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Topographic Component (Parallel Factor) Analysis of 
Multichannel Evoked Potentials: Practical Issues in 
Trilinear Spatiotemporal Decomposition 

Aaron S. Field and Daniel Graupe 

Summary: We describe a substantive application of the trilinear topographic components /parallel factors model (TC/PARAFAC, due to 
M6cks/Harshman) to the decomposition of multichannel evoked potentials (MEP's). We provide practical guidelines and procedures for applying 
PARAFAC methodology to MEP decomposition. Specifically, we apply techniques of data preprocessing, orthogonality constraints, and validation 
of solutions in a complete TC analysis, for the first time using actual MEP data. The TC model is shown to be superior to the traditional bilinear 
principal components model in terms of data reduction, confirming the advantage of the TC model's added assumptions. The model is then shown 
to provide a unique spatiotemporal decomposition that is reproducible in different subject groups. The components are shown to be consistent with 
spatial/temporal features evident in the data, except for an artificial component resulting from latency jitter. Subject scores on this component are 
shown to reflect peak latencies in the data, suggesting a new aspect to statistical analyses based on subject scores. In general, the results support the 
conclusion that the TC model is a promising alternative to principal components for data reduction and analysis of MEP's. 
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Introduction 

A fundamenta l  problem in spat iotemporal  analysis of 
mult ichannel  evoked  potentials (MEP's) is that of data 
reduction, made  necessary by  the typically large quan- 
tities of data available for study. It is not  our  intent to 
distinguish evoked potentials f rom event-related poten-  
tials in general; this paper  is relevant  to waveforms  time- 
locked to any event  and sampled over  any epoch, and to 
single-trial as well as averaged waveforms.  One of the 
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most  popula r  approaches  to the evoked potential  (EP) 
data reduct ion problem has been the me thod  of principal 
component  analysis (PCA) (see Glaser and Ruchkin 1976; 
Donchin and Heffiey 1978). In a typical application of 
PCA, a set of EP waveforms  is decomposed  into a small 
n u m b e r  of " c o m p o n e n t "  waveforms,  which  combine 
linearly to represent  each data waveform.  PCA can also 
be appl ied in the spatial domain,  such that a set of 
topographic  maps  is decomposed  into a small number  of 
component  maps  (e.g., Skrandies and Lehmann  1982; 
Skrandies 1989). Regardless of which  approach is taken, 
problems inherent  in the PCA me thod  have made  its use 
in EP analysis somewhat  controversial  (e.g., Wood  and 
McCarthy 1984; M6cks and Verleger 1986). 

The most  serious criticism of PCA concerns the rota- 
tional indeterminacy of the components .  Due to the 
bilinear form of the model  under ly ing  PCA, linear trans- 
formations (rotations) can be used to obtain infinitely 
m a n y  d i f f e r e n t  se ts  of  c o m p o n e n t s  t ha t  p r o v i d e  
equivalent  representat ions of the data in the least-squares 
sense.  A n o t h e r  c r i t ic i sm co n ce rn s  the m u t u a l  or- 
thogonali ty that is the nature  of principal components .  It 
is unreasonable  to expect the activities of individual 
neural  "generators"  to be mutual ly  or thogonal  - thus the 
physiologic reality of any set of principal components  is 
questionable. 

The  d r a w b a c k s  i n h e r e n t  in PCA m o t i v a t e d  the 
deve lopment  of a new model  for EP decomposit ion.  The 
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topographic components (TC) model (M6cks 1988a, 1988b) 
solves the problem of indeterminancy by means of a 
trilinear decomposition that is theoretically unique. That 
is, once identified, the components are not subject to 
transformation (rotation). Moreover, the components 
are not orthogonal by definition. In addition to these 
desirable properties, the TC model gives equal impor- 
tance to the spatial and temporal features of the data, 
providing data reduction in both domains, and provides 
an explicit basis for comparisons between subjects. 

In developing the TC model, MScks independently 
rediscovered the mathemat ica l ly  identical models  
known as PARAFAC, for PARAllel FACtors (Harshman 
1970; Harshman and Lundy 1984a, 1984b), and CAN- 
DECOMP, for CANonical DECOMPosition (Carroll and 
Chang 1970; Carroll and Pruzansky 1984). These models 
are used for analysis of three- and higher-way data ar- 
rays, ma in ly  in p sycho logy  research,  but  to our  
knowledge have not been applied to dynamic signals 
such as EP's. M6cks' TC model can be considered a 
special interpretation of the PARAFAC - CANDECOMP 
model (for convenience, simply PARAFAC), which is 
generic in the sense that it is not intended for data from 
any particular source. M6cks (1988b) provided justifica- 
tion for the model in the context of EP analysis, based on 
biophysical considerations. With this understood we 
refer to the model as PARAFAC and TC interchangeab- 
ly. 

Along with the TC model's advantages over PCA 
comes a less straightforward procedure for performing 
the d e c o m p o s i t i o n  and  i n t e rp re t i ng  the resul ts .  
Harshman and Lundy (1984a, 1984b, Harshman 1984, 
and Harshman and DeSarbo 1984) have made it clear that 
proper use of the PARAFAC model requires a number of 
decisions, e.g., regarding data preprocessing, optional 
orthogonality constraints, model order, and validation of 
solutions. Such decisions must be made appropriately 
for a given data set, often with little or no a priori 
knowledge available as a basis. Therefore, the merits 
and drawbacks of the TC model with respect to EP 
analysis are not clear or predictable from the basic theory 
as in MScks (1988a, 1988b). 

This paper unites the theory of the TC model with the 
methodology of PARAFAC analysis, using for the first 
time actual MEP data. The significance of this contribu- 
tion is pointed to by the fact that (1) a practical method 
of analysis for MEP's (or indeed for any multichannel 
dynamic signals), based on the TC or PARAFAC model, 
has never been developed; (2) the model will be of little 
use until practical guidelines on how to apply it ap- 
propriately to MEP's are established; and (3) it has never 
been demonst ra ted  that the TC model  is even ap- 
propriate for MEP's. 

We present the complete TC analysis of an actual MEP 

waveform set, using the methodology of PARAFAC. Our 
purpose is as follows: (1) demonstrate the methods and 
results associated with the TC model as applied to MEP's; 
(2) offer a suggested approach for potential users to the 
decision-making process required for successful applica- 
tion of the model to MEP's; (3) where possible, establish 
theoretical or empirical guidelines for appropriate ap- 
plication of the TC model to MEP's; (4) evaluate the 
appropriateness of the TC model for MEP's, particularly 
as compared to traditional principal components; and (5) 
obtain a unique and meaningful spatiotemporal decom- 
position of our MEP data and evaluate its interpretability. 
It is hoped that this paper will provide a helpful "initia- 
tion" to the practical aspects of TC analysis for the reader 
who is familiar with PCA and who may be interested in 
an alternative approach to the problem of MEP decom- 
position. 

The Topographic Components Model 

Model  Definit ion and  Terminology 

The TC model is defined to represent a set of time- 
sampled EP waveforms recorded using multiple scalp 
locations from a group of subjects. Following MScks 
(1988a), let x (i,/,t) denote potential as a function of sub- 
jects i = 1 ..... I; scalp locations 1 = 1 ..... L; and sample times 
t = 1 ..... T. These data are modelled by the following 
trilinear sum: 

N 
x ( i , l , t )  ~ ~ 

k=l 
ak( i )bk(1)ck( t  ) 

(1) 

where ck(t) is the kth component waveform, common to 
all subjects and locations; bk(l ) is the kth component dis- 
tribution, common to all subjects and sample times; and 
ak(i ) is the set of weighting coefficients that reflect the 
contributions made by the kth component (waveform 
and distribution together), to the data observed for each 
subject. With weak assumptions (see MScks [1988b] for 
a simple proof, and Harshman and Lundy [!984b] for a 
full discussion) model (1) provides a theoretically unique 
decomposition, up to trivial permutation, scaling, and 
sign changes. Furthermore, (1) provides data reduction 
in both spatial and temporal domains, as well as an 
explicit parameterization of the inter-individual varia- 
tions within a subject sample. 

