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1. Introduction

There has been recent interest in extending the idea of defining
distance or dissimilarity between two objects to defining triadic distances
between three objects labelled i, j and k. (Cox, Cox and Branco, 1991;
Daws, 1996; De Rooij and Heiser, 2000; De Rooij, 2001; Heiser and
Bennani, 1997; Hayashi, 1972; Joly and Le Calvé, 1995; Pan and Harris,
1991). Triadic distances d;; are usually defined as functions of the pair-
wise, or dyadic, distances &;. Thus, 33 = f(8y, S, Oix)- There have been
many proposals for defining the function f(.) but here we confine our
attention to two of the more popular:

Bk = Oyt O+ 83 (perimeter model) (D

and

Sfjk = 8?1( +82 + Sizj (generalized Euclidean model). (2)

These are both symmetric functions, in the sense that it is immaterial in
which order the suffices are presented, so they may be regarded as
analogous to symmetric dissimilarity coefficients.

One way of analyzing a complete set of M = n(n-1)(n-2)/6 observed
symmetric triads d;x among n objects, is to find a set of points in r
dimensions that generate m = n(n-1)/2 pair-wise Euclidean distances §; that
form triadic distances & = f(3y, Oy, Oj) that minimize some criterion of
goodness of fit. An obvious choice is a generalization of metric stress or
sstress, commonly used in multidimensional scaling. Thus we may seek to
minimize:

Stress: z (dij =8 )? 3)
i<j<k

or Sstress Z (dfjk - Sizjk ). 4)
i<j<k

Here we investigate how such a form of multidimensional scaling
(MDS3) may differ from the wusual multidimensional scaling of
dissimilarities (MDS2).

2. Analysis

It is convenient to vectorise the two-way array {3;} and the three-way
array {9y} by writing 0, = (821, 831, 832, dat, B4z, Bas, Bs1, Os2, ... ) and 0=
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(8321, 6421, 6431, 6432, 8521, 853], 6532, 6541, ves )'. Then (1) may be written as the
linear transformation:

83 = C82 (5)

where C is a matrix with M rows and m columns. A similar result holds for
(2), with squared values in the vectors &, and 05 Note we do not include the
diagonal plane values, that is, triadic distances for which a subscript repeats
(e.g. 8,12). However, these might be included without materially changing
the following results. )

Thus, C is a simple indicator matrix with a unit wherever both
column-labels are a subset of the row-labels. Thus, C has three units in
every row, which pick out the j, ik, ij pairs for each of the triadic distances
given as the row-names. Table 1 shows the case n = 6 but the general form
is evident.

Table 1. The matrix C for n = 6.

dn dy dsz da dey dis ds1 sy dss dsa | der de2 des des  des
da2 1 1 1
da21 1 1 1
da31 1 1 1
disa 1 11
dsz | 1 11

dsa1 1 1 1
dsaz 1 11
dsa1 1 1 1
dsea 1 1 1
dsa3 1 1 1
de21 | 1 11

de3z 1 11

deay 1 1 1
dgaz 1 1 1
deas 1 1 1
des1 1 1

des2 1 1

dess 1 1

desa 1 1 1

[
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2.1 Unrestricted MDS3

With 85 given by (5), the stress criterion may be written' ||d3 - CJ,||.
Generally, &3 will be constrained in some way (often to be Euclidean
distances in a specified number of dimensions) but initially we assume that
there is no constraint. There are two possibilities: (i) d3 are observed triads,
not usually satisfying the conditions for triadic distances (see the Appendix
for necessary and sufficient conditions) (ii) d3 = Cd,, derived from
observed dyadic distances d,.

First we examine case (i), observing that minimizing ||d3 - CO,|| has
the unconstrained ordinary least-squares estimate® of 8, given by:

d, =(C'C)'C'd; (6)

for the dyadic distances, whence perimeter triadic distances may be
estimated as:

d,=Cd, =c(C'C)'C d; )
with a residual sum-of-squares:
Su=d,~d; ]| = d}[1- C(C'C)'C')ds. (®)

The matrix C'C is of order m, so in numerical work can be quite large and
its inverse could be inaccurate. Fortunately, the inverse has a simple
algebraic form (22) which, with other results given in the appendix, allow
the unrestricted estimates (6), (7) and (8) to be calculated accurately and
efficiently.

