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Abstract 

In the first part of this paper expressions were derived for the prediction of random error bias in the eigenvalues of 
principal component analysis (PCA) and the singular values of singular value decomposition (SVD). The main issues of Part 

I were to investigate the question whether adequate prediction of this bias is possible and to discuss how the validation and 

evaluation of these predictions could proceed for a specific application in practice. The main issue of this second part is to 

investigate how random error bias should be taken into account. This question will be treated for a number of seemingly 

disparate multivariate problems. For example, the construction of confidence intervals for the bias-corrected quantities will 
be discussed with respect to the estimation of the number of significant principal components. The consequences of random 

error bias for calibration and prediction with ordinary least squares (OLS), principal component regression (PCR), partial 

least squares (PLS) and the generalized rank annihilation method (GRAM) will also be outlined. Finally, the derived bias 
expressions will be compared in detail with the corresponding results for OLS and GRAM. 

Keywords: Principal component analysis; Singular value decomposition 

1. Introduction 

In the first part of this paper [l] expressions were 

derived for the prediction of random error bias in the 
eigenvalues of principal component analysis (PCA) 
and the singular values of singular value decomposi- 

tion (SVD). It was found that depending on the 

signal-to-noise ratio for a specific principal compo- 

nent (PC) the random error bias in the eigenvalues is 
adequately predicted by (see Part I for notational 
practice), instead of 

b,o=(I+J-A)a; 

for a = l,...,A (1) 
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Paatero [2] has pointed out that an intuitive 

derivation of Eq. (1) is possible as follows: “If we 

apply Eq. (1) to form the total bias in A eigenvalues, 
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it is (A XI+A XJ-A’)ui. The expression in 

parentheses happens to be the number of essential 

parameters in A factors. If M = GF + E, where G is 

I X A and F is A X J, then there are A X I parame- 

ters in G, and A XJ parameters in F. But it is well 

known that if G and F are given, then A2 parame- 

ters in either G or F may be fixed at arbitrary values, 

by inserting a suitable A XA rotation T: GF = 

GTl-’ F. Thus A2 parameters are redundant, which 

leaves the expression in parentheses. My intuitive 

picture is as follows: the norm of the noise in the 

matrix M is I X J X a;. In factorization, this noise 

is distributed partly to the residuals, and partly to the 

factors (= to the eigenvalues). The noise in the 

residuals is decreased by the number of parameters 

fitted (degrees of freedom). The expected value of 

the norm of the residuals is therefore (I XJ -A X I 

-A XJ +A XA)ai. That amount of noise that is 
missing from the residuals will appear as a bias in 

the eigenvalues.” 
Paatero further notes [2]: “This argument does 

not prove anything, but it makes Eq. (1) quite plausi- 

ble and easy to remember.” It is clear that his 

derivation does not include the complications that 
have been discussed in detail in Part I. Since these 

complications should guide the validation of the bias 

expressions, it is not entirely sufficient for the pur- 

pose of the current paper. However, the intuitive 

picture should be very appealing for most readers 

just because it avoids complications and reduces the 

derivation given in Part I to the essential part. It 

follows that the advantage of the “intuitive picture” 

that it is “quite plausible and easy to remember” 

should not be underestimated and that is the reason 
why it is included here. 

The random error bias in the singular values is 
predicted by 

be,= 1/2(1+5-A - 1)&0, 

fora = l,...,A (2) 

The main objective of this second part is to 
investigate how random error bias should be taken 

into account. This will be illustrated by discussing 
the relevance of the derived expressions with respect 
to a number of important problems in multivariate 
data analysis. These problems comprise the construc- 
tion of confidence intervals for the true quantities, 

the determination of the number of significant PCs 

and the calibration and prediction with ordinary least 

squares (OLS), principal component regression 

(PCR), partial least squares (PLS) and the general- 
ized rank annihilation method (GRAM). 

It will be shown that the construction of confi- 

dence intervals for the true quantities is essentially a 

different problem than determining the number of 

significant PCs. It should be mentioned that the last 

problem is more relevant in analytical chemistry and 

therefore will receive more attention here. It will be 

explained that for OLS, PCR and PLS the prediction 

is not necessarily influenced by the random error 

bias in the model parameters that are used for the 

prediction. The situation is, however, entirely differ- 

ent for GRAM, since for this method the model 

building (calibration) and prediction step coincide. 