As an aside, note that for a single subject, the three- 
way data array x (i,l,t) reduces to a two-way matrix, and 
the trilinear model (1) reduces to the bilinear form that is 
characteristic of PCA. Singular value decompositon 
(SVD) has been applied to EEG/EP's by Harner (1990). 
Like PCA, SVD effects the decomposition of a two-way 
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data matrix. In fact, the models underlying SVD and 
PCA have the same bilinear form, and the two decom- 
positions are essentially equivalent. Thus, SVD has the 
same disadvantages as PCA, the most important being 
rotational indeterminacy. 

It is convenient to refer to the functions Ck (t) as "tem- 
poral components", the distributions bk (l) as "spatial 
components" and the weighting coefficients ak (i) as 
"subject scores". Note, however, that the model is sym- 
metric in the three domains (or modes), i.e., although 
specific interpretations are attatched to the a-, b-, and 
c-parameters, they are mathematically equivalent. Using 
PARAFAC terminology, the parameters in a given mode 
will occasionally be referred to as "loadings'.  The term 
"component" will be used in the generic sense when the 
meaning is unders tood,  rather than the equivalent 
PARAFAC term "factor". 

Parameter Estimation and Uniqueness 

Parameter estimation for trilinear models like (1), as 
well as for other multilinear models, is traditionally ac- 
complished by the iterative method of alternating least- 
squares (ALS - Carroll and Chang 1970). We found the 
ALS algorithm faster to converge and simpler to compute 
than the gradient-type method used previously by us 
(Field and Graupe 1990a). All results for this paper were 
obtained using the PARAFAC analysis software package 
(Lundy and Harshman 1985), which employs an ALS 
estimation algorithm. 

Each fit value (measure of goodness-of-fit) reported in 
this paper is the best of three repeated runs of the estima- 
tion algorithm, starting from different random positions 
as provided by the PARAFAC software. The standard 
PARAFAC convergence criterion was used: conver- 
gence was assumed when no loading changed by more 
than 0.1% of the root-mean-square (RMS) average load- 
ing for the given component in the given mode, from the 
previous iteration (Lundy and Harshman 1985). When 

• the solution itself was of interest as well as the fit value, 
uniqueness was verified by comparing solutions among 
the three runs. In no case was an "odd" solution iden- 
tified that could not be explained by incomplete conver- 
gence (as indicated by a significantly poorer fit) and 
disregarded. The fit value used is the relative mean- 
squared error (MSE): 

MSE 
A= ~i,l,t e2(i'l't) (2) 

~'~i,l,t x2( i ' l ' t )  

where e (i, I, t) and x (i, I, t) are the error and data values 
I respectively, and Y. i I t denotes the triple sum G i=1 

L T ~2 I=1 y~ t=l- It is usually desirable to adopt some conven- 

tions for scale, sign, and permutation (sequence) of the 
model components since these are arbitrary (see, e.g., 
Field and Graupe 1990a). The conventions used in this 
paper will be described later. 

Preliminary Studies with Visual Evoked 
Potentials 

Data Protocol 

The data used for these studies consisted of average 
pattern-reversal visual EP (PVEP) waveforms, recorded 
from 30 normal subjects at 8 scalp locations (C3, Cz, C4, 
P3, Pz, P4, O1 and 02, Int.10-20 System). The stimulus 
was full-field checkerboard pattern reversal with both 
eyes open, and averaging was over 200 trials. The 
waveform baseline convention was zero-potential dif- 
ference with a linked-mandible reference. The data were 
recorded at various laboratories and collected by Bio- 
logic Systems Corp. (Mundelein, Illinois, USA), for in- 
clusion in a normative PVEP data base. A standardized 
protocol was used for all recordings (Bio-logic Systems 
Corp. 1988) and the determination of "normality" for 
each subject was based on a complete medical history as 
well as inspection of the data by a clinical neurologist. 
The waveforms were originally sampled at 1-msec inter- 
vals from 0 to 256 msec post-stimulus; however, in order 
to minimize computations, only every fourth sample was 
included in the analysis, resulting in sixty-four samples 
at 4-msec intervals for each waveform. Thus, the three- 
way data array was 30 subjects x 8 locations x 64 sample 
times. 

Data Preprocessing 

Before fi t t ing the TC model ,  the data  must  be 
preprocessed. The importance of preprocessing has been 
e m p h a s i z e d  by  H a r s h m a n  and  L u n d y  (1984a). 
PARAFAC preprocessing will now be briefly reviewed 
in the general context, followed by a discussion of the 
specific considerations that arise with MEP data. 

There are basically two ways to preprocess a three- 
way  data array prior to fitting the PARAFAC model: 
rescaling and centering. Consider first rescaling, which 
involves multiplying various subsets of the data by con- 
stant "scale factors", and is usually done to normalize 
data mean-squares over the various "'levels" of a given 
mode (e.g., over subjects). This accomplishes two things: 
(1) It eliminates arbitrary and unwanted variations in 
scale magnitudes across the various levels, and (2) it 
assures that the data at all levels will have the same 
influence over the least-squares-fitted solution. If overall 
magnitude variations are of irLterest but the latter result 
(2) is desired, the model can be fitted to the normalized 
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data, and then the model parameters scaled back to 
reflect the original magnitudes present in the data. This 
is a straightforward procedure that in no way compli- 
cates the interpretation of components - see the discus- 
sion of "weighted least-squares" by Harshman and 
Lundy (1984a). 

Centering involves subtracting constants-specifically 
means-from various subsets of the data. This is done to 
remove constant offsets that are inconsistent with the 
model, since implicit in the model is the assumption that 
the data were measured on a scale having a fixed origin, 
consistent across all levels of each of the three data 
modes. In the present context, this says that "zero poten- 
tial" is fixed for all subjects, all locations, and all sample 
times. Note, this assumption is suspect because potential 
measurements are relative, i.e., no absolute zero can be 
defined. 

Either rescaling or centering, or both, can be done on 
any or all of the 3 data modes (A, B, and C). The two 
operations may interfere with one another, depending on 
which modes and in what sequence the operations are 
performed. Therefore, an iterative procedure is some- 
times required to achieve the desired combination of 
centering and rescaling. The various preprocessing op- 
tions will now be considered in the context of MEP data. 

Rescaling of Evoked Potentials Data 

Rescaling mode A (subjects) might be used to normal- 
ize the data across subjects, in order to correct for ar- 
bitrary variations in overall signal strengths due to 
variations in head size or scalp thickness, for example. 
This seems desirable, since it is generally not overall 
signal strengths that are of interest but rather the spatial 
and temporal dynamics of the data. Rescaling might also 
be used to normalize the data across locations and sample 
times, respectively.  This, however ,  wou ld  be un- 
desirable. Unlike such variations across subjects, varia- 
tions in signal strengths from one time or location to 
another are not arbitrary; rather, they constitute the very 
information that is of interest. 

