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Suppose piti) (i = 1, 2, • - • , m, j = 1, 2, • • •, n) give the locations of m n  
points in p-dimensional space. Collectively these may be regarded a~s m 
configurations, or scatings, each of n points in p-dimensions. The problem is 
investigated of translating, rotating, reflecting and scaling the m configura- 
tions to minimize the goodness-of-fit criterion ~2 i= i m E i~ ~" A~(pj(1)G~), where 
G~ is the centroid of the m points Pitt) (i = 1, 2, • • • , m). The rotated posi- 
tions of each configuration may be regarded as individual analyses with the 
centroid configuration representing a consensus, and this relationship with 
individual scaling analysis is discussed. A computational technique is given, 
the results of which can be summarized in analysis of variance form. The 
special case m = 2 corresponds to Classical Procrustes analysis but the choice 
of criterion that fits each configuration to the common centroid configuration 
avoids difficulties that arise when one set is fitted to the other, regarded 
as fixed. 

Suppose  X ~ ( i  = 1, 2 ,  . . .  , m )  is a m a t r i x  wi th  n rows and  p~ co lumns  
whose j t h  row gives the  coord ina tes  of a po in t  p (1 )  re fer red  to  p~ o r thogona l  
axes. Typ i ca l  p rac t i ca l  s i tua t ions  are  when  each X i  is an  observed  d a t a -  
m a t r i x  or  has  been  o b t a i n e d  as mu l t i d imens iona l  scales of n s t imul i  or as 
fac tor  loadings  or  scores etc. F igu re  1 i l lus t ra tes  t he  g e o m e t r y  for m = 3, 
n = 4, Pl = P~ = P3 = 2 and  where  t h e  th ree  conf igura t ions  agree qu i t e  well. 

I n  t h e  following, i t  is a s sumed  t h a t  t he  m po in t s  P i " ) ( i  = 1,  2 ,  • • .  , m )  

al l  refer  to  the  same  j t h  en t i t y .  F o r  example ,  each  X~ m a y  have  been  de r i ve d  
f rom different  sets  of va r i ab le s  obse rved  for t he  same  samples  in eve ry  case 
(j  refers to  samples)  or  each  . X ,  m a y  have  been  o b t a i n e d  as  different  seat ings 
of the  same obse rva t iona l  d a t a  (j refers to  observa t ions )  or  each X~ m a y  have  
ar isen f rom one t y p e  of scal ing o f  t he  same s t imul i  as perce ived  b y  different  
i nd iv idua l s  (j refers to  s t imul i ) .  I t  is also a s sumed  t h a t  p~ = p, a cons tan t .  
This  simplifies the  expos i t ion  wi thou t  loss of genera l i ty ,  because  i t  is sufficient 
to  choose p = M a x  (p~) and  a p p e n d  zero columns  to  eve ry  X~ t h a t  in i t i a l ly  
has  fewer t h a n  p columns.  

P r o b l e m s  a re  c o m m o n  where  i t  is des i red  to  s t u d y  the  re la t ionsh ips  
a m o n g s t  t he  m sets  and  f r equen t l y  some k ind  of c o m b i n e d  ana lys i s  is des i rable .  
E x a m p l e s  are  I n d i v i d u a l  Scal ing Ana lys i s  [Carrol l  & Chang ,  1970] or  com-  
pa r ing  fac tor  loadings  de r ived  f rom different  s tudies .  SchSnemann  & Car ro l l  

33 



34 PSYCHOMETRIKA 

[1970] and Gower [1971] have discussed how two such matrices X1 and X2 
can be fitted, allowing the motions of translation, rotation, reflection and 
estimation of a homogeneous scaling factor, defining best fit as tha t  which 
minimizes the least squares criterion m12 = ~i=1 ~ A2(P~ (1), pi(2)), where 
5(.4, B) is the Euclidean distance between the pair of points A and B. This 
problem has an analytical solution. For best fit, the centroids of X1 and X2 
should be superimposed and the rotation matrix H such that  X2H best 
fits X~ is given as H = V'U where XI'X2 = U'FV, is the Eckart-Young [1935] 
(or singular value) decomposition with U and V orthogonal and F diagonal. 
With reflection F has no negative element and without reflection F has no 
more than one negative element. The least-squares estimate of the scaling 
factor obtained by fitting X2 to X~ is p = tr (X2HX~')/tr(X2X2') which is 
clearly not the inverse of that  obtained by fitting X~ to X2 . To overcome 
this difficulty Sch6nemann & Carroll [1970] propose a symmetric scale measure; 
an alternative solution occurs as a special case of the work described below. 

Without translation and scaling this problem is known as Procrustes 
rotation. In this paper the term Procrustes is extended to include all the 
classical rigid-body motions and also the possibility of uniform scaling 
(either stretching or shrinking). This extended terminology seems more in 
the spirit of the Greek tale of the innkeeper Procrustes who stretched or 
lopped off traveller's limbs so tha t  they would fit his bed. 

