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Abstract 

A multivariate microscopic study of a piece of painted china porcelain is undertaken by image analysis. The 
object has archeological and artistic value and therefore a detailed study may be worthwhile. The use of multivariate 
image analysis intends the exploration of the artefact (artistic object) in more spectral and spatial detail than by just 
visual inspection. The study is used as a means of introducing and further exploring the different aspects of 
multivariate image analysis. The goal of the paper is twofold: (1) showing how the multivariate image is constructed 
and analyzed and (2) using some of the obtained results to introduce and further expand some of the techniques of 
multivariate image analysis. The example image has a size of 6 x 512 X 512. Classifications by feature space 
segmentation and by regression are shown to be useful and objective methods of acquiring insight in measurement 
errors and in the artistic detail of the painting. Some new concepts for multivariate analysis are introduced. One of 
them is related to the comparison of regression models. 

1. Induction 

In chemometrics, and in multivariate data 
analysis in general, there has traditionally been 
an emphasis on ~su~~~g results in plots and 
graphs. Score plots, loading plots, biplots, scree 
plots give the scientist something that mere num- 
bers are unable to express. Visualization is an 
errant aid in interpreting the data, even with 
data sets of small or intermediate size e.g. from 
five to a few hundred objects or variables. When 

’ gresponding author. 

large data sets are concerned, numerical interpre- 
tation becomes totally impossible. Visualization is 
then the only remaining tool. Some special tech- 
niques are needed for visualizing large amounts 
of data points. i 

In multivariate image analysis, huge amounts 
of data are handled. An image of reasonable 
resolution would need about 500 X 500 pixels. 
This is 250~0 objects. This image is often mea- 
sured for different variables. Extreme cases exist 
in remote sensing, where airborne detectors can 
create images of e.g. 2000 X 2000 pixels in over 
100 wavelength bands. More modest image sizes 
are created in microscopy, electron and ion mi- 
croscopy and in the medical imaging techniques 
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for patient diagnosis such as magnetic resonance 
imaging and X-ray tomography. Here, images of 
size 256 X 256 or 512 x 512 having 5-15 variables 
are standard, but the evolution is always towards 
better spatial and spectral resolution. 

Multivariate image analysis has been pre- 
sented earlier [l-8] and only the most important 
basic aspects are repeated here. The object of 
study is a piece of painted and glazed chinaware, 
studied with low enlargement (pixel size 14 urn X 
14 Frn) in a stereoscope with CCD video camera 
digitalization. The painting is quite intricate and 
shows a lot of detail, combined with wear and 
erosion effects. The resulting multivariate image 
when using six visual wavelength bands has the 
size 6 x 512 x 512. It is used for studying the 
spectral and spatial content of the intricate pat- 
tern of the painting but mainly as a means of 
introducing some new aspects of multivariate im- 
age analysis. 

A multivariate image of size Z X .I pixels and 
k=l , . , . ,K variables is represented by a 3-way 
array & After pretreatments such as mean- 
centering, linear or nonlinear resealing, principal 
component analysis can be carried out as follows: 

A 

X= c T,*p, +E - - 
a=1 

A 

Xijk = c tija * Pak + eijk 

a=1 
(lb) 

where T, is a score matrix (size Z X J>, pa is a 
loading vector (size K), E is the residual (size 
K x Z x J), * is a 3-way operation explained in 
Ref. [8], a = 1,. . . , A is the number of compo- 
nents. 

Eq. lb shows the same operation in arithmeti- 
cal mode with xijk an element of 5 etc. More 
about this can be found in Refs. [1,3,6-81. 

The score matrices T, have the same size as 
images and can be shown as images on a screen. 
The score vectors p. can be used for making 
loading plots indicating the contribution of each 
variable to the PCA model. The score images are 
used separately or in false colour composites. For 
viewing the pixels in feature space, score plots 
are made and clusters, outliers and gradients are 

detected and analyzed in these. The final result 
of this is a segmentation in feature space with the 
corresponding segmentation in image space. This 
segmentation allows the detection of true classes, 
illumination and reflection errors and surface 
problems. Some new segmentation ideas are in- 
troduced and variable reduction is investigated. 

The example is also used for explaining regres- 
sion on multivariate images, in this case discrimi- 
nant regression by biased regression methods. 
Principal component regression (PCR), partial 
least squares regression (PIS) and ridge regres- 
sion (RR) are used. Some ideas about quality of 
regression models and about comparing regres- 
sion models are illustrated. 

Image analysis can only be explained by visual- 
ization of the results in images and graphs. Text 
and numbers alone cannot convey the most im- 
portant details. Some numerical results are given 
in tables for completeness. These numbers would 
normally be less important in an analysis. 

2. Experimental 

2.1. The object 

The object of study is a piece of chinaware 
(porcelain). It is about 100 years old. An account 
on the nature and age determination of these 
materials is given in Ref. [93. The piece is painted 
and glazed and has undergone some wear and 
corrosion. Colour, glaze and painting are often 
used with these objects to determine quality and 
authenticity. The experts feel that more objective 
methods than just visual inspection are needed. 
The only pretreatment of the sample under study 
consisted of cleaning with acetone to remove 
residues of glue and fingerprints. A picture of the 
chinaware piece is shown in Fig. 1. The piece is 
from a saucer and is therefore not flat. The 
surface is slightly curved, and this may give reflec- 
tion problems. Attempts to eliminate this reflec- 
tion problem resulted in too weak illumination 
(noisy images), but in the future better solutions 
may be found. 