It was noted above that the data can be normalized 
across levels of a given mode in order to give the data at 
each level the same influence in determining the least- 
squares solution, and then, after fitting the model, the 
parameters of the rescaled mode(s) can be scaled back to 
reflect the original magnitudes that were present in the 
data before rescaling. With regard to EP data, again, this 
would only be appropriate for mode A (subjects). If we 
assume noise levels to vary from subject to subject but  
remain relatively fixed over time and space for each 
subject, then times or locations that tend to have weaker 
potentials will be associated with lower signal-to-noise 
ratios (SNR). This will not necessarily be true with 

respect to subjects. Stated another way, smaller data 
values represent less reliable measurements from one 
time or location to another; however, across subjects, a 
tendency toward smaller data values may reflect lower 
levels of both signal and noise. Thus, mode A can be 
normalized if desired, neglecting whatever unknown 
differences in SNR there may be between subjects. More 
reliable data should be allowed accordingly more in- 
fluence by not normalizing over locations (mode B) or 
sample times (mode C). By the same token, if one or more 
channels ar~ known to be noisier in all subjects, rescaling 
can be used to deemphasize those channels. 

Summarizing the rescaling options for multisubject 
MEP data, normalization of the data to equalize mean- 
squares is inappropriate over locations (mode B) or 
sample times (mode C), but  is appropriate and desirable 
over subjects (mode A). If differences in overall signal 
strengths between subjects is of interest, the A-mode 
loadings (subject scores) can be scaled back to reflect 
those differences after fitting the model. 

Centering of Evoked Potentials Data 

Centering on mode A can be thought of as subtracting 
out an "average subject" from the data, such that the 
centered data reflect only how each subject deviates from 
the average. If one is interested mainly in individual 
differences among a group of subjects, then emphasizing 
such differences by centering the subject mode would be 
appropriate.  On the other hand, one might be more 
interested in a group of subjects as a whole, and wish 
simply to use the TC model for data reduction on the 
group. In this case one would fit the model to the un- 
centered data. (Although uncentered data is inap- 
propriate for the model  per se, the model  can fit 
uncentered data - it is just more difficult.) Finally, note 
that A-centering is likely to significantly reduce the SNR 
of the data, particularly for a homogeneous group of 
subjects. 

In centering on mode B, the potential mean over all 
electrodes is subtracted from the data for each subject and 
each sample time. This is equivalent to transforming the 
data to average reference (Offner 1950). Use of the 
average reference has been advocated as a way to 
achieve reference-independent data, avoiding problems 
associated with the relativity of potential measurements 
and the non-existence of a truly "'indifferent" or "inac- 
tive" reference electrode (Lehmann 1987, Nunez, 1981). 

In centering on mode C the potential mean over time 
is subtracted from each individual waveform, i.e., the 
data are trar~sformed to zero-mean baseline. Normally 
the baseline for each waveform corresponds to zero- 
potential difference between the recording electrode and 
the reference. It has been our experience that waveform 
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means tend to be relatively small, such that centering 
mode C would be unlikely to have a significant effect on 
fitting the TC model (certainly as compared to centering 
modes A or B). Therefore, although it is not inap- 
propriate per se, we have avoided C-mode centering in 
our work to date. 

Summarizing the centering options for multisubject 
MEP data, A-, B-, and C-mode centering transform the 
data to deviations from the average subject, average 
refence, and zero-mean baseline, respectively. A- and /or  
B-mode centering may or may not be desirable, depend- 
ing on the goals of a particular analysis. C-mode center- 
ing we consider to be both unnatural and unnecessary. 
Finally, any centering will decrease the SNR of the data 
to some degree. 

Practical Evaluation of Centering Options 

Unlike rescaling, centering alters the structure of the 
data and will therefore affect the ability of the model to 
fit the data. Therefore, to choose the appropriate center- 
ing for our PVEP data, we compared fit-dimensionality 
curves after (1) no centering, (2) A-mode centering, and 
(3) B-mode centering. Additional information to aid the 
choice of centering was obtained by the following Monte 
Carlo procedure: Three fit-dimensionality curves were 
obtained by fitting the model to a synthetic data set that 
was in effect a "partially randomized" version of the 
actual data set. The synthetic data set matched the actual 
data set in dimensions (30 x 8 x 64) but consisted of 
random numbers, adjusted to have the same second- 
order statistics (means and mean-squares) as the actual 
data in each of the three modes. Thus, the proportion of 
the total data-mean-squares contributed by the non-zero 
means in each mode (i.e., the information that is removed 
by centering) was the same for the synthetic data as for 
the actual data. Moreover, these non-zero means con- 
stituted the only information in the synthetic data (i.e., if 
the synthetic data were to be centered on all three modes, 
they would become 100% noise). This approach, similar 
to the randomization tests recommended by Harshman 
and Lundy (1984b), provided a basis for evaluating the 
extent to which the model (1) fit systematic variation in 
the data (i.e., information) versus noise, and (2) fit varia- 
tion associated with the non-zero means versus variation 
that remained after centering. This is especially impor- 
tant because the different centering operations reduce the 
SNR of the data to an unpredictable degree. 

The synthetic data set s(i,l,t) began as a 30 X 8 x 64 array 
of standard normal deviates. These data were adjusted 
to have the same means and mean-squares over all three 
modes as the actual data x (i,l,t) by repeatedly offsetting 
(by additive constants) and rescaling the data in each 
mode until the following equations were satisfied: 

I I 
E s ( i , l , t )= E 

i=1 i=1 
x(i,l ,t) Vl, t 

(3) 

L L 

E s(i,l,t) = E x(i,l ,t) Vi, t 
l=1 1=1 

(4) 

T T 

E s(i,l,t) = E x(i,l,t) '¢i,I 
t=l  t=l  

(5) 

L T L T 

E E s2(i'l't) = E E xa(i'l't) v i  
1=1 t=l 1=1 t=l 

(6) 

I T I T 

E E sa(i'l't) = E E x2(i'l't) VI 
i=1 t=l  i=1 t=l  

(7) 

I L I L 

E E s (i,l,t) =E E x (i,l,t)vt 
i=1 1=1 i=1 I=1 

(8) 

where I=30, L=8, T=64 and V= "for all". The resulting 
data set will be referred to as the "randomized" data set. 

The PARAFAC ana lys i s  package  was  used to 
preprocess the data and fit the TC model. The A-modes 
of both actual and randomized data sets were rescaled to 
normalize mean-squares across subjects, as discussed 
earlier. First- through fifth-order models were fitted, and 
for each order the best fit among three different runs was 
noted. The six fit-dimensionality curves are shown in 
Figure 1. A seventh curve, obtained by fitting pure noise 
(the randomized data set centered on all three modes), is 
also plotted for comparison. 

Some observations: (1) With no centering, the model 
fit the actual data only nominally better than it fit the 
randomized data (curves a vs. d). This suggests that in 
the actual data, the model fit predominantly that portion 
of the total mean-squares contributed by the non-zero 
means, and little beyond that. (2) After A-centering, the 
MSE's were significantly higher than with no centering, 
for both the actual and the randomized data (curves b 
and e vs. a and d, respectively). That removing the 
A-mode means reduced the goodness-of-fit to such a 
degree indicates that the A-mode means represented a 
significant portion of the total data-mean-squares that 
was explained by the model, despite that such constants 
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Figure 1. Fit-dimensionality curves show effects of centering. Solid curves: actual  da ta / (a )  uncentered, (b) A-centered, 
(c) B-centered. Dashed curves: randomized data, (d-f) same as (a-c). Dotted curve (g): totally random data, centered 
on all three modes. 

are inconsistent with the model per se. (3) After A-center- 
ing, as with no centering, the model fit the actual data 
only nominally better than it fit the randomized data 
(curves b vs. e). This suggests that after A-centering, it 
was primarily the B-mode means that were accounted for 
by the model (C-mode means were negligible). (4) After 
B-centering, the model fit the actual data significantly 
better than it fit the randomized data (curves c vs. f). This 
confirms that the actual data do in fact show systematic 
variation, beyond that associated with the non-zero 
means, which can be explained by the model. (5) The 
model fit the actual data better after B-centering than 
with no centering (curves c vs. a). This confirms that 
B-centering had the desired effect of leaving the data in 
a form that is more appropriate for the model. 