Procrustes rotation provides one way of analyzing individually scaled 
data. Given a pair of individual scales X~ and X. the first may be rotated 
to best fit the second, giving a least-squares value m., ~ (say). With scaling 
factors, in general, m., ~ m,. but  without scaling factors m~. = m~ and it is 
shown below tha t  elements of the (m X m) symmetric matrix of all such 
comparisons, form a metric. This follows from considering three configura- 
tions X1 , X2 and X3 and regarding all np values of each matrix (ordered by 
columns, say) as being the coordinates of a single point, so that  XI ,  X2 and X3 
are represented by points Q~, Q2 and Q3 respectively, in a Euclidean np-space. 
The distance between any two points Q. , Q~ of this representation is the 
square root of the sum of squares (not necessarily minimal) measuring the 
goodness of fit between X~ and Xo . If X1 and X2 have been rotated to best 
fit with X3 , ml~ and m23 are merely the distances A(Q~ , Q3) and A(Q2 , Q~). 
Because this representation is Euclidean, and hence metric, 

A(Q~ , Q~) < rn,3 + m23 • 

But  A(Q~ , Q..) > m~ , because X~ and X2 cannot be rotated to a better fit 
than that  with sum of squares m122. Hence the metric inequality m~2 _< 
m~3 ~ m23 must hold. Analysis of several sets of data  suggests further that,  
provided reflections are excluded, except perhaps for an initial reflection 
of some of the X~ , the m~o form u matrix of Euclidean distances, but I have 
not been able to prove this. The m X m matrix of all comparisons may be 
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analyzed by  metric or non-metric scaling methods, as exemplified by  Gower 
[1971], Krzanowski [1972] and Banfield and Harries [1974]. These studies 
show tha t  the quantities m,, are of interest in their own right and are not to 
be regarded as merely measures of goodness of fit. 

This paper is concerned with another  form of analysis of m sets of 
matrices. Instead of examining all possible pairs, the Procrustes idea is 
generalized so tha t  all m sets are simultaneously translated, rotated, reflected 
and scaled so tha t  a goodness of fit criterion is optimised. The criterion 
adopted is to minimize the sum-of-squares between each cluster of m like- 
points P i U ) ( i  = 1, 2, . . .  , m )  and their centroid G~ , summed over all n 
clusters. The centroids are shown in Figure 1. The m n  lengths A(Pi(~), Gi) 

are termed residuals.  The residual sum-of-squares S~ is therefore 

(1) s, = ~ ~ ~(P/", a,). 
i = l  i = l  

~) 
F I G U R E  1 

Geometrical representation of three configurations (m = 3) each with two dimensions 
(P~ = P~ = p3 = 2) and four vertices (n = 4) referring to the same four entities. Each 
entity therefore gives rise to a triangular cluster of vertices whose centroids Gj (j = 1, 2, 
3, 4) are marked. The centroid of the whole system is at 0. 
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However because of the identity 

(2) ~ h2(Pi (~), P,(°)) ==- m ~ A2(P/" ' ,  G,) 
u < v  u = l  

it is simpler to work in terms of S = m S, given by 

(3) S = ~ ~ A' (P ,  (~), P i(')). 
j ~ l  u < v  

Rather than minimize a sum-of-squares of residuals, other criteria could 
be considered which might have desirable properties. As usual the least- 
squares criterion leads to tractable algebra and straight-forward computation. 
The special case of minimizing (3), but without translation, reflection and 
scaling considerations, has been considered by Kristof & Wingersky [1971], 
who derive what is essentially the result (10), below, by an ingenious algebraic 
argument. The alternative Lagrange multiplier approach used here is more 
pedestrian, but copes easily with the additional parameters being estimated 
in this work. 

Algebraic Development 

Although the geometrical discussion is useful to establish motivation, 
and also for suggesting the analysis of variance described later, it does not 
help with the minimization problem, which must be treated algebraically. 

We are given m ( n  X p) matrices X , ( i  = 1, 2, . . .  , m)  where the ]th 
row of X~ is interpreted as giving the coordinates of a point P;"~ in Euclidean 
space. Rotating the configurations of n points given by X~ is equivalent to 
post-multiplying X~ by an orthogonal matrix Hi , and uniform scaling is 
expressed by a multiplicative constant p~ . Translation to a new origin is 
achieved by adding the same (1 X p) row-vector t~ to every row of X: . 
Writing T~ for the (n X p) matrix, all of whose rows are ti , then scaling, 
rotating and translating are expressed algebraically by the transformation 

X i  ~ p~X~Hi --k T~ . 

It  is required to determine o~ , H,  , T~(i = 1, 2, • • • , m) so that the "residual 
sum-of-squares" (3) is minimum. 

Thus the algebraic problem is to minimize 

(4) S -- tr ~ [(p,.X~H~ "-k T~) -- (p+XiHi "-k Ti)] 
i < i  

• [ (p ,X ,H ,  + T,)  - (p~XiHi + T+)]'. 

