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ABSTRACT 
 
 

Simple structure and other common principles of factor rotation do not in general provide 
strong grounds for attributing explanatory significance to the factors which they select. In 
contrast, it is shown that an extension of Cattell's principle of rotation to Proportional Profiles 
(PP) offers a basis for determining explanatory factors for three-way or higher order multi-mode 
data. Conceptual models are developed for two basic patterns of multi-mode data variation, 
system- and object-variation, and PP analysis is found to apply in the system-variation case. 

 
Although PP was originally formulated as a principle of rotation to be used with classic 

two-way factor analysis, it is shown to embody a latent three-mode factor model, which is here 
made explicit and generalized frown two to N "parallel occasions".  As originally formulated, PP 
rotation was restricted to orthogonal factors. The generalized PP model is demonstrated to give 
unique "correct" solutions with oblique, non-simple structure, and even non-linear factor 
structures. 

 
A series of tests, conducted with synthetic data of known factor composition, demonstrate 

the capabilities of linear and non-linear versions of the model, provide data on the minimal 
necessary conditions of uniqueness, and reveal the properties of the analysis procedures when 
these minimal conditions are not fulfilled. In addition, a mathematical proof is presented for the 
uniqueness of the solution given certain conditions on the data. 

 
Three-mode PP factor analysis is applied to a three-way set of real data consisting of the 

fundamental and first three formant frequencies of 11 persons saying 8 vowels. A unique 
solution is extracted, consisting of three factors which are highly meaningful and consistent with 
prior knowledge and theory concerning vowel quality. 

 
The relationships between the three-mode PP model and Tucker's multi-modal model, 

McDonald's non-linear model and Carroll and Chang's multi-dimensional scaling model are 
explored. 
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I.  INTRODUCTION: THE SEARCH FOR "EXPLANATORY" FACTOR ANALYSIS 
 
Basic to the use of factor analysis as a tool for scientific discovery is the distinction 

between its "descriptive" and its "explanatory" application. While descriptive factor analysis 
seeks merely to find a convenient, condensed representation of data relationships for a given 
case, explanatory factor analysis seeks to discover good estimates of the structure of "true 
underlying" influences that are responsible for the observed data relationships. The degree to 
which factor analysis can provide explanatory solutions has always been a matter of controversy. 
 

The problem lies in the factor model itself. Descriptions in terms of the classic factor 
model are not sufficiently constrained by the data.  For any given set of data in which there is 
more than one factor common to the measures, the classical factor model allows for many 
possible sets of factors, all of which would equally well fit the data in a manner consistent with 
the model. But although these solutions are mathematically equivalent within the constraints of 
the model, they do not lead to equivalent interpretations of the influences underlying or 
organizing the data relationships. The classical factor model does not give us grounds for 
choosing among these many different possible explanations or interpretations of the data 
relationships. 

 
 

Is the Search for Explanatory Factors Meaningful? 
 

How meaningful is the distinction between convenient descriptive factors and so-called 
"true" or "valid" explanatory factors? A basic part of the controversy over explanatory factor 
analysis centers on the question of whether there ever exists a unique "true" structure of factors 
which "really" underlies a set of data. Thurstone, for example, argues against 
the search for unique solutions in factor analysis: 
 

When a factor analysis has been completed, ... the first question is 
naturally: "What are the parameters or factors?" It seems to be in the nature of 
science that such a question has no unique answer. In scientific work a parameter 
is one of the measurable attributes of an object in terms of which it is described ... 
a circle on a graph is defined by the two co-ordinates (x, y) of its center and by the 
radius r. These parameters are easily understood and easily used in most 
problems, but, of course, they are not unique. For some problems they would be 
awkward and another set of parameters would be chosen. The same is true in 
scientific work  …  To hunt for a unique solution in the comprehension of a set of 
related phenomena is an illusory hunt for absolutes.  

(Thurstone, 1947, p. 332) (his italics) 
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But in this comment, Thurstone seems to be conceiving of factors as playing a purely 
descriptive role. For such descriptive factors the selection of any particular solution from among 
the possible alternatives is based entirely on the simplicity, convenience and usefulness of the 
resulting description. In Thurstone's classic box problem (1947, p. 360), for example, the 
variables all consisted of different measurements on the size and shape of boxes (e.g. area of a 
side, length of the diagonals, length of the perimeter, etc.). Relations among these variables are 
"passive", in that they have no causal significance. There are no functional systems involved, and 
none of the factors extracted could be thought of as underlying causal influences. Since no 
explanation of the observed relations is sought, the choice of length, width, and depth as the 
extracted factors is somewhat arbitrary. It is simply the convenience of working with 
descriptions in terms of those three dimensions (as opposed to some factors which are linear 
combinations of length, width, and height), which justifies favoring this solution.* 

 
Such descriptive applications of factor analysis should be contrasted with applications in 

other domains, where the factors sought are the causes of patterns of covariance among the 
measures, or where one wishes to identify functional systems in natural processes. For example, 
tidal level and amount of daylight might be explanatory factors underlying the patterns of 
covariation in measurements of seashore activity, and functional systems might be sought in the 
ecology of the tidepools. The notion of an explanatory factor does not allow choice among 
factorial representations to be based on simplicity or convenience of the solution since a 
correspondence with some real external structure is sought. 

 
Consider the classic debate over the structure of human intelligence. From the same 

matrix of correlations among tests many different descriptions of the structure of intelligence can 
be derived. In one description, intelligence consists of one general intellectual factor plus many 
uncorrelated group factors corresponding to specific skills; in an alternative description, 
intelligence consists of a set of correlated basic intellectual abilities. Can one decide among these 
alternatives, or is the search for a unique solution to this question simply an "illusory hunt for 
absolutes"? 

 
It might be argued that the two different sets of explanatory factors are really two 

different ways of describing the same underlying system. And it is true that any real system, 
consisting of a complex network of interrelationships, can be described in a number of different 
ways. But explanatory descriptions have implications beyond the current set of measurements 
being described. Explanatory descriptions imply predictions about 

                                                           
* Since these factors were determined by simple structure rotation, they presumably represent a 
factorially invariant description. This gives that solution another type of convenience or 
usefulness. The significance of factorial invariance will be discussed later in this section. 
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the results of other possible experiments. Therefore descriptions which are equivalent for a given 
data set are not generally equivalent as explanations of the relations in that data set. It is true that 
such things as changes in terminology and level of detail can alter one's perspectives while still 
producing valid and equivalent explanatory descriptions, but in factor analysis one's descriptions 
cannot be so freely reformulated. With any given factor analysis one is dealing with some 
particular limited set of empirical variables and these variables constitute the descriptive 
"vocabulary". Any factorial description of the underlying functional system must consist of 
specifying specific relations between each variable and each latent factor. In light of these 
considerations, it seems much less likely that two alternative sets of explanatory factors could be 
really equivalent. 
 

It would seem necessary to try to decide between alternative sets of explanatory factors 
whenever the two explanations are "really different". In science, being "really different" amounts 
to having different empirical consequences. The fact that both models of human intelligence 
have the exact same mathematical consequences within classical factor analysis need not show 
the "meaninglessness" of the distinction. Rather, it might show the weakness of the classical 
factor model. In fact, the two conceptions of intelligence could not be called "really the same" 
unless they had the same empirical consequences (would make the same predictions) in all 
conceivable circumstances (e.g. in developmental studies, under the influence of drugs, etc.). But 
such is clearly not the case. They would, for example, predict different possible patterns of 
disruption of intellectual functions by drugs or as a result of brain damage. It would seem that 
most sets of alternative explanatory factors which are equivalent within the classical factor 
model are nonetheless meaningfully different, since the hypotheses they suggest would make 
differing predictions in certain appropriate circumstances. 

 
Because of these differences, one approach to the explanatory use of factor analysis has 

been to use factor analysis to generate alternative hypotheses (such as differing models of 
intelligence) and then devise and perform crucial observations or tests in order to select among 
the alternatives. With this approach the solutions of factor analysis only have explanatory force 
as part of a larger experimental program. 

 
A single factor analysis can often generate a large number of alternative hypotheses 

(since for a given multi-factor matrix there are an infinite number of alternative sets of factors). 
Therefore it would be desirable to develop a system of factor analysis which would directly 
determine unique explanatory factors. This could be accomplished by enlarging the conceptual-
mathematical model of factor analysis in such a way that the many alternate sets of factors are no 
longer equivalent within the model, but indeed have differing consequences which allow one 
solution to be preferred. This amounts to strengthening the model or the rotation process so that 
it incorporates the same type of ability to distinguish among alternative classical solutions that 
was previously only 
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possible by using factor analysis in conjunction with external experimental tests. For such a 
strengthened type of factor analysis, the fact that a given set of factors was discovered underlying 
a set of data would directly give those factors explanatory plausibility. This article proposes such 
a system of factor analysis. But before it is developed an examination should be made of the 
weaknesses of the traditional techniques for selecting among alternative sets of factors. 
 
