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Abstract

Backpropagation arti®cial neural networks, principal component regression and partial least squares have been compared in

order to establish the best multivariate calibration models for the analysis of mixtures of polycyclic aromatic hydrocarbons

containing 10 of these compounds (anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, ¯uoranthene, ¯uorene,

naphthalene, perylene, phenanthrene and pyrene). The synchronous ¯uorescence spectra (recorded at wavelength increments

of 50 and 100 nm) of 85 standards, with concentrations ranging from 0 to 20 ng mlÿ1, have been used for this purpose.
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1. Introduction

The determination of several compounds in a mix-

ture can be a dif®cult problem, especially if their

analytical characteristics are not very different. In

order to avoid any previous chromatographic step,

new procedures which take full advantage of the

possibilities offered by chemometrics and by the wide

availability of powerful and relatively inexpensive

computers may become an alternative.

Among the available multivariate calibration pro-

cedures, partial least squares regression (PLSR) and

principal component regression (PCR) are the most

suited for multicomponent spectral analysis [1±6].

PLSR is based on the regression of chemical concen-

trations on latent variables (factors), and therefore, it

differs from other calibration procedures (such as

PCR) in that it uses the concentration data from the

training set and the spectral data for modelling,

whereas PCR only uses the spectral data [7]. This

enables PLS to reduce the in¯uence of dominant, but

irrelevant, factors and to yield models of lower dimen-

sionality. The main advantage of multicomponent

analysis lies in the speed with which results can be

obtained, because the previous separation step, usually

a lengthy process, can be avoided.

A newer data processing system, that has been used

for the resolution of spectral data [8±11], are the

arti®cial neural networks (ANNs), which try to simu-
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late the nervous human system. A characteristic of

ANN systems used for data processing is the require-

ment of intense computation during the training pro-

cess (®tting process). This however, results in the

advantage of the relatively fast prediction process

of unknown samples offered by trained ANNs.

Among the different kinds of neural networks avail-

able, one of the most widely used for spectroscopic

data is the backpropagation network, which learns by

being exposed to sample inputs and outputs from a

training database.

Of all spectroscopic techniques, spectro¯uorimetry

is well suited to be used in combination with multi-

component analysis, because there are relatively few

compounds having intrinsic ¯uorescence. This fact,

combined with the possibility of changing either the

excitation wavelength or the emission wavelength, or

both simultaneously, greatly increases the selectivity

of spectro¯uorimetric methods. Additionally, detec-

tion limits can often be improved by simply increasing

the intensity of the radiation used for excitation.

Among the compounds having intrinsic ¯uores-

cence, polycyclic aromatic hydrocarbons (PAHs) are

particularly important. These substances, whose muta-

genic and/or carcinogenic effects are well-known, can

be originated by natural and anthropogenic processes,

and they can be found in many different kinds of

samples, such as biological (e.g. meat, ®sh) [12±14] or

environmental (e.g. soils, sediments, airborne parti-

culate, water) [15±20]. For this reason, their detection

and monitoring has become an important problem and

this has led to the development of new and faster

analytical methods, offering improved selectivity and

sensitivity [12,14,21].

In this paper, backpropagation ANNs have been

compared with PLS and PCR procedures for the

prediction of 10 PAHs (anthracene, benz[a]anthra-

cene, benzo[a]pyrene, chrysene, ¯uoranthene, ¯uor-

ene, naphthalene, perylene, phenanthrene and pyrene)

using the synchronous ¯uorescence spectra, recorded

at two different wavelength increments. The synchro-

nous spectra from 70 mixtures of the compounds to be

determined were used as calibration set in order to

build the model, and a further set of 15 mixtures was

used as external validation set to test the predictive

ability of the method. An aqueous micellar medium

was used as solvent, in order to increase the ¯uores-

cence of the compounds.