2.2 MDS3 with Euclidean Constraints

The restricted residual sum-of-squares is given by:

"In this paper ||X]|| always denotes the squared L, -norm frace(X'X), so we dispense with the
superﬁx of the common notation ||.|”.

Roman letters (d) normally denote data and Greek letters parameters (8) with estimates 6
Here d is an estimate but uses a roman letter because, as we shall see below d and d
may be treated as data and, indeed, in model (ii) may be synonyms for d; and d3 8 and
O, are reserved for constrained estimates.
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Sk=[ld; - €8, [=](d, - d;)+(d, -C5,)|, ©)

where O, are dyadic distances chosen to minimize Sg subject to desired
constraints. Using (7) and (8), (9) may be expanded as:

Sx= |Id, - a1+ d, -C,|+2 d}(1-C(C'Cy'CHC(d, - ;). (10)

The final term of (10) vanishes, whence:
Sg =Sy + Ss (11

where

Ss:||&3 ‘C82“- (12)

The importance of (11) is that it allows us to examine the additional
contribution to the residual sum-of-squares induced by the constraint on 85;
this result may be used as part of an analysis of variance, discussed below.
Equation (12) means that, without loss of generality, we may estimate the
constrained dyadic digtances from the unconstrained estimates of the triadic
perimeter distances d3= Cd, rather than from dj itself. Thus, we have
reduced problem (i) to the form of problem (ii), discussed further below.

Suppose now that &, mipimizes ||d; - Cd,| under some constraint
and consider setting 8; = A0, for some scalar A. This remains an
admissible solution provided A0, satisfies the constraints imposed, a
condition that is certainly satisfied when 52 are Euclidean (or any other
Minkowski) distances, squared distances, metrics and ultrametrics. The
residual sum-of-squares is:

Id, -AC8, = djd, +°8,CCd, - dyCd,  (13)

hich is minimized when a
v v _dycs,

s.cres,
We know that (13) is minimized when A = 1; so S'ZC'CS2 = d; CSZ ,
which on substitution into (13) gives:

Se=|id, -C&,[ = d}d, - &CC§,. (14)
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The first term on the right-hand-side of (14) is the total sum-of-
squares and the second term is the sum-of-squares of the fitted triadic
distances. The result is valid for the wide variety of constraints mentioned
above. Indeed, it may be generalized to show that if ¥, & minimize ||d; - y
- O|| under constraints that remain satisfied by ny + A0, for arbitrary
scalars & and p, then ||d; - ¥ - O = ||d3|| - ||¥ + O] Potentially, this
generalization allows our methodology to be extended to a wider class of

problems.
Combining (8), (11) and (14) gives:

| =[IC 5, || +[id3 -ds]| + ||d; - C B, ||
or, in words:
Total ss = Fitted ss + unconstrained residual ss + increase in residual ss
induced by the constraint on 0,. This is an orthogonal analysis of variance
which may be represented in the tabular form:

Sum-of-squares  r-dimensions 2-dimensions
Restricted Fit || CO, || Yor(2n -r-1) n— 3
Ss Id, - €8, m— Yor(2n-r-1) m—2n+3
Su Ids - d M-m M-m
Sk Id; - €8, M~ Yr(2n-r-1) M-2n+3
Total IIds|| M M

The final two columns give the number of parameters estimated that are to
be associated with each term when a distance model is fitted, the first such
column being for an r-dimensional fit and the second for the most important
case of ¥ = 2. For the unrestricted fit these come from the usual least-squares
“regression” fit, so may be regarded as degrees of freedom (M — m d.f. for
Sy and M for the Total sum-of-squares and m d.f. for the unrestricted fit
obtained by summing the first two rows of the analysis of variance table).
The remaining terms merely indicate the number of parameters fitted and
should not be treated as d.f.; nevertheless, they may be useful in judging the
relative contributions of the various models. Sg gives the increase in the
residual sum-of-squares due to imposing the constraint, which when added
to Sy gives Sg (see equation (11)).
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In deriving the above results, we have only assumed (5) without
specifying whether the elements of 0, and O3 are squared or not. Thus the
results hold both for minimizing stress associated with the perimeter model
(1), and minimizing sstress associated with the generalized Euclidean model
(2). Note that the latter is not the same as specifying dj through the
generalized Euclidean model (which requires taking square-roots) and
fitting &, by minimizing stress, which is an approach we adopt in one of our
examples.