 
Traditional Approaches to Choice of Factors 
 

The problem of determining which set of factors will be derived from a given factor 
analysis has been traditionally handled by adding a second stage of analysis after the factor 
extraction process. This second stage of analysis is called factor rotation, and consists of 
successively transforming the factors into mathematically equivalent alternative sets of factors, 
until some added criterion or principle is fulfilled. This added criterion forms the basis for a 
choice among the infinite number of possible solutions derivable as rotations of any given factor 
solution. 

 
An alternative, however, would be to replace the classical factor model with one which is 

not inherently underdetermined by the data. No additional rotation criterion would then be 
needed. But although Cattell (1944) came close to this alternative (see Sections II and III below), 
the search for explanatory factor analysis has proceeded, instead, by the development of 
principles of rotation for solutions derived from the classic factor model. And although great 
progress has been made along these lines, no fully adequate solution to the rotation problem has 
been found. As Comrey says "the rotation process has been the target of much criticism, and 
continues to be the weakest link in the entire [factor analysis] process" (Comrey, 1967, p. 143). 

 
One approach to the rotation problem is exemplified in a number of "special principles" 

which have been adopted by individual researchers to choose a rotation for their particular data 
or type of data. These principles usually amount to finding a rotation which seems "reasonable" 
or "meaningful" in that it agrees with knowledge about the data based on other grounds than the 
factor analysis itself. Insofar as this brings additional valid information to bear on the choice of 
rotation, it is a desirable improvement over an unrotated arbitrary solution. But this approach can 
yield many different solutions when used by individuals with differing knowledge or opinions 
about what constitutes an approximation to a "reasonable" set of relationships. Whatever merit 
such special principles might have in a particular circumstance, they do not constitute an 
objective general criterion which would tend to select the rotation with explanatory validity. 

 
 

Is Simple Structure Explanatory? 
 

The closest that factor analysis has come to an agreed general 
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principle of rotation is the concept of simple structure. The object of this approach is to minimize 
the number of factors influencing each variable. This amounts to finding a rotation which, as 
much as possible, allows each variable to be described in terms of a few factors which influence 
it strongly, rather than many factors which influence it less strongly. This simplifies the factorial 
description of the variables, hence the name "simple structure". The initial definition of simple 
structure was given by Thurstone (1935, p. 156; 1947, p. 335) and consisted of rules giving the 
proportion of near zero values that should appear in the rows and columns of the factor matrix. 
This definition of "simplicity" has been supplemented and extended with the advent of 
computerized analytical rotation methods. Varimax, for example, tries to achieve a  
complimentary type of simplification, i.e. to explain each factor with as few variables as possible 
(Harman, 1960, p. 301). 
 

Rationales have been presented for rotation to simple structure in both descriptive and 
explanatory factor analysis. In the case of descriptive factor analysis, the justification is simple. 
A few large loadings are easier to deal with than many small ones, and, in a sense, rotation to 
simple structure gives the most parsimonious description of a set of data. 

 
In explanatory factor analysis, rotation to simple structure is less clearly justified. Any 

description, however compact and convenient, which does not correspond to the underlying 
causal or "functional unities" (to use Cattell's terminology) would be misleading, if interpreted in 
an explanatory sense. 

 
The strongest general argument for preferring simple structure solutions when looking for 

explanatory factors is based on the principle of factorial invariance. This principle was 
formulated by Thurstone (1947, p. 361) as follows: "A fundamental requirement of a successful 
factorial method, [is] that the factorial description of a test must remain invariant when the test is 
moved from one battery to another which involves the same common factors." The description of 
a given variable should not fluctuate wildly from one study to another as a mere mathematical 
artifact of the rotation process. If reality is consistent, then any "explanatory" solution would 
have to reflect this consistency. 

 
It has been argued by Thurstone (1947), Cattell (1952) and others, that simple structure 

rotations tend to have this property of factorial invariance. Kaiser (1958, p. 195) has made this 
claim for the Varimax criterion. He presents an argument to show that it would have this 
invariance in the special case in which all variables fall into two colinear clusters, but stated that 
the generalization to a greater number of factors would involve enormous difficulties.   

 
Cattell seems to argue that some types of invariance give convincing proof that such 

factors represent the true form of underlying organic unities: 
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... the rediscovery of the same factors despite (a) partially different test batteries 
or (b) populations of different age, education, or dispersion, and (c) independent 
factorizations and rotations, is a proof that they have an existence as something 
more than mathematical equivalents -- that they are in fact functional unities in 
nature. (Cattell, 1955, p. 90) 

 
Such arguments, based on a consistent finding, do not rule out the real possibility of a 

consistent distortion of the true form of the latent factors being consistently generated by the 
repeated application of consistent, but inappropriate, rotation criteria. 

 
Even if simple structure could be clearly demonstrated to have perfect factorial 

invariance across data sets (as defined by Thurstone), this would not be a convincing argument 
for the explanatory validity of simple structure rotations. This is because factorial invariance is a 
necessary but not sufficient condition of explanatory validity. To see this, simply imagine that 
there is a certain real latent structure underlying a set of variables (let us call this structure S), but 
also imagine that this latent structure is not of simple structure form. Now if a factor analysis is 
performed of data with latent structure S and the simple structure criterion is used for rotation, 
then a different factor structure will be extracted, let us call it structure S'. Now it is likely that 
the form of S' is largely determined by the form of S, i.e. some sort of systematic distortion of S. 
Since S is a real and invariant latent structure measured in several different factorial studies, one 
would expect S', the simple structure distortion of S, to be consistently extracted from all these 
studies. The stability of S' across a number of different studies shows (perhaps) that it is a 
consistent transformation of a real latent data structure, but it does not in any way show that it is 
an undistorted expression of that latent data structure. Thus the finding that certain simple 
structure factors have "stood up" under the test of time and in a number of different factorial 
studies does not in itself give any evidence that they are accurate descriptions of the latent 
influences underlying the data. It only gives evidence for the existence of some factors that are 
related, by a consistent but unknown rotational transformation, to the simple structure solution. 

 
An inverse and equally objective criterion of "most complex structure" could probably be 

defined and would probably show similar consistency across studies. If not "most complex 
structure", clearly there are going to be some principles, related in a systematic way to simple 
structure, which would show similar invariance of results across studies. Thurstone admits that 
there are probably principles other than simple structure which would show factorial invariance 
(Thurstone, 1947, p. 364). But if this is so, then factorial invariance alone is clearly an 
insufficient argument for attributing explanatory significance to a principle of rotation. 
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          An important additional requirement for any "true" factor solution was proposed by 
Tucker (1958, p. 112). It is the converse of the principle of factorial invariance of variable 
description, namely "that the scores of individuals on a factor should remain invariant as the 
individuals are tested with different batteries which involve the factor". Clearly, if a person is 
found to have a small loading on the hostility factor with one battery, and a large loading with a 
different battery of tests, both cannot be measuring a "true" objective factor pattern (assuming 
that the individual hasn't had time or circumstances which might change his personality). 
 

Tucker's principle, which might be called a principle of factor score invariance, is also a 
necessary but not sufficient condition of explanatory validity. The same argument just advanced 
in relation to factorial invariance could be used here. Nonetheless, when these two principles are 
fulfilled in the rotation, we can have more confidence in the explanatory validity of a resulting 
solution than we could if it were just an arbitrarily selected rotation.' Only a subset of possible 
rotations should fulfill these criteria, and the true solution would be found among the members of 
that subset. 

 
If there is not, in general, a sound basis for attributing explanatory significance to factors 

determined by simple structure rotation, might there nonetheless be a valid explanatory 
application in some particular circumstances? The most sophisticated use of simple structure 
involves just such restricted application to certain selected types of data sets. The reasoning 
behind this approach has been well developed by Cattell (1955).  He argues that not all 
correlation matrices will yield factors which can be rotated to a clear and compelling simple 
structure (with a number of loadings very near zero for each factor), and therefore the discovery 
of such a clear structure among the possible rotations of a factor analysis is of great significance. 

 
In this approach, it is not justifiable to take the results of a factor analysis and rotate them 

to the best approximation of a simple structure, in order to maximize the invariance and 
interpretability of the solution. Instead, it is acknowledged that a simple structure might not 
really underlie the data, and therefore, if the results of a given factor analysis cannot be rotated to 
a sufficiently clear and compelling simple structure, the results are not interpreted. In such a 
circumstance it is concluded that the latent factors did not show a sufficiently well defined 
simple structure, and thus the rotation criterion cannot be trusted to have correctly discovered 
their true underlying form. 