2. Quantification algorithms

2.1. Artificial neural networks (ANNs)

A neural network performs a non-linear iterative

process to ®t the data. The principal computational

elements are the nodes, which are arranged in layers to

set the architecture of the network. In this paper, feed-

forward neural networks trained with backpropagation

algorithms have been used. The architecture of these

neural networks comprises three kinds of node layers:

an input layer (which in this case contains the spectral

data), one or more hidden layers, and an output layer

(which contains the concentrations related to the

spectral data).

2.2. Partial least squares (PLS) and principal

component regression (PCR)

Both methodologies have been widely described in

the bibliography [1±7]. Both combine principal com-

ponent analysis (PCA) with inverse least-squares

(ILS) regression. In the case of partial least squares

regression, the mode in which all components are

determined simultaneously (PLS-2) has been used.

3. Experimental

3.1. Reagents

Stock standard solutions (about 200 mg mlÿ1) of

PAHs were prepared by dissolving the pure solid

(Supelco) in either methanol (benzo[a]pyrene, ¯uor-

anthene, ¯uorene, naphthalene, phenanthrene and pyr-

ene) or acetonitrile (anthracene, benz[a]anthracene,

chrysene and perylene), depending on its solubility.

Acetonitrile and methanol were of analytical

reagent quality (Merck). Doubly distilled water (Milli-

Q�, Millipore) and Brij-35 (Polyoxyethylenlauryl-

ether, Merck) were used in the surfactant solutions.

3.2. Apparatus

Synchronous ¯uorescence spectra were recorded on

an Amino Bowman Series 2 spectro¯uorimeter,

equipped with a quartz cell (1 cm pathlength) and slit

widths of 16 nm in both monochromators.
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3.3. Procedures

Standards were prepared by addition of known

amounts of the stock solutions to 25 ml of

3.6�10ÿ3 mol lÿ1 solution of Brij-35 (40 times its

critical micellar concentration). Eighty ®ve standards

obtained in this way were divided into two sets, the

®rst one composed by 70 standards was the calibration

set, while the other 15 standards were used to perform

the validation set. The range of concentrations was set

between 0 and 20 ng mlÿ1, so that each standard was

linearly independent of the other standards (that is,

two standards do not have the same ratio in the

concentration of the 10 PAHs). The synchronous

spectra of each solution were recorded at wavelength

increments (��) of 50 and 100 nm. The excitation

range was from 200 to 550 nm, so the emission range

varied with �� (e.g. for ���50 nm, the emission

scan range was from 250 to 600 nm). In all cases

emission readings were taken each nanometer (351

data points for each spectrum).

Before being used in the calculations, the two

synchronous spectra recorded for each standard or

sample were concatenated together to obtain a global

spectrum (Fig. 1).

3.4. Data processing

Data were processed on a 133 MHz Pentium PC-

compatible computer. The arti®cial neural networks

were designed and trained with the QNet97 software

(32-bit Neural Network Modelling, Vesta Services).

For principal component analysis and partial least

squares (PLS) regression, the algorithms from the

PLS_ToolBox [22], written in MATLAB language

(MathWorks) were used. Models for principal com-

ponent regression (PCR) were obtained with a pro-

gram written by the authors in MATLAB language. In

the three cases (ANN, PCR and PLS) the input and

output data were scaled.

Two kinds of data were used for the training of the

backpropagation neural networks. First, the full syn-

chronous spectra (which consisted in the two synchro-

nous spectra linked) were used. In this case, and in

order to accelerate the calculations, the number of data

points in each spectra was reduced by taking one of

each three points, thus reducing the number of points

from 702 to 234. The second type of data was the

scores obtained by the principal component analysis

(PCA) of the spectral data. In this case, the number of

factors chosen to explain the spectral data was 14.

The learning data matrix thus obtained had a dimen-

sion of 70�234 data points in the case of the syn-

chronous spectra and 70�14 data points in the case of

the scores.

4. Results and discussion

There are two important parameters to be optimised

in the arti®cial neural networks: the architecture of the

network (number of hidden layers) and the number of

nodes of each layer. Of all the different architectures

tested, the best results were obtained, both in cases of

full spectra and of score values, with single hidden

layer architectures, as the addition of more layers did

not improve the results and increased the time of

calculation.