Thus prediction of and subsequent correction for 
random error bias is mandatory for GRAM as al- 

ready follows from the work of Booksh and Kowal- 

ski 131. This difference between on one side OLS, 
PCR and PLS and on the other side GRAM may lead 

to a better understanding of the working of these 

methods. It is emphasized that no new (numerical) 
results will be presented here. Testing the adequacy 

of the bias expressions was one of the subjects of 

Part I. 

Finally, before moving on to the applications of 

the derived bias expressions, a peculiar consequence 

of random error bias in the eigenvalues is pointed 

out. The random error bias is always positive. It 

therefore automatically gives a lower bound for the 

primary eigenvalues or, to be more specific, for the 

smallest primary eigenvalue. Other lower bounds 
were found during the present investigation and it 

may be worth while to compare them with respect to 
their efficiency. Since deriving lower bounds for the 
primary eigenvalues is not considered to be a prob- 

lem in multivariate data analysis, they are not pre- 
sented together with the other applications of the 
derived expressions in the theoretical section but in 

the Appendix. 

2. Theory 

The application of the derived bias expressions 
comes down to answering two questions. First, one 
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has to investigate whether bias is harmful for the 

particular application at hand. Second, since the bias 

is a constant background, one has to investigate the 

consequences of simply removing the bias. Before 

discussing the possible harm of random error bias for 

a number of multivariate problems the correction for 

bias is treated. 

2.1. Bias correction 

The consequences of a bias correction are as 

follows. Without the bias correction the estimated 

quantity, say z^, may be expressed as (see Part I) 

z^=Z+Ez+bz 

and the mean square error is given by 

msez = u,’ + hz 

The bias-corrected estimated quantity, Z,, may be 

expressed as 

where & denotes the estimated bias in z^ and b, is a 

residual bias. (For the eigenvalues of PCA the bias is 

systematically underestimated and the residual bias 
is positive.) The mean square error for the bias-cor- 

rected quantity is consequently given by 

msez c = uz2 + bb’ 

The bias correction is successful if the residual 

bias is much smaller than the standard error in the 

estimated quantity. In that case an (almost) unbiased 

estimate of the true value is obtained and only the 

standard error will effectively contribute to the total 

error in the estimate. 
For example, from the results discussed in Part I 

for the simulated three-component system it can be 
inferred that the bias correction will give excellent 
results for the first two eigenvalues but is not suc- 

cessful for the smallest one, since for this eigenvalue 
the signal-to-noise ratio is too unfavourable. Whether 
a bias correction will be successful is conveniently 
investigated by Monte Carlo simulations. Bias cor- 
rection has already been discussed for GRAM in 
another paper [9]. 

2.2. Construction of confidence intervals for bias- 
corrected quantities 

.&I important application of the derived bias ex- 

pressions is already noted by Goodman and Haber- 

man [4]. If confidence intervals are to be constructed 

for the true values, then correction for (non-negligi- 

ble) bias is mandatory. It should be noted that in the 

simple illustrative example in Part I bias was a result 

of a skewed distribution of the calculated quantity. 

This leads to a troublesome situation if confidence 

intervals have to be derived. Fortunately, this is not 

(necessarily) the case here, since by the central limit 

theorem, linear combinations of independent num- 

bers tend to approach normality regardless of their 

initial distribution, As a general guide, a number of 

at least 50 can be considered to be large enough in 

practice [5]. This principle can be applied to the sum 

of imbedded errors in Eq. (9) of Part I. Thus if the 

number of matrix elements is larger than 50 there 

may be a bias in the eigenvalues and singular values 

but one can still set up confidence intervals in the 

usual way after correcting for bias. 

2.3. Pseudorank estimation 

The construction of confidence intervals is related 
to the problem of pseudorank estimation but not 

identical. Since pseudorank estimation is one of the 
central problems of multivariate data analysis in 

analytical chemistry, this matter will be given ample 

consideration here. 

In another paper [6] it was shown that a singular 

value can be tested for significance by comparing it 

to the first singular value obtained from a ‘reference’ 

matrix in a t-test. The reference matrix is a random 
matrix and its size, which also gives the number of 
degrees of freedom v to be used in the test, is 

derived as follows. If we test the ath singular value 
of an I X J data matrix (working backwards through 
the list of singular values), then under the null-hy- 

pothesis, i.e. it only represents noise, this singular 
value should be equal to the first singular value of an 
(I - a + 1) X (.I - a + 1) random matrix. (This be- 

