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Suppose Py (1 = 1,2, -+ ,m,j = 1,2, ---,n) give the locations of mn
points in p-dimensional space. Collectively these may be regarded as m
configurations, or scalings, each of n points in p-dimensions. The problem is
investigated of translating, rotating, reflecting and scaling the m configura-
tions to minimize the goodness-of-fit eriterion 2_;_1™ X ;=1" AX(P;(9@;), where
G is the centroid of the m points P;(9 (7 = 1,2, - -, m). The rotated posi-
tions of each configuration may be regarded as individual analyses with the
centroid configuration representing a consensus, and this relationship with
individual scaling analysis is discussed. A computational technique is given,
the results of which can be summarized in analysis of variance form. The
special case m = 2 corresponds to Classical Procrustes analysis but the choice
of criterion that fits each configuration to the common centroid configuration
av%idsddifﬁeulties that arise when one set is fitted to the other, regarded
a8 nxeaq.

Suppose X, (2 = 1,2, --- , m) is a matrix with n rows and p, columns
whose jth row gives the coordinates of a point P;*’ referred to p, orthogonal
axes. Typical practical situations are when each X, is an observed data-
matrix or has been obtained as multidimensional scales of n stimuli or as
factor loadings or scores ete. Figure 1 illustrates the geomctry for m = 3,
n =4, p, = p; = p; = 2 and where the three configurations agree quite well.

In the following, it is assumed that the m points P, (: = 1,2, --- , m)
all refer {0 the same jth entity. For example, each X, may have been derived
from different sets of variables observed for the same samples in every case
(j refers to samples) or each X, may have been obtained as different scalings
of the same observational data (j refers to observations) or each X, may have
arisen from one type of scaling of the same stimuli as perceived by different
individuals (j refers to stimuli). It is also assumed that p, = p, a constant.
This simplifies the exposition without loss of generality, because it is sufficient
to choose p = Max (p;) and append zero columns to every X, that initially
has fewer than p columns.

Problems are common where it is desired to study the relationships
amongst the m sets and frequently some kind of combined analysis is desirable.
Examples are Individual Scaling Analysis [Carroll & Chang, 1970] or com-
paring factor loadings derived from different studies. Schtnemann & Carroll
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34 PSYCHOMETRIKA

[1970] and Gower [1971] have discussed how two such matrices X, and X,
can be fitted, allowing the motions of translation, rotation, reflection and
estimation of a homogeneous scaling factor, defining best fit as that which
minimizes the least squares criterion m,," = Y_,.," A*(P;", P;*”), where
A(A, B) is the Euclidean distanece between the pair of points 4 and B. This
problem has an analytical solution. For best fit, the centroids of X; and X,
should be superimposed and the rotation matrix H such that X,H best
fits X, isgiven as H = V'U where X,’X, = U'TV, is the Eckart—Y oung [1935]
(or singular value) decomposition with U and V orthogonal and T diagonal.
With reflection I" has no negative element and without reflection T has no
more than one negative element. The least-squares estimate of the scaling
factor obtained by fitting X, to X, is p = tr (X,HX,)/tr(X.X,") which is
clearly not the inverse of that obtained by fitting X, to X, . To overcome
this difficulty Schénemann & Carroll [1970] propose a symmetric scale measure;
an alternative solution occurs as a special case of the work described below.

Without translation and scaling this problem is known as Procrustes
rotation. In this paper the term Procrustes is extended to include all the
classical rigid-body motions and also the possibility of uniform scaling
(either stretching or shrinking). This extended terminology seems more in
the spirit of the Greek tale of the innkeeper Procrustes who stretched or
lopped off traveller’s limbs so that they would fit his bed.

Procrustes rotation provides one way of analyzing individually scaled
data. Given a pair of individual scales X, and X, the first may be rotated
to best fit the second, giving a least-squares value m,,” (say). With scaling
factors, in general, m,, # m,, but without scaling factors m,, = m,, and it is
shown below that elements of the (m X m) symmetric matrix of all such
comparisons, form a metric. This follows from considering three configura-
tions X, , X, and X, and regarding all np values of each matrix (ordered by
columns, say) as being the coordinates of a single point, so that X, , X, and X,
are represented by points @, , @, and Q; respectively, in a Euclidean np-space.
The distance between any two points @, , @, of this representation is the
square root of the sum of squares (not necessarily minimal) measuring the
goodness of fit between X, and X, . If X, and X, have been rotated to best
fit with X, , my; and m,; are merely the distances A(Q, , @;) and A(Q, , Q).
Because this representation is Euclidean, and hence metrie,

AQ, Q) S myy + My .