As shown in Fig. 2, the time of calculation is

linearly dependent of the number of neurons contained

in the hidden layer. If the values of the scores are used

instead the synchronous spectra, the time of calcula-

tion is reduced up to six times.

A secondary parameter is the learning rate, which

controls the size of the node weight adjustments

during training (controls the rate at which the ANN

attempts to learn). Fig. 3 shows the learning rate effect

Fig. 1. Global spectrum obtained by the concatenation of

synchronous spectra recorded at wavelengths increments of 50

and 100 nm.
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over the training RMS error. The ®rst plot (a) shows

the RMS error with a learning rate of 0.01, with a

learning rate of 0.05 the divergences begins to appear

(b), and this is shown clearly in the case of learning

rates of 0.07 (c), 0.10 (d) and 0.20 (e). The last plot (f)

shows the effect of the automatic learning rate adjust,

which is allowed by the Qnet97 program.

Another parameter studied was the function used

for the connection between nodes (for the non-linear

transformation of the input data inside nodes). Sig-

moid, hyperbolic tangent and hyperbolic secant non-

linear functions have been tested, but better results

have been obtained with the sigmoid function:

f �x� � 1

1� eÿx
:

To obtain the best results, different architectures of

ANNs were tested, where the number of nodes in the

hidden layer and the number of compounds in the

output layer were studied. In order to compare the

different models, the relative root mean squared dif-

ference (RRMSD) was calculated:

RRMSD�%� � 100

C

�����������������������������������������
1

J

XI

i�1

XJ

j�1

ĉi;j ÿ ci;j

ÿ �2

vuut ;

where ĉi;j and ci,j are the predicted and the real

concentration for compound i in sample j (I and J

are the number of compounds and the number of

samples, respectively). C is the mean of the concen-

trations of all the compounds in all the samples. These

predictions were performed in an independent set of

15 standards. The equation for the RRMSD shown

corresponds to the global error (for all the compounds

in all the 15 standards); for the RRMSD values of each

independent compound, the ®rst summatory is

omitted.

In Table 1 the global RRMSD values for the archi-

tectures tested are shown. In all cases, either when

only the 10 PAHs were determined or when the

surfactant was added as the 11th compound (because

it is also ¯uorescent) the lower RRMSD values (up to

three times) were obtained when the scores were used

instead of the full synchronous spectra. When scores

were used, slightly better results were obtained when

the surfactant was added as 11th compound. The

architecture chosen for all further calculations (Fig. 4)

consisted of an input layer with 14 nodes (scores), a

hidden layer with 10 nodes and an output layer

with 11 nodes (for the 10 PAHs and the surfactant).

Fig. 2. Plot of time of calculation versus the number of nodes in

the hidden layer.

Table 1

RRMSD(%) values for the different artificial neural networks assayed

Nodes in the hidden layer Synchronous spectra Scores

10 PAHs 10 PAHs� Brij-35 1 PAHs 10 PAHs� Brij-35

5 53.03 51.96 45.98 46.38

9 35.56 32.98 20.63 19.48

10 27.99 26.20 11.64 9.63

12 26.00 27.64 11.23 10.13

15 29.41 28.40 9.84 9.82

17 27.41 27.78 11.01 9.91

20 26.41 27.98 10.31 9.33

25 28.74 28.93 10.73 9.46
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The results obtained with ANNs were compared with

those obtained by other multivariate calibration pro-

cedures, such as PCR and PLS.