The piece under study is assumed to belong 
the ‘Famille Verte’ class. The following chemical 
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substances were used for applying the colors: were used. Some regression calculations were also 
red = Fe,O,; green = copper oxides; turquoise = carried out in Splus for Unix [12]. Colour visual- 
copper oxides with sometimes Al compounds; ization was on a multisync video screen con- 
black = Mn, Fe and Cu oxides mixed; gold = Au. nected to a Revolution Number Nine PC hard- 
The colors were applied as enamel and baked in ware. Photography was from a Microvitec multi- 
at 800°C. The porcelain itself was formed at sync video screen on 200 IS0 slide film. Most 
1200-1300°C. The colors were sometimes applied graphics were done on an Apple Macintosh com- 
in different layers to increase depth illusion and puter using MacDraw and GraphMu [13]. The 
intensity of the colors. The piece had been lying regression programs were published earlier, ex- 
in a sewer for a long time when it was found. This cept for the ridge regression found in the Ap- 
accounts for some wear and fading of colors. pendix. 

Multivariate microscopy 
A small area of the piece of chinaware was 

used for creating a multivariate image. A Wild 
Apozoom stereoscope with a Dage-MTI CCD72 
mounted camera was used for collecting the im- 
ages in reflection mode. The digitization of the 
video signal was done with Kontron IBAS 2.0 
hardware and software. Images of size 512 x 512 
(14 km X 14 pm pixel size) were stored on disk 
for further analysis. All images were collected by 
averaging 16 times to reduce random noise. Illu- 
mination was with a Zeiss Superlux 300 Xenon 
lamp with optical fibers organized in a ring around 
the stereoscope objective. The light was filtered 
with interference filters between two fiber bun- 
dles in order to get selected wavelength bands. 
This setup creates a volume of homogeneous 
monochromatic illumination around the sample. 
The wavelength bands used are shown in Table 1. 
Fig. 2 gives a schematic overview of the experi- 
mental setup. The resulting image is of size 6 x 

512 X 512. All image visualization and collection 
in this paper uses the intensities as integers in the 
range O-255. All calculations on the image data 
are done in double precision. The image data are 
available via anonymous FTP. Contact geladi@ 
biovax.umdc.umu.se for more details. 

3. Univariate statistical analysis 

The raw images are shown in Fig. 3a. A uni- 
variate analysis gives an idea of the properties of 
the wavelength bands in the multivariate image. 
Global statistics and histograms were calculated. 
Table 1 gives some statistical properties of the 
images. A false colour composite of the wave- 
length bands at 450 nm (blue), 540 nm (green) 
and 630 nm (red) is used as an RGB colour 
image. It can be seen in Fig. 3b. The histograms 
are shown in Fig. 4. They are clearly multimodal, 
making global statistics rather superfluous. Uni- 
variate statistics on large heterogeneous data sets 
such as images and especially multivariate images 
is in most cases quite useless. It may however 
serve a purpose in checking the integrity of the 
data after network transfer or transformations. 
Univariate statistics are excellent tests for errors 
when image files are moved and transformed. 
They also serve in the detection of physical errors 
such as extreme noise and illumination problems, 
but normally these errors would be detected and 
removed under the data collection stage and not 
during data analysis. 

Calculations and visualization 4. Multivariate image analysis 
Calculations were carried out on a Sun Unix 

server, alternatively on a 486 personal computer. 
Programs used for univariate analysis were Erdas 
7.5 and 8.0 for Unix [lo] and Erdas 7.4 for DOS 
[ill. Special in-house programs for multivariate 
image analysis and multivariate image regression 
written in C and in Fortran for the Erdas Toolkit 

Multivariate image analysis was introduced 
earlier and the references [l-S] give ample expla- 
nation of the most important details. Fig. 5 gives 
a schematic overview of the methods used in 
going from a multivariate image to feature space 
segmentation. A first step in a multivariate image 
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Fig. 1. A picture of the piece of chinaware under study. A 
scale is included for reference. The scale is in centimeters, 
with subdivision in millimeters. 

analysis is to find out what the univariate analysis 
explains about the images. As shown in Table 1, 
the image at 680 nm is darker than the other 
ones. This has to do with the limitations of the 
light source and with limited CCD camera sensi- 
tivity. Reweighting of a dark image may be a way 

Table 1 
Wavelength bands and statistical analysis 

Band No. or A Mean Standard Comment 
Variable No. (nm) deviation 

1 460 79.8 44.8 Blue 
2 500 80.0 39.4 Blue-green 
3 540 92.9 42.0 Green 
4 580 113.9 51.2 Yellow 
5 630 89.3 42.2 Red 
6 680 30.0 14.2 Dark red 

of alleviating the problem, but with the risk that 
noise is amplified too. An important aspect in all 
multivariate analysis is correlation between vari- 
ables. A correlation table of the six wavelength 
bands is given in Table 2. The table shows that 
the wavelengths are highly correlated with their 
closest neighbours and less (but still very well) 
with the more remote ones, as can be expected of 
spectral data. The correlations in Table 2 are 
global. By taking subsets such as specific geomet- 
rically defined regions, other values may be ob- 
tained. 