Before proceeding to minimize S, some preliminary discussion is necessary. 
Clearly S is minimized by choosing all p~ to be zero. Apart from this 

trivial solution a single matrix (X, , say) could be selected, p, set to unity 
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and all other matrices scaled relative to that  one. This gives the difficulties 
of classical orthogonal Procrustes rotation (m = 2) where fitting X1 to X2 
does not give the inverse scaling to tha t  of fitting X2 to X1 . A more satis- 
factory method is to estimate all m parameters p~ subject to some constraint 
and the constraint ~ = , m  p2  t r ( X , X , ' )  = ~ , ~ l  ~ t r ( X ~ X , ' )  has been chosen. 
This constraint expresses that  the final sum-of-squares about the origin of 
the rotated and scaled configurations is unchanged from that  given. We 
shall also see that  it insures that  the residual sum-of-squares Sr remains 
unchanged whether or not the parameters p~ are included. Of course setting 
the final sum-of-squares to any positive constant other than ~ o x  m tr(X~X/) 
would only affect the solution found, by a proportionate factor. Constraints 
other than on sums-of-squares might be considered but  these are likely to lead 
to more awkward algebra and computation. 

Because translation terms are being included, the original means of 
each X~ are immaterial, and it is convenient to take them all to be at the 
origin; that  is all the column sums of each X~ are assumed to be zero. 

As S is invariant to orthogonal rotations of the whole system of n m  

points, no unique solutions for H~ can be found. Here again X~, say, could be 
fixed and all rotations determined relative to it. However, a (non-unique) 
solution giving all m rotation matrices is preferable, because it keeps the 
algebraic equations in a symmetric form. A unique solution can be determined 
as a final step by referring all final coordinates to the principal axes of the 
set of centroid-points G~(i = 1, 2, . .  • , m) .  We are therefore lead to minimize 
(4) subject to the constraints 

(5) ~ 2 r = p, t (x ,x , ' )  tr (x ,x , ' )  
i = l  i = l  

(6) Each Hi is orthogonal, i.e. 

~ k ~  ~ h~k~'~h,k ~ = ~ ,  , the Kronecker-~, for u _< v, v = 1, 2, --.  , p. 

Associate with (5) the Lagrange multiplier ~ and with (6) the ½mp(p  -k 1) 
Lagrange multipliers ~ ,  c~. I t  will be convenient to consider these as arranged 
in m symmetric matrices A ~(i = 1, 2, . . .  , m) with general elements ~ ,~)  
(u r e v) and 2~,~, c~ on the diagonal. Thus finally we have to minimize 

i = 1  i = 1  

I V l k  t V i k  - -  ~ i i  " 
r ~ l  i<~/ k = l  

Trans la t ion  

The only terms involving T, occur in S, (4), and are 
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V 
(8) Sr  -- tr L(m -- 1)(p~X,H~ + T , ) (p~X,H,  + T~)' 

)1 l - -  2 (p iX iHi  + Ti  T i '  " 

Differentiating (8) w.r.t, the elements of the row vector t~ gives aST/Ot~ ----- nmt~, 
(the vector of column sums of ~;=1 m Ti) .  Thus at the minimum, 
tl = t2 . . . . .  t,,. This implies that all m configurations should be translated 
to have the same centroid, which without loss of generality is conveniently 
chosen to be the origin. The terms of (4) in T~(i = 1, 2, . . .  , m) may now 
be dropped from further consideration. 

Rotation 

Differentiating (7) w.r.t, h ,  (~) gives 

p . { p , ( X / X , H , ) .  + . . .  + p~_~(X/X._~H._~). + m+,(X/X~÷,Hr~O.  + "'" 

+ p , . ( X / X , . H , . ) . }  -- ~ ),~k(')h,k (') -- 2k, i(~)h, (~). 

Equating this to zero and expressing the results in matrix terms gives 

(9) p , X / ( m Y  - p~X,Hr) = A ,H,  , r = 1, 2, . . .  , m 

where Y = 1 /m  ~-~=m p~X~H~ are the coordinates of the centroid of the 
group, or consensus configuration, after rotation and scaling. Post-multiplying 
by H / a n d  rearranging gives 

(10) ( m X / Y ) H , '  = ( p , a X / X ,  q- A , ) /m .  

Writing p , X / Y  in its singular value (or Eckart-Young) form: p , X , ' Y  = 
U , ' F , V ,  where U, and V, are orthogonat and F, is diagonal, and noting that 
the right-hand-side of (10) is symmetric, gives 

(11) H ,  = U / V ~ .  

The essential step in deriving this result is proving that m X / Y H /  is 
symmetric. As pointed out earlier, this result was established by Kristof & 
Wingersky [1971] using an algebraic argument that did not rely on Lagrange 
multipliers. However, their approach assumes that certain singular values 
are positive and therefore their proof may require modification when rotations 
without reflections are required, a problem considered in the next paragraph. 

As in the two-group Procrustes problem, the reduction in sums-of-squares 
due to rotation increases with tr (r,), so is maximized by choosing signs 
attached to the columns of U, and V~ so that F, has no negative elements. 
Such a choice of signs may include reflection as well as rotations. R. W. M. 
Wedderburn (personal communication) points out that for rotation with 
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reflection tH, I = - 1  so that  the best rotation without reflection is obtained 
by  first arranging tha t  Fr has no negative elements and then determining IH,t. 
If  this is positive a true rotation has been found, but  if negative the sign must 
be changed of the column of either Ur or V, tha t  corresponds to the smallest 
non-zero element of Fr .  This may  make the smallest singular value negative 
but  ensures that  tr  (F~) is maximized subject to IH~I = 1. Gower [1975] 
gives an algorithm for determining the sign of the determinant of an ortho- 
gonal matrix. 