 
In this approach it is admitted that simple structure is not a general procedure for 

extracting explanatory factors from data sets. Instead, the criterion is applied only to data sets in 
which the variables have been specially selected, on the basis of prior knowledge and 
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experience, so that none of the presumed latent influences would be expected to affect all of the 
variables included in the set. This approach recognizes that simple structure rotation will give 
explanatory solutions only if the true latent factors in fact have simple structure form. Therefore, 
an attempt is made to design data sets to fit this requirement. If, after extracting a set of factors 
from such a data set, it is indeed possible to find a rotation which shows a clear simple structure, 
this is taken as a confirmation of the original expectations. It is concluded that the attempt to 
build a data set whose factors would have simple structure was successful, and therefore simple 
structure rotation can be used as an appropriate guide to the true form of the underlying factors. 
 

But even this restricted use of simple structure for explanatory factor analysis is subject 
to serious theoretical objections. The most fundamental objection is to the central claim that the 
discovery of a clear simple structure provides a confirmation of one's initial conception that the 
latent influences would have simple structure form. Considered by itself, such a discovery is at 
best only suggestive. This alleged "confirmation" could in fact occur when the latent factors were 
not in simple structure form but instead were merely in some other form which was capable of 
rotation into a clear simple structure. While it is true that there exist many sets of factors which 
cannot be rotated into a clear, compelling simple structure, there of course also exist many others 
which can be so rotated. 

 
What, then, is the likelihood that the discovery of a clear simple structure is really a 

"false confirmation", revealing not the true latent structure but instead one of its alternative 
rotations? This question is difficult to answer. Certainly, the less clear and compelling the 
discovered pattern (i.e. the fewer near-zero loadings there are for each variable, and the further 
these loadings are from zero) the more likely it is that the resemblance to simple structure could 
have occurred by chance. But even if a configuration is discovered which is so clear that it could 
not have occurred by chance, it still need not have been due to simple structure patterns of 
influence. Other non-random influences or data characteristics can produce systematic factor 
relationships (hyperplanes oblique to true factor axes) which are rotatable to an apparent simple 
structure, but which would not display the zero loadings of a simple structure when the factors 
have their true orientation. A partial example occurs with the real data analyzed later in this 
article (see Figure 2, and Table 8, Section IV). The fact that alternative possible simple structures 
can sometimes be detected in a given data set (Cattell, 1955, p. 251, quoted below) further 
indicates that orderly patterns can arise which are not due to simple structure, but which can 
mimic the zero loadings of simple structure if rotated into a certain position. 

 
In actual application, Cattell and others use many grounds besides the discovery of a 

clear simple structure to argue for the explanatory 
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validity of any set of factors (e.g. interpretability of the factors, relation to prior findings, etc.). 
The case for choosing the simple structure rotation from among the many possible rotations is 
strengthened by arguments based on prior knowledge of the data and its presumed latent 
influences, and in this way the factors gain in explanatory plausibility. But as with any choice of 
factors based partly on prior expectations and on "meaningfulness" of the solution, the stronger 
one can make such an argument for explanatory validity, the more one must know about the 
presumed latent structure before the analysis, so the less one stands to learn from a factor 
analysis. 
 

Because of the tediousness of graphical rotation, and because some researchers object to 
its alleged "subjectivity", most simple structure solutions are now discovered through one of the 
analytical computer rotation procedures. But although the various computer rotation procedures 
give somewhat similar solutions, the results are sufficiently different to affect interpretation of 
the rotated factors. For example, "normal" Varimax rotation (Kaiser, 1958) tends to distribute the 
variance evenly across many factors, while the Quartimax method (see Harman, 1960, Chapter 
14) tends to concentrate it on a general factor, with the remaining factors having smaller 
influences (Harman, 1960, p. 302). 

 
An additional uncertainty arises from the controversy over orthogonal vs. oblique 

rotations. Restricting the factors to orthogonal positions is equivalent to requiring that all factors 
be uncorrelated with one another. But this complete independence of underlying influences 
seems unlikely to hold in many real situations. On the other hand, some workers have pointed 
out weaknesses in the principles of oblique rotation (Comrey, 1967; Harman, 1960). 

 
Even the uniqueness of simple structure solutions is sometimes questionable. Cattell 

comments that more than one simple structure position is sometimes found for the same set of 
data (using graphical rotation) "and in absence of any generally acceptable criterion we cannot 
decide, from the given matrix alone and without extraneous evidence, which is preferable" 
(Cattell, 1955, p. 251). It has recently been demonstrated that Varimax is not always going to 
give a unique rotation, but it does not seem to diverge too seriously from this ideal (Gebhardt, 
1968). 

 
The basic question, of course, remains; what grounds do we have for believing that a 

given rotation corresponds to the true underlying structure of influence that generated the data? 
Comrey questions the reasonableness of simple structure for many applications: 

 
If we sample at random from the entire universe of factors and use predominately 
factor-pure measures, simple structure will no doubt give results which are 
reasonably satisfactory. In many real-life factor analyses, however, where 
selection of variables is anything but random, and measures of considerable factor 
complexity sometimes predominate, one can 
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only hope that the simple structure criterion is approximately applicable. Simple 
structure pursued to its logical conclusion, i.e. by increasing to a maximum the 
number of near zero loadings per factor while allowing the axes to go oblique, can 
give results which may be misleading. The varimax criterion can also present 
problems. There is no particular reason why the variance of the squared factor 
loadings must be maximized, except that loadings are more easily interpreted if 
they are either high or low rather than medium in absolute value. It may well be, 
however, that they should be in medium range, rather than high or low, depending 
on the data being analyzed. 

(Comrey, 1967, p. 143) 
 

Comrey presents an alternative pair of rotation criteria for factor analysis, namely that 
variables which appear on the same factor should be correlated, and uncorrelated variables 
should not appear on the same factor. This principle, Comrey admits, would not always be valid 
in real life, but "the principle will be substantially appropriate for most correlation matrices taken 
in their entirety". The argument for this principle relies on expected probabilities. As with the 
simple structure criterion, we are making implicit assumptions about the probable latent structure 
(i.e. that it is not of the sort that would systematically violate the two principles). But perhaps the 
probabilities are more in our favor with Comrey's assumption than with an assumption of simple 
structure. (Until one is more familiar with the significance of the conditions wherein the 
principle might be expected to be systematically violated, it would seem hard to judge.) 

 
In view of all of the questions raised in this section, there does not appear to exist a 

principle of rotation from which one could make a strong and general argument for explanatory 
validity. One wants to find conditions where the rotation selected necessarily corresponds most 
closely to the latent structure that created the data relationships (except for deviations due to 
error variance). Such conditions would presumably be based on logical or mathematical 
considerations deriving from the factor model itself. Many factor theorists have given up hope of 
such a principle. Yet in 1944 Cattell came tantalizingly close to a solution to the problem when 
he formulated his principle of Parallel Proportional Profiles (Cattell, 1944). His approach is the 
foundation for the solution to be proposed in this article. 
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II. THE PRINCIPLE OF PARALLEL PROPORTIONAL PROFILES 
 

In 1944 Cattell published a review of principles which might be used for determining the 
desired rotation of a set of factors (Cattell, 1944). His objective was to discover the principle of 
rotation which had the strongest likelihood of explanatory validity. He rejected the notion that 
psychologists should be satisfied with a "convenient description" and nothing more. 
"Psychological research, as such, cannot ... be content with this limited goal. It strives toward 
psychologically meaningful functional unities ... 'How can one decide which one, among many 
possible sets of factors, alone corresponds to the real functional unities in the psychological 
situation?'" (Cattell, 1944, p. 267). 

 
Cattell reviewed seven principles for choice of rotation. These were: (1) Rotation to agree 

with clinical and general psychological findings; (2) Rotation to agree with factors from past 
factor analyses; (3) Rotation to put factors through the center of clusters; (4) Rotation for simple 
structure; (5) The principle of orthogonal additions: rotation to agree with successively 
established factors; (6) The principle of expected profiles: rotation to produce loading profiles 
congruent with general psychological expectations; (7) The principle of parallel proportional 
profiles. 

 
After discussing and finding objections to principles 1-6, Cattell focused his attention on 

(7), which he called "the most fundamental principle". He starts with the notion that "if real 
psychological functional unities exist they are bound to appear as possible mathematical factors 
in many different kinds of situations, whereas mathematical factors which are artifacts will stand 
only the test of fitting the particular matrix in which they happen to appear and may not be 
reproducible elsewhere" (Cattell, 1944, p. 274). But agreement across two different 
factorizations is not, itself, sufficient. 