But A(Q, , Q.) > m.. , because X, and X, cannot be rotated to a better fit
than that with sum of squares m,,”. Hence the metric inequality m,, <
mys + my; must hold. Analysis of several sets of data suggests further that,
provided reflections are excluded, except perhaps for an initial reflection
of some of the X, , the m,, form a matrix of Euclidean distances, but I have
not been able to prove this. The m X m matrix of all comparisons may be
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analyzed by metric or non-metric scaling methods, as exemplified by Gower
[(1971], Krzanowski [1972] and Banfield and Harries [1974]. These studies
show that the quantities m,, are of interest in their own right and are not to
be regarded as merely measures of goodness of fit.

This paper is concerned with another form of analysis of m sets of
matrices. Instead of examining all possible pairs, the Procrustes idea is
generalized so that all m sets are simultaneously translated, rotated, reflected
and scaled so that a goodness of fit criterion is optimised. The eriterion
adopted is to minimize the sum-of-squares between each cluster of m like-
points P;’(i = 1, 2, --- , m) and their centroid G, , summed over all n
clusters. The centroids are shown in Figure 1. The mn lengths A(P;, G})
are termed residuals. The residual sum-of-squares S, is therefore
() S, = 2 2 AP, G).

i i=1

i=1

Yo

Ficure 1
Geometrical representation of three configurations (m = 3) each with two dimensions
(1 = p2 = ps = 2) and four vertices (n = 4) referring to the same four entities. Each
entity therefore gives rise to a triangular cluster of vertices whose centroids G; (j = 1, 2,
3, 4) are marked. The centroid of the whole system is at 0.
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However because of the identity

2 2 AP, P = m 3 AP, GY)
it is simpler to work in terms of 8 = m 8, given by
3) S = Z Z A2(Pi(u)7 Pim)-

§=1 u<e

Rather than minimize a sum-of-squares of residuals, other criteria could
be considered which might have desirable properties. As usual the least-
squares criterion leads to tractable algebra and straight-forward computation.
The special case of minimizing (3), but without translation, reflection and
scaling considerations, has been considered by Kristof & Wingersky [1971],
who derive what is essentially the result (10), below, by an ingenious algebraic
argument. The alternative Lagrange multiplier approach used here is more
pedestrian, but copes easily with the additional parameters being estimated
in this work.

Algebraic Development

Although the geometrical discussion is useful to establish motivation,
and also for suggesting the analysis of variance described later, it does not
help with the minimization problem, which must be treated algebraically.

We are given m(n X p) matrices X.(¢ = 1, 2, --- , m) where the jth
row of X, is interpreted as giving the coordinates of a point P;* in Euclidean
space. Rotating the configurations of »n points given by X; is equivalent to
post-multiplying X, by an orthogonal matrix H; , and uniform scaling is
expressed by a multiplicative constant p; . Translation to a new origin is
achieved by adding the same (1 X p) row-vector {; to every row of X, .
Writing T'; for the (n X p) matrix, all of whose rows are {; , then scaling,
rotating and translating are expressed algebraically by the transformation

X, — piXiHi +T..

It is required to determine p; , H, , T.(4 = 1,2, - - - , m) so that the ‘“‘residual
sum-of-squares” (3) is minimum,
Thus the algebraic problem is to minimize

4 S =tr i [(pX:H: + T:) — (0;X;H; + T)]

i<
(e X.H: + T) — (0, X;H; + T)).
Before proceeding to minimize S, some preliminary discussion is necessary.

Clearly S is minimized by choosing all p; to be zero. Apart from this
trivial solution a single matrix (X, , say) could be selected, p, set to unity
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and all other matrices scaled relative to that one. This gives the difficulties
of classieal orthogonal Procrustes rotation (m = 2) where fitting X, to X,
does not give the inverse scaling to that of fitting X, to X, . A more satis-
factory method is to estimate all m parameters p,; subject to some constraint
and the constraint D ..," p.” tr(X;X/) = 2 .o1" tr(X:X.’) has been chosen.
This constraint expresses that the final sum-of-squares about the origin of
the rotated and scaled configurations is unchanged from that given. We
shall also see that it insures that the residual sum-of-squares S, remains
unchanged whether or not the parameters p; are included. Of course setting
the final sum-of-squares to any positive constant other than Zm"’ tr(X. X))
would only affect the solution found, by a proportionate factor. Constraints
other than on sums-of-squares might be considered but these are likely to lead
to more awkward algebra and computation.