comes clear if one inserts, for example, a = 1.) If the 
singular value under test, 8=,, is equal to the reference 
singular value, i=,_r, then it only represents noise. 
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The procedure depends on a reliable estimate of 
g0 = cM (see Eq. (4) of Part I). Taking also the 
standard error in 8= ref into account leads to the 
following t-value ’ 

for a = J,...,l (3) 

which should be compared to the tabulated t,(l - a) 
in order to test at the cy level of significance. Bias is 
not corrected for in this procedure, since it is ‘ im- 
plicitly taken into account’ by subtracting the refer- 
ence value. (It is easily seen that this principle 
should hold for the testing of any function of the 
eigenvalues.) The procedure is illustrated in Fig. 1 
for the 20 X 10 matrix with constant elements M 
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Fig. 1. Distribution functions for the singular values of the test 

data matrix and the reference matrix. The test data matrix (20 X 10) 

has constant elements with size (a) M = 0.5 and (b) M = 1.0 and 

normally distributed noise with variance 1 added. The reference 

matrix is a 20 x 10 matrix with normally distributed elements with 

variance 1. It is seen that the distribution functions of the singular 

values overlap to a certain extent. The confidence level (Y is 

supplied by the r-test. a = 15% for the data set with M = 0.5 (not 
significant) and (Y < 0.1% for the data set with M = 1 (highly 

significant). 

10 
a 

8 ’ 

2 
96 XX 

i 

24 

I-----I 

X x 

5 
Xx 

X 

2 X 
X 

"0 5 10 
Principal component 

15 

X 

0 
0 5 10 

Principal component 

J 

Fig. 2. Singular values of the test data matrix with constant 

elements of size (a) M = 0.5 and (b) M = 1.0. 

and normally distributed noise with standard devia- 
tion (To = 1.0 (see Part I>. 

The obtained significance levels were compared 
to those obtained by Malinowski’s F-test (71. The 
significance levels produced by the t-test were con- 
sistently sharper. Thus if a good estimate of uM is 
available, then the f-test is to be preferred over the 
F-test. However, it is well known that Malinowski’s 
F-test works without prior knowledge of mM and is 
therefore more generally applicable. 

If an estimate for uM is not available a graphical 
alternative for the t-test is obtained by plotting the 
singular values [6]. The singular values for the sec- 
ondary PCs should lie approximately on a straight 
line [6]. In Fig. 2 the singular values are shown for 
the 20 X 10 matrix mentioned above. For M = 0.5 
the first singular value slightly deviates from the 
straight line part and its significance remains doubt- 
ful. For M = 1.0 the significance of the first singular 
value is established without difficulty. 

In summary, a bias correction should be applied if 
confidence intervals are to be constructed for the 
eigenvalues or singular values. However, it should 
not be applied if the eigenvalues of PCA or singular 
values of SVD are to be used for pseudorank estima- 
tion. 
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2.4. Random error bias in ordinary least squares related homoscedastic errors in X the expected value 
(vector data) for the estimated parameter vector is given by 

The first method to be discussed as a PC model is 
ordinary least squares (OLS). The standard regres- 
sion model is defined by 2 

E[ fiOLS] = (I+m;)-‘p (7) 

where I symbolizes the identity matrix, cr$ denotes 
the error variance in X and the factor @ is given by 

gr=xp+e 
Y (4) 

where 4 is an IX 1 vector of observations on the 
dependent variable, X is an I X K matrix of observa- 
tions on the independent variables, p is a K X 1 
vector of model parameters and ey is an I X 1 
vector of errors. Then the ordinary least squares 
(OLS) estimate of p is given by 

@= (X’X))’ = VA-‘VT (8) 

If the errors in X are small Eq. (7) can be worked 
out by taking only the diagonal elements of @ into 
account [9]. This approximation leads to the follow- 
ing expression for the bias in the individual esti- 
mated parameters bk 

P ors = (X’X) -lxry (5) 

These estimates for the parameters are commonly 
used for the prediction of properties of a new sam- 
ple. Under the usual assumption that X is known 
without error, i.e. it is ‘fixed’, the OLS estimate for 
the parameter vector p is unbiased, since it is a 
linear function of 3 (the dependence on X need not 
be considered). 

for k = l,..., K (9) 