 
... it is clear that to require agreement in factors and factor loadings among 
correlation matrices derived from the same or similar test variables on the same or 
similar population samples, is an empty challenge. No new source of rotation 
determination is introduced, for such matrices will differ only by sampling errors 
and there will be an infinite series of possible parallel rotations in the two or more 
analyses. The special and novel required condition is that any two matrices should 
contain the same factors but that in the second matrix each factor should be 
accentuated or reduced in influence by the experimental or situational design, so 
that all its loadings are proportionately changed, thereby producing, from the 
beginning, an actual correlation matrix different from the first. 

(Cattell, 1944, p. 274) (his italics) 
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The most concise statement of the logic of the parallel proportional profiles criterion occurs in a 
later article: 
 

The basic assumption is that, if a factor corresponds to some real organic unity, 
then from one study to another it will retain its pattern, simultaneously raising or 
lowering all its loadings according to the magnitude of the role of that factor 
under the different experimental conditions of the second study. No inorganic 
factor, a mere mathematical abstraction, would behave in this way ... This 
principle suggests that every factor analytic investigation should be carried out on 
at least two samples, under conditions differing in the extent to which the same 
psychological factors ... might be expected to be involved. We could then 
anticipate finding the 'true' factors by locating the unique rotational position 
(simultaneously in both studies) in which each factor in the first study is found to 
have loadings which are proportional to (or some simple function of) those in the 
second: that is to say, a position should be discoverable in which the factor in the 
second study will have a pattern which is the same as in the first, but is stepped up 
or down. 

(Cattell, 1955, p. 84) (his italics) 
 

This rotation criterion overcomes the objections leveled at the other techniques. (1) It is 
completely general, in the sense that it makes no assumptions about the size or distribution of 
factor loadings in a given study, but only asks that they be proportional to the loadings for that 
same factor in another study. (Although for philosophical reasons Cattell also called this 
principle "simultaneous simple structure", it in fact bears no relation to the mathematical 
assumptions and procedures of simple structure rotation criteria.) (2) It is objective, in that it 
does not require judgments of "reasonableness" based on other knowledge of the data under 
study. (3) Finally, the criterion has explanatory validity, since we would expect the parallel 
proportionality conditions to be fulfilled with real latent factors and only with real latent factors. 
 

But there was a basic problem with the implementation of the Proportional Profiles 
criterion. Cattell was only able to establish a procedure for discovering proportional profiles with 
orthogonal factors (Cattell, 1955). If the true underlying factors were not in fact orthogonal, then 
Cattell's technique would not be able to discover them. Since it is not normally possible to be 
sure, in advance, that the factors underlying a given data set are orthogonal, the explanatory 
validity of factors selected by Cattell's PP procedure would be questionable, at best. 

 
Demonstrations were made of the successful application of parallel proportional profiles 

with the orthogonal restriction to synthetic data 
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of known (orthogonal) factor composition. But the failure of a study using real data raised 
serious questions about the principle's effectiveness: 
 

Still seeking for living and organic (rather than merely physical) examples that 
would nevertheless be controllable we were encouraged by the recent discovery 
of drives as factors to suggest that hunger and thirst be factored from the usual 
learning and deprivation variables on two populations of rats. This work, by 
Haverland (Haverland, 1954) had larger variation of food deprivation in one 
sample and larger variations of water deprivation in the other. The many 
interesting findings cannot be described here; but it is questionable whether 
proportional profiles gave a meaningful solution, whereas simple structure gave 
easily recognizable drive patterns (best oblique, but acceptable even when 
orthogonal). 

(Cattell, 1955, p. 85) 
 

Because of the use of correlations as the base for analysis, Cattell encountered problems 
with his simple proportionality criterion. "If a variable is loaded by a factor 0.5 and the variance 
of that factor (still orthogonal) is doubled relative to other factors the loading will not equal 1.0. 
If we apply the formulae of Thompson and Ledermann (1939) and Thurstone (1947) for 
predicting the correlations to be expected after the variance of the selection variable has been 
changed (counting the factor as the variable on which the selection is made), it will be found that 
not all the loadings of a factor will change in the same proportion when the factor variance is 
changed" (Cattell, 1955, p. 86). 

 
At the fundamental philosophical level, parallel proportional profiles seemed clearly 

superior to all other rotation criteria.* It held out promise, in 1944, of answering the fundamental 
rotational problem of factor analysis in a satisfactorily general, objective, and persuasive fashion. 
It would have presented a strong argument of explanatory validity, since it sought to select a 
factor solution based on a form of invariance which one could expect only in "true, underlying 
factors". 

 
But parallel proportional profiles has not been developed and successfully used as a 

principle for factor rotation. It has languished, apparently bogged down in mathematical 
difficulties and restricted to orthogonal factors. Thus explanatory factor analysis has remained in 
the unsatisfactory condition described earlier. But (as subsequent sections of this article will 
show), when Cattell's principle of proportional profiles is incorporated into a revision and 
generalization of the factor model itself, techniques can be developed for arriving at unique 
explanatory factor solutions which will allow not only orthogonal and oblique factors, but non-
linear ones as well. 

                                                           
* for data showing system variation. This qualification will be developed in Section III. 
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III.  DEVELOPMENT OF THE THREE-MODE  PP  MODEL AND 
 

OTHER GENERALIZED FACTOR MODELS 
 
 

Cattell developed his principle of proportional profiles (PP) simply as a criterion for 
selection among the possible rotations of a pair of classical factor analyses. In fact, however, it 
provides a fundamental clarification or enrichment of the notion of a "true underlying" factor. As 
such, it can be considered as a modification of the classical factor model. 

 
Whereas the classical factor model was concerned only with the behavior of factors 

within a given study, Cattell's contribution was to consider also the expected behavior of factors 
in a pair of related but differing studies. Proportional profiles is a precise definition* of the 
expected behavior of the loadings of  "true underlying" factors in a pair of studies where the 
relative influence of the factors changes. 

 
To use Tucker's terminology (Tucker, 1964) classical factor analysis only considered two 

"modes of measurement" at a time. Typical of this would be the study of the scores of a number 
of persons, on a number of measures. The resulting data consisted of a two-way matrix of 
persons against measures. But the principle of proportional profiles is concerned with persons, 
on measures, on two different occasions. It is fundamentally a three-mode concept. 

 
 

The Three-Mode PP Model 
 

The classical equation of factor analysis could be written, for m factors, as: 
 

(1)  xji = aj1Fli + aj2F2i + ... + ajmFmi + Uji 
 
Here  xji  is a score on measure  j  for person  i  . Contribution of any factor (e.g. factor 2) to that 
score, is given by taking the product of  aj2  the loading of the jth measure on that factor, and F2i 
the score of the ith person on that factor. These values represent the relative influence of that 
factor on the  jth  measure and in the  ith  person.  The last term, Uji represents the contribution 
of a "unique factor" for each data value, and consists of the "specific factor" contribution plus 
error. 

                                                           
* Assuming, as shall be done here, that conventions for expressing loadings are revised so that 
proportionality is retained when factors change relative influence (e.g. change from correlations 
to functions which allow loading, to exceed 1.0). This will be developed later. 
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  The three-mode interpretation of parallel proportional profiles gives a straightforward 
generalization of this classical factor equation. The generalized equation would predict scores in 
a three-way data matrix, composed of elements  xkji  representing the score for the ith person on 
the jth measure on the kth occasion of measurement. The contribution of a given factor (e.g. 
factor 2) to a given score is computed in part as it was before, by multiplying the degree of that 
factor's influence for that individual,  F2i  , times the degree of that factor's contribution to that 
variable,  aj2  . But this estimate of the factor's contribution has to be modified by a coefficient 
describing the relative influence of that factor on that occasion:  ok2 . Thus all the contributions 
of factor 2 on occasion k are stepped up or down in a parallel proportional fashion by the 
coefficient  ok2 . The classical factor model becomes generalized as follows: 

 
(2)  xkji = okl ajl Fli + ok2 aj2 F2i + ... + okm ajm Fmi + Ukji 
 

In this formulation, the principle of proportional profiles applies to any number of 
occasions, rather than just two. It is no longer a principle for rotation of a classical solution, but 
instead it has become incorporated into a revision of the basic factor equation itself. Not only 
will this formulation play a basic role in the development of a PP analysis procedure, but its 
incorporation of more than two occasions will prove crucial for the successful practical 
application of PP analysis to data sets involving more than a very few factors (in Section IV, 
below). 

 
However, this form of the factor model is not completely general. It is not always true 

that the contributions of the factors from one occasion to the next would vary systematically in 
this manner. Cattell was aware that the proportionality would not always hold, and he discussed 
experimental designs in which one might ensure the desired systematic variation in factor 
influence. His unsuccessful experiment with drives in rats (Haverland, 1954, as cited in Cattell, 
1955, p. 85) was an example of an attempt to ensure that the relative influences of the presumed 
factors of hunger and thirst were systematically different from one group of rats to the other. But, 
perhaps because of his close association with personality-measurement applications, Cattell did 
not fully develop the theory of factor analysis to which the parallel proportional model could be 
applied, and distinguish it from the theory of a different type of factor for which an entirely 
different type of model would be necessary. This theoretical basis will be developed here in 
terms of two corresponding conceptual models for factor analysis. 