Equation (11) does not give an immediate method for calculating H,  
because the centroid matrix Y is not known. However, it gives a fairly 
obvious basis for an iterative computational method discussed below. 

Scale 

Differentiating (7) with respect to p~ and equating the result to zero gives: 

[ " 1 (m -- 1)o, tr X ,X , '  - tr X,H, ~ p~Hi'Xi' + ~p~ tr X,  X, '  = O. 

o r  

(m - -  1)p, tr X,X , '  - tr (X,H,  ~ p,Hi'X,' ) 

+ p~ tr  X~Xi' -~ ~p~ tr X~Xi' -- O. 

Finally 

(12) rnp~ tr  X , X J  -- m tr  (X,H, Y') -P ~p, tr X , X J  = O. 

Multiplying (12) by p~ , summing over i = 1, 2, -- .  , m and recalling the 
constraint (5) yields: 

(m + #) ~ t r  X~X,' = m 2tr  Y Y '  

and hence 

(13) p, = tr  (X~H~ Y') 

The alternative form 

tr  (X,X, ' ) /m tr  (X,X,')  tr  (YY') .  

m 

(14) p,~ = tr  (p,X,H, Y') ~ tr  (X,X, ' ) /m tr (X,X,')  tr  (YY') .  

will be useful for computational purposes (see below). 
Because Y itself involves the scaling factors, the above formulae do not 

give a direct method for calculating the p~ , but  have to be used iteratively 
(see below). However, (12) is the same equation for determining the p~ as 
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when given X,H~ are to be scaled to fit any configuration Y and (13) and (14) 
still follow but with tr ( Y Y ' )  replaced by tr (~,=1 m m X , H , Y ' ) / m .  

This completes the algebraic derivation of the estimates of the parameters 
that minimize the residual sum-of-squares (4). 

Analysis o] Variance 

The foregoing analysis can be expressed as an analysis of variance that  
is useful for identifying the relative importance of the items that go to make 
up the total sum-of-squares. In the usual way the total sum-of-squares can 
be split into between-groups and within-groups components, where the term 
groups refers to the m sets or configurations X~(i = 1, 2, . . .  , m). The 
between-group component represents the contribution of the translation 
terms. The within-group component splits into consensus and residual 
elements through the identity 

2 , 
(15) tr (p, X , X ,  ) - m tr ( Y Y ' )  + S, 

which is merely the multivariate form of the well-known univariate identity 

+ f: 
i ~ 1  i = l  

The left-hand-side of (15) is the within-group sum-of-squares after scaling 
and rotation, and because of the constraint (5) this is the same as the within- 
groups sum-of-squares before transformation. 

The ith term is the contribution of the ith configuration to the total 
within=group sum-of-squares and shows the reduction, or increase, due to 
scaling. If the configurations have been initially standardized to unit sum-of- 
squares, i.e. tr (X~XJ) = 1, the contribution becomes m 2, the square of the 
scaling coefficient. On the right-hand-side of (15), m tr ( Y Y ' )  is a term repre- 
senting the contribution of the group average, or consensus, configuration. 
Geometrically (see Figure 1) this is m ~ = ~ "  A~(O, G;). The residual S. can 
be partitioned in two separate ways. Firstly, we can sum the squares of the 
residuals for each group, giving terms ~ = ~ "  2 ~ ,) A ( r i  ,G+) (i = 1,2, . . -  ,m) 
and secondly, we can sum the squares for each stimulus giving terms 
~ , = ~  A2(Pi (~), Gi) j = 1, 2, --- , n. These considerations give the tabular 
form of analysis of variance expressed geometrically in Table 1. 

Computation 

The first step is to compute the between-groups sums of squares and to 
deal with translation by centering each set X~ at the origin. To allow for 
different magnitudes of data, it is convenient to scale each X~ uniformly so 
that Y]~=~ tr(X~X~ r) = m. To return to the original units, results should 
be multiplied by the scaling factor. Thereafter the process becomes iterative. 
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Source Method of Calculation and Interpretation 

Between Groups Translation 

Within Groups 
By Stimulus Consensus Residual Total (Within-Groups) 

n 

mh2(OG~) ~ A2(p~(~)G,) 

mh2(0G2) ~ h2(P2(')G2) 

A~(OP1 (')) 
i = 1  

h~(OP2 (')) 
i = 1  

h2(OPn (')) 

Stimuli m tr (YY') S, ~ tr (X,X/) 
i = 1  

By Group Consensus Residual Total (Within-Groups)* 

52(Pi(l)Gi) 

A2(P~(m)Gi) m 

Groups Sr 

A2(OP; m) = O~ ~ tr (X,X,') 

A2(0P; c2') = p~ tr (X2X2') 
i - I  

A~(OP, ('n') =pm 2 tr (X,~X,~') 
1=1 

tr (X,X,') 
i = I  

Tota = Between q- Within 

= Between -[- ~ p 2  t r  (X,X,') 
i = l  

= Between q- [m tr ( Y Y ' )  -t- S,] 

* With standardization t r (X~X/)  = 1 (i = l ,  2, . . . ,  m)  these terms simplify to p~ 
with a total of m. 