2.3 Equivalence of MDS3 and a Weighted MDS2

Thus, even in case (i) it is easy to derive a best fitting set of perimeter
triadic distances (7) and their generating dyadic distances (6) which may be
treated as in case (ii). The unconstrained least-squares solution certainly
need not yield Euclidean distances; d, may not even be positive. However,
if the unconstrained fit is poor, or is inconsistent with distance models, there
seems little point in moving on to consider constrained MDS solutions.
Hence, in the following, we assume that dj3 is a triadic distance. This
assumption is exact for case (ii) and is valid for case (i) providing we
substitute d, for, d; as we have shown to be permissible and without loss
of generality, provided d, is a good approximation to being Euclidean.
When it is not Euclidean, we show in the example of section 3.2 how our
assumptions may be validated by adding a constant to d,. Thus we consider
minimizing:

|5 - 83]| = |Cd; - C8y] = (d; - 3,)'C'C(d; - 62) (15)

where d, = d, for case (i) and is an observed set of dyadic values d; in case
(ii).

In (15), O, may be constrained as deemed fit. Equation (15) shows
that minimizing stress for triadic distances is the same as minimizing dyadic
stress with weights C'C. A similar result applies to sstress in association
with the generalized Euclidean model. We have two estimates of the dyadic
distances: (i) O,y obtained from minimizing triadic stress (15) and (i) &y,
obtained from minimizing conventional stress, which is (15) with C'C
replaced by a unit matrix. We are concerned with how d,; compares with
9,5 - Therefore, to understand the effect of the weighting in (15), we need to
examine C'C in detail. Table 2 shows C'C for the case n = 6. Writing Wi
for the element of C'C corresponding to the row labelled d;; and column
labelled dy;, we see that:
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Table 2. The matrix C'C for n = 6.

dyy da1 dypp da dip dis dsi ds2 dsa dsa [ dei dea des des  des
da; 4 1 1 1 1 1 1 1 1
da1 1 4 1 1 1 1 1 1 1
dsg 1 1 4 1 1 1 1 1 1
dgy 1 1- 4 1 1 1 1 1 1
dsa 1 1 1 4 1 1 1 1 1
das 1 1 1 1 4 1 1 1 1
ds1 1 1 1 4 1 1 1 1 1
dsa | 1 1 1 1 4 1 1 1 1
dsa 1 1 1 1 1 4 1 1 1
dsq 1 1 1)1 1 1 4 11
dey 1 1 1 1 4 1 1 1 1
dea 1 1 1 1 1 4 1 1 1
des 1 1 1 1 1 1 4 1 1
dss 1 1 1 1 1 1 1 4 1
das 1 1 1 1 1 1 1 1 1 4

Table 3. The matrix Py

1 2 3 4 5 6
dan |11

&
14}
—
e T = = T =
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Wi = 4 if Lj=kl
Wi =1 if iekl) or je(kl)
Wia =0  otherwise

This pattern is repeated for general values of n but with the first line
replaced by wij = n-2.

We shall define a matrix Py with s(s-1)/2 rows and s columns. The
special case s = n will be written without the suffix; thus P with m rows and
n columns is synonymous with P,. Any row of P labelled d;; has a unit in
columns i and j and is zero elsewhere. Table 3 shows Ps.

Thus, C of Table 1 may be written in the form:

doy d3y ds2 dy ... diz dst ... dsa der ... des
dso1 | It P,

dan1
d4ay I3 P3

d4 32

dsa1
I Py

ds43

de2y

Tio Pg

It may also be verified that the off-diagonal values of C'C are given by PP’
which has diagonal values 21. Thus, we have:

C'C=(n-4I+PP' (16)

Assuming the approximate independence of the residuals, (16) implies that
the two parts contribute to stress in the ratio trace[(n-)I]:trace(PP’) = (n-
4)m:2m = (n-4):2. For quite modest values of n, the term (n-4)I dominates,
suggesting that minimizing triadic stress (or sstress) might very closely
approximate minimizing dyadic stress. That is, we expect the approxi-
mation 0,; ~ O, to be a good one.
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Figure 1. MDS2 solution to country data.

3. Numerical Results

The expected close relationship between MDS2 and MDS3 is
investigated in the following examples. In the first, the data exemplify case
(i1) and, in the second, case (i). We also briefly mention case (ii) data where
d; are not perimeter or generalized Euclidean distances.

