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Abstract 

In this work, fast graphic procedures for assessment of number of analytes (chemical rank) in local regions of three-way 
unresolved multicomponent profiles are presented. Collapsing the three-way profile along one direction by matrix summa- 
tion and evolving rank analysis on the resulting matrix represents a first step for the approach developed here. This proce- 
dure is efficient for detecting analytes with low net analytical signal compared to the noise level. The effect of collapsing is a 
reduction of random noise due to cancellations, while structure from analytes is enhanced because of the additive effect of 
many similar contributions. In the second step, slicing of the three-way data array into complete two-way arrays (matrices) is 
performed. Projections are then used across these matrices to generate a rank map. The strategy developed in this work pro- 
vides a rapid approach to rank analysis and permits the analyst to take into account that the analytical information is nor- 
mally not uniformly distributed in the three directions. 

Keywords: Rank mapping; Three-way multicomponent profiles 

1. Introduction 

Modern analytical instrumentation often leads to 
data arrays with more than two dimensions or direc- 
tions. For instance, hyphenated techniques such as 
multidetection chromatography can lead to arrays of 
order higher than two when several samples of simi- 
lar composition are analysed and compared. 

A common feature of multiway analytical profiles 
is their evolving and continuous nature in time, 
wavelength or space (image analysis). Different re- 
gions may have contributions from different ana- 
lytes. These features have generated an interest in 
procedures for local analysis of multicomponent pro- 

files. For two-way analytical profiles, evolving factor 
analysis (EFA) [ 1,21 and heuristic evolving latent 

projections (HELP) [3,4] are examples of methods 
that include procedures for assessment of local 
chemical rank, i.e. number of analytes, as a crucial 
step prior to resolution. The systematic screening of 
the data matrix by means of a moving window, of ei- 
ther fixed [5,6] or evolving [1,2,7-lo] size, is com- 
mon to two-way evolutionary techniques for curve 
resolution. This produces a rank map from which the 
necessary information can be extracted to obtain re- 
solved profiles of pure analytes. 

* Corresponding author 

Due to the size and structure of the data matrix, a 
three-way generalisation of the window technique 
would lead to a prohibitive number of possible sub 
matrices to be examined. Instead, we propose that a 
three-way data array is either collapsed by summing 
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matrices in the least selective direction or sliced into 
two-way matrices in the most selective direction. This 
strategy takes into account that the analytical infor- 
mation may not be equally distributed in all direc- 
tions. Time can thus be saved by concentrating the 
efforts on the most promising directions. 

The aim of this work is to develop fast and accu- 
rate procedures for rank mapping of three-way multi- 
component profiles with at least one continuous and 
evolving direction. These rank maps can, for exam- 
ple, be utilised for resolution of three-way analytical 
profiles [ 111. 

2. Theory 

2.1. Rank map determined by collapsing or slicing a 
three-way data array 

Rank mapping of three-way profiles is performed 
for two reasons: (i) to determine how many analytes 
are present under the complete profile, and, (ii) to re- 
veal information of rank trends in the evolving sys- 

Samples 

tern. Both types of information are crucial for correct 
resolution of multicomponent profiles. A good strat- 
egy for rank mapping thus needs to incorporate both 
these aspects, As selective regions in three-way data 
contain crucial information for the subsequent reso- 

lution of the multicomponent profile, a first step is to 
decide which directions are least, respectively, most 
likely to contain selective information. For analytical 
techniques involving chromatographic separation, the 
retention time direction is usually the most selective 
direction. The chromatographic elution profiles are 
thus better suited for a rank analysis than the spectral 

profiles, as signal from an analyte in a spectrum of- 
ten is distributed throughout the spectral profile. Fur- 
thermore, regions with no eluting analytes (zero- 
component regions) are rather well-defined in the 
chromatographic direction. These regions are used for 
estimation of the noise level. If we compare several 
similar samples with differing concentrations, the 
sample direction is usually the least selective direc- 
tion. 