Initial rotations for each set can be found by using ordinary 2-set 
Procrustes rotations [Gower 1971, Sch6nemann & Carroll 1970]. First X2 is 
rotated to fit X1 and then the matrix Y giving the centroids of the n pairs 
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of vertices p (1), p (2) (i = 1, 2, . . .  , n) given by the current positions of 
X1 and X2 is found. X3 is rotated to fit Y and Y recomputed. Similarly 
subsequent X~ are fitted to the current value of Y. This gives initial values 
of each X, and their mean Y and the initial residual sum-of-squares Sr = 
m(1 - tr ( Y Y ' ) ) .  

Next keep Y fixed and rotate each X~ in turn to fit Y. After all m sets 
have been rotated, recompute Y to give the new centroid Y* of the current X~, 
and the residual sum-of-squares S,* = S, - m tr ( Y ' Y * '  - Y Y ' ) .  If scaling 
is not required and S, has changed by less than some specified tolerance, 
iteration is completed, otherwise repeat this process until it converges. 
Rotating each X~ to fit Y cannot increase, and will usually reduce, the residual 
sums-of-squares about Y. When Y is replaced by Y*, the true current mean, 
the residual sum of squares is further reduced. S, is bounded below by zero 
and during iteration it is monotonically decreasing. This is insufficient to 
prove convergence, but it seems that the process converges satisfactorily in 
practice. 

The preceding steps correspond to those outlined by Kristof & Wingersky 
[1971]. The following additional steps are required to estimate the scale 
factors p~. Dropping the asterisk notation so that the current configurations 
are now again written X~ (i = 1, 2, . . .  , m) with mean Y, then the least 
squares estimates of scaling coefficients p~ such that p~X~ best fit Y are given 
by (13) or its equivalent (14). X~H~ there may be replaced by X~ without loss 
of generality, for this merely implies that the current rotated positions of 
the X~ configurations are being regarded as starting configurations. If X~ 
currently has scale p~ then its new scale p~* is estimated numerically from 
the following formula derived from (14). 

tr ( o , X , Y ' )  / .  m t y r ( Y Y ' )  
(16) P'*2-- -~-r ( - ~ X ~  ~ X - , ~ )  

The initial scaling ~-~=i m tr ( X ~ X / )  = m simplifies (16), which may be 
rearranged to give 

m *~ tr (piXi Y' )  
(17) 

p,~ tr (o~2X~X, ') tr ( Y Y ' )  

This form implies that the current sealed versions p,X~ may replace X~ 
throughout the computation and (17) be used to adjust the scaling to 

(18) p ,*X ,  = p'-~* (p ,X , ) .  
pi 

New values o~*X~ are found for each configuration p~X~ and a new mean Y* 
calculated, where Y* = ~ p~*X~/m. The new residuM sum of squares is 
given by S~* = S~ -- m tr ( Y ' Y * '  -- Y Y ' ) ,  the same form as after the rota- 
tional step. The forms (16) and (17) ensure that 
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(19) ~ p ,2 t r  (X ,X , ' )  = ~ t r  (X ,X , ' )  = m 

so tha t  the constraint (5) on the scaling coefficients is satisfied throughout  
the iteration. Because Y is the mean of current mX~,  S~* can never be greater 
than  S~, so the process always reduces the residual sum-of-squares. 

Convergence may  now be tested in the same way as when no scaling 
is required. 

This computat ional  process seems to converge rapidly in practice, bu t  
the possibility tha t  a different mix of rotational and scaling steps (say two 
scaling steps to one rotational step) might  be superior has not  been investi- 
gated. The residual sum-of-squares is reduced even when the mean Y is not  
updated  after rotation, bu t  whether or not  the minor saving in not doing so 
is outweighed by  requiring more iterations is unknown. 

After satisfactory convergence, a unique representation of the results is 
obtained by  referring Y and each p,X~ to the principal axes of Y. 

Summary o] computation 

1. Evaluate  between-groups sum-of-squares (i.e. translation term in A.O.V.). 
2. Center X~ (i = 1, 2, - . .  , m) and scale each X~ by  h so tha t  

) -~h tr  (X~XJ)  = m. 

3. Set Y = X1 (initial setting of matr ix  of means).  For i = 2, 3, - - -  , m 
rota te  X~ to fit Y, re-evaluate Y as mean of (X1 , X2 ,  . . -  , X~). 
Evalua te  initial residual sum-of-squares Sr = m( l  -- t r  (YY ' ) )  and set 
p, = 1(i = 1 , 2 , . . . , m ) .  