3.1 Example 1

Basic dyadic distances between 17 countries were calculated from
four variables — power-distance, individualism/collectivism, masculinity/
femininity and avoidance of insecurity (Hofstede, 1980). Figures 1, 2 and 3
show the multidimensional scalings of the 17 countries. Figure 1 shows a
conventional MDS2 obtained by minimizing the dyadic stress criterion. Our
goal is to compare the solution with the representation obtained from triadic
distance models. Therefore, we also formed the triadic distances from the
four-dimensional dyadic distances according to the perimeter model (1) and
the generalized Euclidean model (2). These triadic distances were then used
to obtain fitted triadic distances in two dimensional space by minimizing (3)
in the potentially more general form which allows given weights wi:
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Figure 2. MDS3 perimeter mode solution to country data.

z Wiik (dijk - Sijk )2

i<j<k

This general form of the triadic stress criterion may be minimized by the
iterative majorization algorithms (MDS3) proposed by Heiser and Bennani
(1997). We minimized (3) by choosing the weights to be zero on the super
diagonal and on the diagonal plane and unity elsewhere.

Figures 2 and 3 show the MDS3 (minimizing stress) of the triadic
distances calculated from the dyadic distances according to the perimeter
model (1) and the generalized Euclidean model (2). We are not concerned
here with the substantive interpretation of these figures but only with the
fact, as expected from our above analysis, that the three solutions are
virtually identical to each other and to the MDS2 configuration of Figure 1.
The stress values were 208.59 (perimeter model) and 69.37 (generalized
Euclidean model). The stress values for the two solutions cannot be directly
compared as there is a difference of scale of about three. Indeed, 208.59 is
nearly the same as 3x69.37 but we think that this degree of agreement is
accidental. The MDS2 solution had a stress of 14.68 which translates into
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triadic stresses for the two models of 235.48 and 76.17. That the dyadic
solutions were slightly less good than the triadic is purely a consequence of
minimizing triadic stress; if we had compared at the level of dyadic stress
the converse would have been found, for dyadic stress would then have been
minimized and the translated triadic stresses would have been greater. We
did not minimize triadic sstress but would expect similar findings.
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Figure 3. MDS3 generalized Euclidean model solution to country data.

3.2 Example 2

The previous example used data of type (ii) where triadic distances
are derived from observed dyadic distances. In this next example we are
concerned with observed data on the unproductivity of triadic teams
(Hayashi, 1972) and can use the analysis of variance approach discussed in
section 3. In this example n = 6, m = 15 and M = 20. The total sum-of-
squares 1s 853. For the perimeter model, the residual sum-of squares for the
unrestricted model is 8.92 giving an excellent fit. However, the fitted values
d, contain one negative value and the corresponding fitted dyadic values d,
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have three negative values. Thus, even though the fit is good, there seems
little point in going on to fit a Euclidean model, at least not in the context of
metric multidimensional scaling. To make progress we consider adding a
constant & to all the elements of d, in the hope that by choosing a suitable
value of k, the new constrained estimates of O, will give better Euclidean
fits. (For a more extended discussion of negative dissimilarities see Heiser,
1991). Thus, we set:

82='Y2-k1 (17)

where ¥, is constrained to be Euclidean. Equation (17) represents a change
of model that has an effect on the analysis of variance. Equation (10)
remains valid but now:

Ss=|ld, - C(y2 - K)|| =||d; - (Cy3 - 3kD)]. (18)

For given k, 4, is obtained by minimizing (18) rearranged as ||( &3 + 3k1) -
Cy,|| which is (11) with each element of d, increased by 3k. With this
small change, the previous algorithm remains valid. For given Yz, k is
obtained by minimizing (18) rearranged as [[(d;- Cyp) + 3kl||, giving an
estimate:

k=-4-1(d, - Cyy).

Based on these updating steps, it is fairly straightforward to estimate optimal
values k and ¥, by using an alternating least-squares algorithm. We decided
to examine three values of &: that for which d,+ k1 becomes Euclidean, that
for which it becomes metric, and the optimal value. The Cailliez (1983)
solution to the additive constant problem yields £ = 5.5698 as the smallest
constant that ensures that a2+ k1 is Euclidean embeddable. Note that with
this value of &, (17) would give an exact fit (Ss = 0) in n-2 = 4 dimensions.
Here we consider two-dimensional solutions based on this value of k. The
“worst” triangle given by the unconstrained fit fiz is associated with the
points 4, 5 and 6 with d,; =-0.7500, d,, =0.9167 and d,, = -0.5833. This
triangle is closed, thus satisfying the metric inequality, by adding 2.25 to
each side and this is the smallest quantity that ensures that the metric
inequality is satisfied for all triangles. The iterative procedure gave an
estimated optimal value k£ = 2.0043 and Sg = 3.70, associated with a two-
dimensional solution §,. Like other algorithms of its type, local minima
were found, Out of 20 random starts, ten found the value tabulated, whereas
ten found k = 1.9176 with Sg=4.28.
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Thus, we set k£ = 5.5698, k = 2.25 and & = 2.0043 and repeated our
analysis, adding 3k to each element of d;. The analyses of variance are