Lamp house with 
300W Xe Lamp 

I 

- @ii55%C)- Ring of optical fibers 

m Sample holder 

Fig. 2. A schematic overview of the experimental setup for monochromatic illumination and video registration of images. 
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Table 2 
The correlation matrix of the six wavelength bands 

460 500 540 580 630 680 nm 

1 0.988 0.960 0.915 0.861 0.826 460 
1 0.988 0.943 0.885 0.851 500 

1 0.971 0.922 0.892 540 
1 0.981 0.956 580 

1 0.990 630 
1 680 

The best way of dealing with highly correlated 
variables is to reduce the dimensionali~ by prin- 
cipal com~nent analysis (PCA). PCA was car- 
ried out on the multivariate image after pretreat- 
ment. This pretreatment consisted of mean- 
centering and resealing each variable to variance 
1, also comparable to the z-transform. It should 
be noted that the image data are transfo~ed 
from integers to floating point by these opera- 
tions. This is not a huge disadvantage, since the 
floating point numbers are only needed to con- 
struct the correlation matrix. More about this was 
explained in the literature [81. The first results of 
the PCA analysis are shown in Table 3. 

Three components explain 99.7% of the total 
sum of squares of the data. A fourth component 
may contain some information. Components 5 
and 6 are very small. As an additional visual clue 
to the table, a modified scree plot is given in Fig. 
6. This plot is different from the usual scree plot 
because h1i2 is used instead of A. The score 
images l-4 are shown in Fig. 7. Score images 5 
and 6 contain little visual information and are not 
shown here. The scores are given as integers 
resealed to fill the range O-255. For practical 
reasons, this is often the best way of presenting 
image scores, but the true size double precision 

Fig. 3. (a) The six images of size 512X512 in wavelength 
bands of 460,540,630 nm left top to bottom and 500,580,680 
mn right top to bottom. The black and white pattern in the 
top of the images is the measuring scale. The distance be- 
tween two black stripes is 1 mm. Tbe total image is about 7.5 
mmx7.5 mm. It can be noticed that the images are very 
correlated, but that small differences exist. (b) The colour 
image is a composite of the bands around 460 nm (blue), 540 
nm (green) and 630 nm (red). It is a false c&our composite. A 
real &our TV camera would give ‘true’ colours. 
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Fig. 4. The intensity histograms for the six untreated waveiength bands (images). The histograms are clearly m&tin 
histc Igram at 680 nm contains only dark pixels. The original image at 680 nm was at the limit of illumination and camera 
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Table 3 
Percentage of sum of squares (%SS) explained of the prepro- 
cessed array 

Component No. %SS %SS 
cumulative 

1 94.1 94.1 
2 5.0 99.1 
3 0.59 99.7 
4 0.22 99.9 
5 0.035 99.98 
6 0.022 100 

values can always be made available. It is clear 
that the score images for components 1, 2 and 3 
have good visual content. For the fourth compo- 
nent, the visual content is of a more doubtful 
quality and more sophisticated methods than just 
visual inspection are needed to extract the possi- 

MULTIVARIATE 

IMAGE 

PRETREATMENT 

TI 

SCORE IMAGE 

ble useful bits of information from them. Table 4 
shows the loading vectors for the first three com- 
ponents. 

Loading vector pi shows almost constant load- 
ing values. This means that this loading will not 
be too interesting to plot. The loading plot of p3 
against p2 is shown in Fig. 8. The most important 
aspect seen in this plot is that the wavelength 
bands are well spread out and appear in se- 
quence, according to wavelength. This sequential 
behaviour is to be expected from spectral data 
where each wavelength is correlated with its 
neighbours. All wavelengths seem to contribute 
reasonably well to the three first components. 

Although the score images themselves reveal 
quite some detail, it may be more interesting to 
use them in other ways. One possible way is to 
make a colour composite of the first three com- 

r 
SEGMENTED 

CLASS 

IN IMAGE 

SPACE 

SCORE IMAGE 

I 

1 ol SCOREPLbT 1 

CLASS SELECTION 

1 

0 255 

Fig. 5. An overview of the operations of multivariate image analysis leading to classification by feature space segmentation. 
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0 2 4 6 

Component # 
Fig. 6. A modified scree plot for the IkA analysis after mean 
centering and variance scaling. It is clear that three compo- 
nents explain almost 100% of the sum of squares. 

ponents in the red, green and blue colour planes 
of the monitor. An example of this is shown in 
Fig. 9. Since the first three components explain 
very much of the data structure, their colour 
composite gives a good subjective view of the 
detaik in the painting, aIthough not in the colors 

Fig. 7. Four score images. Upper left T,, upper right T2, lower 
left T3 and lower right T,+ The scores were transformed to fill 
the intensity range O-255 optimally. 

Table 4 
The first three loading vectors of the pretreated 6 X 512 X 512 
image 

Band No. Pl P2 P3 

1 0.401 - 0.499 0.623 
2 0.409 - 0.421 - 0.047 
3 0.415 - 0.220 - 0.560 
4 0.417 0.152 - 0.409 
5 0.408 0.439 0.079 
6 0.399 0.556 0.350 

that the human eye expects from prior knowledge 
of the object (compared to Fig. 3b). 

A more objective way of finding i~o~ati~ in 
the score images is by constructing their scatter 
plots, called score plots. These are shown in Fig. 
10 (left side). The score plots show pixel clusters, 
with colour indicating density. Quite a number of 
dense clusters, gradients and outliers can be ob- 
served. These can be used for explaining almost 
all the details in the multivariate image. This 
technique is called multivariate image segmenta- 
tion. 

