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Abstract 

Modern analytical instrumentation often leads to data arrays with more than two dimensions or directions. Such N-way 
data (N > 2) needs special resolution methods for optimising the amount of analytical information. In this work, a new inter- 
active method designed to work with three-way data is presented. The method, evolving projections by optimised search 
(EPOS), presents a combined graphical and numerical way of resolving a three-way data array into the analytical profiles of 
the pure analytes. The method involves an internal rank annihilation step, which can be performed in several ways. The graphic 
interactive procedure used in this work compares favourably with Lorber’s noniterative rank annihilation method. Thus, our 

method is significantly better for resolution of analytes with low relative concentration, especially in the presence of het- 
eroscedastic noise. The EPOS method is tested on several simulated data sets to assess its performance. A peak purity exam- 
ple is carried out to show a case where two-way methods are unable to provide a unique solution, whereas EPOS gives cor- 
rect results. 
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1. Introduction decide the number of analytes, (ii) to quantify the an- 

Multicomponent problems can be classified as 

white, grey, and black depending on the amount of a 

priori information available about the coexisting ana- 

lytes [l]. The most difficult mixture problem from the 

analyst’s point of view is the one posed by the black 
system, i.e. a system where neither the number of 
analytes present, nor their identity are known. The 
problem to be solved for a black system is thus (i> to 

* Corresponding author. 

alytes, and (iii) to identify the analytes. 
For mixtures, multidetection chromatography, 

such as liquid chromatography with diode array de- 
tection and gas chromatography with infrared or mass 
spectral detection, represents a common approach to 
attack the resolution and quantification problem for 
black systems. This works well in many cases. Prob- 
lems arise, however, if analytes have similar chro- 
matographic retention time and spectra. In such cases, 
chemometrics methods for curve resolution may be 
helpful [l]. Thus, methods such as SIMPLISMd [2- 
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41, iterative target transformation factor analysis (IT- 
TFA) [5-81, and evolving factor analysis (EFA) 
[9,10] have all proven valuable for the analysis of 

black multicomponent systems. 
Recently, the heuristic evolving latent projections 

(HELP) method was developed [ll]. This technique 

has been used in numerous applications [12-151. The 
HELP method utilises the selective regions (regions 
with signal from only one analyte), the zero-con- 
centration regions (regions where one analyte is ab- 
sent) [lo], and zero-component regions (regions 
where none of the analytes contributes to the signal) 

[ll] to resolve the profiles of the pure analytes 
uniquely. These definitions will be used in this pa- 
per. In case of no selective regions, such regions may 
be created by differentiation [16-181. Thus, if the in- 
strumental profile at a specific retention time or 
wavelength contains signal from two analytes, the 
contribution from one of the analytes is removed by 
differentiation if the signal from that analyte has a 
local maximum at the specified retention time or 
wavelength. However, profiles for black systems 
where one chromatographic peak is embedded in an- 
other may be impossible to resolve uniquely by two- 
way methods. This situation arises if the peak maxi- 

mum of the major analyte does not overlap with the 
peak from the embedded analyte and the spectral di- 
rection contains no selective information. Such a sit- 
uation is depicted in Fig. 1. A unique solution for 
such cases demands three-way data. 

Some instrumental techniques, such as liquid 
chromatography connected to excitation-emission 
fluorescence spectroscopy, produce three-way data 
for a single sample. Furthermore, hyphenated tech- 
niques can lead to three-way data when several sam- 
ples of similar composition are analysed and com- 
pared. 

A common problem in the pharmaceutical indus- 
try is that of detecting and quantifying possible im- 
purities in drugs [12]. These impurities often appear 
as hidden minor peaks in a chromatogram. As dis- 
cussed above, two-way curve resolution techniques 
may not be optimal for extracting the information 
from such data structures. Thus, there is a need for 
methods devoted solely to handling these structures if 
the information they contain is to be satisfactorily 
extracted. 

We propose an interactive latent projection tech- 
nique called evolving projections by optimised search 
(EPOS) to solve problems of this kind for three-way 

Contribution from each analyte 

Retention tnne 

Fig. 1. The problem of peak purity. The large analyte completely overlaps the two minor ones. 
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data. Examples showing the potential of the method 
for resolving such cases, will be carried out in detail. 
The aim of the method is thus to detect the number 
of chemical components in the sample(s), to resolve 
their analytical profiles for the purpose of identifica- 
tion, and, to find their relative concentrations under 
the assumptions of equal total response. 

