complete spectrum
measured at that particular time. On top of this error the detector noise is added, as shown by equations
(36) and (37). The parentheses in equations (36) and (37) become operational if one of the two error
contributions is proportional to the size of the data Analogously to equations (30) and (31) the
covariance matrices are defined by

V(N) = E[vecdN™(vecdN®™)] (38)
V(M) = E[vecdM ©(vecdM )] (39)

Owing to the correlation of the measurement errors within one order, these matrices are not diagonal
as for the case discussed earlier. The derivation of the covariance matrix V(N) follows. Making the
reasonable assumptions that the errors in the first order as well as the detector noise are uncorrelated
(see Reference 9 for more details) gives the following values for individual elements of V(N):

a(N§t; ' =E[dNg dN'5 ]
=E[(dN{")" dN ]
Y HE[(dXL),_ col(dXN)i’ - rOW]H(YT)/ —col +E[(dN1/ )T dNi’_j’ ]

=Ti—row

= [Yj* TU\NHV(XX; )H(YT)/" —col + U(Nij )Z‘Sjj’ ]51‘1" (40)
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where V(X#') denotes the covariance matrix for rows i and i’ of the measured profile matrix X,,. This
equation is as general as possible (within the context of this paper) with respect to allowing for
heteroscedastic and correlated instrumental errors. the uncertainty in the first order is alowed to
depend on the row index (it may even vary among substituents) and the detector noise is allowed to
depend on both row and column index.

A pictoria representation of V(N) is

o(Nfu)? P
01  o(Ngn) o(Nfy)?
VIN)=| oV 0., ... ; (42)
(N )
a(N)’

where 0,_, is an I—1 zero vector. It is seen that V(N) is a sparse 1Jx IJ matrix for which only a
fraction 1/1 elementsis non-zero. For more complicated error models, which are beyond the scope of
this paper, the fraction of zeros may be much smaller. Thiswill certainly betrueif the noisein adjacent
channels of the detector are correlated. Extending the current derivation to this kind of measurement
error models is straightforward, the only complication being that additional information (in the form
of correlation coefficients) is necessary in order to evaluate the resulting expression in practice. The
covariance matrix V(M) is obtained by substituting M for N in equation (40) and eliminating IL.

The variance in the estimated eigenvalues follows by working out the analog of equation (29). The
result is

1 J J
V) >0 > D & NS P+ oM ] (42)

i=1 j=1 j'=1

where the symbols are as defined above. Although more complicated than equation (33), this equation
still provides useful insight into the relative importance of the individual error contributions.

At this point a considerable simplification results from assuming that the errors can be described by
only two standard deviations, say oy and gy,=0y=0,,. For example, the simulations performed by
Booksh and Kowalski® are based on this assumption. (They use the symbols oy, and o, to denote the
uncertainty in the modulating order and the detector noise respectively.) Several cases can be
considered now, depending on whether the errors are assumed to be additive, i.e. independent of the
data, or relative, i.e. proportional to the data. For example, with relative errorsin the modulating order
and additive detector noise, one obtains

V(i) 2mE IPox+(1+mHIEN g, 0% 43)
which shows that the standard error o(7r,) relates to the different standard deviations oy and oy, as
o(ir,) (Biox+B,0y)" (44)

with B, and B, as defined in equation (43). Equation (44) is identical to the expression found by
Booksh and Kowalski to describe their simulation results quantitatively (see equation (15) in
Reference 9). Furthermore, from equation (43) it also becomes clear how the precision in the
estimated eigenvalue will improve by increasing the number of data points in each order. It is easily
verified that, for example, quadrupling both the number of rows and columns will decrease the term
corresponding to oy by a factor of four and the term corresponding to o, by a factor of 16. This
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trandates directly to the ssimulation results given in Table 6a of Reference 9. These observations lend
credence to the currently obtained results.