Because translation terms are being included, the original means of
each X, are immaterial, and it is convenient to take them all to be at the
origin; that is all the column sums of each X, are assumed to be zero.

As S is invariant to orthogonal rotations of the whole system of nm
points, no unique solutions for H, can be found. Here again X, , say, could be
fixed and all rotations determined relative to it. However, a (non-unique)
solution giving all m rotation matrices is preferable, because it keeps the
algebraic equations in a symmetric form. A unique solution can be determined
as a final step by referring all final coordinates to the principal axes of the
set of centroid-points G,(7 = 1, 2, - .- , m). We are therefore lead to minimize
(4) subject to the eonstraints

6)) Z pil tr (X,X)) = E tr (X X.')
i=1 e}
(6) Each H . is orthogonal, i.e.

Do b P h, @ = 4, , the Kronecker-3, foru < v, v = 1,2, --- , p.

Associate with (5) the Lagrange multiplier 4 and with (6} the imp(p + 1)
Lagrange multipliers ), . It will be convenient to consider these as arranged
in m symmetric matrices A;( = 1, 2, --- , m) with general elements A,,"’
(u # v) and 2)\,," on the diagonal. Thus finally we have to minimize

) S + P(E Pi2 tr X, X, — Ett‘ XiXi,)
i=1

im
m Fd »
_+_ Z Z )\ii(r)(z hik(”hik(') _ 6”).
r=1 157 k=1
Translatton

The only terms involving 7'; oceur in S, (4), and are
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) Sy =tr l:(m — D{(p.X:H,; + Ti)(pe'XiHi + 1)

- Q{Zm: (0; XGH; + Ti)}Ts‘!]'

i=i

Differentiating (8) w.r.t. the elements of the row vector ¢, gives 38,/3t; = nmi; ,
(the vector of column sums of Z,,,"‘ T,). Thus at the minimum,
t, =ty = ... =, . Thisimplies that all m configurations should be translated
to have the same centroid, which without loss of generality is conveniently
chosen to be the origin. The terms of (4) in T;(¢ = 1, 2, -.- , m) may now
be dropped from further consideration.

Rotation

Differentiating (7) w.r.t. h;;" gives
pr{pl(Xr,XlHl)ii + -+ Pr-—l(Xr’Xr—lHr~l)1'i + pr+1(Xr,Xr+1Hr+1)ii + .-

+ X XnH )b — 2 M ha'” — 20 Pk,

k#§

Equating this to zero and expressing the results in matrix terms gives
(9) PrXrl(_mY - PrXrHr) = AH, yT=1,2--- y m

where ¥ = 1/m ...." p.X.H; are the coordinates of the centroid of the
group, or consensus configuration, after rotation and scaling. Post-multiplying
by H,’ and rearranging gives

(10) (0. X/ H, = (p°X,/X, + A))/m.

Writing p,X,’Y in its singular value (or Eckart—-Young) form: p,X,’Y =
U,'T.V, where U, and V, are orthogonal and T, is diagonal, and noting that
the right-hand-side of (10} is symmetrie, gives

(11) H, =U'",.

The essential step in deriving this result is proving that 5. X,'YH,' is
symmetric. As pointed out earlier, this result was established by Kristof &
Wingersky [1971] using an algebraic argument that did not rely on Lagrange
multipliers. However, their approach assumes that certain singular values
are positive and therefore their proof may require modification when rotations
without reflections are required, a problem considered in the next paragraph.

As in the two-group Procrustes problem, the reduction in sums-of-squares
due to rotation increases with tr (I',), so is maximized by choosing signs
attached to the columns of U, and V, so that I', has no negative elements.
Such a choice of signs may include reflection as well as rotations. R. W. M.
Wedderburn (personal communication) points out that for rotation with
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reflection {H,| = —1 so that the best rotation without reflection is obtained
by first arranging that T, has no negative elements and then determining |H,| .
If this is positive a true rotation has been found, but if negative the sign must
be changed of the column of either U, or V, that corresponds to the smallest
non-zero element of T, . This may make the smallest singular value negative
but ensures that tr (T,) is maximized subjeet to |H,] = 1. Gower [1975]
gives an algorithm for determining the sign of the determinant of an ortho-
gonal matrix.