 
 

Two Conceptual Models for Factor Analysis 
 

Behind the mathematical model of factor analysis (the fundamental equation describing 
scores in terms of contributions from factors) 
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there must lie a conceptual model, a logical or semantic interpretation of the terms in such an 
equation by virtue of which its application to real data is deemed reasonable. Only when factor 
analysis has its foundation in some conceptual model can one hope that it will tell us something 
of explanatory value about the world. It would seem, therefore, that one logical approach to a 
three-mode factor model would be to start at the conceptual level, to apply the classical 
conceptual model of factors and factor analysis to three modes of measurement, and then from 
this enlarged conceptual model to develop an appropriate generalization of the mathematical 
model. Unfortunately, this is not possible. 
 

It soon becomes apparent that the classic two-way mathematical model of factor analysis 
is, in fact, an ambiguous representation of at least two fundamentally different conceptual 
models. Although these conceptual models have equivalent algebraic representation in the two-
way case, their algebraic generalizations to three-way and higher order data relationships are 
substantially different. 

 
For the purposes of discussion, the two basic models will be called (1) the "system-

variation" model and (2) the "object-variation" model of latent data influences. In the "system-
variation" model, unitary latent influences act across many objects, and thus the factor scores of 
the objects will vary proportionally across any third mode, (e.g. across occasions of 
measurement). In the "object-variation" model, latent influences are present separately in each 
object, and "factors" represent common types of these individual influences. Here the factor 
scores of each object will vary independently of the variations of those scores in other objects, 
when measured across a third mode. It will be useful, before proceeding further, to develop a 
clear picture of these two conceptual models. 

 
(1) The System-Variation Model 
 
Consider the example of an economic system. For a set of data, different individual 

businesses might be measured on a number of variables (e.g. production, investment, salaries, 
layoffs, etc.) on each month throughout a five year period. In such a set of data it would be 
reasonable to look for factors present in the system as a whole, operating across a number of 
individual businesses. One such system-factor might be described as "inflationary pressure". 
When this factor increased from one month to the next, its contribution to individual scores in 
the data matrix would rise in different businesses in proportion to their loadings on that factor. It 
would appear (in terms of the classical factor model) that their factor scores had all increased 
proportionately. The loadings of the individual businesses (Fli, F2i, ...) on that factor (classically 
called factor scores) would here represent the relative susceptibility of each business to the 
influence of that factor. The loadings of the different months (okl, ok2, ...) would represent the 
relative degree of activity or influence of that factor in the system as a whole for that month (in 
this case the fluctuations in inflationary pressure in the 
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economy from month to month). The loadings on the variables (ajl, aj2, ...) would represent the 
degree to which each type of measurement was influenced by (or reflected) changes in that factor 
(in this case, the degree to which layoffs, salaries, etc. are influenced by "inflationary pressure"). 
The system-variation conceptual model would be appropriate for such data, and thus it would be 
appropriate to apply the parallel proportional profiles mathematical model for three-mode factors 
which was developed earlier in this section. 
 

Another source of data which could be expected to show system-variation of factors 
would be any biological system, for example the brain of a laboratory animal. Electrodes could 
be placed in different brain centers, and the EEG activity recorded from each electrode could be 
subject to spectral analysis. Sets of these spectra could be measured for each of a number of 
different occasions, yielding a three-way data set of measured spectral intensities. Its modes 
would be frequency by brain center by occasion. The system-factors sought in such an 
experiment would be the hypothetical "generators" of EEG activity within the brain. Each factor 
might correspond to one such generator. It would have large loadings on those spectral 
frequencies corresponding to the type of EEG "wave" it generated. Its factor loadings in different 
brain centers would describe the relative influence of that generator in the brain activity at those 
locations: the "effective proximity" of those brain centers to the generator. The loadings on 
different occasions would represent the relative "activity" of that generator across those 
occasions. Certain EEG generators could be expected to be much more active during certain 
stages of sleep, others during alert goal-oriented behavior, etc. Again, the factors are acting in the 
system, across "individuals". The loadings of "individuals" (e.g. brain centers) represent their 
different susceptibilities to these common latent influences. Therefore it is reasonable, with this 
conception of brain activity, to expect parallel proportional changes in factor influence across a 
third mode of measurement as the latent factors change in their relative degree of activity or 
influence. 

 
Other likely examples of system-variation data might be found in studies of languages, 

weather patterns, ecological systems such as a forest, and social systems. The key feature of the 
factor model in all these systems is that the factors are interpreted as single, unitary influences, 
existing in the system as a whole, and through the system influencing individuals in a 
coordinated fashion. 

 
The system variation concept will immediately generalize to cases of four-mode and 

higher order relationships. A four-mode application might arise, for example, if an attempt were 
made to analyze (1) a number of measurements of (2) a number of different speech sounds, as 
made by (3) a number of different individuals, and as occurring in (4) a number of different 
languages. If  cpn  is taken to represent the loading of the nth factor on the pth condition of 
measurement, then a four-mode linear model for system-variation would be written: 
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(3)  xpkji = cpl okl ajl Fli + cp2 ok2 aj2 F2i + ... + cpm okm ajm Fmi + Upkji 
 

(2) The Object-Variation Model 
 
Now consider, by contrast, the example of personality or aptitude measurement. In a 

typical personality study a group of several hundred persons are administered questionnaires 
containing items like "When I get angry, I throw things." and are asked to rate how much each 
item applies to them. The result is a two-way data set of answers by persons. If one re-
administers the questionnaires to the same individuals on a number of different occasions, a 
three-way data set (answers by persons by occasions) will be generated. But the properties of 
such a data set are fundamentally different from the system-variation examples previously 
described, and therefore require a different conception of "factors" and their relation to the data. 

 
In cases such as personality or aptitude measurement, the "factors" are not conceived of 

as residing in the system, but instead in the objects or individuals being measured. Such "factors" 
are not unitary influences across individuals, but are merely "unitary" across a set of measures 
within a given individual. The meaning of extracting factors from a whole population of 
individuals lies in identifying characteristic types of latent influences within individuals or 
objects. When a researcher says "a factor of hostility clearly emerged in this population," he 
means that a characteristic type of influence was identified. The factor of "hostility" occurs in a 
distinct, separate way in each individual. There is no reason to suppose that the "hostility" factor 
scores of two different persons would necessarily vary in parallel from one occasion of 
measurement to the next. This concept of the data and its variation is here called the object-
variation model for factor analysis. 

 
For two-mode factor analysis, the mathematical model is the same, whether the 

underlying conception is of a system-variation or object-variation case. In both cases the 
loadings of the individuals on the factors (the factor scores) represent the influence of the given 
factor for that particular individual. It does not matter whether that factor is conceived of as a 
unitary influence acting simultaneously on all the individuals of the system, or whether the 
"factor" is in fact conceived of as a type of influence which occurs separately within each 
individual. In both cases the (Fli , F2i , ...) coefficients suffice for expressing in the two-way 
model the degree of the factor's influence in a given individual. 

 
This mathematical equivalence of the two conceptual models breaks down for three-way and 
higher order data variation. As noted earlier, this is because the system-variation model predicts 
a coordinated variation of factor influence across a third mode (and any fourth or higher mode), 
whereas the object-variation model predicts that the changes in 
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the degree of expression of a given factor across any third mode should be uncorrelated from one 
individual to the next. 
 

Equation 2 gives a mathematical model appropriate for a linear three-mode application of 
the system-variation concept. The corresponding linear three-mode model can be constructed to 
express the object-variation concept, as follows:  the difference between the influence of a given 
factor on one occasion and any other consists of a number of uncoordinated shifts (generally 
small) in the amount of this factor in some of the individuals; this small shift or variation "V" in 
the factor score of a given factor for individual  i  on occasion  k  is symbolized  Vkli for factor 1, 
Vk2i  for factor 2, etc, The general object-variation expression for a given data value then 
becomes (in the linear, three-mode case): 

 
(4)  xkji = ajl(Fli + Vkli) + aj2(F2i + Vk2i)  + ... + ajm(Fmi + Vkmi) + Ukji 
 

This model resembles a set of independent two-way factor models with respect to the 
factor scores of individuals, but it is a common model with respect to the factor loadings on 
variables. In this weak general form it will have no unique solution determined by the data. To 
try to secure a unique, "explanatory" solution, an additional constraint must be placed on the V 
values. Is there a criterion which can be applied to take advantage of the additional information 
supplied by the third mode, without demanding parallel proportional relationships which would 
only be found in system-variation data? 