Eq. (9) will be discussed in detail in a later 

This assumption is, however, not valid in many 
practical situations in analytical chemistry where both 
dependent as independent variables are measured 
with a certain (non-negligible) precision. In, for ex- 
ample, multivariate calibration the components of f 
often represent the spectral responses for an un- 
known sample and the elements of X are the spectral 
responses for the pure chemical components (classi- 
cal model). The immediate consequence of X not 
being fixed is that the estimated parameter vector is 
biased, since it is a non-linear function of X. This 
bias can be related to the previously derived bias in 
PCA by decomposing X according to the SVD, i.e. 
X = fi6 VT, and rewriting Eq. (5) as 

section. For the moment we only point out that the 
first factor on the far right-hand side of Eq. (9), i.e. 
Gkk = 2 V&p/,$,, is an error propagation factor which 
is also present in the expression for the standard 
error in fik [9]. This factor tends to be dominated by 
the small eigenvalues of XTX in the denominator 
although small elements for the eigenvectors in the 
numerator may cancel out the effect of small eigen- 
values. Consequently, the effect of small eigenvalues 
is not completely certain [lo]. However, if only large 
eigenvalues are present, then the error propagation 
factor should always be small, since the eigenvectors 
are normalized (they originate from the SVD of Xl. 
The practical evaluation of Eqs. (7)-(9) proceeds 
along the line discussed in Part I. 

0 
_ (~~-l~T)XTj 

OLS - (6) 

Hodges and Moore [8] have shown that for uncor- 

Thus it is easily demonstrated that for many 
applications the estimated model parameters are bi- 
ased but is this bias automatically harmful if the 
model is applied for the prediction of properties of a 
new sample? With respect to the consequences of 
applying biased model parameters for prediction 
(forecast) Hodges and Moore [8] state: “The forego- 
ing account gives some idea of the possible effects 
of data errors on the estimation of regression coeffi- 
cients by least squares. Regression equations are 
commonly used for making forecasts so it is relevant 
to examine how such forecasts are affected. The first 
point to make is well known, namely that if the 

2 
The notation introduced in Part I is used here. In most 

presentations of OLS Eq. (4) is written, for example, as y = X@ 

+ cy. It will become clear later that it is convenient to make a 

distinction between quantities that are known without error and 

quantities that are measured with a non-negligible error. 
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independent variables are drawn from stationary dis- 
tributions then, so long as the values used in making 
the forecast are also generated by the same distribu- 
tions and subject to the same sorts of error, no 
forecasting bias is involved. Unfortunately this is 
often not the case, and it is never true when an 
independent variable follows a trend over time.” 

The fact that biased model parameters will not 
automatically deteriorate the prediction for a new 
sample may come as a surprise. However, a biased 
model is not necessarily an incorrect model and, 
consequently, a bias correction is not always useful. 
Consider, for example, the case where a sample that 
has been used to build the (biased) model is remea- 
sured as a ‘future’ sample. Then, obviously, the 
biased model parameters should be used in order to 
predict its properties (e.g. concentrations), since it is 
the correct model for this sample. It is also clear 
from this example that a bias correction could actu- 
ally ruin the prediction. However, it is important to 
note that the additional assumption (stationary distri- 
bution) may be severe in many applications of re- 
gression models. Regression models are often used 
for the analysis of food samples, e.g. milk or meat. 
Then the stationary assumption is not likely to be 
fulfilled over a long period and, consequently, pre- 
diction will suffer from random error bias. This will 
be further discussed in the next section. 

In summary, a bias correction should be applied if 
focus is on the model parameters themselves. For 
example, if confidence intervals are to be constructed 
for the parameters or if the parameters are to be used 
for interpretation. However, it should not be applied 
if the model is to be used for prediction as is most 
often the case. 

2.5. Random error bias in principal component re- 
gression (vector data) 

Principal component regression (PCR) is a method 
that has been introduced to provide an alternative to 
OLS in the case that severe collinearity among the 
independent variables (corresponding to very small 
eigenvalues of XTX) leads to excessive standard 
errors in the estimated parameters. We will confine 
the discussion to prediction. In PCR the original 
matrix of independent variables X is replaced by a 

selection of PCs in order to stabilize the inversion 
step in Eq. (51, i.e. 

P PCR = (10) 

where the subscripted A indicates that a subset of A 
PCs is selected from the total of K PCs. This leads 
to a more economic model where the standard errors 
are reduced at the expense of introducing an under- 
factoring bias. Depending on the data there is a 
favourable trade-off and, hopefully, a better predic- 
tive model is obtained this way. This trade-off prin- 
ciple is nicely discussed by Mandel [ll]. 