Equation (11) does not give an immediate method for calculating H,
because the centroid matrix Y is not known. However, it gives a fairly
obvious basis for an iterative computational method discussed below.

Scale
Differentiating (7) with respect to p; and equating the result to zero gives:
(m - l)pt tr X{X.’l - tl’ [XiHi Z piHilX,',] + Hp; tl‘ X,‘X," = 0.
B
or

(m - l)p.' tr X, X" — tr (XiHi z"’: PiHi’Xi’)

i=1

+ p; tr X, X" + up; tr XX/ =0.

Finally
{12) mp; tr X, X," — mtr (X;H.Y') + pp, tr X, X,/ = 0.
Multiplying (12) by p; , summing over ¢ = 1, 2, --- | m and recalling the

constraint (5) yields:

(m + w Em:tr XX/ =mtrYY

tm]

and hence

(13) oo = tr (XH.Y') 3 tr (X X)/m tr (X.X7) tr (YY),

LR §

The alternative form

(14) p’ = tr (0. X:H,Y') 3 tr (X X.)/m tr (X.X./) tr (YY").

will be useful for computational purposes (see below).

Because Y itself involves the scaling factors, the above formulae do not
give a direct method for calculating the p, , but have to be used iteratively
(see below). However, (12) is the same equation for determining the p, as
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when given X ,H ; are to be scaled to fit any configuration ¥ and (13) and (14)
still follow but with tr (YY’) replaced by tr (O ., 0. X.H,Y")/m.

This completes the algebraic derivation of the estimates of the parameters
that minimize the residual sum-of-squares (4).

Analysis of Variance

The foregoing analysis can be expressed as an analysis of variance that
is useful for identifying the relative importance of the items that go to make
up the total sum-of-squares. In the usual way the total sum-of-squares can
be split into between-groups and within-groups components, where the term
groups refers to the m sets or configurations X,z = 1, 2, :-- , m). The
between-group component represents the contribution of the translation
terms. The within-group component splits into consensus and residual
elements through the identity

(15) tr 3 (p2X.X) = mtr (YY) + 8,

which is merely the multivariate form of the well-known univariate identity

2yt =mi" + 2 v = D

The left-hand-side of (15) is the within-group sum-of-squares after scaling
and rotation, and because of the constraint (5) this is the same as the within-
groups sum-of-squares before transformation.

The sth term is the contribution of the ith configuration to the total
within-group sum-of-squares and shows the reduction, or increase, due to
scaling. If the configurations have been initially standardized to unit sum-of-
squares, i.e. tr (X, X.) = 1, the contribution becomes p;’, the square of the
scaling coefficient. On the right-hand-side of (15), m tr (Y'Y’) is a term repre-
senting the contribution of the group average, or consensus, configuration.
Geometrically (see Figure 1) this is m Y_;.," A*(0, G,). The residual S, can
be partitioned in two separate ways. Firstly, we can sum the squares of the
residuals for each group, giving terms ;.. A*(P;,G)) 1 = 1,2, --- , m)
and secondly, we can sum the squares for each stimulus giving terms
Z,-zl"‘ AP, G)j = 1,2, --- , n. These considerations give the tabular
form of analysis of variance expressed geometrically in Table 1.

Computation

The first step is to compute the between-groups sums of squares and to
deal with translation by centering each set X, at the origin. To allow for
different magnitudes of data, it is convenient to scale each X uniformly so
that 2,~=1"' tr(X.X,") = m. To return to the original units, results should
be multiplied by the scaling factor. Thereafter the process becomes iterative.
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TABLE 1
Analysis of Variance
Source Method of Calculation and Interpretation
Between Groups Translation
Within Groups
By Stimulus Consensus Residual Total (Within-Groups)
1 ma*(0G,) Y A*P,'"@)) > A*OP,?)
i=1 i=}1
2 mAaN0G,) D ANP,'VGy) > A%OP,)
=1 i=1
n ma*(0G,) Y A¥P,G,) > A*0P,)
——— =1 AN T——
Stimuli mtr (YY) S, > tr (X.X,)
i=1
By Group Consensus Residual Total (Within-Groups)*
1 2 NP6 | 20 AYOPY) = p) tr (X, X))
i=1 i=1
2 2 AP;P6) | 2 ANOP;™) = p’ tr (X,X,)
i=1 i
m 2 NP6 | 3 AOP ™) = b, tr (XX
i=1 i=t
Groups S, E tr (X, X))
i=1