GENERALIZATION OF SANCHEZ AND KOWALSKI

The previous section considered the error propagation through the eigenvalue problem derived by
Lorber.* This eigenvalue problem will result in a correct solution if the unknown sample contains all
substituents that are present in the calibration sample in an amount that is sufficient to build the
solution space. This procedure will, for example, work well in a standard addition situation. However,
in the general case where both samples contain unique substituents, Lorber’s method will fail and a
modification is necessary. (An example is where the calibration sample contains analyte A and
interferent |, but the unknown sample contains analyte A and interferent I,. The unknown sample data
matrix does not span the space of the caibration sample data matrix.) Sanchez and Kowalski®
proposed to solve for the same eigenvalue problem after replacing M and N by Q=M +N and M
respectively. This will ensure that the solution space resulting from the SVD (see equation (7))
describes all substituents. Now the GRAM eigenvalues are related to the concentrations as m,=c,, ./
(Car ik Cni)-

Two cases will be considered here. The first case is the situation originally envisioned by Sanchez
and Kowalski,® i.e. the situation where only one calibration sample is available. The second case is a
generalization to the situation where multiple calibration samples are available, giving data matrices
N, (s=1, ..., S). A straightforward generalization discussed by Leurgans e al.’ is obtained by
constructing the eigenvalue problem with M and N replaced by Q=M +3¥5_, N, and M respectively.
It should be noted that this generdization is different from the trilinear decomposition (TLD)
method.’ The error analysis of TLD is considered to be outside the scope of this paper.

One calibration sample
Inserting Q=M +N and M in equation (23) gives
ATT=X*(dM)Y*T = TIX* (dQ)Y *T
=(I —IHX*(dM)Y T = IIX* (@N)Y*" (45)

and the analogs of equations (29), (33), (42) and (43) follow by straightforward substitutions. It is
easily verified that a variance reduction results from adding the two matrices, since the diagonalized
matrix in equation (9) is now a ‘ratio’ of matrices that have correlated errors. (For more details see
Reference 14.)

Multiple calibration samples

The corresponding equations for the case where multiple N-matrices are available are conveniently
worked out by introducing the pertinent expression for Q in equation (45).

GENERALIZATION OF WILSON ET AL.

The consequences of the generalization of Wilson er al.'” are easily recognized by observing that
essentially the same eigenval ue problem is solved as in the previous methods.** *® The only difference
lies in the way the left and right singular vectors are estimated. In the current method this is done by
decomposing the column and row augmented matrices
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o (R
Q= IM) and Q=( o

Q.=06.V] (46)
Q=067 (47)
It is seen that the matrices U and V should span the common row and column space of both M and

N. Next, M and N are converted to square matrices M%" and N{” by projecting them onto the first A
columnsof U and V as

MY'=UIMV, (48)
NY'=0INV, (49)

and the following eigenvalue problem is solved:
NV T =M TTI (50)

which can be recast into equation (12) using the reconstruction equations for the pure profiles.** In the
original paper of Wilson ez al. the matrices M and N are subject to the projection, but the procedure
can also be applied with M +N and M. It follows that error propagation leads to the same equations
as obtained above. There is, however, a subtle difference that is only noticed if the expressions are to
be evaluated, i.e. when the unknown quantities are to be replaced by their estimates (see remark under
equation (35)). Using the augmented matrices for the estimation of the left and right singular vectors
(U and V) may lead to more precise estimates for the elution profiles and spectra (X and Y). This
trandates, for example, to more precise estimates for £, and ), in equation (33). As a consequence,
evaluating this expression may lead to more precise estimates for the standard errors (i.e. 6(4r,)) when
applying the method of Wilson ez al. than when applying Lorber’s method. The same argument holds
for equations (42) and (43) and their analogs obtained for the generalization of Sanchez and
Kowalski.

In summary, applying the generalization of Wilson et al. is of direct consequence for the precision
of the reconstructed profiles (X and ). The consequences for the precision of the estimated standard
error in the estimated eigenvalues ((4,)) are merely indirect. Since analyzing M +N and M always
leads to a variance reduction (see remark under equation (45)), it seems best to use the hybrid method
of Poe and Rutan® where M +N and M are subject to the projections proposed by Wilson et al.