For OLS the standard error is affected by the 
same error propagation factor as given in Eq. (9) for 
the random error bias [9]. In PCR the summation 
index p in Eq. (9) runs over a subset of the K PCs. 
Consequently, the reduction of the standard error by 
deleting highly contributing eigenvalues automati- 
cally translates into a reduction of the random error 
bias and vice versa. This is an additional advantage 
of using PCR that may be of great practical impor- 
tance in the light of the troublesome stationary as- 
sumption. It should be mentioned that different 
strategies for the selection of PCs have been pro- 
posed in the literature. The preceding gave an ac- 
count of the ‘top-down’ procedure, i.e. the eigenval- 
ues are selected in order of size. Sutter et al. [lo] 
advocate to select PCs that correlate best with the 
dependent variable f. This will not necessarily lead 
to the deletion of the PCs associated to the smallest 
eigenvalues. In this way a model is built with opti- 
mal prediction properties rather than a small variance 
of the parameters. 

It is important to note that the predictive power of 
a model is usually tested by an internal validation 
procedure, i.e. the available data is split up in a 
calibration and a test set. The calibration set is used 
to built a model that predicts the properties of the 
test set. Such a procedure will not enable the verifi- 
cation of the validity of the stationary assumption for 
future samples. With respect to the random error bias 
it does not matter which strategy is used as long as 
one is able to verify the validity of the stationary 
assumption. Since the bias contribution is expected 
to be relatively large for the smallest eigenvalues, it 
seems reasonable to remove their influence from the 
model. This reasoning would favour a top-down 
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selection of the PCs. It is emphasized that removing 

bias by deleting PCs is different from removing bias 
by subtracting the theoretical value, which is never 

recommended if the model is to be used for predic- 

tion. 
In summary, with respect to the correction for 

bias the same conclusions hold as for OLS. With 

respect to the deletion of PCs it is important to know 

whether the stationary assumption is likely to hold, 

i.e. the random error bias is constant. If it may be 

assumed to hold, then a ‘best subset’ procedure as 
recommended by Sutter et al. [lo] should be fol- 

lowed. Otherwise, one should consider the top-down 

procedure as safer, i.e. delete PCs that give an 

excessive contribution to the overall random error 

bias in the parameters. 

2.6. Random error bias in partial least squares 
regression (uector data) 

The same principles discussed until now for PCR 

should also hold for the intimately related PLS al- 

though there are some theoretical complications, 
since the error analysis for this method is still in its 

infancy. This can be explained as follows. In PLS 

the inversion step in Eq. (5) is performed in a 

subspace that also contains predictive information 

about the dependent variable 9. The PLS factors are 

linear combinations of the PCs of X that succes- 
sively have a maximum correlation with f. This 

automatically leads to good predictive models by the 

top-down selection procedure. 

Since the PLS factors contain information about 
the dependent variable 9, the estimated parameters 

are no longer linear functions of y and only approxi- 

mate standard errors have been derived [12]. (Fur- 

thermore, these standard errors are derived for the 
case that X is fixed.) For the underfactoring bias no 

theoretical results have been reported yet and, fi- 
nally, the random error bias is still undiscussed in the 
literature. However, in the light of the great difficul- 
ties that have to be solved in order to obtain (only 

approximate) standard errors, it is expected to be a 
formidable task to derive the necessary bias expres- 
sions for PLS. 

It is worth mentioning that in two large simulation 
studies of PLS [13,14] both p and X were considered 
to be stochastic, whereas Frank and Friedman [15] 

performed simulations where X was considered to be 

fixed. This is an illustration of the fact that simula- 

tion studies (in general evaluation studies) are al- 

ways carried out with certain applications in mind. It 

is evident that it completely depends on the kind of 

data that is generated whether the random error bias 

will be present. Moreover, even when it shows up, it 

may still be negligible compared to the standard 

error or the underfactoring bias. However, the impor- 

tant point is that one can only neglect this source of 

error after one has established that it does not influ- 

ence the final result. For a number of methods the 
necessary information is conveniently provided by 

the theoretical bias predictions, as discussed in this 

paper. For PLS there is still a large gap in the 
relevant error theory to be filled. 

In summary, with respect to the correction for 

bias the same conclusions hold as for OLS and PCR 

but there is no theory available to bring this insight 

to use. Since in PLS the model is constructed with 

reference to the dependent variable f, the usual 

(automatic) top-down procedure is even more in 
favour than for PCR. 

2.7. Random error bias in the generalized rank 
annihilation method (matrix data) 

The last method to be discussed as a PC model is 

the generalized rank annihilation method (GRAM). 