Total = Between - Within

I

Between -~ Z p:l tr (X, X))
t=1

= Between -+ [m tr (YY') + S,]

* With standardization tr(X.X') = 1 {¢ = 1, 2, -+ -, m) these terms simplify to p:?
with a total of m.

Initial rotations for each set can be found by using ordinary 2-set
Procrustes rotations [Gower 1971, Schonemann & Carroll 1970]. First X, is
rotated to fit X, and then the matrix Y giving the centroids of the n pairs
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of vertices P,", P, (i = 1, 2, --- , n) given by the current positions of
X, and X, is found. X, is rotated to fit ¥ and Y recomputed. Similarly
subsequent X, are fitted to the current value of Y. This gives initial values
of each X, and their mean ¥ and the initial residual sum-of-squares S, =
m(l — tr (YY')).

Next keep Y fixed and rotate each X, in turn to fit Y. After all m-sets
have been rotated, recompute Y to give the new eentroid Y* of the current X, ,
and the residual sum-of-squares S,.* = 8, — m tr (Y*Y* — Y¥’). If scaling
is not required and S, has changed by less than some specified tolerance,
iteration is completed, otherwise repeat this process until it converges.
Rotating each X, to fit ¥ cannot increase, and will usually reduce, the residual
sums-of-squares about Y. When Y is replaced by Y*, the true current mean,
the residual sum of squares is further reduced. 8, is bounded below by zero
and during iteration it is monotonically decreasing. This is insufficient to
prove convergence, but it seems that the process converges satisfactorily in
practice.

The preceding steps correspond to those outlined by Kristof & Wingersky
{1971]. The following additional steps are required to estimate the scale
factors p; . Dropping the asterisk notation so that the current eonfigurations
are now again written X, (¢ = 1, 2, --- , m) with mean Y, then the least
squares estimates of scaling coefficients p; such that p, X, best fit Y are given
by (13) or its equivalent (14). X;H; there may be replaced by X; without loss
of generality, for this merely implies that the current rotated positions of
the X, configurations are being regarded as starting configurations. If X,
currently has scale p; then its new scale p;* is estimated numerically from
the following formula derived from (14).

_ tr (o X, Y7) mtr (YY’)
T (X.X.) T (X. X))

The initial scaling »_..,” tr (X;X,’) = m simplifies (16), which may be
rearranged to give

(16) Pi*z

an &_ﬁ _ tr (p. X,Y’) .

p.>  tr (S X X)) tr (YY)
This form implies that the current scaled versions p,X,; may replace X,
throughout the computation and (17) be used to adjust the scaling to

pit
(18) p*X: = Py (p:X5).
New values p,*X; are found for each configuration p;X; and a new mean Y*
calculated, where Y* = Z 0:*X:/m. The new residual sum of squares is
given by 8,* = 8, — m tr (Y*Y* — YY’), the same form as after the rota-
tional step. The forms (16) and (17) ensure that
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(19) 2ot (X X)) = 2t (X X)) =m

so that the constraint (5) on the scaling coefficients is satisfied throughout
the iteration. Because Y is the mean of current p, X, , S,* can never be greater
than S, , so the process always reduces the residual sum-of-squares.

Convergence may now be tested in the same way as when no scaling
is required.

This computational process seems to converge rapidly in practice, but
the possibility that a different mix of rotational and scaling steps (say two
scaling steps to one rotational step) might be superior has not been investi-
gated. The residual sum-of-squares is reduced even when the mean Y is not
updated after rotation, but whether or not the minor saving in not doing so
is outweighed by requiring more iterations is unknown,

After satisfactory convergence, a unique representation of the results is
obtained by referring Y and each p,X; to the principal axes of Y.