 
One possible constraint, suitable for many sets of object-variation data (including 

personality questionnaire data) can be derived from considerations of continuity. Even when an 
individual's variations in factor scores are not related to those of other individuals, they are still 
related to his own previous scores, if the occasions of measurement are "sufficiently close" to 
one another in the third mode (e.g. sufficiently close in time if the third mode covers successive 
occasions of measurement). Just how close is "sufficiently close" will depend, of course, on the 
rates of change expected in the factors underlying the particular data. Perhaps this could be 
estimated from the rates of change of the variables themselves. If the occasions are "sufficiently 
close" to one another, then the shifts or V values, measured from one occasion to the 
immediately prior or succeeding one, should always be small, even when the cumulative shifts 
over many occasions might be large for some individuals. We could expect most types of 
underlying factors to show this sort of continuity over samples taken at sufficiently short 
intervals. Therefore a reasonable additional constraint upon the V values of equation 4 would be 
the condition: 

 
(5)  minimize 2

kfi (k-1)fi(V V )−∑  
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  This elementary continuity measure has many shortcomings, and we shall immediately 
take advantage of an insightful and highly related paper by Shepard and Carroll (Shepard and 
Carroll, 1966, p. 581) and borrow their adjusted criterion (translated into our notation): 
 

(6)  minimize 
2

kfi k'fi
kk'

k k '

V -V w
k-k'

 
  

∑∑                k ≠ k' 

 
where  wkk′  is some monotone decreasing function of  k - k' . In effect, this considers not only 
immediately adjacent factor scores but (to a lesser degree) scores in the vicinity, as determined 
by the  wkk′  weighting function. 
 

Whereas the proportional profile system-variation model will be studied in detail in 
Section IV, the actual properties of the object-variation model have not yet been investigated. 
The model is developed here because of its great theoretical interest and its relations to the 
system-variation case. As an initial comment, however, it seems clear that the factor scores of a 
number of individuals would have to shift significantly and in independent fashion in order for a 
unique solution to be obtained with the proposed continuity criterion. Since no tests have been 
conducted, it is not known how effective such a criterion would be, and under what conditions it 
could be expected to give an "explanatory" unique solution. But it seems definitely to merit 
further investigation. 

 
 

Mixed Types of Variation 
 

With some types of data, one might expect significant effects involving both system- and 
object-variation. Consider, for example, studies of the development of human abilities. As 
children grow older, general systematic changes can be expected to occur in the relative 
influence and expression of different ability factors. There will also, however, be variations in 
these factors for each individual due to the unique circumstances, history, and genetic 
complement of that child. A similar interplay of system-variation and object-variation would be 
expected in measurements of individuals going through a series of learning trials, mastering 
some complex skill. 

 
One simple way of analyzing data containing such mixed variation patterns might be to 

ignore the object-variation and merely try to "fit" the system-varying factors. If, in a given case, 
all factors of interest could be expected to show sufficient system-variation, then the object-
variation could be considered part of the "noise" or error of the model's fit to the data. On the 
other hand, if techniques for analysis of object-variation were successfully developed (along the 
lines suggested earlier 
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in this section), and if such an analysis were performed on mixed type data, then both the object- 
and the system-variation would be described by the tables of "V" values for each factor. An 
analysis of these tables would reveal precisely how much variation of each type was present. 
 

The concept of analysis of the "V" tables needs to be explored more fully. When 
considering the possible structures of these tables one becomes aware of possible complex 
patterns which could not be attributed to either system-variation or object-variation, or even to 
any "mixture" of these two cases. These complex new types of possible data variation pose 
difficult questions of interpretation, apparently requiring new conceptual models. But since the 
appropriate models for such situations appear to be strongly related to Tucker's concepts 
developed for his three-mode factor analysis (Tucker, 1963, 1964, 1966), further discussion of 
these patterns will therefore be deferred until Section VII, where they will be discussed in 
relation to Tucker's approach. 

 
The object-variation model given in equation 4 allows for change in the amount of a 

factor in any individual or object, but retains constant factor loadings on the variables. Even this 
restriction will sometimes seem inappropriate. It might sometimes be the case (e.g. in the child 
development example given above) that one could expect shifts in the loadings of the factors on 
the measures, as well as on the individuals. As children grow, they might alter their interpretation 
of a given question, or there might be shifts in the degree to which certain abilities are used to 
solve a given problem. A more general model of object-variation might therefore be written: 

 
(7) xkji = (ajl + V′klj)(F1i + Vkli) + (aj2 + V′k2j)(F2i + Vk2i) +  . . . 
 

. . . + (ajm + V'kmj ) (Fmi + Vkmi)  +  Ukji 
 

With this generalized object-variation model, the continuity constraint would have to apply to 
both the  V  values of factor score variations, and the  V'  values of factor loading variations. 
 

The generalized object-variation model of equation 7 suggests that a classic factor 
analysis might be performed on each of the successive occasions of a three-way data matrix, and 
then an attempt should be made to rotate these separate solutions into the greatest degree of 
agreement with one another. Techniques have been developed for such rotation of two sets of 
factors (Wrigley and Neuhaus, 1955; Horst, 1965) and all that might be needed for their 
application here is a generalization of the rotation criterion from that of best agreement between 
two sets of factors, to the most continuous agreement of factors over the entire series of 
occasions ("most continuous" defined as in the continuity criterion in expression 6). 
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Extending the Application of the PP Model 
 

The distinction developed in this section between system-variation and object-variation 
would seem to rule out applying the PP model to many interesting types of data sets, for example 
personality test data. The same apparent restriction confronted Cattell in his development of the 
original proportional profile rotation criterion. One of his primary interests was the application to 
personality test data, and so he devised ways in which one could deliberately impose the required 
systematic variation on what would otherwise be object-variation type data (Cattell, 1944,  p. 
275). Though not all of these techniques apply to our generalized model, several of his 
suggestions are quite relevant. The basic idea is simply to alter the conditions under which 
measurements are made on the successive occasions in such a way that the relative influence of 
different factors will change for all individuals. Administering a test under speeded vs. 
unspeeded conditions, under different "sets", using different instructions, etc. might all be used 
to impose overall enhancement or suppression of particular factors. For further discussion the 
reader is referred to Cattell (1944, p. 275). 
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IV. TESTING THE THREE-MODE PROPORTIONAL PROFILES MODEL 
 

The PP model has been tested in two basic ways: (1) by using it to analyze synthetic data 
of known factor composition; (2) by applying it to real data. The tests with synthetic data helped 
to determine the behavior of the model and of the analysis technique with different size data sets 
and different latent factor structures. The conditions in which uniqueness breaks down and the 
minimal requirements of an "adequate" data set were determined in a trial and error fashion. This 
knowledge then guided the applications of the model to real data. 

 
 

Synthesis of the Data 
 

In order to judge whether or not PP three-mode factor analysis can correctly extract the 
true latent structure of a set of data, it is of course necessary to know in advance what that latent 
structure is. To this end, a FORTRAN  IV computer program was written to generate synthetic 
data. Input to the program was a description of the factors and the dimensions of the desired data 
set, output was the set of data generated by those factors. Exact error free data was created, since 
this simplified the recognition of optimal fit and allowed the initial tests to concentrate on those 
aspects of the solutions determined by the data structure rather than by error variations. 
Specification of the factors used to generate a given set of data consisted simply of specifying the 
loadings of those factors on each measure, on each individual or object, and on each occasion. 

 
The term "loading" as applied to the PP model, should not be taken to mean more than 

simply a weighting coefficient, describing the variations of relative influence of a given factor 
from one occasion to the next (or one person or variable to the next).  This use is a generalization 
of the term "loading" as it normally occurs in factor analysis. Since the analysis procedure 
developed below completely bypasses the computation of correlation coefficients, either among 
components of the data or among data and factors, the mathematical properties of the "loadings" 
developed by the PP analysis are not the same as those of conventional loadings. This is 
particularly significant since (as Cattell discovered) strict proportionality does not hold across 
conventional loadings when a factor increases its relative influence (Cattell, 1955, p. 86). In 
contrast, the "loadings" used in the PP analysis do maintain proportionality as a factor changes 
its relative influence. These "loadings" are simply the weights which would occur in equations, 
such as 8, predicting the raw data from the factors. 