5. Variable reduction 

It can sometimes be argued that the tri-varia- 
ble colour image of an object shows all the detail 

P3 (0.6%) 

460* 

*680 

500 * X630 

*580 

SXSO 

-0.5 0 0.5 1 

P* (5%) 

Fig. 8. The loading plot for components 2 and 3. The wave- 
length bands are circularly spread and in sequence. 
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Fig. 9. A false colour composite image of the three score 
images T, = red, T, = green, Ts = blue. 

Fig. 11. The scatter plot of scores T, and T4 indicates that for 
certain groups of pixels there is information to be found in 
component 4. 

that is necessary. Therefore, variable reduction 
was tried by only using the red (630 nm), green 
(540 nm) and blue (460 nm) wavelength bands 
that constitute a colour image. The results of a 
PCA analysis after z-scaling, which is the same as 
mean-entering and variance scaling, are shown 
in Fig. 10 (right side). At first it may seem that 

Fig. 10. The score plots. Upper left quadrant: T2 against T,. 
Lower left quadrant: T, against T,. Right side: the same plots 
repeated for a simplified model with only three variables. 

both the score plots for the six-variable model 
and for the three-variable model show the same 
structure of classes, gradients and outliers, even 
though some small differences are noticeable. 
This is to be expected, since the painting is meant 
for the human eye that observes c&ours as tri- 
stimulus red-green-blue combinations. Fig. 11 
shows the score plot of components 1 and 4 for 
the six-variable case. There is a clear indication 
that also the fourth component is important in 
separating. classes and creating gradients. This 
makes it important to include more wavelength 
bands than just three. In general, when only few 
variables are available it is to be recommended to 
use them all. If there is an abundance of vari- 
ables, as in some remote sensing cases, there may 
be cause for rem~g some of the least interest- 
ing ones. 

Multivariate image segmentation is shown 
schematically in Fig. 5. It has been explained 
earlier [l--S] and there is no need to repeat it in 
detail. One special type of segmentation is high- 
lighted here. It is shown in Fig. 12a. It is a special 
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case, where two classes of pixels, defined in two 
different score plots, are combined by intersec- 
tion of the classes to make a very powerful seg- 
mentation device. In the case of Fig. 12a, the 
class ‘bright red’ has been segmented in the Tr-T2 

and T3-T4 score plots. Se~entation in only one 
of the score plots wonld have led to much more 
misclassification in this case. The technique pre- 
sented here uses two tubes of irregular shape (see 
Fig. 12a for their cross-sections) in hyperspace 

Fig. 12. (a) A class mask iu the Tt-Tr score plot and one in the Ts-T4 score plot are combined by intersection to give a 
well-defined class of pixels having the characteristic ‘bright red’. This class is shown as an overlay on top of the T, image (right 
side). (b)-(k) Classes defined in the score plots Tt-Ts ((b)-(g)) and Tt-Ts ((h)-(k)) are shown as binary images. (b) White porcelain 
background. (cl Extra reflection in some corners. (d) The class ‘gold’ as a spot with a linear stroke through it and on the edge on 
the leaf LL. (e) Leaf UR as a homogeneous class. (f) Leaf LL as a non-homogeneous class. (g) Light grey strokes in the middle of 
the studied area. (h) The class ‘gold’ in another ~~entation. (i) The class ‘red’ as in (a) in a different se~entation. tj) Showing 
that leaf LL is not a homogeneous enamel. (k) Weak dark lines under leaf UR. 
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Fig. 12 (continued). 
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Fig. 12 (continued). 

and makes a class of the intersection part of the 
two tubes. The mentioned shapes of the tubes are 
selected manually by visual interactive inspection 
of the score plots. 

A complete and detailed segmentation of the 
image is possible. It leads to the detection of pure 
and mixed classes, and also illumination and re- 
flection errors. The results of a first attempt at 
segmentation are shown in Figs. 12b-12k. These 
results are obtained by selecting classes in the 
T,-T, and T,-T, score plots and projecting them 
to image space as binary images. The effect of the 
millimeter scale highest up in the image was 

ignored. First the classes found in the T,-T, 
score plot are treated. In Fig. 12b, the white 
porcelain background is shown. This background 
area is remarkably smaller than expected from 
inspection of image 3b. This means that the 
enamel is more abundant than would be noticed 
at first sight. In Fig. 12c, the extra bright reflec- 
tion in the lower right comer of the object is 
segmented out. This was confirmed by visual in- 
spection of the piece and the images. Fig. 12d 
shows the class of the gold. It is cut in half by a 
stroke in the lower part. Also some gold at the 
edge of a leaf in the lower left corner (from now 
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on called leaf LL) is shown. Fig. 12e shows the 
class formed by the leaf in the upper right corner 
(leaf UR). In this se~entation, it looks like a 
homogeneous class. Fig. 12f shows how the leaf 
LL is not homogeneous, but a complex mixture of 
different enamels. Fig. 12g shows the segmenta- 
tion of some very weak (light grey) linear strokes. 
These strokes may have been black originally, but 
they may have faded by erosion. The strokes are 
not a pure class. A lot of misclassification is 
found. This is so because the classes overlap in 
the score plot. Even with overlap in the score 
plot, classes can still be separated visually by 
using the spatial information in the image space 
to find out about class membership and misclassi- 
fication. The classes found in the T1-T3 score 
plot are discussed below. Fig. 12h shows another 
se~entation of the class ‘gold’ that is somewhat 
different from that in Fig. 12d. This is an indica- 
tion that it may be possible to combine the classes 
by intersection and get a better result. Fig. 12i 
shows a se~~nta~on of the class ‘red’. This one 
can be compared to the segmentation in Fig 12a. 
Fig. 12j shows a segmentation of the leaf LL. This 
gives again an indication of the complex composi- 
tion of this leaf. Fig. 12k shows some of the dark 
linear strokes that are found under leaf UR. The 
class is difficult to define and some incomplete 
classification and misclassification are seen. 