2. Theory 

This section starts by providing the formulas for 
decomposition of 2- and 3-way data in terms of the 
analytical profiles of the contributing analytes. We 
then proceed with a brief description of procedures 
for determination of rank trends in the evolving mul- 
ticomponent profile. The rank information is then 
utilised for quantification and resolution through a 
rank annihilation step. 

Two basic assumptions must be fulfilled in order 
for our procedure to work: (i) the data must be bilin- 
ear and (ii) selective regions must exist for at least 
one analyte. 

2. I. 2- and 3-way decomposition 

The decomposition formula 

X=CST+E (1) 

where C frequently contains chromatographic pro- 
files and S spectral profiles of the pure analytes in the 
multicomponent profile represented by the data ma- 
trix X, is central in all two-way resolution methods. 
The superscript T denotes transposition and E is a 
noise matrix. Equation 1 highlights the bilinear struc- 

ture of the data. If either C or S is found, a straight- 
forward least-squares calculation resolves the other 

set of profiles. 
A three-way data array needs three different sets 

of resolved profiles for the pure analytes, e.g. spec- 
tra, chromatograms and concentration profiles, for its 
decomposition. Quite analogously to Eq. (1) for two- 
way data, the decomposition into profiles of pure an- 
alytes for a three-way array can be written as 

X= 5 c,@mm,@s,+E (2) 
a=1 

where m, denotes the third type of profile. Underlin- 
ing and bold imply a three-way matrix. The symbol 
@ indicates outer products. 

The goal of resolving the data into profiles of the 
pure analytes using EPOS can be divided into three 
sub tasks: (i) establishing an overview of the local 
rank (number of analytes) throughout the data set; (ii) 
utilisation of this information to obtain all but one set 
of profiles for all the pure analytes; and, (iii) matrix 
multiplications (and possibly normalisation) to ac- 
quire the last profile set. A simple rearrangement of 
Eq. (2) subsequently produces the final profile. Eq. 
(3) shows this reordering for a situation where M is 
the unknown. 

MI= (C’C)-‘CTXS(STS)-’ (3) 

Here I is a three-way identity matrix of dimensions 
AxA-XA. 

2.2. Rank mapping by slicing 

Information about number of analytes, i.e. the 
chemical rank [13], especially location of selective 
regions in the multicomponent profile X, is crucial for 
the resolution of profiles acquired from evolving sys- 
tems. For two-way multicomponent profiles this in- 
formation is usually expressed in the form of a rank 
map obtained by moving a window systematically 
through the data [ 19-211. A three-way generalisation 
of the moving window techniques would lead to a 
prohibitive number of possible sub matrices to be ex- 
amined. Furthermore, selectivity, which is crucial for 
unique resolution by EPOS, is usually not equally 
distributed in all directions. Instead, we have pro- 
posed procedures whereby the data array is either 
collapsed in one direction (summing matrices ele- 

ment-wise in the chosen direction) or sliced into 
complete two-way matrices one direction at-the time. 
The resulting matrices are subsequently examined by 
a variety of graphic procedures 1221. 

Rank mapping based upon collapsing or slicing 
takes into account that it is not necessary to derive a 
rank map of the complete multicomponent profile. 
Rather, the task is to obtain a clear picture of the rank 
trend. Thus, whether the exact start of an interesting 
region is, e.g. at retention time 50 or 53 is usually of 
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no importance. The crucial point is to make sure that 
we are able to pick slices representing unambigu- 
ously all the different rank situations in the multi- 
component profiles. 

2.3. Internal rank annihilation 

The rank map provides an overview of the ana- 

lytes’ elution patterns. The next step is to use this in- 
formation to obtain N - 1 profiles for every analyte. 

In our case N is equal to 3, so two sets of profiles, 
e.g. spectra and concentration profiles, should be ex- 
tracted. 

Unless the experiments that produce the data are 
of particularly poor quality, there will always be at 
least one selective matrix (one retention time) for at 

least one analyte, either in the beginning or end of the 
retention interval for an unresolved peak cluster. The 
first score and loading vector from PCA of this ma- 
trix provides two of the profiles of this analyte. Mul- 

tiplying these two profiles together column by row 
yield a matrix X, containing only information about 
this analyte. This procedure removes random noise. 