What can be concluded from these results about the 
centering options? First, from observation (1), some 
centering of these data will be essential if the model is to 
represent anything beyond the means in each mode of 
the data. Second, from the remaining observations, B- 
centering is a better choice than either A-centering or no 
centering for these data, giving the lowest MSE's overall: 
0.18 at fifth-order (curve c), versus 0.25 with no centering 
(curve a), and versus 0.43 after. A-centering (curve b). 
B-centering also gave the lowest MSE's relative to the 
corresponding randomized data: 0.16 absolute difference 
at fifth-order (curves c vs. f), compared to 0.03 with no 
centering (curves a vs. d) and 0.07 after A-centering 
(curves b vs. e). 

A-centering appears to have eliminated too much 
variation in the data that the model is able to explain, i.e., 
it appears to have significantly reduced the SNR. It is not 
surprising that the A-mode means account for a large 
proportion of the total mean-squares: In general EP 
waveforms compared between normal subjects appear 
much more alike than different. In fact, Harshman and 
Lundy (1984a) noted in their work with other types of 
(non-dynamic) data that centering the subject mode "... 
sometimes seems to emphasize those individual dif- 
ferences that are inconsistent with the model..." 

It must be emphasized that the above conclusion can- 
not be generalized to other EP data---for a given data set, 
all centering options should be considered. Constructing 
a set of curves like those in Figure I is a useful method 
for examining the effects of different or no centerings 
prior to analyzing a given data set. Experience with the 
TC model may eventually reveal particular centerings to 
be appropriate in certain situations, perhaps obviating 
the need for a decision on centering when using tradition- 
al experimental designs. 

D e g e n e r a t e  Solutions a n d  Or thogona l i t y  
Constraints 

Harshman and Lundy (1984a) found that a serious 
problem with .the PARAFAC model is the frequent ten- 
dency of the least-squares  opt imal  solut ion to be 
"degenerate". They use this term to describe a solution 
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in which the componenlL loadings are highly correlated 
in all three modes and are therefore highly redundant 
and difficult to interpret. Degenerate solutions may 
cause problems with convergence when  fitting the 
model, and usually indicate that the data require a model 
more general than PARAFAC. Degeneracy can be 
avoided by constraining the model components in at 
least one of the three modes to be orthogonal. Although 
this results in a poorer fit and compromises to some 
extent the intuitive appeal of the model, an orthogonal 
solution will generally be more interpretable than the 
degenerate solution. It should be noted that the inherent 
uniqueness of the PARAFAC model is not compromised 
by imposing orthogonality constraints. In this section we 
examine the effect of orthogonality constraints on the TC 
model's ability to fit our PVEP data. 

Degenerate solutions are easily recognized by the 
presence of (1) high correlations (roughly greater than 
0.8, although the cut-off is arbitrary) in all three modes 
between the loadings of two or more components and (2) 
a negative triple product of correlations (A-mode cor- 
relation x B-mode correlation x C-mode correlation, 
with either one or all three of these being negative) be- 
tween the loadings of those components that are highly 
correlated. The normalized scalar cross-product be- 
tween the loadings is an analagous measure of similarity 
which can be used to look for degeneracy (Lundy and 
Ha r shman  1985). It is def ined for mode  A (and 
analogously for modes B and C) as follows: 

Ca(j,k )a= 
I aj(i)ak(i) 

~ i = 1  

~/ ~i-11aj(i)2 ~ i-1 lakO)2 . 

(9) 

where j and k index the components. Unlike the cor- 
relation, the cross-product includes the loadings' con- 
stant offsets (means) as well as their dynamics  in 
quantifying their similarity. The cross-product is a more 
natural measure to use if one thinks of the model com- 
ponents in each mode as vectors whose similarities are 
determined by the angles between them. Given this 
interpretation, the cross-product is equal to the cosine of 
the angle between the vectors. Thus, the cross-product 
ranges from -1 to +1, and a value of zero means com- 
ponentsj  and k are orthogonal on the given mode. Con- 
straining a solution to be orthogonal on mode A for 
example, means forcing Ca (~k) = 0 V j,k, j ~ k. It is 
necessary to impose orthogonality on only one of the 
three modes to prevent a degenerate solution (Harshman 
and Lundy 1984a). 

In choosing the mode to constrain, one must consider 
the effect of the constraint on goodness-of-fit as well as 
on the interpretability of the resulting solution. Below in 

this section we compare fit-dimensionality curves ob- 
tained by fitting the TC model, unconstrained and or- 
thogonally constrained in each of the three modes, to our 
PVEP data. We also look at an example of the effect that 
each constraint has on the cross-products of the two 
unconstrained modes. Our purpose is to get an idea of 
what to expect in terms of fit and interpretability when 
using the orthogonally-constrained TC model  and, 
should it be necessary for our data, to select the ap- 
propriate mode to constrain. 

The data were preprocessed by normalization across 
subjects and B-centering. The PARAFAC program was 
used to fit first- through fifth-order models using each of 
four constraint options: orthogonality in each of the 
three modes, and unconstrained. The cross-products 
were used to check for degeneracy. 

The third-order model provides a representative ex- 
ample of the results obtained at each of the various 
dimensionalities. Table I shows the cross-product matrix 
in each mode for the third-order unconstrained and or- 
thogonal solutions. Extreme degeneracy is indicated for 
the unconstrained solution: all cross-products are 
greater than 0.9 in magnitude, and the triple product of 
the A-, B-, and C-mode cross-products is negative for 
components 1 vs. 2 (.99 x -1.0 x 1.0) and also for com- 
ponents 1 vs. 3 (.97 x -1.0 x .99). The same pattern of 
degeneracy resulted from three different starting posi- 
tions, and solutions at all orders (greater than two) were 
similarly degenerate. This was a clear indication that an 
orthogonality constraint would be necessary to obtain an 
interpretable solution for this data set. 

Referring to the cross-product matrices for the or- 
thogonal solutions, note that imposing orthogonality on 
mode A reduced the extreme similarity between the com- 
ponents in mode C (at least with respect to component 3) 
and vice versa (although to a lesser degree). Neither A- 
nor C-mode  or thogonal i ty ,  however ,  significantly 
reduced the similarity between components in mode B. 
This suggests that the similarity between the B-mode 
(spatial) components was strongly determined by the 
data; i.e., that imposing orthogonality on mode B is less 
"natural" for these data than imposing either A- or C- 
mode orthogonality. The fit-dimensionality curves (Fig- 
ure 2) suppor t  this conclusion: note that B-mode 
orthogonality is the only constraint that significantly 
degraded the fit, while the curves corresponding to A- 
and C-mode orthogonality are almost indistinguishable 
from the unconstrained curve. 

The above observations support  two conclusions: (1) 
Due to the extreme degeneracy of the unconstrained 
solutions an orthogonality constraint will be necessary to 
obtain an interpretable solution for this data set. (2) Due 
to the apparent tendency toward extreme similarity be- 
tween components in mode B, either A- or C-orthogonal 
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Table I. Cross-product matrices: third-order solutions. Since these matrices are symmetrical, only the upper triangles are 
shown. All diagonal entries are 1.0, since any component is maximally similar to itself. 