When the decision about the least and most selec- 
tive directions of the data array has been made, our 

Fig. 1. Collapsing in the sample direction and slicing in the time direction for a three-way data array 
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strategy for rank mapping of three-way multicompo- 
nent profiles goes in two steps (Fig. 1). First, we per- 
form rank analysis on the matrix obtained by collaps- 
ing the three-way data array in the least selective di- 
rection. Collapsing is used to denote the operation of 
summing the matrices in that direction. Secondly, the 
three-way data array is sliced into its two-way con- 
stituents in the most selective direction. While col- 
lapsing leaves us with a single matrix for rank analy- 
sis, slicing through one of the directions in the data 
set provides several two-way matrices. Fortunately, 
complete rank analysis of all these matrices is not 
needed. Rather, shapes and magnitudes of various 
projections of these matrices are used to determine the 
local chemical rank, i.e. number of analytes present 
at a (time) point. 

2.2. Procedures for rank mapping 

In this paper, vectors are by definition column 
vectors. A transposed vector (superscript T) is thus a 
row vector. Indices i and j are used to denote reten- 
tion time. The matrices Xi and Xj thus refer to the 

matrices acquired at retention time i and j, respec- 
tively. 

Let us assume that we have collected a three-way 
multicomponent array containing a sample direction, 
a chromatographic direction and a spectral direction. 
The different samples all contain the same chemical 
components. We start our examination of the data by 
collapsing the three-way array into an ordinary ma- 
trix in the sample direction. Due to the additive ef- 
fect of signal from analytes and cancellations of con- 
tributions from noise, this procedure enhances signal 
from analytes compared to noise in the collapsed ma- 
trix. This may be crucial for detecting analytes with 
small net analytical signal (NAS) [12]. The collapsed 
matrix can subsequently be analysed by means of the 
moving window techniques [5-lo] and latent-projec- 
tive graphs [3] to get an overview of the number of 
analytes in the full profile and in local regions. 
Eigenvalues and shape of score and loading vectors 
from the first few principal components extracted 
from the collapsed matrix can provide supplementary 
information for assessment of the total number of an- 
alytes under the collapsed multicomponent profile. 

-0.6’ J 

0 IO 20 30 40 50 60 70 80 
Wavelength 

Fig. 2. Detection of the first analyte (solid line) by projecting onto a noise profile (dotted line). The solid line is noisy, but in the interval 

25-35 structure is evident. 
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Retention time shifts between matrices will broaden 
the regions in which the analytes are detected, but 
they have no other effects on the rank maps. 

We continue our examination of the data by slic- 
ing the three-way profile in the most selective direc- 
tion. The first principal component is extracted from 
the matrix acquired at the first retention time. The 
shape of the first score and loading vector, ti and pi, 
respectively, at the first retention time (i = 1) usually 
indicates that no analyte has yet eluted, i.e. that we 
are situated in a zero-component region [3]. Assum- 
ing the noise to be orthogonal to signal from ana- 
lytes, the score and loading vectors at the first reten- 
tion time can be used to locate the retention time at 
which the first analyte starts to elute. Projections of 

the matrices at retention time 2, 3,.. onto the profiles 
from the zero-component region show a noisy pat- 
tern until the concentration of the first analyte ex- 
ceeds the limit of detection. Eq. (la) shows this pro- 
cedure for the spectral profile originating from a pro- 
jection onto the score vector. 

qj = t~Xj/lltJ 
(Ia> 

The index j represents the present retention time, Xj 
is the matrix at this retention time, t i is a score vec- 
tor extracted from the zero-component region at the 
retention time i and qj the spectral profile obtained 
by projecting Xj on t,. Fig. 2 shows an example of 
the detection of an analyte by this procedure. Struc- 
ture (peak) is observed around wavelengths corre- 
sponding to points 25-35 in the solid line. A similar 
operation produces the concentration profile cj after 
projecting onto the loading vector extracted at reten- 
tion time i: 

cj = x~Pi/llPill (lb) 
The residual matrix obtained after subtraction of 

the projected profile calculated by Eq. (la) repre- 
sents another route to the location of start of elution: 

Ei = Xi - t,q; (2) 

The matrix E contains only noise as long as the 
number of analytes remains unchanged. The norm of 
each column (or row) vector of E is subsequently 
calculated and collected in a residual norm vector. By 
plotting this vector with time, start of elution is de- 
tected as the time when this vector starts to show 
structure. 