 
A set of factor loadings input to the program generating synthetic data is given in Table 

1, and the resulting data in Table 2. The data was synthesized from the input loadings as follows: 
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TABLE 1 
 

Typical Loadings Used to Generate Synthetic Data 
 
Occasion Loadings 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 1.000 1.000 1.000 1.000 
2 1.500 2.150 0.0 0.100 
3 1.000 0.350 0.300 0.400 
4 0.500 0.900 1.200 0.300 
5 0.900 0.500 1.300 1.100 
6 1.000 1.100 2.800 2.300 
7 1.100 1.000 0.200 1.800 
8 0.0 1.000 1.100 0.500 
9 0.900 0.0 0.600 0.700 
10 2.100 2.000 1.500 1.800 
 
Person Loadings 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 1.000 0.600 1.000 2.000 
2 1.100 0.700 1.400 0.600 
3 0.900 0.800 1.300 0.700 
4 1.200 0.900 1.200 0.800 
5 0.800 1.000 1.100 0.900 
6 1.300 1.100 1.000 2.000 
7 0.700 1.200 0.900 0.900 
8 1.400 1.300 0.800 0.800 
9 0.600 1.400 0.700 0.700 
10 1.000 1.000 0.600 0.600 
 
Test Loadings 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 -1.100 0.010 0.120 0.110 
2 1.000 0.030 0.210 0.070 
3 4.000 0.030 0.120 0.030 
4 0.190 3.000 0.320 0.600 
5 0.230 7.190 0.500 0.110 
6 0.010 0.740 5.250 0.130 
7 0.500 1.500 9.500 1.500 
8 -0.900 0.200 2.100 0.300 
9 0.010 0.100 0.030 9.990 
10 0.110 -0.200 -0.800 7.640 
 
 
A typical set of factor loadings used to generate synthetic data. Note the absence of orthogonality 
and simple structure. 
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TABLE 2 
Data Computed for Occasion 1 
1 -0.754 1.368 4.198 3.510 5.264 5.964 13.900 1.920 20.080 14.470 
2 -0.969 1.457 4.607 3.117 6.052 7.957 15.800 2.270 6.117 3.445 
3 -0.749 1.246 3.801 3.407 6.686 7.517 15.050 2.290 7.121 4.247 
4 -1.079 1.535 4.995 3.792 7.435 7.082 14.550 1.860 8.130 5.l04 
5 -0.639 1.124 3.389 4.044 8.023 6.640 13.700 2.060 9.132 5.884 
6 -1.079 1.683 5.413 5.067 8.928 6.337 14.800 1.750 20.133 14.403 
7 -0.551 0.988 2.971 4.561 9.338 5.737 12.050 1.770 9.145 5.993 
8 -1.343 1.663 5.759 4.902 10.157 5.280 11.450 0.920 8.160 5.366 
9 -0.485 0.838 2.547 4.958 10.631 4.808 10.100 1.420 7.160 4.574 
10 -0.952 1.198 4.120 3.742 7.786 3.978 8.600 0.740 6.122 4.014 
 
Data Computed for Occasion 2 
1 -1.622 1.532 6.024 2.205 4.681 0.485 1.950 -1.170 2.073 1.573 
2 -1.801 1.675 6.623 2.449 5.419 0.542 1.965 -1.327 0.686 0.500 
3 -1.469 1.379 5.426 2.698 6.070 0.615 1.980 -1.034 0.793 0.523 
4 -1.962 1.833 7.229 3.090 6.894 0.694 2.370 -1.416 0.907 0.629 
5 -1.300 1.236 4.833 3.282 7.476 0.764 2.235 -0.853 1.011 0.620 
6 -2.112 1.997 7.839 3.790 8.379 0.859 2.925 -1.475 2.127 1.522 
7 -1.133 1.092 4.239 3.853 8.879 0.910 2.460 -0.678 1.030 0.563 
8 -2.288 2.145 8.441 4.347 9.839 0.993 3.120 -1.606 0.950 0.582 
9 -0.968 0.947 3.644 4.413 10.281 1.054 2.655 -0.509 0.848 0.354 
10 -1.633 1.534 6.032 3.321 7.542 0.763 2.340 -1.132 0.714 0.423 

� 
� 
� 

Data Computed for Occasion 9 
1 -0.764 1.124 3.714 1.203 0.661 3.341 8.250 0.870 14.013 10.315 
2 -0.942 1:196 4.073 0.709 0.694 4.474 9.105 0.999 4.231 2.646 
3 -0.743 1.008 3.348 0.697 0.630 4.167 8.550 1.056 4.927 3.209 
4 -1.040 1.270 4.423 0.772 0.670 3.864 8.220 0.708 5.627 3.821 
5 -0.643 0.903 2.978 0.726 0.565 3.554 7.575 0.927 6.321 4.364 
6 -1.061 1.394 4.794 1.254 0.723 3.344 8.385 0.627 14.016 10.345 
7 -0.559 0.787 2.604 0.670 0.484 2.923 6.390 0.756 6.316 4.450 
8 -1.267 1.400 5.114 0.729 0.591 2.605 6.030 0.042 5.621 4.033 
9 -0.490 0.662 2.225 0.531 0.388 2.274 4.995 0.543 4.913 3.467 
10 -0.901 1.005 3.656 0.538 0.433 1.954 4.500 0.072 4.216 3.020 
 
Data Computed for Occasion 10 
1 -1.722 2.703 8.724 6.639 10.257 9.252 22.500 2.580 36.150 26.295 
2 -2.156 2.869 9.566 5.959 11.766 12.224 24.825 2.935 11.015 6.545 
3 -1.690 2.436 7.880 6.539 13.052 11.604 23.760 3.092 12.825 7.954 
4 -2.380 3.053 10.393 7.319 14.580 10.994 23.220 2.304 14.645 9.479 
5 -1.452 2.200 7.027 7.819 15.770 10.370 21.945 2.839 16.450 10.842 
6 -2.405 3.363 11.274 9.759 17.592 9.998 24.315 2.213 36.256 26.164 
7 -1.253 1.939 6.163 8.883 18.447 9.089 19.590 2.478 16.479 10.978 
8 -2.906 3.371 12.025 9.607 20.129 8.441 18.930 0.826 14.711 9.845 
9 -1.093 1.653 5.288 9.731 21.085 7.761 16.695 2.009 12.911 8.365 
10 -2.063 2.425 8.600 7.335 15.432 6.366 14.220 0.724 11.037 7.362 
 

Data synthesized with the latent structure defined by Table 1. 
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(8)  xkji = Okl Ijl Mil  +  Ok2 Ij2 Mi2  + ... +  Okm Ijm Mim 
 
where the "O" values represent weights for the different occasions, the "I" values represent 
weights for the different individuals, and the "M" values represent weights for the different 
measures. 
 

A relativity of scale is apparent in the  PP  model. Consider equation 8, which generates 
data according to that model. If all of the "O" values for any factor are doubled, and all the "I" 
values are halved, the resulting data is unchanged.  In general, any factor could have all of its 
loadings for one mode multiplied by some constant, and so long as all its loadings on one of the 
other modes were divided by the same constant, the results would be equivalent. Such an 
operation changes the factor's absolute scale in any given mode, but it does not alter the 
relationships among the loadings within any mode. Therefore, all these changes of scale yield 
descriptions of the factors which are completely equivalent with respect to interpretation. 

 
It was decided to adopt a scaling convention so that solutions with the  PP  model would 

not be subject to this trivial type of indeterminacy. For this purpose, the average value of the 
influence of any factor, across all "occasions", was taken to be 1.0. Similarly, the average 
amount of influence of any factor, taken across all "individuals", was also set to 1.0. Thus a 
loading of 2.0 on either of these two modes meant that a factor was twice as active as average on 
that occasion or in that individual, 0.5 meant half as active as average, etc. Loadings on the third 
mode, measures, would therefore give directly the average contribution of that factor to the 
predicted score of that measure. The input specifications of factors for the data synthesis 
program (Table 1) were selected to follow these conventions. 

 
 

PARAFAC: The Computational Technique for Data Analysis 
 

The PP three-mode factor model (2) is sufficiently different from the classical factor 
model (1) to make conventional factor analysis algorithms inapplicable. An analysis procedure 
called PARAFAC (for parallel factors) was developed to accomplish the required analysis. One 
objective of this work has been to develop a technique which is general enough to fit both the PP 
model and a family of related models to real data. For this reason, an approach was adopted 
which involved direct optimization of the parameters of the model. As Green points (Green, 
1966, p. 440), "Nearly all psychometric procedures can be looked upon as attempts to optimize 
some criterion ... Factor analysis seeks the minimum number of parameters to describe the 
maximum amount of inter-correlation among the variables. Whenever one is fitting a model to 
data, one seeks parameters of the model that fit the data as closely as possible -- parameters that 
optimize some measure of fit." In this case, the PARAFAC analysis procedure tries to fit the 
mathematical model of (2) to the data as closely as possible, using the least-squares criterion of 
fit. This is similar to the approach recently 
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developed by Harman and Jones (1966) for conventional factor analysis models. The  U  term of 
equation 2 is here taken as equivalent to the error of estimate, i.e. (x - �x ). In a sense, then, it 
"drops out" of the model. The equation used for computation of the estimated data values was 
 
(9)  kji km jm im

m
�x = O I M∑  

 
and it was required that the parameters (the I, O, and M values) minimize the sum of the           
(x - �x )2 residuals. Unlike Harman and Jones (1966), this technique estimates three sets of 
parameters (or factor "loadings"), rather than just one. As a result, a large number of parameters 
have to be "fit" simultaneously to the data. For a matrix of 10 measures, on 10 individuals, on 10 
occasions, there are 1000 data points, and for each factor fit to such a data set there are 30 
loadings to be estimated (10 weights for occasions, 10 weights on individuals, and 10 weights on 
measures). For four factors, a total of 120 parameters have to be estimated simultaneously. Such 
large problems can bog down conventional optimization techniques based on gradients. 
 