GRAM is a method for curve resolution and calibra- 

tion using two data matrices simultaneously, one for 

the unknown and one for the calibration sample. In 

order to apply this technique, the measured signal 
must be linear and additive, e.g. high-performance 

liquid chromatography with a diode array-UV/visi- 

ble spectrophotometer as a detector (HPLC-DA-UV) 

or fluorescence excitation-emission spectroscopy. 

Without loss of generality it will be assumed that the 
data are obtained by the spectral detection of a 
chromatographic separation process. 

Let the I X J unknown data matrix $I be given as 

S~=HY~+E, (11) 

where H(I x K) contains the errorless elution pro- 
files of the K (detectable) components, Y(J X K) 
contains the corresponding errorless spectra and E, 
is the I XJ matrix of measurement errors. The 
spectra in Y are normalized so that the concentration 
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dependence is absorbed in H. It will be assumed for 
convenience that the unknown sample contains all 
components present in the calibration sample and 
discuss the general case later. Then the I X J calibra- 
tion data matrix fi can be written as [9] 

R==HiiYT+EN (12) 
where fi is a K X K diagonal matrix that contains 
the ratios of the concentrations in the samples, i.e. 
- _ 
rk = CN,k &,k and EN is the 1 X J matrix of mea- 
surement errors. 3 

SBnchez and Kowalski [16] have shown that Eqs. 
(11) and (12) can be combined by decomposing the 
unknown data matrix according to the SVD, i.e. 
fi = fi& qT. Retaining only the first A principal 
components of a leads to the following standard 
eigenvalue problem 

fi= ~-‘(ir,‘~~~e,-‘)~ (13) 

where the eigenvalue matrix I!!@ contains the esti- 
mated concentration ratios and the eigenvector ma- 
trix ? can be used to reconstruct H and Y from the 
singular vectors of a as fi = e*? and P’ = 
?-‘&AvAT, The subscripted A indicates that the SVD 
is truncated to the A leading PCs (A is actually an 
estimate of the number of components K). 4 

Booksh and Kowalski [3] have demonstrated that 
the estimated concentration ratios, fi, are biased. It 
is important to note that this bias does not result 
from a skewed distribution of the eigenvalues. Even 
for a skewed distribution of the measurement noise 
they found that GRAM yields (approximately) nor- 
mally distributed eigenvalues. In another paper [9] 
the following expression is derived for the expected 
value of the estimated concentration ratios assuming 
that the measurement noise is uncorrelated and ho- 
moscedastic: 

E[ li] = (I +W&$E[ fi](I +JWu;)-l 

(14) 

’ An important difference between Eq. (12) and Eq. (4) is the 

presence of quantities that already carry an error. The concentra- 

tions actually present in the samples will deviate from the true 

values as a result of errors made, for example, during sample 

acquisition, sample preparation, sample injection in chromatogra- 

phy, etc. 
4 In GRAM the A PCs are automatically selected top-down. 

This makes Q. (13) essentially different from Eq. (10). 

where g& denotes the error variance in &I and the 
factor W is given by 

y= (HTH)-‘(YTY)-’ = T-h-IT (15) 

Under the assumption of small errors in &I (cf. 
Eq. (9)) the bias in the individual estimated parame- 
ters can be approximated by 5 

b,, =E[iYa] -E[iia] 

-2)~; 

for a = l,...,A (16) 

where the first factor on the far right-hand side is 
TQ’,,. It was found that the bias estimate is still 
accurate if A under or overestimates K. ’ 

It is emphasized that predicting the (actual) con- 
centration ratios fi in GRAM is equivalent to esti- 
mating the (true) model parameters p in OLS, PCR 
and PLS [8]. Since one is directly interested in the 
concentration ratios (there is no separate prediction 
step), bias should always be corrected for. 

It is worth mentioning that also in GRAM one has 
made a restrictive assumption with respect to the 
model represented by Eqs. (11) and (12). Analogous 
to the stationary assumption discussed before, now 
the assumption has been made that the pure compo- 
nent profiles in H and Y T be identical for both 

5 The bias resulting from measurement errors is defined with 

respect to the actual concentration ratio, since this would be the 

value found if there were no measurement errors. It is emphasized 

that Eq. (16) is slightly different from the expression given in [9], 

i.e. Eq. (9). There the right-hand side of the bias expression 

contains the expected value of the estimated concentration ratio 

instead of the expected value of the actual concentration ratio. 

This seems to be more appropriate if the bias expression is to be 

evaluated, since only a realization of the estimated value is 

available. However, for the purpose of this paper (discussion and 

comparison of bias expressions) the current formulation seems to 

be suitable. 