shown below.
k=55698 k=225 k=2.00 2-dimensions

Restricted Fit 755.47 836.76 840.38 9(10)
Ss 88.62 7.33 3.70 6(5)
Su 8.92 8.92 8.92 5

Sr 97.53 16.24 12.62 11 (10)
Total 853 853 853 20

The line labelled Restricted Fit in the analysis of variance is obtained by
subtracting Sk from the total sum-of-squares. For the optimal value of £, this
line can be interpreted as the fitted sum of squares 1[C(?2 —k 1)|| but
suboptimal values lead to non-orthogonal terms; however, the residual lines
remain fully valid. The residual sums-of-squares are all small when
compared with the total. The choice of £ = 5.5698 has given a value of Sg
about ten times that of Sy, each associated with a similar number of
parameters. This suggests that the two-dimensional Euclidean fit has failed
to account for all the structure in ds. The fit is much better for k= 2.25. The
optimal solution improves a little on the solution for &£ = 2.25 but the MDS3
diagrams are indistinguishable. Because an extra parameter has been fitted,
the number of parameters associated with each line of the analysis of
variance for £ = 2.00 needs adjustment; adjusted values are shown in
parentheses, The direct MDS2 solution that minimizes Haz - (Y2 - k1)|| yields
a value of £ =1.7867 and a stress of 1.6447. Figure 4 shows the MDS2 and
MDS3 two-dimensional configurations. The differences are slight, showing
that the degree of approximation can be excellent even with » as low as 6.

Another example of close agreement is shown in Figure 12.1 (i) and
(i1) of Cox and Cox (2001).

3.3 Remarks on Other Triadic Distances

Analysis has shown that the MDS3 of two triadic distances (1) and
(2) might be expected to give similar multidimensional scalings to the
corresponding MDS2. This theoretical result was borne out by examples
whose MDS3 gave virtually the same representation as when the simple
dyadic distances were used. This does not imply that the same necessarily
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Figure 4. MDS solutions for Hayashi team data.

applies to other definitions of triadic distances. Indeed, with some triadic
distances we might expect major differences in the configurations obtained
by MDS3 and MDS?2. For example, if we define 8y = variance(dj, O, ),
it can be seen that adding any constant onto the dyadic distances leaves ik
unaltered’. Thus the triangles with sides (2,3,4), (3,4,5) and (4,5,6) have the
same triadic variances, as will any whose sides differ by a constant from
(1,2,3). The three specified triangles share a side of length 4. Figure 5 shows
the three triangles with the shared side superimposed. The remaining
vertices are in very different places. The whole figure may be reflected
about AB or the perpendicular through the center of AB without affecting
triadic variance, showing that even triangles with a shared side and the same
variance may be located in a host of different positions C;. Metric
information seems to be lost, leading one to expect that the MDS2 and
MDS3 of triadic variance may differ greatly when analyzed by any form of
metric MDS. To see if this were indeed so, we reanalyzed the data of section
3.1, after converting to triadic variance. Figure 6 shows the result, with a
stress of 125.09. Contrary to expectation although not quite so good as with
models (1) and (2), the approximation remains quite satisfactory.
Presumably, this is because the 680 triadic variances, fitted by 136 dyadic
distances impose strong constraints on admissible configurations.