Next, we use the rank map to select a retention 
time where the signal is composed of this analyte to- 
gether with another analyte. The matrix at this reten- 
tion time is called X,,. In order to extract the pure 
profiles for the second analyte from X,,, the contri- 
bution from the first analyte needs to be subtracted. 
The task at hand is stated in Eq. (4): 

X, =X,, - kX, (4) 

In order to obtain the matrix X2 with contribution 
only from the second analyte, the estimate for k can 
be determined by rank annihilation. Rank annihila- 
tion was first proposed by Ho et al. [23-251. Lorber 
proposed a noniterative approach [26], which was re- 
cently found inferior to a graphic iterative and inter- 
active approach developed by the present authors 
[27]. Traditionally, one of the primary conditions for 
performing rank annihilation is that standards of the 
analytes to be quantified are available. For three-way 
data arrays, resolved standard profiles can be ex- 
tracted directly from selective regions in the data. 
Thus, for peak purity problems our proposed solution 
can be described as an internal rank annihilation per- 
formed by means of an interactive graphic search 

(IRA). 

Our way of carrying out the IRA step is to start 
with two guesses for k, a lower concentration limit 
k = 0 and an upper concentration limit, e.g. k = 10. 

The two matrices produced by the subtractions X1? 
- kX, are then decomposed by PCA, and the result- 
ing score and loading vectors from the two major 
principal components are plotted. If one of our initial 
guesses is correct, the corresponding score and load- 
ing plots reveal structure only in the first principal 
component, and k equals the guess we made. This 
situation is of course not likely to arise, and so the 
search proceeds. A fast procedure for this search is to 
halve the interval between the lower and upper limit 

on k after each try. 
The IRA procedure is repeated until an acceptable 

estimate is found. One then continues to resolve the 
profiles for other analytes. In case of overlap among 
more than two analytes at the time. so-called strip- 
ping techniques may be necessary, either by remov- 

ing the contribution of an analyte using Eq. (4) or by 
means of orthogonal projections [ 181. After this step, 
all but one of the N profile sets are completely re- 
solved. 

IRA has been found to compare favourably with 
Lorber’s direct procedure when the concentration of 
the minor analyte decreases and the level of het- 
eroscedasticity of noise increases [27]. If the noise 
level is high, a more accurate solution of Eq. (4) can 
be achieved by using the reconstructed X, and X,, 
from PCA on the collapsed matrices, i.e. the two ma- 
trices obtained by summing in one direction all the 
selective matrices having contributions from analyte 
1, and, similarly, all the matrices with significant 
contributions from both analytes 1 and 2. 

2.4. Resolution of the final set of profiles 

The last set of pure analyte profiles is easily cal- 
culated by means of eq. 3. The procedure used in this 
step varies according to the data characteristics. For 
samples containing the same analytes in varying pro- 
portions and analysed by multidetection chromatog- 
raphy, the chromatographic and spectral profiles are 
normalised. Assuming the same chromatographic and 
spectroscopic response for all chemical components, 
the third set of profiles then displays the correct rela- 
tive concentrations of the analytes. In order to obtain 
absolute concentrations, one needs standards of the 
analytes. 
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The resolved profiles can also be used for identifi- 
cation purposes, whereafter quantification using stan- 
dard samples can be performed. 

3. Experimental 

The EPOS method has been tested on a number of 
data sets, which were all simulated by means of 
MATLAB. Spectra and chromatograms were gener- 

ated as sums of Gaussian peaks. An example is shown 
in detail (see results and discussion), along with tab- 
ulated results for some other data sets. Every data set 
is simulating multidetection chromatographic pro- 
files for several samples of the same two analytes. 
The dimensions are 10 X 80 X 80. The concentration 
of the minor analyte was varied between 1% and 
15%. In all data sets, the minor analyte is completely 
embedded by the major one in the chromatographic 
direction, making it a difficult problem to solve with 
conventional curve resolution methods. Both ho- 
moscedastic and heteroscedastic noise patterns were 
added. The size of the noise relative to the maximum 

A 

20 40 60 
Retentton time 

C 

Oo-0 
Sample number 

Table 1 

The design of the data sets 

Data set Range of relative 

concentration of 

minor analyte (in percent) 

Type of noise 

1 4-13 Homoscedastic 

2 3-13 Hetcrosccdastic 

3 l-3 Homoscedastic 

4 1-3 Heteroscedastic 

total signal is around 0.03% for these data. All quan- 
titative information is inherent in the sample direc- 
tion, meaning that the response level of the chro- 
matograph and spectrometer is assumed equal for the 
analytes. Table 1 presents information on the data 
sets. As the next section will show, EPOS produces 
excellent results for all these systems. 