6 This is only true if a correct estimate for (TV is inserted in 

(16). Two examples were found in the literature where error 

estimates are calculated from the residuals of an incorrectly 

dimensioned PC model [17,18]. This situation is easily recognized, 

since contrary to the underfactoring bias, the standard error and 

random error bias should always increase with model complexity. 
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samples. In practice, however, it should be possible 
to meet this requirement by measuring both samples 
within a short time span. This can certainly be 
interpreted as being an advantage of having only one 
calibration sample, although from a general statisti- 
cal point of view a one-point calibration is very 
unsatisfactory. 

In summary, contrary to OLS, PCR and PLS, one 
always has to correct for bias in the estimated eigen- 
values of GRAM. An overview of the consequences 
of random error bias for the PC models discussed in 
this paper is given in Table 1. 

singular values is inverted. It should be mentioned 
that a minus sign is not always to be expected for the 
bias in the eigenvalues of GRAM. In the general 
case where both the unknown and calibration sample 
have unique components, the procedure is modified 
by substituting the sum matrix &I + fi for &l and Ic? 
for fi. Now one has the situation that the errors in 
&l + fi and &l are correlated, thereby leading to a 
bias expression with terms of opposite sign [9]. The 
overall sign of the bias will then actually depend on 
the specific data at hand. 

(ii) Error propagation factor 
2.8. Similarities and dissimilarities between bias ex- 

pressions (I), (2), (9) and (16) 

It has been shown that OLS and GRAM are 
directly related to PCA. One therefore expects that a 
useful comparison of the corresponding bias expres- 
sions is possible. It should, however, be kept in mind 
that Eqs. (9) and (16) were obtained by the addi- 
tional assumption of small errors. The comparison 
will be made with respect to the elements that are 
present in Eqs. (9) and (16) but may be missing in 
Eqs. (1) and (21, i.e. (i) the overall sign of the bias, 
(ii) the error propagation factor, (iii) the parameters 
that are estimated, (iv> the number of observations 
made, (v) the dimension of the PC model and (vi) 
the size of the measurement noise. 

There is a notable difference between Eqs. (11, 
(2), (9) and (16). Eqs. (9) and (16) are characterized 
by the presence of a factor that quantifies the amount 
of error propagation. This factor, which is missing in 
Eqs. (1) and (2), directly depends on the amount of 
overlap encountered in the matrices X, H and Y. 
Thus, conversely, one might conclude that there is 
‘no error propagation’ in PCA. Error propagation in 
PCA is, however, directly indicated by a large differ- 
ence in size of the singular values. PCs with small 
singular values have an unfavourable signal-to-noise 
ratio. 

(iii) Estimated parameters 

(i) Overall sign of the bias 

The overall minus sign in Eqs. (9) and (16) is 
easily explained, since the matrix of eigenvalues or 

The dependence on the estimated parameter is 
linear for Eqs. (2), (9) and (16). This is a marked 
difference with respect to Eq. (1) that states that the 
predicted bias is independent of the size of the 
eigenvalue. (It has been seen in Part I that the real 
bias is not constant.) 

Table 1 

Summary of the consequences of random error bias for the multivariate problems discussed in this paper a 

Quantity Application Bias correction Equation 

Eigenvalue PCA b Confidence interval Yes (1) 
Pseudorank estimation No 

Singular value SVD ’ Confidence interval Yes (2) 
Pseudorank estimation No 

Parameter OLS ’ Confidence interval Yes (7,9) 
Interpretation Yes (7,9) 
Prediction No 

Eigenvalue GRAM Prediction Yes (14,16) 

a A direct consequence of random error bias in PCA is the fact that the expressions derived for the prediction of bias in related problems 

have to be corrected for this bias. 

b This holds in general for any function of the eigenvalues. 

’ The consequences are identical for PCR and PLS. The analogy for Eqs. (7) and (9) has, however, not yet been derived for PLS. 
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It is important to note that no other eigenvalues 
contribute to the bias in a specific eigenvalue of 
GRAM. It is well known that under certain circum- 
stances some of the eigenvalues of GRAM may be 
complex [19]. Surely, it would be undesirable that a 
complex eigenvalue could ‘spoil’ a real eigenvalue 
by interacting through the bias expression. The same 
reasoning holds for the variance in the eigenvalues 

[20,91. 

(iv) Number of observations 
The number of observations is present in all bias 

expressions: both I and J in Eqs. (11, (2) and (16) 
and I in Eq. (9). 