UNCONSTRAINED: 

A-ORTHOGONAL: 

B-ORTHOGONAL: 

C-ORTHOGONAL: 

1 

2 

3 

1 

2 

3 

1.0 

1.0 

1.0 

1.0 

MODE A 

2 3 

.99 .97 

1.0 .92 

1.0 

0 0 

1.0 0 

1.0 

.93 .48 

1.0 .55 

1.0 

.68 .72 

1.0 .55 

1.0 

1.0 

1.0 

1.0 

1.0 

MODE B 

2 3 

-1.0 -1.0 

1.0 1.0 

1.0 

.99 

1.0 

0 

1.0 

-.98 

-.96 

1.0 

0 

0 

1.0 

-.98 .97 

1.0 -.99 

1.0 

1.0 

1.0 

1.0 

1.0 

MODE C 

2 3 

1.0 .99 

1.0 .98 

1.0 

.80 

1.0 

.96 

1.0 

-.04 

-.05 

1.0 

-.65 

-.55 

1.0 

0 0 

1.0 0 

1.0 

solutions would be preferable to B-orthogonal solutions 
for this data set. Both A- and C-orthogonal solutions will 
therefore be considered when proceeding with the 
analysis. However, it should be noted that like centering 
options, orthogonality constraints are data-specific. Ex- 
perience with the TC model may eventually reveal par- 
ticular constraints to be appropriate in certain situations. 

To conclude this section on orthogonality constraints, 
we comment that degenerate solutions have been a fre- 
quent occurrence in our experience with the TC model, 
and were quite discouraging initially. Orthogonality 
constraints, though not very satisfying intuitively in light 
of their"artificial" quality, have often made the TC model 
useful when otherwise it would not have been. 

Data Reduction: TCA vs. PCA 

Before proceeding with the analysis of our PVEP data, 
we used the data to determine how the TC model com- 
pares to traditional principal components (PC's) in terms 
of data reduction. A multisubject MEP waveform set, 
though it may be put in the form of a three-way data array 
and fit with the trilinear TC model, remains a set of 
waveforms that can as easily be subjected to PCA. (Since 
any PCA is based on a bilinear model, the PCA must be 
performed on a two-way, "collapsed" version of the 
three-way array. See MScks, 1988a, eqs. 2--3 for two 
alternative bilinear models that could underly such a 
PCA.) In using the trilinear TC model, one makes an 
assumption about the underlying structure of the data 

that is not required when using a bilinear model: namely, 
that a given temporal component is associated with a 
single topographic distribution (spatial component) that 
is common to all subjects and all sample times. This gives 
the TC model greater parsimony at the expense of 
generality. If the additional assumption is reasonable for 
a given data set, then a greater degree of data reduction 
should be possible for a given goodness-of-fit using the 
TC model. If the assumption is inappropriate, the TC 
model should have difficulty fitting the data, and a more 
general PC-type model should consequently provide 
greater data reduction for a given goodness-of-fit (or 
equivalently, a better fit for a given degree of data reduc- 
tion). The present analysis was done to determine which 
would be the case for our PVEP data. 

The data were fit with the TC model as defined by eq. 
(1), and a PC model at first- through fifth-order. At each 
dimensionality and for each model, the goodness-of-fit 
was noted and the degree of data reduction computed 
from the number of parameters in the model and the 
number of data points. The two models were then com- 
pared by plotting the goodness-of-fit against the degree 
of data reduction. As a cheek on the validity of this 
comparison, both models were fit to a random data set 
which contained no information for which either model 
could be considered more or less appropriate. Therefore, 
the two models were expected to be comparable in fitting 
the random data. 

The actual data were preprocessed with A-mode nor- 
malization and B-mode centering. The TC model was fit 
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Figure 2, Fit-dimensionality curves show effects of or- 
thogonality constraints, 

to the 30 x 8 x 64 data array in the same manner  as 
described previously,  wi th  no or thogonal i ty  constraints. 
In order  to fit a bilinear PC model ,  the preproeessed data 
were collapsed into a 240 ( -- 30 x 8) x 64 matr ix such that 
the PC model  would  be def ined as follows (see M6cks 
1988a, eq. 2): 

x(i,l,t) 
N 

~ bk(i,l)ck(t) 
k=l  

(lO) 

Pre-multiplication of this matrix by its transpose gave a 
64 x 64 cross-product  matrix which was subjected to PCA 
using the singular value decomposit ion.  Note that using 
the cross-product  matrix rather  than the more  traditional 
c o v a r i a n c e  or  co r r e l a t i on  ma t r ix  r e n d e r s  the PCA 
equivalent  to a direct fit of eq.(10) to the preprocessed 
data. A 30 x 8 x 64 array of s tandard normal  deviates 
consti tuted the r a ndom data set. 

Goodness-of-fi t  was quantif ied by  the relative MSE. 
Data reduct ion was quantif ied by  the degrees of f reedom 
ratio (DFR - Carroll and Chang 1970), defined as the ratio 
of degrees of f reedom for the model  (the number  of free 
parameters)  to degrees of f reedom for the data (the total 
number  of data points minus  the number  de termined  by  
preprocessing). Thus a small DFR corresponds  to a high 
degree of data reduction.  

The MSE-DFR curves are shown  in Figure 3. There are 
four curves, since each model  was fit to both  the actual 
and r andom data sets. For the r andom data set, there is 
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Figure 3. MSE-DFR curves comparing topographic com- 
ponents (TC) with principal components (PC). Solid cur- 
ves, actual data; dashed curves, random data. Each 
point is labelled with the order of the model to which it 
corresponds. 

no significant difference be tween the TC and PC curves, 
as expected. It is therefore conf i rmed that the MSE-DFR 
curves provide  a valid compar i son  of the models '  ap- 
propriateness and data reducing  power  for the actual 
data. 

For the actual data the TC curve is everywhere  below 
the PC curve. Therefore  for any order  PC model  there is 
a TC model ,  albeit of higher  order,  which provides  a 
better least-squares fit to the data and a greater degree 
of data reduction.  For example,  the second-order  PC 
model  fit the data to a MSE of 0.26 wi th  a DFR of 0.045, 
which is a data reduct ion of (1 - 0.045) x 100 = 95.5%. The 
four th-order  TC model  fit the data to a MSE of 0.21, with 
96.2% data reduction.  The difference be tween 95.5% and 
96.2% data reduct ion is 200 model  parameters.  

The above result suppor ts  the conclusion that for this 
data set at least, the TC model  is super ior  to the PC model  
as far as data reduct ion is concerned.  The seemingly 
restrictive assumption of spatial components  common  to 
all subjects and sample times is apparent ly  not  inap- 
propriate.  Rather, it enables the TC model  to exploit 
addit ional r edundancy  in the data and thus represent  the 
data more  parsimoniously.  Whether  the TC model  will 
be appropria te  for all s t imulus modali t ies unde r  all con- 
ditions, or w h en  the subject g roup  is less homogeneous  
than in the present  example,  remains an open question. 
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Figure 4. Fit vs. dimensionality for 60-subject data set, 
A-normalized and B-centered, with no orthogonality con- 
straints. Curves for A- and C-orthogonal solutions not 
shown are virtually superimposable on the curve shown 
here. 

Topographic Component Analysis of PVEP 
Data 

Ident i f i ca t ion  of  Rep roduc ib le  Solut ion by  Split-Half 
Analysis 

It is clear from the results of the previous section that 
the TC model can be a powerful data reduction tool for 
MEP's. An equally important question is whether it can 
provide a description of the data which is interpretable 
and meaningful. We now attempt to answer this ques- 
tion for our PVEP data, and try to identify a meaningful 
set of components to represent the data. 

Harshman and Lundy (1984b) recommended confirm- 
ing that a particular PARAFAC solution is "real" before 
selecting it for interpretation from among the many pos- 
sible solutions associated with different combinations of 
d i m e n s i o n a l i t y ,  p r e p r o c e s s i n g  m e t h o d  and  or- 
thogonality constraint. In other words, an identified set 
of components should be more than just a least-squares 
approximation to a particular data set. Ideally, the com- 
ponents will reflect some real phenomena that were 
measured by, but  are unobservable in, the data. 