4. Results and discussion 

Chromatograms, spectra and concentration pro- 
files for the two analytes in the first data set are 

1.5, 7 

20 40 60 80 
Wavelength 

0 
0 20 40 60 

Retentmn ume 
81 3 

Fig. 2. An overview of the data set analysed in this work: (a) shows noise free chromatographic profiles normalised to constant sum; (b) the 

noise free spectral profiles normalised to constant sum, while (c) depicts the concentration profiles; Cd) illustrates chromatographic profiles 

averaged with respect to samples. The minor analyte is completely overlapped by the larger one. 
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shown in Fig. 2(a)-(c). Fig. 2(d) depicts the average 
amount of the analytes recorded at the chromato- 
graphic detector with time. This example illustrates 
the situation of embedded minor peaks. 

Slicing the three-way data in the retention time di- 
rection and using the procedures developed in [22] to 
examine the rank changes in the retention time direc- 
tion gave the following results: The first analyte starts 
to elute around retention time 9 and the second 
around 18. The second analyte disappears around 
time 34, while the first is exhausted at around 57. Due 
to the influence of the noise level on the detection 
limit, the detected values for appearance of analytes 
are around three retention time points higher than the 
correct values (the values chosen for the simulations). 
Similarly, the detected values for disappearance are 
approximately three retention time points too low. 

After having established an overview of the rank 
changes in the retention time direction, the next step 
is to extract the profiles of the pure analytes. While 
the second analyte is completely overlapped through- 
out the retention time direction, the rank map shows 
selective retention times for the first analyte. Our 
method needs only one selective retention time to be 

successful, provided that the S/N-ratio is acceptable, 
so the situation looks promising. 

As the rank map has shown the presence of two 
analytes where one has selective regions and the other 
not, the internal rank annihilation technique has to be 
applied. This means that we need to pick one reten- 
tion time matrix containing signal from the first ana- 
lyte only and another one with signal from both ana- 
lytes. It is best to pick matrices with good S/N-ratios, 
so a good choice is the matrices corresponding to re- 
tention times 36 (single-analyte region) and 24 
(two-analyte region). The two matrices are hereafter 

called X,, and X,,. 
A PCA analysis of Xjr, produced the scores and 

loadings illustrated in Fig. 3. These vectors corre- 
spond to the concentration profile and the spectral 
profile for the first analyte. The two vectors in Fig. 3 
are multiplied together to yield a retention time ma- 
trix containing signal from the first analyte only. The 
amount of noise in the new matrix (called X, ) is less 
than in X,,. 

The next step is to solve Eq. (4) using internal rank 
annihilation, i.e. to remove from the matrix XzJ the 
contribution from the first analyte. Our initial guesses 

0.5 ’ I / J 
I 2 3 4 5 6 7 8 9 IO 

Sample number 

B 
0.4 I 

0 
0 

1 
30 40 50 60 70 80 

Wavelength 

Fig. 3. The first score (a) and loading (b) vector for the matrix X,,. The profile shapes correspond to the concentration and spectral profile 
of the major analyte. 
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Fig. 4. Two attempts at trying to solve Eq. (4) - with k = 0 (a) and k = 10 (b). The plots show the first two loading vectors after a decom- 

position of the resulting matrix X 2. Clearly, none of these attempts are correct - there is structure both in the first (solid line) and second 

(dotted line) loading vector. 
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Fig. 5. Eq. (4) is solved, The solid line is the spectral profile belonging to the second minor analyte. The noisy, dotted line is the second 

loading vector extracted from X 2 when the correct k is used in Eq. (4). 
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Table 2 

Real and predicted relative concentrations of the minor analyte in 

the ten samples for data set 1 

Real relative cont. 

of minor analyte 

Predicted relative cow. 

of minor analyte 

Error in 

percent 

7.41 7.48 -1.04 

13.04 13.13 - 0.70 

11.76 11.85 -0.76 

11.11 11.20 - 0.82 

10.71 10.80 - 0.84 

7.14 7.21 - 0.97 

4.76 4.80 - 0.90 

4.76 4.81 -1.09 

4.25 4.29 - 0.88 

9.09 9.15 -0.68 

for k are 0 and 10. Two principal components are 
extracted from the resulting matrices. Their loading 
vectors are displayed in Fig. 4. Clearly, neither of 
these values are near the correct value. Both the first 
and second loading vector show structure - implying 
that we have either removed too much from Xl4 (k 

= 10) or too little (k = 0). The next attempts are k 

= 5, k = 2.5, and so on until the second loading vec- 
tor is without structure. It may be necessary to per- 
form the iterations several times to be sure of finding 
the best value for k. After several such runs, we ended 
up with a k value of 0.9999563. This situation is 
pictured in Fig. 5. 