(v) Dimension of PC model 
The explicit dependence on the dimension of the 

PC model of M in Eqs. (11, (2) and (16), i.e. A, is 
equivalent to the dependence on the number of inde- 
pendent variables in Eq. (91, i.e. K. This is to be 
expected, since for OLS the PC model is K-dimen- 
sional. 

(vi) Size of the measurement noise 
In all bias expressions one finds an identical 

dependence on the variance of the measurement 
noise, i.e. ai. 

3. Conclusions 

The main issue of this second part was to investi- 
gate how random error bias should be taken into 
account for a number of multivariate problems. It 
was found that one must be very careful in automati- 
cally applying a straightforward bias correction (see 
Table 1). From the present theoretical comparison 
the following conclusions are drawn. 

The difference between the construction of confi- 
dence intervals for the bias-corrected quantities and 
the problem of pseudorank estimation has been ex- 
plained. In order to obtain confidence intervals for 
the true values the estimated values must be cor- 
rected for bias [4]. The pseudorank can be estimated 
by comparing the singular values of the test data 
matrix with the first singular value of an appropri- 
ately sized random matrix in a #est. No bias correc- 
tion takes place in this procedure. 

The consequences of random error bias for cali- 
bration and prediction with OLS, PCR and PLS have 
been discussed. If the focus is on the parameters 
obtained from the calibration phase, then one should 
correct for bias. If, however, the biased model is to 
be used for prediction, then a bias correction is not 
allowed. 

It has been detailed that the prediction is not 
affected by the random error bias as long as the 
distribution of the independent variables is station- 
ary. This assumption may have consequences for the 
selection of PCs in PCR. For PCR it is concluded 
that if the distribution for the independent variables 
can not be considered to be stationary, then one 
should consider to delete PCs for which the bias 
makes an important contribution. Otherwise, the 
‘best-subset’ procedure recommended by Sutter et 
al. [lo] should be in favour. For PLS the same 
principle holds but the necessary theory has not yet 
been developed. This means that it should be impor- 
tant to extend the theory that is already available for 
PCR to PLS. 

The situation is more transparent for GRAM, 
since for this method the model building (calibra- 
tion) and prediction stage are the same. Here it is 
always necessary to correct for bias. 

Finally, the previously derived expressions, i.e. 
Eqs. (1) and (21, have been compared with the 
corresponding results for OLS (with errors in the 
independent variables), i.e. Eq. (91, and GRAM, i.e. 
Eq. (16). Some striking similarities (as well as differ- 
ences) have been pointed out for these multivariate 
methods. 
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Appendix 1 

Three lower bounds for the smallest primary eigen- 
value fi, 

The first lower bound follows from the reformula- 
tion of the real error function, i.e. Eq. (6) in Part I. 
The smallest primary eigenvalue should be larger 
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than the average secondary eigenvalue. Since the 
summation in Eq. (6) runs over J-A secondary eigen- 
values, the first lower bound immediately follows 

as 7 

(I-A)(T; <i, (1) 
The second lower bound is given by the bias in 

the eigenvalue itself: 

(Z+J-A)& < iA (II) 

It is seen that the bias is always larger than the 

average secondary eigenvalue. For example, if the 

data matrix is square and highly overdetermined, i.e. 

I = J B A, then the bias is approximately twice as 

large as the average secondary eigenvalue. The third 

lower bound is obtained by observing that the dis- 

criminant in Eq. (16) of Part I should be positive: 

2(1+J-A-l)&& (III) 

It follows that the third lowerbound is approxi- 

mately twice as large as the second lowerbound. It is 

by far the most efficient of the three. An immediate 
consequence of this expression is that one can not 

predict a bias that is larger than approximately 50% 

of the smallest primary eigenvalue. This should be a 

useful result that is easy to remember. (Note, how- 

ever, that the predicted bias always underestimates 

the real bias (see Part I).) 

A numerical example may show how efficient this 
lower bound may be in practice. For the simulated 

three-component system in Part I the Monte Carlo 

average for the third eigenvalue was 39. The third 
lowerbound is 2 X (36 + 36 - 3 - 1) X (0.5)2 = 34. 

7 
The discussion is simplified by assuming that oM is ade- 

quately estimated from the residuals of PCA. 

The lowerbound is found to be rather good in this 
case. It is, however, emphasized that this data matrix 

was simulated in order to have one eigenvalue with 

an exceptionally large bias. Evidently, this lower 

bound is not efficient for the largest two eigenvalues 

(3803 and 143, respectively). 
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