The method used in the present study to "validate" a 
given solution was to fit the model to random split-hal- 
ves of the data, making the split across subjects, and to 
c o m p a r e  c o m p o n e n t s  b e t w e e n  the two  ha lves  
(Harshman 1984). The rationale is that a given com- 
ponent would not likely be identified for two different 

groups of subjects unless it were in some sense meaning- 
ful. This may not, however, be a fair test if the sample 
sizes are too small after splitting the subjects into two 
groups (Harshman and DeSarbo 1984). Rather than split 
our thirty-subject data set in half, we combined it with 
data from an additional thirty subjects, acquired using 
the same protocol' criteria for normality, etc., as for the 
original data. Our goal was then to identify a set of 
components for this sixty-subject, eight-channel' PVEP 
data which (1) accounted for an adequate proportion of 
the total data-mean-squares, (2) was not degenerate, arid 
(3) was reproducible to a good approximation in random 
split-halves of thirty subjects each. (Actually, three sub- 
jects were deemed outliers and excluded from the split- 
halves.) 

With both A- and C-orthogonal solutions under con- 
sideration, it remained to choose between the two con- 
straints and also to select the order of the model. The first 
step taken was to fit the TC model at orders one through 
five to the sixty-subject data (A-normalized and B- 
centered), using three different constraint options: (1) 
A-orthogonal' (2) C-orthogonal' and (3) unconstrained. 
The results of these initial fittings of the model led to four 
noteworthy observations: 

1. The fit-dimensionality curves for both the A- and C-or- 
thogonal solutions (Figure 4) are virtually superim- 
posable on the unconstrained curve, as was the case for 
the thirty-subject data (Figure 2). 

2. The fit-dimensionality curve has no apparent "elbow" 
that would suggest a "correct" dimensionality. How- 
ever, by estimating the SNR for the data, a rough idea of 
what dimensionality to expect could be obtained: typical 
peak-to-peak amplitudes are 50 pV for the background 
EEG and 15 pV for the EP. Two-hundred trials were 
averaged, so the expected SNR would  be (15/50) ~ -- 
4.2. However,  this estimate is based on an idealized 
concept of signal averaging, so it should be considered 
an upper bound. Moreover, the effect of data centering 
on the SNR, as noted previously, is to reduce it - by how 
much is uncertain. Finally, no theoretical model can be 
expected to account for all of the true signal variance. 
Given these considerations it was assumed that the effec- 
tive SNR was between three and four, so that a relative 
MSE of roughly 0.20-0.25 was expected. Initial con- 
sideration was limited to solutions of dimensionalities 
three to five, at which the model gave MSE's of 0.28, 0.23, 
and 0.20, respectively (Figure 4). 

3. All solutions (of dimensionality two and higher) were 
highly degenerate ,  indicat ing the need for an or- 
thogonality constraint. Based on results presented ear- 
lier we considered constraints only on modes A and C. 
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Table II. Comparison of: split-half solutions (PQ vs. RS) by 
cross-products in modes B and C: third-order, C-or- 
thogonal solutions. 

*With the  c o m p o n e n t s  m a t c h e d  this way ,  RI = 
[(1.0)(. 85)( 1.0)(. 91 )(. 99)(. 75)] 1/6= . 91. 

PQ: 

KS: 1 1.0" -.97 -1.0 

2; -.98 1.0" .98 

3 -.99 .99 .99* 

MODE B MODE C 

1 2 3 1 2 3 

.85* -.07 -.50 

.06 .91" .07 

.42 -.18 .75* 

4. Three of the 60 subjects appeared to be outliers in that 
the MSE's for their data were consistently higher (by 
more than 2.5 standard deviations) than the MSE's for the 
other subjects' data. These subjects" data were retained 
in the complete data set but  excluded from the split-hal- 
ves, where their influence might have been inflated by 
the small sample sizes to the point of preventing a good 
solution from being reproduced in each split-half. 

The remaining 57 subjects were divided by the follow- 
ing split-half technique (Harshman 1984) to guard 
against an "unlucky" split: the subjects were randomly 
assigned to four groups (three getting 14 subjects, one 
getting 15) named P, Q, R, and S. These groups were then 
paired two ways: PQ-RS and PS-QR. The TC model was 
fit separately to the subsets PQ, RS, PS, and QR, and 
solutions were compared between the PQ-RS halves and 
between the PS-QR halves. Any component that repli- 
cates across either of these split-half pairs, neither of 
which shares any common subjects, can be considered 
meaningful (Harshman 1984). 

Six "versions" of the TC model  were tested for 
reproducibility of components across split-halves: A-or- 
thogonal solutions at dimensionalities from three to five, 
and C-orthogonal solutions likewise. Comparisons be- 
tween components across split-halves were based on the 
cross-products between the B- and C-mode loadings of 
corresponding components. There is no reason to have 
compared the A-mode loadings since they are subject-de- 
pendent; i.e., it is only the spatial and temporal com- 
ponents that we hope to reproduce. The CMPARE 
routine in the PARAFAC analysis package was used to 
compute the cross-products for all possible pairings of 
components across split-halves. Note that the cross- 
products used to compare components across split-hal- 
ves are defined just as in eq. (9), only here the jth and kth 
components come from different solutions. 

It was not always obvious from the cross-products 

which components corresponded between the split-half 
solutions - some criterion for matching up the com- 
ponents was needed. The PARAFAC convention for 
sequencing the components is often inadequate for this 
purpose. The objective for this s tudy was to identify the 
one solution that could be considered the most meaning- 
ful based on overall reproducibility of components, both 
spatial and temporal, across split-halves. A solution for 
which all components replicated reasonably well was 
preferred to a solution for which one or two components 
replicated extremely well and the rest not well at all. 
Therefore, the components were matched so as to maxi- 
mize an overall reproducibility index (RI): 

1 

1 RI ~ x/ Cb ( Pk ) Cc ( Pk ) 
=1 

(11) 

where each p is a pair of pointers to the components being 
matched, for example, 

Pl, P2, P3 = ( 1 , 1 ) , ( 2 , 3 ) , ( 3 , 2 )  (12) 

and where Cb (Pk) and Cc (Pk) are the B- and C-mode 
cross-products respectively for the pair of components 
indicated by Pk. The RI is simply the geometric mean of 
all 2N cross-products (one in mode B and one in mode C, 
for each pair of components) for a given choice of com- 
ponent pairings. It therefore ranges from -1 to +1, as do 
the cross-products themselves. The RI served as the 
criterion used to match the components and to select the 
most reproducible solution from the six considered. 

Table II shows an example of how the B- and C-mode 
components are compared between split-halves by cross- 
p roducts  and then matched.  These cross-product  
matrices compare the third-order, C-orthogonal solu- 
tions fit to split-halves PQ and RS. Corresponding com- 
ponents,  as determined by maximizing the RI, are 
indicated. They happen to be on the diagonal in this case, 
i.e., corresponding components have the same sequence 
position in the solutions being compared - this does not 
always occur. The RI for the optimal pairings as shown 
is computed as the geometric mean of the indicated 
cross-products, 

RI = [(1.0 ) (.85) (1.0) (.91) (.99) (.75) ] 1/6 = 0.91 

(13) 

The third-order, C-orthogonal solution gave the highest 
RI among the six solutions, as shown in Table III. Each 
RI listed is the better of two, one for PQ-RS and one for 
PS-QR. 
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Table III. Best reproducibility indices for six solutions. 

N 

3 

4 

5 

ORTHOGONALITY 

MODE A MODE C 

.86 .91 

.80 .82 

.77 82 

An RI of 0.91 indicates a high degree of overall 
similarity between both the temporal and spatial com- 
ponents of the split-half solutions. This is important 
because it indicates that the TC model is effecting a 
unique, meaningful decomposition of the data - for if the 
model provided nothing more than an arbitrary least- 
squares approximation, a given set of components would 
not likely be reproduced in different subjects. This is not 
to say that the components necessarily correspond to the 
physical sources that generated the data. The com- 
ponents do, however, have an empirical validity that an 
arbitrarily rotated set of principal components could not 
have. 