It becomes clear from this simple segmenta- 
tion example that multivariate image segmenta- 
tion is a valuable addition to visual inspection. A 
more detailed segmentation would be possible 
after the first round, but it is left out because of 
space limitations. Many results were found by an 
analyst with no experience in chinaware studies 
and later confirmed to be true by experts on 
chinaware. It is expected that also the experts can 
benefit from the increased detail shown by multi- 
variate image analysis. 

7. Multivariate image regression 

It is very often important to relate the content 
of a multivariate image to external info~ation. 
In these cases it is convenient that this external 
information is also available in image form. This 
allows the setting up of a regression model. 

Regression is a tool for building relations be- 
tween data sets: 

Y=X *b+F -- (2) 

where Y is an image (size I x J), X is a multivari- 
ate image (size K X I X 0, b is a vector of regres- 
sion coefficients: the regression vector (size K), P 
is the residual image (size I XJ), and 1 is a 
three-way operation defined in Ref. [15]. 

When Y is a binary image, consisting of dis- 
crete values (0 for low and 255 for high), the 
method is often called discriminant regression. 

There are different ways of calculating the 
vector of regression coefficients b. When F is 
minimized in least-squares fashion, the multiple 
linear regression (MLR) solution for b is ob- 
tained. This solution is sensitive to collinearities 
in the variables, Therefore biased methods of 
calculating b are often used. The biasing usually 
leads to vectors b with a reduced norm. The term 
‘shrinkage’ is therefore used for describing them. 

Good alternatives to MLR are the latent vari- 
able regression methods: principal component re- 
gression (PCR) and partial least squares regres- 
sion (PLS). PCR on images is explained in Refs. 
[15,16] and PLS on images is explained in Refs. 
116-181, both for discrete and continuous y vari- 
ables. In latent variable regression models, a 
number of latent variables is chosen for the model. 
This number is usually called the number of 
components or also the rank of the model. 

An alternative method is ridge regression (RR) 
where the following equation is used to get a 
biased vector of regression coefficients (assuming 
the images are represented by the matrix X (size 
[IxJIxK) and the vector y (size [IXJI) for 
ease of notation): 

b = (X’X + ~1) -‘X’y (3) 

I is the identity matrix of size K x K and c is a 
constant that can be changed continuously to find 
ridge regression models of different quality, 
preferably good ones [191. The nice aspect of Eq. 
(3) is that X’X and X’y have to be calculated only 
once and are very small for the given example. 
This makes it extremely easy to recalculate b for 
different values of the ridge parameter c. An 
algorithm is given in the Appendix. 
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Fig. 13 shows that a part of the image (6 X 512 
x 50) was defined as a calibration set. The binary 
image from the feature space segmentation of 
Fig. 12a was used as a 512 X 50 y image. The 
remainder of the image (6 X 512 X 462) can then 
be considered as a test set. The ~libration data 
are shown in Fig. 14. The binary variable to be 
predicted is the property ‘bright red’ segmented 
in Fig. 12a. 

Principal component regression and partial 
least squares regression were carried out on the 
calibration image. As preprocessing, mean- 
centering but no resealing of variances was used. 
The reason for this is that the scaling methods for 
the different regression techniques to be com- 
pared were not identical. The emphasis is on the 

Fig. 14. The six x-variable images (left to right X, to X,) and 
the binary y-variable image (extreme right), all of size 512.x 50. 

X 

Test 
X 

-Calibrate 

Fig. 13. A 6 x 512X 50 subimage is used as calibration data in 
a discriminant regression analysis. The y calibration data are 
created by multivariate image segmentation. It is a binary 
image. The remainder of the 6 x 512 X 512 image is used as a 
test set. 

PLS results. A first result is concerned with model 
building statistics. These are given in Table 5 for 
all six PLS models of rank 1-6. The results in the 
table are also given in a more useful form as plots 
in Fig. 15. The PLS weights are given in Fig. 16 
for x and y variables. 

The cross-validation value WAL is calculated 
for each PLS component. It is described in more 
detail in the literature [20,211. The most impor- 
tant point to remember here is that values much 
lower than 1 indicate a useful component and 
that values that approach 1 are indicators of a 
less useful component. It is important that the 
value of OVAL is not interpreted just by itself, 
but related to the amount of the sum of squares 

Table 5 
PLS regression between a 6~512x50 image and a 512x50 
binary image. Rest&s 

Component No. XKAL %SSX %SSY 
per camp. cumulative cumulative 

1 0.62 6.5 39.5 
2 0.98 99.5 40.8 
3 0.57 99.92 66.5 
4 0.90 99.98 69.8 
5 0.96 99.9 71.1 
6 1.00 100 71.1 
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Component Number 

% SSX explained 

0 2 4 6 
Component Number 

Fig. 15. Information about the calibration for PLS models 
with one to six components: Cross-validation criterion, per- 
centage SSY explained and percentage SSX explained 
(cumulative). 

US) that each component uses for x and y 
variables. 