The two ways shown above for detecting the end 
of the zero-component region can actually be used 
throughout the analysis to detect rank changes. After 
the start of elution is located for the first analyte, two 
principal components are extracted from the matrix at 
this retention time. The second principal component 

represents noise, but information concerning the oc- 
currence of a second analyte will appear in the pro- 
jections [Eqs. (la) and (lb)] onto this component. The 

matrices at the following retention times are thus 
projected onto these two principal components. Plots 
of the residual norm vector are also here used as a 
complementary way of detecting further analytes. 

The procedures described above are repeated 
throughout the analysis. We always extract one prin- 
cipal component more than the current number of 
analytes from the slice where the rank changes. When 
the subsequent projections onto the noise profiles 
show structure, a new analyte has appeared. Since 
most of the operations are simple matrix multiplica- 
tions (projections>, this technique avoids large num- 
bers of time-consuming PCA decompositions. How- 
ever, experience has proved that further PCA decom- 
positions are needed when the signal-to-noise-ratio 
(S/N-ratio) has changed substantially. The profiles 
obtained in the beginning of an analyte’s elution pe- 
riod are significantly more noisy than the profiles ob- 
tained when decomposing a matrix originating from 
a retention time where the S/N-ratio is more 
favourable. Usually, two or three PCA decomposi- 
tions are thus needed per analyte. 

The techniques described above are sufficient to 
disclose the start of elution of every new analyte in a 
system. However, it is of course equally important to 
be able to correctly estimate the end of elution for an 
analyte. This is possible by the same procedures. It is 
sometimes useful to repeat the slicing procedure in 
the backward direction. 

It is in fact not necessary to derive a rank map of 

the complete multicomponent profile. Rather the task 
is to obtain a clear picture of the rank trend. Thus, 
whether an interesting region starts exactly, e.g. at 
retention time 50 or 53 is usually of no importance. 
The crucial point is to make sure that we are able to 
pick slices representing unambiguously all the differ- 
ent rank situations in the multicomponent profiles. 
This is necessary for the subsequent resolution of the 
multicomponent system [ 111. 
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3. Experimental 

Rank mapping was performed on four three-way 

data arrays representing three-component systems. 
The data were all simulating LC-DAD profiles of di- 
mensions 80 X 100 X 10 (retention time X 

wavelength X samples) by means of MATLAH 4.2 
for Windows on a 486 DX personal computer. Spec- 
tra and chromatograms were generated as sums of 
normalised Gaussian peaks and the matrices result- 
ing for each analyte were scaled according to the 
concentrations and summed. The three-way data was 
made by stacking 10 ordinary two-way matrices of 
varying concentrations. Heteroscedastic noise (vari- 
ance of noise depends on signal size) was added ac- 
cording to the following recipe: a three-way array of 
random homoscedastic noise (noise independent of 
signal size) with variance 0.0012 and zero mean was 
created. Heteroscedastic noise was calculated by ele- 
ment wise multiplication of the three-way data array 
and the homoscedastic noise matrix. The resulting 
noise matrix was added to the three-way multicom- 
ponent data arrays. 

The four data arrays all contained one minor ana- 
lyte coeluting with two major ones. Chromatographic 

resolution and spectral correlation were varied at two 
levels corresponding to fair and low chromato- 
graphic resolution (R,) and net analytical signal 
(NAS) of the analytes. Figs. 3 and 4 show the chro- 
matographic and spectral profiles, respectively, for 
fair and low levels of R, and NAS. For each of the 
four systems, the concentrations of the three analytes 
in the 10 mixtures were varied according to Table 1. 

4. Results and discussion 

4.1. Rank anaiysis on collapsed matrices 

Table 2 shows the first seven singular values of the 
collapsed matrix of the four simulated 3-component 
systems. The ratio between successive singular val- 
ues suggests that 3 analytes coexist under all the ex- 
amined profiles with the possible exception of the 
profile with both low chromatographic resolution 
CR,) and low net analytical signal (NAS) for the mi- 
nor analyte. For the latter system, the ratio between 
the singular values 3 and 4 is approximately 5.8. Fig. 
5 shows the result of eigenstructure tracking analysis 
(ETA) [7,8] using a moving window of size 4 for the 
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Retentmn time 

0.4 

0.3 - 

Retention time 

Fig, 3. Overlap of chromatograms of pure analytes for systems with fair (upper part) and low (lower part) chromatographic resolution. 
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Table 1 Table 2 

The relative concentrations of the three analytes in the 10 samples 

Sample number Analyte I Analyte 2 Analyte 3 

The first seven singular values from an SVD on the matrix col- 

lapsed in the sample direction for the four data sets. Data set 1 has 

both fair chromatographic resolution CR,) and NAS. Data set 2 has 

a poor R, and a fair NAS. Data set 3 has a fair R, and a poor NAS. 