Summary of computation

1. Evaluate between-groups sum-of-squares (z.e. translation term in A.0.V.).
2. Center X; (¢ = 1,2, --- , m) and scale each X, by A so that

Z Atr (X5X,‘,) = m.
i1

3. Set ¥ = X, (initial setting of matrix of means). For7 = 2,3, .-- , m
rotate X; to fit Y, re-evaluate ¥ as mean of (X, , X,, ---, X).
Evaluate initial residual sum-of-squares S, = m(1l — tr (YY”)) and set
pe=1G=1,2 -, m).

4. For ¢ = 1, 2, --- , m rotate the current matrix p, X, to fit ¥ giving

X! = pX.H, . Compute Y* and 8,* = 8, — m tr[Y*Y*¥ — YY'].

Set S,** = §,*%

If scaling is not required go to step 7.

6. For? = 1,2, --- , m evaluate p,*/p, from (17), seale X ,** = (p,*/p) X .*
and set p; = p,*. Compute new mean Y** and new residual sum-of-squares
S5 = S§F — mtr[VHY* — Y*Y¥] = 8§, — m tr[V**Y* — YY'].

7. If 8, — 8,* > tolerance, set S, — S8,** and go to step 4, else go to

next step.

Iteration is complete. Calculate and print analysis of variance.

Find principal axes of Y, i.e. compute the orthogonal latent-vector

matrix H satisfying (Y'Y)H = HM where M is the diagonal matrix of

latent roots.

10. Refer all sets of coordinates to these principle axes and print final results

YH, p.X.H, p;(¢ = 1,2, --- , m).
This computation was programmed in Genstat (see Nelder et al [1973]).

The whole process of program-writing and development was completed in

two days. A convergence tolerance of .0001 was found satisfactory.

&

w w
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A Special Case

Sometimes the data-sets X, (4 = 1, 2, --- , m) will clearly be incom-
mensurate and some initial standardization will be essential. An example is
when each X, uses a different measurement scale. The simplest standardiza-
tion is to arrange that tr(X,X,”) = 1(z = 1, 2, --- , m). This simplifies the
elements p,” tr{X,X.), representing the within-groups variance for the ith
group in the analysis of variance of Table 1, to p,” which can be identified
immediately as the contribution to the total variance induced by scaling
the 7th group.

With this scaling and only two groups (m = 2), (12) gives:-

(20) @+ wps = 2 (XY i = 1,2

where X, now represents the final rotated version of the original data-sets.
Substituting ¥ = 3(p. X + p.X,) into (20) gives

24+ we = po + pe tr(X, X))
(21) and
(2 + #)Pz = py + p tr(Xzle>~

Hence p;, = p, and because the constraint (5) becomes 21-:12 p’ = 2, we
must have p;, = p, = 1.

This shows that with two-groups, the estimation of scaling is equivalent
to an initial standardization of each data-set to have the same, not necessarily
unit, sums-of-squares. If it is desired to preserve the scaling constraint (5),
initial standardization should adjust both sets to have sum-of-squares
[tr(X. X)) £+ tr(X,X,']/2. With two groups, because

25, = X AP, VP,
i=1

the use of residuals from the means G, is equivalent to the criterion of classical
Procrustes analyses and then the iterative form of computation needed for
the general case is unnecessary. With more than two groups initial standard-
ization is not equivalent to scaling.

Erample

The example illustrated here uses part of the data from a much larger
investigation, in which a number of judges were required to rank given beef
carcasses with respect to several characters. The main interest is to see how
the judge’s views of the same carcasses differ, rather than examine differences
between the carcasses themselves. These data have been examined in many
ways [Pomeroy, et al. 1974a, b; Banfield & Harries 1974] and clearly an
INDSCAL analysis might also prove interesting although it has not been
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tried. There is insufficient space to discuss these data in detail here or to
present a full generalized Procrustes analysis. The objectives are to illustrate
the main features of such an analysis and to provide an example which can be
used to check any computer program others might write for this analysis.

For these limited purposes the data for 3 judges, 7 characters and 9 carcasses
were used, and are shown in Table 2. Thus we have m = 3, p = 7, n = 9.
The scores were obtained by marking an appropriate point on a linear scale.