For PLS and PCR, which are factor analysis meth-

ods, the ®rst step was the determination of the number

of factors that allowed the system to be modelled

Fig. 3. Effect of the learning rate on the RMS error.
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without over®tting the concentration data. For this

purpose, a cross-validation method, leaving one sam-

ple at time, was used [23]. This means that, for a

calibration set with n standards, the PLS and PCR

calibrations were carried out with nÿ1 samples, and

data thus obtained were used to calculate the concen-

trations of the sample left out. This process was

repeated for the n samples. For each compound, the

prediction error sum of squares (PRESS), de®ned as

PRESS �
XJ

j�1

ĉj ÿ cj

ÿ �2
;

where ĉj and cj are the predicted and the real con-

centration for the sample j and J is the number of

samples, was calculated. At the end of the process, the

cumulative PRESS (sum of the PRESS for each

sample of the calibration set) was obtained as a

function of the number of factors. The optimum model

was selected taking the minimum number of factors

that yield a cumulative PRESS (CUMPRESS) that did

not have any signi®cant differences with the minimum

CUMPRESS. For this purpose, the statistical F was

used [7]. The value of F was calculated as:

Fk � CUMPRESS�k�
CUMPRESS�min� ;

where Fk is the calculated value, CUMPRESS(k) is the

CUMPRESS value obtained in a model with k factors,

and CUMPRESS(min) is the minimum value of

CUMPRESS obtained. The minimum number of fac-

tors obtained was 15 for the PLS-2 model and 13 for

the PCR model.

The calibration models for PCR and PLS were

validated with the independent set of 15 standards

previously used for ANN. In Table 2, the RRMSD

values for each PAH are shown for the three models.

These values indicate that the three methods have

similar prediction ability, as they have similar

RRMSD values, except in the case of anthracene,

¯uoranthene and naphthalene, which have higher

values in the case of the PCR model. About the time

required for calculation, the ANN chosen used about

3.75 min, while PCR needed 9 min and PLS needed

12.5 min. This means that ANN requires a shorter time

for calculation than the other procedures (about 25±

30% of PLS).

Finally, the three models were used for the analysis

of water samples, which had been spikde with the 10

PAHs at four concentration levels (4, 9, 12 and

20 ng mlÿ1). The results obtained by each procedure

are shown in Table 3.

From a comparison of these results, it can be

deduced that, overall, the best method is partial least

Fig. 4. Representation of the architecture of the optimal neural network chosen.
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squares regression, although, in some cases, the dif-

ferences with the other two procedures are not great.

Overall results obtained by either arti®cial neural

networks or principal component regression are

roughly equivalent, although the prediction ability

of each system depends on the individual compound

to be determined. For example, ANNs have a predic-

tion ability for chrysene, phenanthrene, ¯uoranthene

and naphthalene, while PCR is better to predict anthra-

cene, benz[a]anthracene and benzo[a]pyrene, while

both procedures give similar predictions for perylene

and pyrene.

The three calibration procedures were unable to

give good predictions for the concentration of ¯uor-

ene, which can be attributed to interferences from

other substances present in natural water samples.

Fig. 5 shows the representation of the ®rst principal

component verses the second principal component for

the calibration set, the validation set and the water

samples. The difference in the predictions between

PLS and ANN could be explained by taking into

account of this representation. As is shown, the sam-

ples M1 and M2 are inside the calibration set, while

M3 and M4 are clearly displaced from this set. This is

Table 2

RRMSD(%) values for each PAH obtained with the three procedures assayed

Compound ANN (14±10±11)a PCR (13 factors) PLS (15 factors)

Anthracene 8.67 11.27 8.13

Benz[a]anthracene 8.06 6.72 8.10

Benzo[a]pyrene 5.83 5.41 5.02

Chrysene 12.49 12.46 13.04

Phenanthrene 8.88 8.85 7.54

Fluoranthene 10.35 17.21 10.34

Fluorene 13.16 14.89 12.55

Naphthalene 13.69 17.77 11.52

Perylene 5.70 3.80 3.60

Pyrene 9.07 11.07 11.85

a14±10±11: 14 nodes in the input layer, 10 nodes in the hidden layer and 11 nodes in the output layer.