4. For i = 1, 2, . . .  , m rotate  the current matr ix  mX~ to fit Y giving 
Xi '  = p~XIH~ . Compute  Y* and S,* = S~ - m tr[Y*Y*' - YY'] .  
Set S,** = St*. 

5. I f  scaling is not required go to step 7. 
6. For i = 2, 2, . . .  , m evaluate m*/p, from (17), scale X~** = ( p , * / p l ) X , *  

and set m = m*. Compute  new mean Y** and new residual sum-of-squares 
S ,* *=  S ~ * - m t r [ Y * * Y * * ' -  Y'Y*']  = S ~ -  m tr[Y**Y**' - YY'].  

7. I f  Sr - S,** > tolerance, set S, - St** and go to step 4, else go to 
next step. 

8. I terat ion is complete. Calculate and print  analysis of variance. 
9. Find principal axes of Y, i.e. compute the orthogonal la tent-vector  

matr ix  H satisfying (Y ' Y)H  = H M  where M is the diagonal matr ix  of 
la tent  roots. 

10. Refer all sets of coordinates to these principle axes and print  final results 
YH,  p~X~H, p~(i = 1, 2, . . .  , m). 
This computat ion was programmed in Gensta t  (see Nelder et al [1973]). 

The whole process of program-writ ing and development was completed in 
two days. A convergence tolerance of .0001 was found satisfactory. 
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A Special Case 

Sometimes the data-sets X, ( i  = 1, 2, . . .  , m) will clearly be incom- 
mensurate and some initial standardization will be essential. An example is 
when each X~ uses a different measurement scale. The simplest standardiza- 
tion is to arrange that  tr(X~X~') = 1(i = 1, 2, - . .  , m). This simplifies the 
elements p2 tr (X~XJ) ,  representing the within-groups variance for the i th  
group in the analysis of variance of Table 1, to p2 which can be identified 
immediately as the contribution to the total variance induced by  scaling 
the i th group. 

With this scaling and only two groups (m = 2), (12) gives:- 

(20) (2 + ~)p, = 2 t r (X ,Y ' )  i = 1, 2 

where X~ now represents the final rotated version of the original data-sets. 
Substituting Y = ½(p~X1 -P p2X2) into (20) gives 

(2 + ~)pl = p, + p2 tr(X1X2') 

(21) and 

(2 + ~)p~ = p2 + p~ tr(X2X~'). 

Hence p~ = p2 and because the constraint (5) becomes ~ = 2  p2 = 2, we 
must  have p~ = p~ = 1. 

This shows that  with two-groups, the estimation of scaling is equivalent 
to an initial standardization of each data-set to have the same, not necessarily 
unit, sums-of-squares. If  it is desired to preserve the scaling constraint (5), 
initial standardization should adjust both  sets to have sum-of-squares 
[tr(X~X~') =i= tr(X2X2']/2. With two groups, because 

2St = ~ A2(pi(1)PI~2~), 

the use of residuals from the means Gi is equivalent to the criterion of classical 
Procrustes analyses and then the iterative form of computation needed for 
the general case is unnecessary. With more than two groups initial standard- 
ization is not equivalent to scaling. 

Example 

The example illustrated here uses part  of the data  from a much larger 
investigation, in which a number of judges were required to rank given beef 
carcasses with respect to several characters. The main interest is to see how 
the judge's views of the same carcasses differ, rather  than examine differences 
between the carcasses themselves. These data  have been examined in many 
ways [Pomeroy, et al. 1974a, b; Banfield & Harries 1974] and clearly an 
INDSCAL analysis might also prove interesting although it has not been 
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t r i ed .  T h e r e  is insuf f ic ien t  space  to  d i scuss  t h e s e  d a t a  in  de ta i l  h e r e  or  to  

p r e s e n t  a ful l  g e n e r a l i z e d  P r o c r u s t e s  ana lys i s .  T h e  o b j e c t i v e s  a re  t o  i l l u s t r a t e  

t h e  m a i n  f e a t u r e s  of  s u c h  a n  ana ly s i s  a n d  t o  p r o v i d e  a n  e x a m p l e  w h i c h  c a n  b e  

u s e d  t o  check  a n y  c o m p u t e r  p r o g r a m  o t h e r s  m i g h t  w r i t e  for  t h i s  ana lys i s .  

F o r  t h e s e  l i m i t e d  p u r p o s e s  t h e  d a t a  for  3 j udges ,  7 c h a r a c t e r s  a n d  9 ca rcas ses  

w e r e  used ,  a n d  a r e  s h o w n  in  T a b l e  2. T h u s  we  h a v e  m = 3, p = 7, n = 9. 

T h e  scores  w e r e  o b t a i n e d  b y  m a r k i n g  a n  a p p r o p r i a t e  p o i n t  on  a l i nea r  scale .  