For data set 4, R, and NAS are poor 

Singular value Data set 1 Data set 2 Data set 3 Data set 4 

1 49.07 1.96 48.97 

2 2.42 2.91 94.66 

3 48.01 3.85 48.14 

4 59.89 4.76 35.35 

5 19.21 5.66 75.13 

6 59.89 6.54 33.57 

7 55.49 7.41 37.10 

8 5856 8.26 33.18 

9 41.94 9.09 48.97 

10 24.93 9.91 65.16 

1 25.5938 

2 2.7346 

3 0.3656 

4 0.0074 

5 0.0071 

6 0.0068 

7 0.0066 

Ratio of fourth 49.4 

to third 

27.2837 24.8124 26.4848 

1.9155 2.7004 1.8921 

0.1292 0.1139 0.0405 

0.0075 0.0074 0.0070 

0.0069 0.0072 0.0070 

0.0068 0.0068 0.0069 

0.0065 0.0067 0.0066 

17.2 15.4 5.79 

systems with fair NAS and fair and poor R,, respec- 
tively. In case of fair R, (Fig. 5, upper part), it is ob- 
vious that fourth evolving eigenvalue corresponds to 
noise. For low R, (Fig. 5, lower part), it is more dif- 
ficult to decide whether the system contains three or 
four analytes due to the heteroscedastic noise in the 
fourth evolving eigenvalue. The singular values of the 
matrix obtained by collapsing the three-way array in 
the sample direction (Table 2) show, however, that 

there are only three analytes under the profile. 

4.2. Rank analysis by projections and slicing 

Tables 3 and 4 show the retention times of ‘true’ 
and detected rank changes using ETA after collaps- 
ing in the sample direction in combination with the 
projection procedure on the 3-way data sliced in the 
time direction. The overall impression is that the 
agreement between ‘true’ and detected is acceptable 

0 IO 20 30 40 50 60 70 80 90 100 
Wavelength 

0 IO 20 30 40 50 60 70 80 90 loo 
Wavelength 

Fig. 4. Spectral overlap for systems with fair (upper part) and low (lower part) net analytical signal. 
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Table 3 

The retention times of true and detected rank changes for the data 

sets with fair chromatographic resolution 

Chemical rank Detected RT 

True RT Fair NAS Poor NAS 

1 13 11 12 

2 18 18 20 

3 33 36 36 
2 46 42 42 
1 61 60 60 
0 66 66 66 

in most cases. The apparent disagreements between 
start and end of elution for some analytes can be as- 
cribed to effects of noise and have no consequences 
for the success or failure of resolution. We shall now 

illustrate this and some other important points of the 
slicing procedures. 

For the system with fair NAS but poor R,, Fig. 6, 
upper part, shows the third spectral profile obtained 
by projecting the matrix at retention time 29 on the 
first three score vectors extracted by means of PCA 

Table 4 

The retention times of true and detected rank changes for the data 

sets with poor chromatographic resolution 

Chemical rank Detected RT 

True RT Fair NAS Poor NAS 

1 13 13 11 

2 18 24 24 

3 23 30 30 

2 57 53 50 

1 62 55 54 
0 66 66 65 

of the matrix at retention time 27. The third loading 
vector extracted at time 27 (corresponding to noise) 
is shown together with the projected profile in order 
to enhance the interpretative power. Both vectors 
show the messy pattern characteristic of noise. Fig. 6, 
lower part, shows the same vectors for the projec- 
tions of the matrix at the next retention time (RT = 
30). Structure is now appearing in the third projected 
profile, in the wavelength interval 4-20. Proceeding 
to retention time 31, structure in the third projected 