TABLE 2
The Scores Given by Three Judges for Seven Characters Observed on Nine Beef Carcasses
Judge 1
Character 1 2 3 4 5 6 7
Carcass 1 47 44 49 38 35 40 40
2 72 45 41 77 72 73 35
3 61 49 40 58 58 62 30
4 66 56 45 55 53 46 30
5 37 72 50 27 30 33 25
6 76 76 53 81 79 75 45
7 64 59 51 72 61 66 40
8 21 70 43 27 22 26 20
9 71 70 34 72 72 71 35
Judge 2
Character 1 2 3 4 5 6 7
Carcass 1 31 39 33 29 48 38 42
2 30 60 36 22 36 34 39
3 27 55 30 18 28 22 42
4 48 52 53 27 21 30 31
5 20 55 28 22 33 27 35
6 21 42 31 46 76 33 42
7 30 52 53 35 44 30 44
8 5 57 53 12 13 6 31
9 55 63 53 77 79 57 49
Judge 3
Character 1 2 3 4 5 6 7
Carcass 1 43 46 44 22 53 44 29
2 53 79 75 79 73 52 27
3 22 85 83 19 27 17 22
4 28 89 78 13 29 20 24
5 75 86 85 34 75 55 38
6 53 79 82 72 78 74 38
7 15 85 85 46 75 52 35
8 5 95 95 3 20 2 24
9 27 78 85 89 92 81 41
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As all scores are comparable, there were no preliminary transformations.
The total between- and within-judges sums of squares are shown in Table 4.
The between-judge sum of squares, which is substantial, shows that there
are large differences between the mean scores of the three judges and henee
that the translation of each configuration to a common origin removes much
of the variation between judges.

There remain other differences between the judges that can be discerned
from the generalized Procrustes analysis. These differences are those arising
(a) from any consistent eccentricities in the use of the measurement scales,
such as a tendency to use an unusually small or large part of the scale, and
(b) from the different orientations of the multivariate spaces that might
allow all judges to perceive different scores that nevertheless reflected the
same relationships between each pair of carcasses. Table 3 shows the consensus
scores referred to their first two principal axes together with the scores of
the three judges referred to the same axes. Table 4 shows the associated
analysis of variance, for all seven dimensions. In Tables 3 and 4 all values
have been scaled so that the total within-groups sum-of-squares is m, <.e.

TABLE 3

First two components of consensus fit and associated values for the three individual judges.
The figure after each judge name is his estimated scaling factor p.

Consensus Judge 1 (1.034)
Component 1 Component 2 Component 1 Component, 2
Carcass 1 0.088 0.180 0.244 0.126
2 —0.145 0.016 —0.269 -(.014
3 0.143 —0.006 —0.049 ~0.006
4 0.150 —0.045 0.020 0.009
5 0.150 0.094 0.372 0.020
6 —0.318 0.065 —0.385 0.002
7 —0.094 —0.057 —0.171 0.021
8 0.464 —0.124 0.501 —~0.061
9 —0.436 -0.121 —0.262 —0.097
Judge 2 (1.105) Judge 3 (0.913)
Component 1 Component 2 Component 1 Component 2
Carcass 1 —0.052 0.154 0.071 0.259
2 0.069 0.024 —~0.236 0.038
3 0.184 0.065 0.294 -0.078
4 0.129 —0.109 0.301 —0.035
5 0.144 0.089 —0.067 0.171
6 —0.269 0.145 —0.299 0.047
7 —0.028 -0.080 —0.084 —-0.113
8 0.442 —-0.112 0.448 —-0.199
9 —0.620 —0.176 —~0.428 —0.091
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TABLE 4
Analysis of Variance
Between Judges 53254 .87
Within Judges 22114 .80*
By Carcass Consensus Residual Total
1 .162 .066 228
2 114 .084 .198
3 .087 079 . 166
4 126 .067 193
5 158 129 287
6 .361 .038 .399
7 .059 026 .085
8 712 .032 744
9 .622 078 700
Carcasses 2.401 .599 3.000
By Judge
1 .240 .930
2 177 1.031
3 (182 1.039
Judges .599 3.000

* These terms are in the units (squared) of the data given in Table 2. The sums of
squares in the remainder of this table should be multiplied by 7371.6 to return to the same
basis.

trace 3 ...® (p°X.X./) = 3; to return to the scale of the data in Table 2,
multiply by 7371.6 for sums-of-squares, and 85.86 for scores. Table 3 is given
pictorially in Figure 2.