DISCUSSION

The foregoing gives a detailed account of the error propagation through the eigenvalue problem of
GRAM. Some general comments with respect to the derived standard errors are in order here.

Comparison of ‘old’ and ‘new’ expressions

A comparison between the ‘old’ equation (33) and the ‘new’ equation (43) shows that the only
difference consists of the term that accounts for the errors in the modulating order. Depending on the
relative size of thisterm, the improvement may be negligible, thereby making the derivation a useless
exercise in error propagation. However, the simulations of Booksh and Kowalski® have clearly
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demonstrated that the uncertainty in the estimated concentration ratios is more dependent on the first
term of equation (43) than on the second term. This means that estimating the uncertainty in the
guantitative results of GRAM using equation (33) aloneisinadequate in many applications. The added
value of this paper then should be that instead of the coefficients 8, and B, of equation (44), one has
expressions that relate data characteristics (figures of merit) to the uncertainty in estimated parameters.
Thisresult is, for example, important with respect to considerations of experimental design. Equation
(42) is more difficult to interpret than equation (43), which is derived using an additional
simplification. It is expected that qualitative statements based on equation (43) should still be valuable
under more general error models.

Validation of the derived standard errors

No validation study will be presented in this paper in order to demonstrate the adequacy of the derived
expressions. There are two reasons for not doing, for example, additional simulations. The first reason
isthat all new expressions presented here form a generalization of expressions that have been shown
to work well.** The second reason is that the functional form of some of the newly derived standard
errors is in accordance with previously published simulation results.® Since these expressions arise
from a simplification of a more general form, it will be assumed that the presented derivations are
valid within the assumptions and approximations made.

Assumptions and approximations

Three basic assumptions have been made in order to arrive at the final results. The first assumption
concerns the model equations that are assumed to describe the errorless data, i.e. equations (1) and (2).
It was assumed herein that the so-called bilinear model holds. If the bilinear model does not hold, the
logical step is to move to other methods, e.g. non-bilinear rank annihilation (NBRA)# or residual
bilinearization (RBL).%* Furthermore, it is assumed that the pure profiles X and Y are the same for both
samples. This may be a restrictive assumption in practice. For example, chromatographic data are
characterized by synchronization problems, since the retention times are not absolute. It is important
to note that Poe and Rutan® have shown that the hybrid method mentioned above is more sensitive
to model errors than the generalization of Sanchez and Kowalski. The influence of model errorsis not
considered in this paper.

The second assumption concerns the truncated SV D that is used to construct the solution space. The
truncated SVD gives an optimal approximation of a matrix if the residuals are homoscedastic and
uncorrelated. If the errors do not follow this ideal behavior, the data points have to be weighted or
scaled according to their esimated uncertainty. Since in this paper the focus is on a more realistic
description of the effects of measurement noise, this topic will be discussed in more detail below.

The third assumption made is that the effect of the measurement noise can be quantified by first-
order error propagation. Performing the derivation to first order is primarily a matter of convenience.
The results will, however, only be satisfactory if the measurement errors are sufficiently small. For
many modern instruments the signal-to-noise ratio is excellent and results obtained by the first-order
approximation should work well. The validity of this assumption has previously been confirmed by
simulations.™

Scaling prior to singular value decomposition

The problem of scaling prior to SVD has been recognized by Cochran and Horne in the context of
pseudorank estimation.” They found that in the presence of heteroscedastic measurement errors,
additional PCs are deemed significant. This means that reconstructing the data matrix using the
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‘correct’ number of PCs will not lead to a satisfactory fit of the data and subsequently solving the
GRAM eigenvalue problem will not give optimal results. The issue of scaling has been treated in
detail by Paatero and Tapper,® who argue than an ideal scaling of the data matrix is not always
feasible. Obviously, an ideal scaling of the data comes down to weighting each data point by its
estimated uncertainty, i.e. a matrix element M is replaced by M;/o(M;). However, there is a
disadvantage associated with this procedure. In general there will be no useful connection between the
SVD of the raw and the scaled data matrix. Paatero and Tapper show that this will be the case if the
rank of the matrix of estimated uncertainties, o(M), is larger than one.®* Thus, if as an additional
criterion for asuccessful scaling strategy one demands that there be such a connection, a conflict might
arise. Unfortunately, thisis the case if the SVD is used for calculating the ingredients for the GRAM
eigenvalue problem (and in general for SVD- or PCA-based curve resolution). As a promising
alternative, Paatero and Tapper propose a procedure which they call balanced scaling. In this
procedure the weight matrix W, with elements W;=o(M,,) "', is decomposed as an outer product of
two vectors which are subsequently used to build two diagonal scaling matrices D, and D,. The scaled
matrix M* is calculated as