Note that the reproducibility of components suggests 
the possibility of generalizing a set of components, iden- 
tified for a particular group of subjects, to new subjects 
not part of the group. For example, one can envision 
using the TC model to reduce an MEP data base, consist- 
ing of data from a large number of subjects in a given 
diagnostic group, to a set of spatial and temporal com- 
ponents characteristic of the group. Once this were done 
for various groups, new subjects could be compared to 
each group by determining how well and in what  
proportions a group's components predict the subject's 
MEP data. This would involve computing a set of subject 
scores for the new subject, which is easily done by mul- 
tiple regression of the subject's data onto the components 
identified for the group. A statistical comparison could 
then be based on the subject scores alone. The reader is 
referred to Field (1991, Chapter 5) for further discussion 
and a demonstration of this approach. 
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Figure 5. Temporal components for 60-subject data set: 
third-order, C-orthogonal solution. 

Examinat ion of TC Mode l  Solut ion 

In the previous section it was found that among the six 
solutions considered, the third-order, C-orthogonal solu- 
tion was the most reproducible in split-halves of the data. 
The same components identified for the split-halves were 
expected to be identified for the complete sixty-subject 
set, and indeed they were: RI's of 0.97 were obtained 
when the sixty-subject solution was compared to solu- 
tions for split-halves PQ and RS. Thus, virtually the same 
set of components was identified for the complete data 
set as for the split-halves. It was then concluded that the 
third-order, C-orthogonal solution is indeed the best 
solution among those those considered for the sixty-sub- 
ject, eight-channel PVEP data, and this solution will now 
be examined. 

The temporal components are plotted in Figure 5, the 
spatial component loadings are listed in Table IV. A 
histogram of subject scores was constructed for each 
component, shown in Figures 6(a-c). Figure 7 shows the 

Table iV. Spatial component  Ioadings for sixty-subject data set: third-order, C-orthogonal solution, Loadings are 
pc)sitioned in the table according to scalp locations, as shown at the left. 

LOCATIONS COMPONENT 1 COMPONENT 2 COMPONENT 3 

C3 Cz C4 

P3 Pz P4 

O1 02 

-.88 -1.1 -.85 

-.12 -.25 104 

1.5 1.7 

-.89 -.85 - .98 

-.30 .03 -.25 

1.3 1.9 

-.95 -1.0 -.96 

-.19 -.02 -.01 

1.4 1.8 
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Figure 6. Subject-score histograms for 60-subject data set: 
third-order, C-orthogonal solution (a-c, components 1-3, 
respectively). 

data waveforms averaged over subjects for each location. 
Note that the third-order, C-orthogonal solution fit the 
sixty-subject data to a relative MSE of 0.28. 

The temporal and spatial components as shown in 
Figure 5 and Table IV are normalized such that the sub- 
ject scores reflect the scale of the data, although the data 
were normalized such that all subjects have a mean- 
square equal to one. The sign convention adopted was 
to minimize the number of negative A-mode loadings 
(subject scores), which have an artificial quality to them. 
The s~ime would be true of the B-mode loadings, were the 
data not centered on mode B (Field and Graupe 1990a). 
With B-centering, however, both positive and negative 

c3 

c4  

P3 

P4 

O2 

Figure 7. Mean EP waveforms by scalp location, for the 60 
subjects. 

loadings are inevitable. There is no theoretical basis for 
choosing the signs of the B- and C-mode loadings once 
the signs of the A-mode loadings have been fixed. Their 
signs can therefore be considered arbitrary; i.e., the 
polarity of a given temporal component can be changed, 
provided the polarity of the associated spatial com- 
ponent is also changed. 

The sequence convention used by the PARAFAC al- 
gorithm is to order the components by decreasing "RMS 
contribution," which is defined as 

2 ( i )  b2(1) c 2 ( t )  1 ~,~ ak k RMSk a F ~  i, l, t 

(14) 

where RMSk is the RMS contributon of the kth component 
to the predicted data. Note, in Field and Graupe (1990a) 
we defined the component "magnitude" G k by treating 
the set of loadings in each mode as a vector, and taking 
the triple-product of the three vector magnitudes. The 
relationship between Gk and RMS k is 

~k -= ~ s k  I4/LY (15) 

i.e., they are equivalent measures differing only by a 
constant. 

Looking first at the mean waveforms (Figure 7), note 
that the central electrodes (C3, Cz, C4) show opposite 
polarity to the occipital electrodes (O1, 02), and the 
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parietal electrodes (P3, Pz, P4) show very low signal 
levels. This configuration suggests that the post-center- 
ing zero-potential lines tend to traverse the scalp coronal- 
ly in the vicinity of the parietal electrodes. 

The spatial components (Table IV) are all quite similar 
and generally consistent with the appearance of the mean 
waveforms, in that all are positive occipitally and nega- 
tive centrally, with smaller loadings at the parietal loca- 
tions. That the spatial components would be so similar 
was not unexpected. Recall that similarity among com- 
ponents in mode B was highly determined by the data. 
There are subtle differences between the spatial com- 
ponents, e.g., components  1 and 3 have maximum 
negativity at the vertex (Cz), while component 2 is more 
negative bilaterally. Such features are difficult to inter- 
pret without examining the topographies present in the 
data for individual subjects and sample times. No at- 
tempt to do so will be made here - rather, we turn our 
attention to the temporal components. 

The first temporal component (Figure 5) resembles the 
mean waveforms (Figure 7), those at O1 and 02  being the 
most obvious comparisons given the chosen polarity of 
the components. This is no surprise, since the data were 
not  centered  on the subject  mode;  i.e., the mean 
waveforms shown in Figure 7 were not subtracted from 
the data. Thus, the best one-component description of 
the data, insofar as the time mode is concerned, would be 
the grand mean waveform, or the average of the eight 
mean waveforms shown. 

The second temporal component shows marked peaks 
at approximately 75 and 100 msec, negative and positive, 
respectively. Peaks at these latencies and polarities are 
typical of PVEP waveforms and are usually referred to as 
N75 and P100. The third temporal component is difficult 
to interpret at a glance, but a closer look reveals that 
component 3 looks like the time-derivative Of component 
2, up to approximately 120 msec. This is an important 
observation because any signal and its time-derivative 
constitute the first two terms of the Taylor's-series expan- 
sion for a time-shifted version of the signal, whe/~ the 
derivative is weighted by the amount of shift: 

c(t+--T) ~- c ( t )  + T 
dc (t ) (16) 

dt 

Thus, variously weighted sums of temporal components 
2 and 3 will approximate various time-shifted versions of 
component 2, i.e., component 2 with various latencies. 
The fitting algorithm apparently "recognized" that the 
data required various time-shifted versions of a given 
component for a proper fit, and produced the component 
along with its time-derivative to achieve an approxima- 
tion of that ideal. Indeed, this has been demonstrated to 
occur in simulation studies with PCA, using data syn- 

thesized from variable-latency components  (MScks 
1986). It was hypothesized at this point that the third 
component is an "artificial" one that resulted, at least in 
part, from the need to explain the variability of P100 
latencies seen in normal subjects. This result will be 
studied more closely after examining the subject scores 
(Figure 6). 