From Table 3 the scales p; are much the same, so there is little evidence
of using different ranges of the scales. The analysis of variance of Table 4
shows that Judge 1 has the biggest residual and therefore differs most from
the consensus opinion, while carcass number 5 is the one about which the
judges were least agreed. Carcasses 2, 3 and 9 also had rather high residuals.
These facts can be seen also in Figure 2, but it must be remembered that the
two dimensional configurations- give only an approximation to the true
residuals. In this example the approximation is quite good as the first two
components of the consensus configuration account for 869 of the variance.
Although these two dimensions do not span the spaces of the first principal
components of the individual judges, they nevertheless account for 869, 839,
and 869, of the variance for the three judges, respectively.

Table 5 gives the successive values of the residual sum-of-squares for
this data, both when scaling coefficients are being estimated and when not.
This table will be useful for those developing their own generalized Procrustes



*SOXB QUIBS 8} 0} poLie
Jo4 seq00s seFpnl
so8pnl poreos pue porelor Yl sexw (eduud omq 18ay Iyl
UL By} 0} PoIIdjed S}NSAI SNSUSSH
oD

Z HYNOLY
g+
. i+
o &+ 8+ v+ ”
i+
e+ g¢
T+
e+
S+ ”
) L+ 9+
E4
€ 3oanr
¢ 3oanr
8+ & "
S+ TE+ ¢ )
" " . o i 44 FL3
£+
L+ ¥
G+ o+
1+
t 3oanr
SASNISNOD




J. C. GOWER 49

TABLE 5
Values of 8, for the Data of Table 2 Both With and Without Scaling
With Scaling Without Scaling
Iteration
Number Rotation Step Scaling Step* Rotation Step*
Initial setting 661438 661438
1 657312 616714 657312
2 .616620 604215 657158
3 .604201 .600456 657137
4 600452 .599322
5 .599322 598978
6 598980 .598875
7 598877 .598842

* Convergence is assessed from changes in the criterion after the indicated step.

analysis program. Iteration is stopped when successive values of S, differ
by less than .0001, the test being done after the scaling step, when scaling is
required. Clearly this level of telerance is near its limit for the numerical
process as programmed, for S, actually increased very slightly after the
rotation steps of iterations 6 and 7. As 8, should theoretically decrease, this
discrepancy must reflect numerieal inaccuracy.

Discussion

Clearly the method discussed above is related to the class of methods
that analyze the multivariate behavior of individuals and contrast these
behaviors with some kind of average behavior. The best-known procedure of
this class is Individual Scaling Analysis, INDSCAL, [Carroll & Chang, 1970].
Generalized Procrustes Analysis is not intended as a rival to INDSCAL but
provides a complementary analysis giving different information.

In Generalized Procrustes Analysis differences between the mean scores
of individuals may be examined in the translation terms of the analysis and
in the “between groups sum-of-squares”. After eliminating differences between
means, the residual scores of two individuals may differ in the ranges of the
measurement scales being used and in orientation. These differences can be
examined in detail in the general analysis.

The analysis of variance gives a useful summary of the differences between
individuals and how the different stimuli contribute to these differences. As
yet no attempt has been made to provide degrees of freedom or to work out
any sampling theory for the observed sums-of-squares; clearly improvements
can be expected here. The rotational contribution to an analysis of variance
is of general interest as it seems to be a truly multivariate aspect that has no
counterpart in univariate analyses. Its value may be limited when the columns
of the data matrices X;(: = 1,2, -- - , m) are measurements on known scales
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but when the X; have been derived from some scaling analysis of association-
data (distances, similarities, proximities ete.), the initial orientation of the X,
configurations is arbitrary and some rotational analysis seems essential if
spurious differences are to be eliminated from the data; the danger is that
spurious similarities might be introduced.

When dealing with data for more than two individuals it is natural
to consider rotations with respect to the common centroid or consensus
configuration. The same approach for m = 2 proves advantageous in over-
coming a difficulty in previous approaches, where one of the two configurations
is regarded as fixed and the other rotated to fit it.

Schonemann [1968] has considered two-sided Procrustes problems in
which orthogonal matrices 7' and~S are required such that 7'X,S best fits
X, or, when X; and X, are symmetric, 7'X,T best fits X, . Gruvaeus [1970]
considers oblique transformations where T is not restricted to be orthogonal
but X,T best fits X, subject to diag (T'T)™" = I, expressing that (T'T)"
gives cosines between transformed axes. Clearly such problems can be general-
ized along the lines discussed above to deal with more than two matrices but
potential applications would be required for this to be worthwhile.
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