T A B L E 2  

T h e S c o r e s G i v e n b y T h r e e J u d g e s f o r S e v e n C h a r a c t e r s O b s e r v e d o n N i n e B e e f C a r c a s s e s  

Judge 1 

Character 1 2 3 4 5 6 7 
Carcass 1 47 44 49 38 35 40 40 

2 72 45 41 77 72 73 35 
3 61 49 40 58 58 62 30 
4 66 56 45 55 53 46 30 
5 37 72 50 27 30 33 25 
6 76 76 53 81 79 75 45 
7 64 59 51 72 61 66 40 
8 21 70 43 27 22 26 20 
9 71 70 34 72 72 71 35 

Judge 2 

Character 1 2 3 4 5 6 7 

Carcass 1 31 39 33 29 48 38 42 
2 30 60 36 22 36 34 39 
3 27 55 30 18 28 22 42 
4 48 52 53 27 21 30 31 
5 20 55 28 22 33 27 35 
6 21 42 31 46 76 33 42 
7 30 52 53 35 44 30 44 
8 5 57 53 12 13 6 31 
9 55 63 53 77 79 57 49 

Judge 3 

Character 1 2 3 4 5 6 7 

Carcass 1 43 46 44 22 53 44 29 
2 53 79 75 79 73 52 27 
3 22 85 83 19 27 17 22 
4 28 89 78 13 29 20 24 
5 75 86 85 34 75 55 38 
6 53 79 82 72 78 74 38 
7 15 85 85 46 75 52 35 
8 5 95 95 3 20 2 24 
9 27 78 85 89 92 81 41 
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As all  scores a re  comparab le ,  t he re  were no p r e l i m i n a r y  t r ans fo rma t ions .  
The  t o t a l  be tween-  a n d  wi th in - judges  sums  of  squares  a re  shown in T a b l e  4. 
T h e  be tween - judge  s u m  of squares ,  which  is subs t an t i a l ,  shows t h a t  t h e r e  
a re  la rge  differences be tween  the  m e a n  scores of the  t h ree  judges  a n d  hence  
t h a t  the  t r a n s l a t i o n  of each conf igura t ion  to  a c o m m o n  or ig in  removes  m u c h  
of t he  v a r i a t i o n  be tween  judges .  

The re  r ema in  o the r  differences be tween  the  judges  t h a t  can  be d iscerned  
f rom the  genera l ized  P r o c r u s t e s  analys is .  These  differences are  those  a r i s ing  
(a) f rom a n y  cons i s ten t  eccentr ic i t ies  in t he  use of the  m e a s u r e m e n t  scales, 
such  as  a t e n d e n c y  to  use an  unusua l l y  smal l  or  la rge  p a r t  of t he  scale,  a n d  
(b) f rom the  di f ferent  o r i en ta t ions  of t h e  m u l t i v a r i a t e  spaces  t h a t  m i g h t  
a l low al l  judges  to  perce ive  di f ferent  scores t h a t  never the less  ref lec ted  the  
s ame  re la t ionsh ips  b e t w e e n  each  pa i r  of carcasses.  T a b l e  3 shows the  consensus  
scores referred to  the i r  first  two p r inc ipa l  axes t o g e t h e r  wi th  the  scores of  
t he  th ree  judges  refer red  to  t he  same  axes. T a b l e  4 shows the  a s soc ia t ed  
ana lys i s  of var iance ,  for all  seven dimensions .  I n  Tab l e s  3 and  4 al l  va lues  
have  been  scaled so t h a t  the  t o t a l  w i th in -g roups  sum-of -squares  is m, i.e. 

TABLE 3 

First, two components of consensus fit and associated values for the three individual judges. 
The figure after each judge name is his estimated scaling factor p. 

Carcass 1 
2 
3 
4 
5 
6 
7 
8 
9 

Carcass 1 
2 
3 
4 
5 
6 
7 
8 
9 

Consensus Judge (1.034) 

Component Component 1 Component 2 

0.088 
--0.145 

0.143 
0.150 
0.150 

-0 .318  
--0.094 

0.464 
-0 .436  

1 Component 2 

0,180 
0.016 

-0 .006  
-0 .045  

0.094 
0.065 

--0.057 
--0.124 
-0 .121  

0.244 
--0.269 
--0.049 

0.020 
0.372 

--0.385 
--0.171 

0.501 
--0.262 

0.I26 
--0.014 
--0.006 

0.009 
0.020 
0.002 
0.021 

--0.061 
--0.097 

Judge 2 (1.105) Judge (0.913) 

Component 1 Component 2 Component 1 Component 2 

0.154 
0.024 
0.065 

--0.109 
0.089 
0.t45 

--0.080 
--0,112 
--0.176 

0.071 
--0.236 

0.294 
0.301 

--0.067 
--0.299 
--0.084 

0.448 
--0.428 

-- 0. 052 
0. 069 
0. 184 
0.129 
0.144 

--0.269 
--0.028 

0. 442 
--0.620 

0. 259 
0. 038 

--0.078 
--0.035 

0.171 
0. 047 

--0.113 
--0.199 
--0.091 
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T A B L E  4 