First, note that if the subject scores were to be used in 
any statistical analyses, the assumption that they are 
normally distributed would  be poor, at least for com- 
ponent 1. A transformation to achieve approximate nor- 
mal i ty  w o u l d  be usefu l  in this regard.  Fisher 's  
Z-transformation for correlation coefficients might l~e 
appropriate since, given the present combination of 
preprocessing and orthogonality constraint, each subject 
score is indeed the coefficient of correlation between a 
given subject's data values and a given component 
(Harshman and Lundy 1984b). Also note that for each of 
the first two components, only one subject score is sig- 
nificantly less than zero. A large number of negative 
subject scores would  constitute evidence against the 
physiologic reality of a given component, though the 
converse is not true. 

In contrast to the first two components, many subject 
scores on component 3 are negative (further evidence of 
the "artificiality" of this component). This means that for 
these subjects the second and third temporal com- 
ponents, with the polarities as shown in Figure 5, are 
differenced rather than summed. This is true because (1) 
the component-2 subject scores are all positive, and (2) 
the second and third spatial components have like signs 
at all locations. From eq. (16), when temporal com- 
ponents 2 and 3 are differenced they will approximate a 
time-delayed version of component 2, i.e., component 2 
with an extended latency. For those subjects whose third 
subject score is positive, such that components 2 and 3 
are summed, these components will approximate a time- 
advanced version of component 2, or component 2 with 
a shortened latency. 

It is clear that the first two temporal components with 
their peaks at 100 msec serve to explain the P100 peaks in 
the data that occur at or very near the average latency of 
100 msec. Now with the above result, we have evidence 
that component 3 is acting at least in part to approximate- 
ly shift component 2 to the left or right as necessary to 
account for P100 peaks occurring significantly before or 
after 100 msec. A simple test of this hypothesis was 
performed as described below. 

If the above-mentioned hypothesis is true, then by eq. 
(16), the amount of shift applied to component 2 should 
be proportional to the relative weight of component 3. 
Therefore, subject scores on component 3, which by 
definition' represent the relative weights of component 3, 
should contain information about P100 peak latencies. 
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Figure 8, P100 peak  latencies measured on the da ta  (60 
subjects) vs. subject  scores on c o m p o n e n t  3, with f itted 
regression line (r = -0.775). 

To confirm or deny this, correlation was sought between 
P100 latency and third subject score for all 60 subjects. 
Peak latencies were crudely measured as the time of 
maximum potential between 80 and 120 msec for the 
sampled data (4 msec sampling period resulting in +2 
msec precision)-hardly a robust method in the face of 
noise and ill-defined peaks, not to mention the sampling 
error, but adequate for the present purpose. P100 latency 
was taken to be the average of latencies measured for 
channels O1 and 02, the two locations with the strongest 
signals. 

The correlation coefficient was found to be r=-0.775, 
which confirms that subject scores on the third com- 
ponent indeed contain information about actual P100 
latencies in the data. Had peak latencies been measured 
more carefully, the correlation would likely be somewhat 
stronger. The latency/subject-score data are scatter- 
plotted in Figure 8 along with a standard regression line. 
Note that the y-intercept of the regression line is ap- 
proximately 100 msec, the expected latency of the P100 
peak. This supports the conclusion that for a given sub- 
ject, the third component  tended to be weighted in 
proportion to the time-difference between expected and 
actual P100 latency. 

Only one data set was analyzed and, with regard to 
the latency question, the focus was on only one waveform 
peak (P100). In practice, the situation is surely not as 
simple as that described here. Other waveform features 
must come into play, as must topographic features which 
were not considered.  Moreover,  an obvious com- 
ponent /der ivat ive relationship such as observed be- 

tween the second and third components  is hardly 
guaranteed to occur every time latency variations are 
present. Nevertheless, that such a relationship was iden- 
tiffed in the analysis of actual data lends much support 
to the conclusion reached by M/Scks (1986) in his PCA 
simulation studies, and extends that conclusion to TC 
analysis: namely, that it might be fruitful to somehow 
explicitly incorporate component time-derivatives into 
the PC and TC models, in order to make these models 
more appropriate for data containing significant latency 
variations. 

We make one final point regarding the significance of 
the above result as depicted in Figure 8: it suggests a new 
aspect to the analysis of subject scores. The scores would 
normally be thought of as simply the relative contribu- 
tions of the components to the data, and they are indeed 
just that. Now, though, we have a clear example of 
subject scores providing direct information about peak 
latencies in the data. Given the important role of peak 
latencies in clinical diagnosis, this result could have sig- 
nificance to the statistical analysis of TC (or PC) model 
subject scores (e.g., for classification purposes, as in Field 
1991; see also Field and Graupe 1990b). 

Concluding Remarks 
The TC/PARAFAC model provides a theoretically 

unique spatiotemporal decomposition of multichannel 
evoked potentials recorded from a group of subjects. 
Proper  appl ica t ion  of the mode l  requires  careful 
preprocessing of the data, recognition of degenerate solu- 
tions, judicious use of optional orthogonality constraints, 
selection of appropriate model order, and validation of 
solutions. This is difficult to accomplish blindly, with no 
theoretical basis for making the required decisions or 
knowledge of what results to expect from them. It is 
impossible to consider every combination for a given 
application. This paper provides theoretical and empiri- 
cal guidelines for these procedures in the context of 
MEP's, along with a specific exemplified approach to the 
required decision-making process. This approach was 
used successfully to obtain for the first time a unique, 
meaningful and reproducible spatiotemporal (trilinear) 
decomposition of an actual MEP data set. In so doing, 
the appropriateness of the model and the practicability 
of the method to MEP's were clearly established for the 
first time. 

Although these preliminary results are encouraging, 
it mus t  be e m p h a s i z e d  that  only  a single, fairly 
homogeneous data set, of MEP's for only 8 channels and 
for a single stimulus modality, was analyzed. Further 
study is required to assess the appropriateness of the TC 
model for a variety of stimulus' modalities, experimental 
conditions, existing pathologies, etc. Hopefully, future 
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studies will also ascertain under  what  circumstances par- 
ticular preprocessing a n d / o r  orthogonality constraints 
are most appropriate,  obviating the need to make a 
decision on these options wi th  each application of the 
model. Taking this a step further, it should be possible 
to identify sets of spatial and temporal  components  that 
summarize large MEP data bases from various diagnos- 
tic groups, as well as from the normal  population. Once 
these components  are available, the MEP's of new sub- 
jects can be compared to each group by a simple calcula- 
tion of subject scores only, wi th  no need for a complete 
TC analysis (see Field 1991, Chapter 5). 

Another area for future work concerns the problem of 
latency jitter. Our demonstrat ion of the effects of latency 
jitter on the TC model  solution lends support  to the idea 
originally suggested for PCA (MScks 1986), of explicitly 
incorporating time-derivatives into the model in the form 
of addit ional  components .  Another  possibility is to 
app ly  a t i m e - w a r p i n g  t echn ique  to the da ta  as a 
preprocessing step. Time-warping is common in speech 
processing (see Rabiner and Schafer 1978), and the ration- 
ale for its application to MEP's would  be the same: name- 
ly, that minor compressions and dilations of the time axis 
do not change the essential information contained in the 
signal; rather they allow meaningful  comparisons be- 
tween sampled signals by bringing significant events into 
temporal alignment. Using t ime-warping to align major 
EP waveform peaks might  make the TC decomposit ion 
more meaningful  by removing arbitrary and irrelevant 
time-scale differences between subjects. Of course, laten- 
cy variations may  not  be irrelevant, and they would  
remain available for analysis in a separated form by 
virtue of the warping [unctions. 

As a final note, it should be reemphasized that no fixed 
"recipe" for TC analysis is possible or even desirable. The 
TC model  is s imply another potentially very powerful  
analysis tool at our disposal that mus t  be used with  good 
judgement.  It is hoped that this current work  will serve 
as a foundat ion for future studies of the TC model, and 
provide helpful guidance to those who  pursue this new 
approach to MEP analysis. 
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