3 1t is not difficult to show by counterexample that this definition of a triadic distance
does not satisfy the axioms of Heiser and Bennani (1997) nor that of Joly and Le
Calvé (1995), but nevertheless has given an approximation that compares well with
configurations that derive from definitions that do satisfy the axioms and, indeed,
with the known initial dyadic distances.
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Figure 6. MDS3 variance solution to country data.
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4. Conclusion

We have shown that minimizing triadic stress (3) by fitting the
perimeter model (1), without loss of generality, may be achieved in two
stages: (a) an uncopstrained fit followed by (b) a constrained fit to the
triadic distances Cd, derived from the first stage. The procedure may be
summarized in an analysis of variance that can give guidance on the type of
constraint that may be justified by the data. Analysis shows that the MDS3
of d; (or equivalently of Cd,) yields a configuration that generates
distances O, that are gclosely approximated by O, generated by a
conventional MDS2 of d,. These results apply equally to whether d;
represents observed triads (i.e. model (i)) or is derived from observed dyadic
distances d, (i.e. model (i)). With model (i) the comparison of Oyp
withd,p, is internal and may be judged only insofar as we get a good fit.
With model (ii), an MDS?2 of d; gives an external “true” solution which also
may be compared with O, and d,p . Equivalent results apply to minimi-
zing triadic sstress (4) by fitting the generalized Euclidean model (2).

The clear indication is that an MDS3 of triadic distances gains little
or nothing over the conventional MDS2 of the dyadic distances d,.
Perhaps this should be no surprise when the fitted triadic distances are linear
transformations of dyadic distances, as with (1) and (2) and in our first
examples. However, it seems that non-linear transformations (e.g. triadic
variance) also have little effect. Then dj = Cd; for no matrix C, and fitting
(1) can be regarded as fitting the wrong model. Nevertheless, the MDS2 of
d,, agreed well with 8, and O, . As noted by de Rooij (2001, Chapter 5;
2002) the problem seems to be that definitions of triadic distance in terms of
dyadic distances do not model true three-way interactions. It is clear that
the properties of different triadic distance coefficients need close
examination; this is the subject of current work.

Appendix

The equations (5) d; = Cd, are overdetermined when n > 5.
However, if the elements of d3 are indeed triadic perimeter distances, these
equations will be consistent and will have a unique solution for 0,. For sets
of n = 5 points; the matrix C is square of order 10 (see the first ten rows and
columns of Tablel) and may be inverted to give ten elements of 8;. By
choosing different quintuples, each of the elements of 0, will be found
repeatedly (e.g. 12345, 12678 both lead to evaluations of 8;;). When the
equations are inconsistent, the values of the common terms will disagree.
When all solutions are consistent, there will be no disagreement, and the
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whole of &, may be built up by considering enough overlapping quintuples.
Then, a &, will have been found that generates the triadic distances d;. A
more symmetric approach is to adopt the solution:

&, =(C'C)y’ C'd; (19)

When dj is a true triadic distance satisfying (1), (19) must recover its
generating dyadic values 0,, and when d; is not triadic C8, gives the least-
squares estimate d; withits generating dyadic distances d,. Therefore
when the elements of dj are triadic distances, we must have:

d3 = CSZ = C(C'C)-lcldg,_

It follows that:
(I-C(([C'Cy' CHd; =0 (20)

1s a necessary condition both for the validity of the perimeter model and
when O, is defined to contain square-distances, for the generalized
Euclidean model. Also (20) is a sufficient condition, because it implies that
d; = C8; where 0, is given by (19). Equation (20) implies that all M
elements of the vector should be checked for zero but this can be avoided by
calculating their sum-of-squares:

d;I-C(C'Cy' Cd; =0, 21)

1.e. we have only to check (8) that Sy = 0. Noting that:

(-4)(C'C)" =1 - 55 PP’ + 52— 11 (22)
(20) may be rewritten:
(n-4)d3 = C(I — RHL_T)PP’ + fi(rsz)(n—f’)) llr)C’d?,. (23)

This result requires n > 5; for n =3, 4 C'C is of deficient rank.

The necessary and sufficient condition (23) is well known in its
expanded form (see e.g. Proposition 2 of Chepoi and Fichet, 1998). To
obtain the expanded form from our matrix result (23) we proceed as follows.
From the definitions of C (Table 1) and P (Table 2) we immediately have
the following typical elements for the given vectors:
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C1 =31 (Mx1) ]
Cd, =d,; (mx1)
CCd, ={dg+d,+dy}t MxD) |
P'Cd, =d,; (nx1)
PP'C'd, ={d,,; +d.,;} (mxl)
CPP'C'd, =2{d, +d,.;+d..} (Mx1)

where the * notation means sum over all non-repeated suffices. When
inserted into (23) these give:

_ (d‘*ij + d*jk + d*ik) _ (d**i + d"‘*j + d**k) + dn* (24)
n-2\
3

)