‘I 

-6’ I 
0 IO 20 30 40 50 60 70 80 

Retention time 

-6 / 
0 IO 20 30 40 50 60 70 80 

Retention t,me 

Fig. 5. (a) Result from eigenstructure tracking analysis [7,X] with window size 4 on the collapsed three-way matrix of the simulated system 

with fair chromatographic resolution and fair net analytical signal. The collapsing is performed in the sample direction. (b) Result from 

eigenstructure tracking analysis [7,8] with window size 4 on the collapsed three-way matrix of simulated system with low chromatographic 

resolution and fair net analytical signal. The collapsing is performed in the sample direction. 
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Fig. 6. (a) Projections according to Eq. (la) of the matrix at retention time 29. The three score vectors used for projections (not shown) are 

extracted at retention time 27, where both analytes 1 and 2 have apprcciablc signal. The figure shows the third loading vector from PCA of 

the matrix at retention time 27 together with the third projected profile from the matrix at retention time 29. (b) Projections according to Eq. 

(la) of the matrix at retention time 30. The three score vectors used for projections (not shown) arc extracted at retention time 27. where 

both analytes 1 and 2 have appreciable signal. The figure shows the third loading vector from PCA of the matrix at retention time 27 to- 

gether with the third projected profile from the matrix at retention time 30. 
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Fig. 7. The spectral loading vector of the third principal component extracted at retention time 30 and 31, respectively. 



B. Grung, O.M. Kualheim / Chemometrics and Intelligent Laboratory Systems 29 (1995) 223-232 231 

True and resolved spectra 
0.18 I / I / I I I 
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IO 20 30 40 50 60 70 80 90 100 
Wavelength 

Fig. 8. Resolved and true spectrum of analyte 1 extracted by means of PCA of the matrix at retention time 23. We observe an almost perfect 

match between the two profiles. 
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Fig. 9. Resolved and true concentration profile of analyte 1 extracted by means of PCA of the matrix at retention time 23. We observe an 

almost perfect match between the two profiles. 
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profile becomes evident (not shown), PCA of the 
matrices at retention times 30 and 31 gives the spec- 
tral patterns shown in Fig. 7. Only the third loading 
vector is shown. Structure is evident at retention time 
31 (Fig. 7, lower part), and is also vaguely appearing 
at retention time 30 (Fig. 7, upper part). Thus, the 
projection procedure provides us with retention time 
30 as start of elution for the third analyte. According 
to the simulation producing this system, this is too 
late. The third analyte should really start to show up 
at retention time 23. We observe the same discrep- 
ancy for the second analyte in this system. While the 
second analyte should appear at time 18 (Table 31, it 
is detected at time 24 (Table 3). Let us see how this 
can be explained. 

At time 23, Table 4 shows that the estimated 
chemical rank is 1, while the ‘true’ chemical rank is 
3. AI1 analytes contribute to the signal, but noise and 
low NAS prevents detection of more than one ana- 
lyte. Figs. 8 and 9 compare the spectrum and concen- 
trations of the first analyte with the loadings and the 
scores, respectively, of the first principal component 
of the matrix at retention time 23. The agreement is 
excellent suggesting that the matrix at retention time 
23 is truly a single-analyte region. Otherwise, contri- 
butions from the second and third analyte would mix 
with the first analyte in the first principal component. 
This shows that the added heteroscedastic noise is 
responsible for the delayed detection of analytes. For 
rank analysis of real systems, this effect is impossi- 
ble to observe since there is no way to obtain noise- 
free data for rank analysis. 

5. Conclusions 

In this paper, fast and efficient procedures for rank 
mapping of three-way multicomponent profiles have 
been presented. Detailed information about local 
chemical rank from rank maps is crucial for resolu- 

tion of a multicomponent data array into the profiles 

of the pure analytes. The strategy based on collaps- 
ing and slicing has been shown to represent a useful 
compromise between analysis time and information 

extracted. Furthermore, this strategy is not restricted 
to three-way multicomponent profiles. The principles 
of the procedures are just as valid for multicompo- 
nent profiles with more than three directions. The 
only difference is that collapsing needs to be per- 
formed in more than one direction before analysis and 
that collapsing may be necessary prior to slicing. 
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