M==DMD, (51)

Using equation (51), the connection between the decompositions of M and M* is easily established.
In the procedure of Paatero and Tapper the diagonals of the scaling matrices are found by an
alternating least squares (ALS) agorithm (rank one) which is heuristic in nature. An aternative would
be to perform an SVD on the matrix W and use the first score and loading to build the scaling matrices
in an analogous manner. Denote the first score and loading vectors by f and g respectively. Then the
individual weights are approximated by

sz =fg; (52)

and the diagonal elements of the scaling matrices are found as D, ,=f; (i=1,...,I)and D, ;=g; (j=1,
..., J) respectively. The motivation for this modified procedure is as follows. With the current
assumption about the measurement errors it is reasonable to assume that the matrix o(M) looks like
a data matrix itself. (This will certainly be the case if the uncertainty in the modulating order is
proportional: see Figure 1 in Reference 9.) Furthermore, in many applications of GRAM one has
highly overlapping signal contributions of the individual substituents. For these multicomponent
systems it is common to have one very large eigenvalue, which roughly accounts for the average of
the variation in the data. (In Reference 13, examples are given where the first PC accounts for more
than 90% of thetotal variation.) It is therefore reasonable to assume that in many situations the matrix
a(M) can very well be estimated by the first PC and the same will then hold for the weight matrix W.
Investigating the merits of this assertion is certainly atopic for future research. It is important to note
that the same scaling is applied to both matrices in order to make GRAM work. Finaly, if scaling is
applied, the expression for the estimated standard error has to be adapted in a straightforward fashion.
Now one has to introduce the uncertainties in the scaled matrices, given by W,#a(M,;) and W, a(N;).
Estimates for the true profiles are found by undoing the scaling of the profiles that are initialy
found.

Consequences for the estimated standard error in the reconstructed profiles and the estimated
biasin the estimated eigenvalues

Expressions have been derived for the estimated standard error in the reconstructed profiles and the
estimated bias in the estimated eigenvalues under the assumption of homoscedastic and uncorrelated
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measurement noise.* The consequences for these quantities are trivial if the scaling procedure
discussed above is successful.

CONCLUSIONS

Expressions for predicting the standard error in the eigenvalues estimated by GRAM have been
derived using realistic assumptions about the measurement errors. No simulation results are presented
to illustrate the validity of the derived expressions, because the functional shape of these expressions
(see equation (43)) is in accordance with previously published simulation results.

The consequence of alowing for more flexibility with respect to the assumptions is the need for
more detailed information about the measurement errors if the expression is to be evauated in
practice. One cannot expect to obtain an error estimate for the estimated eigenvalues (concentration
ratios) without knowing the noise characteristics of the instrument to a certain extent. Measuring
instrumental errors and testing the practical usefulness of the derived expressions are the subject of
futureresearch in our laboratory. Applications currently under study include measurement of the errors
associated with the recently developed fiber optic heavy metal sensor® and the flow probe sensor.

Finaly, it can be shown that there is a close relationship between different variations of GRAM and
the multivariate regression technigque known as principal covariates regression (PCovR).# In PCovR
an eigenvalue problem is solved to cal culate scores that reconstruct both the regressor matrix X aswell
as the regressand matrix Y as well as possible. Flexibility is introduced by allowing for a different
weighting of X and Y. In this way PCovR builds a continuum of methods between multiple linear
regression (MLR) and principal component regression (PCR). It should be straightforward to extend
the derivations given in this paper to PCovR.
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