It can be noticed that the cross-validation value 
XI/AL is low for component 1, high for compo- 
nent 2, low again for component 3 and then 
slowly moves up for the subsequent components. 
In the plots of the percentage of sum of squares 
(SS) explained, it can be seen that the second 
PLS component explains a large part of the SS of 
X while it explains almost nothing of that of Y. 
This is the reason why the value of OVAL is so 
high for the second component. A general con- 
clusion is that three or four components seem to 
form an adequate rank explaining most of the SS 

w2 
0.8 

*Y 

-1 -0.5 0 0.5 

Wt 
Fig. 16. PLS weight plots including the weight (loading) for 
the y variable for PLS components q, w2 and wj. 
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Fig. 17. Prediction images for both calibration and test image 
for models of rank 1 (upper left), 2 (upper right), 3 (lower left) 
and 4 (lower right). 

in X and close to 70% of the SS of Y. Cross-vali- 
dation is not an absolute method. It gives an 
indication of how good a eminent is, but the 
results have to be interpreted and in many cases, 
a few models of different rank are almost indis- 
tinguishable. It should also be borne in mind that 
all validation should be based on a careful choice 
of validation and test sets. This careful choice is 
not possible in all situations. 

PLS weights are plotted in Fig. 16. Also here, 
it can be seen that the second PLS ~mponent 
has no contribution to the regression model, since 
it has a very low y weight. For PLS-components 1 
and 3, the y weight is rather large, indicating a 
good explanation of y in the model. 

Calculated values for the calibration set and 
predicted values for the test set for models of 
rank l-4 are shown in Fig. 17. The predictions 
for rank 1 and rank 2 models look almost identi- 
cal. The predictions for the low rank models are 
not very good. Many regions not related to the 
property of interest ‘bright red’ are showing high 
intensities. Predictions for rank 3 and 4 models 
are better. Anything that has absolutely nothing 
to do with the property of interest remains black 

Fig. 18. A scatter plot of predictions (calibration+ test) for 
rank 1 model (horizontal) and rank 2 model (vertical). The 
scale goes from 0 to 127. The models are almost identical, 
since the second PLS eminent has no predictive power. 

Fig. 19. A scatter plot of predictions (ca~b~tion + test) for 
rank 3 model (horizontal) and rank 4 model (vertical). The 
scale goes from 0 to 2%. A reasonable correspondence is 
observed. 
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and the regions that are showing as bright or 
median grey have a constituent that is related to 
the property ‘bright red’. This can be confirmed 
by careful re-inspection of the colour image in 
Fig. 3b. In Fig.. 17, the rank 3 and 4 predictions, 
two large regions (linear strokes) of high intensity 
can be seen. These correspond to the visible 
bright red lines in the color image 3b. Also two 
other smaller regions are shown as bright grey. 
They are positioned close to the lower left corner 
and in the middle of the right side. They belong 
to red lines that continue outside of the sampled 
region. This fact was only discovered after the 
discriminant regression results were inspected. 

For comparing models of different rank it is 
useful to look at scatter plots of predicted images. 
Fig. 18 gives the scatter plot for the predicted 
images using PLS models with rank 1 (horizontal) 
and rank 2 (vertical). All the pixels are on a 
straight line. This is because the rank 2 model is 
no improvement over the rank 1 model as ex- 
plained earlier. Fig. 19 gives the scatter plot of 
predicted images for PLS models of rank 3 and 
rank 4. There seems to be a reasonable match 
between the two images, with all pixels lying close 
to a straight line. . 

This section mainly reported the results of 
PLS regression. PCR and RR regression models 
are taken up in more detail in the next section. 

8. Comparison of regression models 

It is sometimes necessary to compare regres- 
sion models in order to find out which ones are 
best and which ones are similar. This can be done 
by calculating statistics on the regression model 
or by cross-validation. Some ways of comparing 
models of different rank were shown earlier for 
the PLS models of rank l-to 4. It was also found 
that rank 3 and 4 PLS models seem to be the best 
possible choice here. A more visual method of 
comparing regression models is introduced here. 
A regression model, when used for prediction, is 
characterized by a regression vector b. It is possi- 
Xe to compare these regression vectors. This is 
shown schematically in Fig. 20. The regression 
vectors for six PLS models and six PCR models of 

. . . . . . 

_I 
:1 

Fig. 20. The principle of comparing regression models by 

comparing their regression vectors. 

different rank are given in Table 6 as a 12 x 6 
matrix. The regression vectors are for mean- 
centered but not resealed data. The rank 6 solu- 
tions for PLS and PCR are identical and also 
identical to the MLR (multiple linear regression) 
solution. The matrix can be analyzed by singular 
value decomposition, leading to eigenvectors or 
scores. The score plot for these is given in Fig. 21. 
In this score plot, each model has a position, so 
that similarity, dissimilarity and clustering can be 
detected. It is possible in such a plot to define a 
region where all the best models cluster together. 

Table 6 

Regression coefficients for PLS and PCR models of different 

rank 

1 2 3 4 5 6 

PLS -0.3660 -0.3760 -0.3700 0.3210 0.6920 0.2430 

PLS; - 0.3870 - 0.4020 - 0.4060 0.3110 0.7000 0.2450 

PLS, 1.1550 - 0.4370 - 2.5260 0.2450 1.4450 0.0640 

PLS, 0.5700 0.2590 -3.5990 1.9780 0.7610 - 1.3470 

PLS, - 0.6700 2.5970 - 4.3320 1.4100 1.5870 -2.1810 

PLS, - 0.6980 2.6860 - 4.4030 1.4510 1.4990 - 1.9920 

PCR, 0.0056 0.0051 0.0056 0.0069 0.0055 0.0017 

PCR, -0.5120 -0.3660 -0.1630 0.2980 0.5740 0.2440 

PCR, 1.2080 - 0.5330 - 2.3030 - 0.4590 1.5470 0.2960 

PCR, 1.1550 - 0.7670 - 3.0950 1.8360 0.5780 - 0.7200 

PCR, -0.4630 2.0660 -3.9810 1.2850 1.8940 - 2.8730 

PCR, -0.6980 2.6860 -4.4030 1.4510 1.4990 - 1.9920 
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Also regions of underfitting and of mild overfit- 
ting can be defined. Overfitting models are posi- 
tioned towards the MLR solution. Underfitting 
models are situated closer to the one-component 
PLS and PCR solutions. 