Qualitative concentration and spectral profiles are 
now established for both analytes. What remains is to 
resolve the chromatographic profiles and to obtain the 
quantitative results for the concentrations under the 

Table 3 

Real and predicted relative concentrations of the minor analyte in 

the ten samples for data set 2 

Real relative cont. 
of minor analyte 

7.41 

13.04 
11.76 

11.11 

10.71 

7.14 

4.76 

4.76 
4.25 

9.09 

Predicted relative cont. Error in 
of minor analyte percent 

7.47 - 0.87 
13.13 -0.66 

11.84 - 0.65 

11.17 -0.56 

10.78 - 0.62 
7.19 - 0.70 
4.79 - 0.63 
4.79 -0.51 
4.27 - 0.42 
9.14 - 0.55 

Table 4 

Real and predicted relative concentrations of the minor analyte in 

the ten samples for data set 3 

Real relative cont. Predicted relative cont. Error in 

of minor analyte of minor analyte percent 

1.00 1.00 - 0.02 

1.20 1.19 0.94 

1.40 1.36 2.68 

1.60 1.56 2.69 

1.80 1.76 2.08 

2.00 1.96 1.96 

2.20 2.16 1.6Y 
2.40 2.37 1.34 

2.60 2.56 1.36 
2.80 2.74 2.17 

assumption of equal spectral and chromatographic 

response. 
The chromatographic profiles are easily obtained 

by normalising the two matrices with spectral and 
concentration profiles and using Eq. (3). This pro- 
duces the profiles in Fig. 2(d). and the qualitative in- 
formation is now complete. 

Finding the relative concentrations is easy using 
our knowledge and assumptions about the data. Thus, 
the quantitative information should lie in the sample 
direction. A rearrangement of Eq. (3) is used again. 
This time with normalised spectra and chro- 
matograms as input along with X. The results are 

shown in Table 2. The EPOS method shows excel- 
lent results for these data. The results for the other 

Table 5 

Real and predicted relative concentrations of the minor analyte in 

the ten samples for data set 4. For this data set. the results from 

using Lorber’s direct method are also showed 

Real relative cont. Predicted relative cont. Error in Error in 

of minor analyte of minor analyte percent percent 

(Lorber) 

1.00 1.00 -0.49 4.58 

1.20 1.20 -0.28 4.77 

1.40 1.42 - 1.20 3.89 

1.60 1.62 - 1.23 3.84 

1.80 1.85 - 2.67 2.47 

2.00 2.04 - 1.07 3.12 

2.20 2.25 -2.13 2.96 

2.40 2.45 - 2.29 2.80 

2.60 2.67 - 2.52 2.57 

2.80 2.87 -2.53 2.55 
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three data sets described in Table 1 are shown in 
Table 3, Tables 4 and 5. We see that for the data sets 
where the concentration range of the analyte is 4- 

13%, EPOS overestimates the concentrations. For the 
two data sets where the concentration range is l- 
2.8%, EPOS underestimates the concentrations in one 
case, and overestimates in the other. The results also 
show that the quality of the resolved profiles and the 
quantification is independent of whether the noise is 
heteroscedastic or homoscedastic. 

Table 5 shows that for relative concentrations of 
the minor analytes above 2.5% and heteroscedastic 
noise, IRA [27] and Lorber’s approach [26] perform 
equally well. For a relative concentration of the ana- 
lyte below 2.5%, EPOS performs significantly better 
than the direct approach. We prefer the visual IRA 
approach as graphical methods are easier to under- 
stand and use. 

5. Conclusions 

The combined visual and numerical inspection of 
the data set makes EPOS a simple and fast method to 
use. The problem of embedded minor peaks is 
uniquely solved, and quantification of the embedded 
minor analyte is performed with excellent results un- 
der the assumption of equal chromatographic and 

spectral response for the analytes. The method is not 
restricted to three-way multicomponent profiles. All 
the principles of the methods are equally valid for 
data sets containing more than three directions. The 
only difference for N-way data with N > 3 is that the 
equations used are more complex. 
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