Table 3

Determination of PAHs in spiked natural water samples

Compound Found (ng mlÿ1)

Added

(ng mlÿ1)

ANN PCR PLS

Anthracene 4.2 3.4�0.4 6.1�0.3 5.2�0.2

8.9 6.6�1.5 9.3�0.2 8.4�0.6

12.9 7.3�1.9 10.4�0.4 10.2�0.7

17.9 6.7�2.7 15.2�0.9 14.3�1.2

Benz[a]anthracene 3.9 4.4�0.4 4.3�0.3 3.7�0.1

8.2 9.8�0.4 8.7�0.6 8.0�0.3

11.9 11.0�0.3 11.1�0.6 10.6�0.4

16.4 12.0�0.2 15.2�0.9 16.1�0.6

Benzo[a]pyrene 4.7 3.7�0.2 5.5�0.4 4.9�0.2

10.0 9.5�0.3 11.0�0.8 10.2�0.6

14.3 11.0�0.1 13.9�0.8 13.2�0.6

19.3 11.9�0.1 21.2�1.2 20.2�1.0

Chrysene 3.8 3.0�0.2 2.3�0.2 4.4�0.2

8.1 8.8�0.3 6.5�0.2 9.0�0.4

11.7 10.7�0.5 9.1�0.3 11.8�0.6

16.2 13.1�0.2 14.9�0.2 18.5�0.4

Phenanthrene 4.3 4.0�0.6 2.1�0.4 4.7�0.3

9.1 8.8�0.6 5.3�0.3 8.5�0.3

13.1 9.4�0.5 7.5�0.2 10.3�0.5

18.1 10.1�0.1 10.9�0.2 15.1�0.6

Fluoranthene 4.7 5.9�0.1 9.5�0.6 7.0�0.1

10.0 10.8�0.3 15.3�0.4 11.9�0.3

13.1 12.1�0.2 17.5�0.6 14.5�0.3

20.0 13.3�0.1 26.0�0.7 21.6�0.3

Fluorene 4.5 ÿ0.5�0.1 ÿ0.2�0.3 0.3�0.2

9.7 0.8�0.5 2.8�0.2 3.3�0.1

13.9 1.4�0.4 5.2�0.2 5.6�0.1

19.3 0.8�0.3 8.8�0.3 9.0�0.1

Naphthalene 5.2 3.2�0.3 1.5�0.4 3.6�0.2

11.0 9.2�1.0 5.5�0.2 7.9�0.4

13.9 11.7�1.1 9.3�0.4 10.9�0.7

21.9 14.2�0.5 14.6�0.4 17.6�0.7

Perylene 3.8 5.2�0.4 5.1�0.3 4.5�0.1

Table 3 (Continued )

8.0 10.5�0.4 9.9�0.6 9.1�0.4

11.5 11.9�0.2 12.5�0.5 11.8�0.3

16.0 13.4�0.1 19.2�0.8 18.2�0.5

Pyrene 4.1 3.0�0.2 5.7�0.6 4.2�0.2

8.7 8.7�0.6 11.2�1.3 9.2�0.7

12.6 10.4�0.1 13.5�1.0 12.0�0.5

17.4 11.7�0.2 20.6�1.9 18.3�1.3
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probably due to the fact that, while the standards may

contain high concentrations of some analytes but low

of zero-concentrations of other analytes, the samples

contains the same concentrations of all PAHs, and

therefore, in some cases the spectra of the samples

may more intense than those of the standards.

This dif®culty can be solved by linear procedures,

such as PLS, but not by the non-linear approach used

by ANN.

5. Conclusions

Calibration with backpropagation neural networks

allows the determination of the contents of PAHs in

multicomponent samples with results similar to those

obtained by the use of other multivariate calibration

procedures (principal component regression and partial

least squares regression), but in a much shorter time.

The scores obtained with principal component ana-

lysis of the spectral data should be used, instead of full

synchronous spectra, in order to reduce the time

required for calculation (up to 6 instead of full syn-

chronous spectra, in order to reduce the time required

for calculation (up to six times) and the error in the

predictions (about three times).

The results obtained by ANNs in the simultaneous

determination of 10 PAHs in spiked natural water

samples show that arti®cial neural networks may

become a valid alternative to other multivariate calibra-

tion procedures for the analysis of complex mixtures.
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