The plots show how the PCR models of rank 1 
and 2 show underfitting. The PLS models of rank 
1 and 2 are almost identical and take up the same 
place in the plot. PLS models of rank 3 and 4 are 
good models. The PCR models of rank 3 and 4 
are closer to the PLS model of rank 3. These 
models of rank 3 and 4 constitute an area of 
‘good’ models, as shown by cross-validation in 
PLS. The rank 5 and 6 models for PLS and PCR 
are further away from the ‘good’ solutions. This 
would in many cases be considered as overfitting. 

Ridge regression models were also constructed 
for different ridge parameters and the corre- 
sponding regression coefficient vectors were cal- 
culated. This was done in Splus. X’X, the cross 
product matrix of the mean-centered data, is 
equivalent to the covariance matrix. Because of 
the use of this covariance-equivalent matrix in- 
stead of the correlation matrix, large ridge pa- 
rameters were used, ranging from 1000 to 5 x 106. 

9” 
(9.5%SS) 

-0.1 

F'CRG PL55,6MLR 

0 

Q PCRS 

F'CRl ' 

53 

,G# PCR3 
PCM 

, n 

e 3 (2.6%SS) size circles, dark-negative V~IU~S 

Fig. 21. Scatter plot for the eigenvectors of the matrix of PLS 
and PCR regression vectors, with eigenvector 3 indicated as 
sizes of the disks. The first eigenvector is very much related to 
regression vector size or with ‘shrinkage’. 

-0.3 0 0.9" 
B S (1.4%SS) size circles, dark=negaliie values 8, (92%SS) 

Fig. 22. Scatter plot for the eigenvectors of the matrix of ridge 
regression vectors. The first eigenvector is related to regres- 
sion vector size or ‘shrinkage’. 

The ridge based correlation vectors can be in- 
cluded in the comparison of PLS and PCR mod- 
els. While the different PLS and PCR models 
have a discrete parameter called rank, the ridge 
models have the continuous parameter c. 

Fig. 22 shows a plot of the first three eigenval- 
ues of the matrix in Table 7. There is clearly a 
progression from overfitting (c = lK, close to the 
MLR model, see Table 6) over some good models 
(c = 1OOK to c = 5OOK) to underfitting for too 
large parameters. A prediction image for the RR 
model with c = 300K was made. It looked very 

Table 7 
Ridge regression coefficients for selected values of the param- 
eter c. c is expressed as multiples of 1000 

1 2 

- 0.6680 2.6270 
- 0.5550 2.4130 
- 0.4340 2.1820 

0.1160 1.1240 
0.3890 0.5730 
0.5740 0.1330 
0.6190 - 0.0490 
0.6180 - 0.1450 
0.6000 - 0.2030 
0.4600 - 0.3070 

- 0.0070 - 0.2980 

3 4 5 6 

- 4.3750 1.4480 1.4890 - 0.1972 
-4.2710 1.4390 1.4540 - 1.8950 
-4.1560 1.4270 1.4150 - 1.8060 
-3.5800 1.3020 1.2440 - 1.3090 
-3.2030 1.1510 1.1720 -0.9650 
-2.7820 0.9250 1.1330 -0.6070 
-2.5210 0.7760 1.1180 -0.4170 
- 2.3300 0.6730 1.1060 - 0.2970 
- 2.1790 0.5990 1.0910 -0.2150 
- 1.6950 0.4150 1.0100 -0.0210 
-0.6970 0.2320 0.6520 0.1380 
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much like the one for rank 4 PLS. When plotted 
against each other, PLS rank4 against RR c = 
3OOK, all pixels are on a straight line at 45”. 
These figures were left out to save space. 

The Tables 6 and 7 can be combined into one 
large table with 23 regression vectors. The first 
two eigenvectors of this table are plotted in Fig. 
23. This figure shows how PLS and PCR models 
of different rank are related to RR models with 
different c values. Regions of overfit, underfit 
and of good models can be clearly distinguished. 
PLS and PCR models are only possible for a 
discrete rank, while RR models have a continu- 
ous parameter. If all RR models were calculated, 
they would form a continuous curve. In a plot like 
this, new ‘good’ values of regression vectors can 
be selected and their corresponding b vector can 
be calculated. An infinite number of ‘good’ vec- 
tors b can be found that do not have to corre- 
spond to any PLS, PCR or RR model. It may be 
possible to run a simplex or genetic algorithm to 
find some ‘best’ vector b in the region of the 
good PLS, PCR and RR models. In Fig. 24, the 
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Fig. 23. By plotting hvo eigenvectors of the matrix of all 
regression vectors, a plot showing the relationships between 
regression models is obtained. It is clearly visible how regions 
of overfit, underfit and good modeis are present. By choosing 
the rank of the PLS or PCR model or the ridge coefficient, a 
good model can always be obtained. 
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Fig. 24. An annotated version of Fig. 23. More comments can 
be found in the text. 

above comments are repeated. Regions of ‘good’, 
overfitting and unde~t~g are indicated. Some 
models take on an intermediate position. 