Analysis of Variance 

47 

Between Judges 53254.87* 
Within  Judges 22114.80* 

By Carcass Consensus Residual Total  

Carcasses 

By Judge 
1 
2 
3 

, 1 6 2  

• 1 1 4  

• 087 
• 126 
• 158 
.361 
• 059 
• 7 1 2  

• 622 

2.401 

• 066 
• 084 
• 079 
• 067 
• 129 
.038 
.026 
.032 
.078 

• 599 

• 240 
• 177 
. 1 8 2  

Judges  .599 

• 228 
• 198 
• 1 6 6  

• 193 
• 287 
.399 
• 085 
• 744 
• 700 

3.000 

.930 
1.031 
1.039 

3.000 

* These te rms are in the  units  (squared) of the data  given m Table 2. The sums of 
squares  in the  remainder of this table should be multiplied by  7371.6 to re turn to the same 
basis. 

t race  2 i~13  (pi2XiXi ') --- 3; to return to the  scale of the data in Table 2, 
multiply by 7371.6 for sums-of-squares, and 85.86 for scores. Table 3 is given 
pictorially in Figure 2. 

From Table 3 the scales p, are much the same, so there is little evidence 
of using different ranges of the scales. The analysis of variance of Table 4 
shows that Judge 1 has the biggest residual and therefore differs most from 
the consensus opinion, while carcass number 5 is the one about which the 
judges were least agreed. Carcasses 2, 3 and 9 also had rather high residuals. 
These facts can be seen also in Figure 2, but it must be remembered that the 
two dimensional configurations give only an approximation to the true 
residuals. In this example the approximation is quite good as the first two 
components of the consensus configuration account for 86% of the variance. 
Although these two dimensions do not span the spaces of the first principal 
components of the individual judges, they nevertheless account for 860/0, 83% 
and 86% of the variance for the three judges, respectively. 

Table 5 gives the successive values of the residual sum-of-squares for 
this data, both when scaling coefficients are being estimated and when not. 
This table will be useful for those developing their own generalized Procrustes 
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TABLE 5 
Values of S~ for the Data of Table 2 Both With and Without Scaling 

49 

With Scaling Without Scaling 
Iteration 
Number Rotation Step Scaling Step* Rotation Step* 

Initial setting 
1 .657312 
2 .616620 
3 .604201 
4 .600452 
5 .599322 
6 .598980 
7 .598877 

* Convergence as assessed from changes in 

.661438 

.616714 

.604215 

.600456 

.599322 

.598978 

.598875 

.598842 

.661438 
,657312 
.657158 
.657137 

the criterion after the indicated step. 

analysis program. Iteration is stopped when successive values of Sr differ 
by less than .0001, the test being done after the scaling step, when scaling is 
required. Clearly this level of telerance is near its limit for the numerical 
process as programmed, for S, actually increased very slightly after the 
rotation steps of iterations 6 and 7. As S, should theoretically decrease, this 
discrepancy must reflect numerical inaccuracy. 

D i s c u s s i o n  

Clearly the method discussed above is related to the class of methods 
that analyze the multivariate behavior of individuals and contrast these 
behaviors with some kind of average behavior. The best-known procedure of 
this class is Individual Scaling Analysis, INDSCAL, [Carroll & Chang, 1970]. 
Generalized Procrustes Analysis is not intended as a rival to INDSCAL but 
provides a complementary analysis giving different information. 

In Generalized Procrustes Analysis differences between the mean scores 
of individuals may be examined in the translation terms of the analysis and 
in the "between groups sum-of-squares". After eliminating differences between 
means, the residual scores of two individuals may differ in the ranges of the 
measurement scales being used and in orientation. These differences can be 
examined in detail in the general analysis. 

The analysis of variance gives a useful summary of the differences between 
individuals and how the different stimuli contribute to these differences. As 
yet no attempt has been made to provide degrees of freedom or to work out 
any sampling theory for the observed sums-of-squares; clearly improvements 
can be expected here. The rotational contribution to an analysis of variance 
is of general interest as it seems to be a truly multivariate aspect that has no 
counterpart in univariate analyses. Its value may be limited when the columns 
of the data matrices X ~ ( i  = 1,  2 ,  . • • , m )  are measurements on known scales 
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but  when the X~ have been derived from some scaling analysis of association- 
data (distances, similarities, proximities etc.), the initial orientation of the X~ 
configurations is arbitrary and some rotational analysis seems essential if 
spurious differences are to be eliminated from the data; the danger is tha t  
spurious similarities might be introduced. 

When dealing with data for more than two individuals it is natural 
to consider rotations with respect to the common centroid or consensus 
configuration. The same approach for m = 2 proves advantageous in over- 
coming a difficulty in previous approaches, where one of the two configurations 
is regarded as fixed and the other rotated to fit it. 

SchSnemann [1968] has considered two-sided Procrustes problems in 
which orthogonal matrices T andes  are required such that  T ' X 2 S  best fits 
X1 or, when X1 and X2 are symmetric, T ' X 2 T  best fits X, . Gruvaeus [1970] 
considers oblique transformations where T is not restricted to be orthogonal 
but  X~T  best fits X~ subject to diag ( T ' T )  -~ = I, expressing that  (T'T) -~ 
gives cosines between transformed axes. Clearly such problems can be general- 
ized along the lines discussed above to deal with more than two matrices but  
potential applications would be required for this to be worthwhile. 
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