Thus, the M conditions (24) are the same as the single matrix conditions
(20), (21) or (23). Sometimes it is convenient to replace the summations in
(24) by summing over all suffices excluding i, j and k. Using a dot notation
for this kind of summation, (24) becomes:

d.+d. +d. d.+d.+d
dijk :( ‘1_]+ -jk -1k)_( '-1+ B3] -~k)+ d (25)
n-3 n-3 n-3
SRS

but, because we have used division by n — 5 in deriving this result, (25)
requires n > 5 whereas (24) is also valid for n =5. When n = 6, (25) gives:

d. +d, +d, d,+d..+d

L Watdnrde) (ardirdy) g 26)
3 3

the sums chosen being over the three suffices remaining after allowing for i,

jand k.

A remarkable result (Chepoi and Fichet, 1998) is that it is necessary
and sufficient for (26) to hold for all [n] 6-tuples for the elements of d3 to be
6
triadic perimeter distances. Necessity is obvious, Chepoi and Fichet give an
elegant proof of sufficiency; here we note that sufficiency follows directly

from (25) and (26). We outline the proof.



134 J.C. Gower and M. de Rooij

Consider all (“—3j 6-tuples that include i, j and £, thus excluding all
3

those that do not involve dy. Then for given p, ¢, r # i j, k:

n-3

dy occurs 3 6 - tuples
n-— 4

d,; occurs 5 6 - tuples
n->5

d,;, occurs . 6 - tuples
n-o6

d,, occurs 0 6 - tuples

Thus, the last line derives from the observation that 7, j and k use three of the
suffices, leaving only one 6-tuple (i, /, &, p, ¢, r) to deliver d,q. Similarly, (i,
J» k, p, q) leaves n — 5 possible suffices to select for the remaining member
of the 6-tuple. Summing over all 6-tuples that include i, j and k and over all
P, q, and r (26) gives:

n-3 d.. = n-4 (d-ij+d.jk+d‘ik)_ n->5 (d..i+d..j+d.‘k)+ n-6 d
i = - — .
3 2 3 1 3 0

summation occurring over the full set of permissible suffices, excluding i, j
and k. A little rearrangement leads to (25), thus proving sufficiency.

Turning now to the expression of dyadic distances in terms of triadic
distances, we may write (19) in expanded form as:

= d*ij B (d..; + d**j) 4 2d,,, ' @7
n-4 (n-3)(n-4) (n-2)(n-3)(n-4)

or, equivalently:

d; d;+ d‘.j) 2d
+

j = - (28)
' n-2 (0-2)n-3) (m-2)(n-3)(n-4)
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now with summation over all suffices excluding i and ;.

Although (19) or (27) allow dyadic terms to be calculated from given
or fitted triadic distances, there is no guarantee that the elements of d,, so
found, are distances, or even that they are positive. Chepoi and Fichet
(1998) and Heiser and Bennani (1997) give various definitions of triadic
metrics and ultrametrics. Here we note the simple alternative of defining the
elements of 8 to inherit the metric properties of the elements of O,. Thus, if
the elements of &, satisfy the metric inequality, the ultrametric inequality or
are Euclidean, we define the elements of 83 to be triadic metrics, triadic
ultrametrics or triadic Euclidean distances. This form of definition ties in
with our MDS problems where we fit a Euclidean 0, to ds.

For interest and completeness, we have found the spectral
decomposition of C'C. The result is:

C'C = (n-H)[T- 5 PP + g 1V |+ 2(0 = 3) [ 75 (PP’ -411)]

+3(n-2)[£11] (29)

where n-4, 2(n-3) and 3(n-2) are the only non-zero eigenvalues. The
matrices in square brackets [ ] are idempotent, are mutually orthogonal and
sum to a unit matrix. Their ranks give the multiplicities of the corresponding
eigenvalues as A; = n-4 with multiplicity p, = Van(n-3), Ay = 2(n-3) with
multiplicity p, = (n-1) with A3 = 3(n-2) an unrepeated eigenvalue, so that 3
=1. Independent eigenvectors may be taken to be any p; columns from the
corresponding idempotent matrices. We derived this result from the
observation that:

(C'Oy=ol+pB 11" + PP

for all r, where o, B, 7. are scalars. The modified Leverier-Faddeev
algorithm (Gower, 1975) shows that (29) must have the same form for
suitable coefficients o, P, y which, after considerable detailed but
elementary algebra, are found to be as given in (29).
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