9. Conclusions 

It was shown that multiva~ate microcopy by 
constructing a 6 x 512 X 512 image of a painted 
ceramic surface can help in the spatial and spec- 
tral analysis of the artwork. Univariate statistical 
analysis of the images is a helpful tool for detect- 
ing experimental problems and data file errors. 
Because of the correlated nature of the wave- 
length bands, multivariate analysis is a natural 
choice. Principal component analysis with visual- 
ization of the results leads to the detection of 
classes and outliers. A special type of multivariate 
image se~entation is introduced. It gives better 
se~entation by making intersections of feature 
space classes. It is also shown that variable reduc- 
tion can lead to all major interpretations, but that 
finer detail is lost. 

Discriminant regression of one specific class is 
used to explain the technique and to introduce 
visualization explaining the regression models and 
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their predictions. A technique for comparing re- 
gression models more easily is introduced and 
explained. PLS, PCR and RR can all lead to 
good models, provided the right rank (discrete) or 
ridge parameter (continuous) is selected. Also 
new regression vectors with ‘good’ properties can 
be selected in the region where the best PLS, 
PCR and RR models are found in the regression 
vector comparison plot. This technique needs fur- 
ther development. The role of the second and 
third component and the right numbers of com- 
ponents to be used have to be investigated. Also, 
other alternative regression models to the ones 
used here may be added in future work. 

The example shows that multivariate micro- 
scopic analysis of fine details in any object of 
interest may be something to pursue in order to 
study the finer details. Including more wave- 
lengths inside and outside the visual range would 
be even more instructive. 
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Appendix 

An algorithm for calculating ridge regression vec- 
tors 

The algorithm is given in the high-level lan- 
guage Splus for Unix. This language allows large 
data files to be handled very easily. The program 
given here is not optimized for speed or conve- 

Ml [A [,31 
[l,l 89076430 78914831 83364289 
L&l 78914831 706985 10 75659356 
[3,1 83364289 75659356 82859482 
[4,1 99405451 90458048 100512641 
[5,1 76180981 69619970 78585906 
[6,1 23778799 21926423 25157314 

nience, but it is given as an aid in understanding 
the operations carried out. 

1. Assume that all images are given as ASCII 
files. Read these files into six x variables and 
one y variable. Each image in the calibration set 
would be an ASCII file of 512 X 50 integers, 
separated by blanks. 
> xl < -scan(“chinal.asc”) 
> x2 < -scan(“china2.asc”) 
> x3 < -scan(“china3.asc”) 
> x4 < -scan(“chinaAasc”) 
> x5 < -scan(“china5.asc”) 
> x6 < -scan(“china6.asc”) 
> y < -scan(“china7.asc”) 

2. Each variable is mean-centered by subtract- 
ing its mean. The results are floating.point values 
since the means are floating point values. 
> xl < -(xl-mean(x1)) 
> x2 < -(x2-mean(x2)) 
> x3 < +&mean(x3)) 
> x4 < -(x4-mean(x4)) 
> x5 < -M-mean@)) 
> x6 < -(x6-mean(x6)) 
> Y < -(y-mean(y)) 

3. Construct a matrix X of six variables and 
[512 x 501 objects. 
> x < -matri&(xl,x2,x3,x4,x5,x6),ncol= 6) 

4. Construct X’X. The function t( ) gives the 
transpose of any vector or matrix between the 
parentheses. X’X is equivalent to a covariance 
matrix and the values in it are large numbers. 
% * % is the matrix multiplication operator. The 
large values in X’X mean that the usual small 
ridge parameters have to be replaced by larger 
values. In the example, values between 1000 and 
5 X lo6 were used. 
> xx < -t(x)% * %x 
>x.x 
I,41 [,51 [,61 
99405451 76180981 23778799 
90458048 69619970 21926423 
100512641 78585906 25157314 
128192287 103888655 33680238 
103888655 86972987 28559146 
33680238 28559146 9526839 
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5. Construct X’y in the same way. 
> xy < -t(x)% * %y 

>xY 

[,I1 
[I,1 -6312610 
D,l -6480675 
[3,1 -6380525 
l4,l 5530434 
l5,l 11921811 

l6,l 4195025 

6. Construct the function ‘ridge’ with the input 
parameter c. diag(6) is the identity matrix I of 
size 6 x 6. It is multiplied by c and the result is 
added to X’X. This has the result of adding the 
constant c to all diagonal elements of X’X. solve( ) 
gives the inverse of what is given between paren- 
theses. This inverse is then multiplied by X’y to 
give 6. 
> ridge < -function(c) 
+( 
+ solve(xx + c * diag[6])% * %xy 
+l 

7. Test the function for c = 0. The result is 
that of MLR or full rank PLS or PLR. 
> ridge(O) 

[,I1 
[I,1 -0.6981679 

l2,l 2.6855876 
l3,l -4.4029753 

l4,l 1.4505803 

l5,l 1.4985948 

l6,l -1.9918630 

8. Test the function for c = 1000. 
> ridge(1000) 

[,I1 
[I,1 -0.667586 

l2,l 2.627174 

l3,l -4.374853 
1471 1.448482 

l5,l 1.489043 

l6,l -1.971754 

The function ‘ridge’ can be used in a loop 
where different values of c are tried, together 
with a criterion for deciding when a ‘good’ model 
has been found. 
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