Fortunately, a powerful optimization routine was made available for this work by Hans 
Reichenbach. The program is called Routine TBU, and is thoroughly described in a  400+  page 
manual and theoretical article (Reichenbach, 1969) of which only an earlier and more primitive 
version has been published (Reichenbach, 1962).  A common cause of convergence difficulties 
with gradient techniques occurs when the routine becomes trapped on a "thin ridge" in its upward 
path on the multi-dimensional hypersurface. In order to avoid this difficulty, Routine TBU uses 
trends in the changes of the variables rather than gradients. A complete iteration of this routine 
contains a section where each variable is changed individually as a function of its current short-
range and long-range trends, and another section where all variables are changed simultaneously 
according to some optimal proportion of their trends. The routine alternates between these two 
methods of changing variables. Both Harman and Jones (1966) and Joreskog (1966) adopted 
modifications of the steepest descent technique to improve convergence, and these modifications 
are related in different ways to features of TBU. The reader interested in further details on TBU 
is referred to Reichenbach (1962, 1969). 

 
TBU proved successful in optimizing 30-120 variable models involving one to four 

factors, but convergence became markedly slower as the number of factors increased. On the 
IBM 360/91 computer, one factor could be fitted to a 10 by 10 by 10 data set in a few seconds. 
Two factors would often require twenty seconds, three factors one hundred seconds, and four 
factors several hundred seconds or more, depending on the characteristics of the data set. Beyond 
four factors, convergence took too long to be practical. This working range of 1-4 factors 
provided sufficient leeway to explore many of the theoretical properties of the model, such as the 
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conditions for a unique solution and the effects of extracting more or fewer factors than were 
used to create the data. But for practical application and for more general theoretical studies, an 
improvement of the algorithm was clearly necessary. 
 

Dr. Robert Jennrich of the UCLA Department of Biomathematics proposed a special 
purpose computation algorithm for the solution of the linear  PP  three-mode model which 
proved to be much simpler and faster than the generalized approach which was being used. His 
development of this algorithm was as follows: 

 
Given the representation 
 

(10) ijk i j k ijkx O I M El l ll= +∑  
 
we seek values of Oil, Ijl, and Mkl which minimize the sum of squared errors  2

ijkijk E∑ . For 

fixed values of  Oil  and  Ijl  the selection of values  Mkl  which minimize this sum is a simple 
multiple linear regression problem whose solution is: 
 
(11) 

m
k mkmM l
l x y= ∑  

 
where 
 

(12) ( )( )m i im j jmi jO O I Il l lx = ∑ ∑  , 

 
(13)  k i j ijkijO I xl l ly = ∑  , 

 
and the matrix  (xlm )  is the inverse of the matrix  (xlm ).  Similar formulas give  Ijl  in terms of 
Oi1  and  Mkl  and  Oil  in terms of  Ijl  and  Mkl . A complete algorithm consists in solving for 
the matrices  (Oil),  (Ijl)  and  (Mkl)  in order and repeating until convergence is obtained. 
 

This algorithm has been found to converge in less than ten seconds for many data sets 
involving four to six factors. But in other cases (particularly certain types of data sets to be 
described below) convergence would proceed only to a certain point, beyond which a large 
number of iterations would produce little improvement of fit to the data. 

 
To cope with this difficulty, a relaxation factor was added to the computation procedure. 

Examination of the behavior of the factor loadings after convergence slows down reveals that 
they continue to move in small, steady steps, usually in the direction of the desired unique 
solution. 
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In order to increase the size of these steps, a modification is made in the computation given in 
equation 11. An adjusted estimate M* is computed for each factor loading according to the 
relation 
 
(13) M*kl = M'kl  +  R(Mkl - M'kl) 
 
Where  Mkl  is the value for the factor loading which would be computed for this step according 
to the unmodified procedure of equations 10 through 13, and  M'kl  is the old value for the 
loading computed during the last iteration. R, the relaxation factor, is assigned a value between 
1.0 and 2.0. 
 

The effect of this modification is to push each loading further in the direction that it has 
been moving, beyond the value which is optimum simply for this cycle, and hopefully towards 
the final overall optimum value. Although a relaxation factor seems to provide a small gain, 
since it increases any step size by less than 2.0, under the proper conditions it has a 
"snowballing" effect, since the resulting adjusted loadings are used as the basis for the 
unadjusted values computed in the next cycle, and the values of that cycle are then themselves 
adjusted, thus moving even further in the desired direction. Thus the effect of a small relaxation 
factor can continue to multiply itself on successive iterations. 

 
Modifications to this algorithm are still being explored, and the results are as yet tentative 

and incomplete. The effectiveness of the procedure depends critically on both the size of the 
relaxation factor and the characteristics of the data set. To date, the best overall value for the 
relaxation factor seems to be in the range 1.2-1.3. Using this modified algorithm, it often 
becomes possible to push the residuals to very low limits until a point is reached where the factor 
loadings themselves cease to change. The ability to push analysis much closer to true 
convergence and a perfect fit to the data has led to the discovery of unique solutions where they 
were previously not believed to exist. This has forced a reevaluation of the minimal necessary 
conditions for uniqueness (to be discussed below). Therefore, even though these new algorithms 
are still in the process of development and only incomplete results are available, these results are 
significant enough to warrant including them in the discussion which follows. 

 
 

The Analysis of Synthetic Data 
 

Approximately 30 tests were performed by analyzing synthetic data using the 
optimization technique of Routine TBU. In these tests the number of factors in the data was 
varied from two to four, and the number of factors extracted ("fit" to the data) was varied from 1 
to 5, ranging both below and above the "true" number of factors used to construct the data. The 
size of the data set was varied systematically, the number 
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of intervals in any mode ranging from 1 to 10. The pattern of factor loadings was initially all 
positive, but negative and zero loadings were subsequently introduced to ensure generality. As 
can be seen from inspection of a typical example given in Table 1, the factors were not generally 
orthogonal and did not display simple structure. They were selected to conform to the scale 
convention discussed earlier, and were varied so that a row of factor loadings would not repeat 
the relations of any other row in that mode. 
 

After the development of the quick algorithm for the linear case, approximately 50 
additional tests were performed with synthetic data. In these experiments the number of factors 
in the data ranged as high as 10, and the dimensions of the data set were expanded to a maximum 
of 20 by 20 by 20. In most of these experiments the factor loadings were generated from a 
sequence of uniform pseudo-random numbers*  between 0.0 and 2.0 (before normalization). 
Since this left the factors in general uncorrelated, specific tests were performed with correlated 
factors. These factors were constructed by adding a percentage of each loading of a given factor 
to the loading of the factor with which it was to be correlated. 

 
Because error free data was used, classification of the resulting solutions was usually 

clear cut. Complete fit was recognizable by near-zero residuals (from 1% to .01%, depending on 
the amount of computer time used). A solution matched the "true" latent structure if its factors 
had the same loadings within 0.1% (or, when convergence was carried further, to within a few 
hundredths of a percent). The columnar order of factors might differ from that used on input to 
create the data, but factors were easily "identified" regardless of their column. A "match" was not 
expected to exhibit the same columnar order as the factors used to create the data. 

 
Initially, the test of uniqueness was the consistent finding of a matching solution 

regardless of the starting values for the loadings. This required repeating each test from several 
different random starting configurations. This condition was eventually dropped and the 
discovery of a perfect matching solution with one starting configuration was taken to 
demonstrate that this match would be found with any starting configuration (since the likelihood 
of stumbling on the one perfect match by chance when the solution was not unique seemed quite 
small, and earlier results showed that when any solution matched, all solutions with that data and 
that number of factors would match, regardless of the starting configuration). Non-unique 
solutions were always found to clearly diverge from the "true" loadings. 

                                                           
* This was accomplished by using the RANDM function included as an addition to the 
FORTRAN IV level G compiler by the UCLA Campus Computing Network. 
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  Since decisions of uniqueness and good fit were non-controversial, individual sets of 
"true" and "reproduced" loadings will not, in general, be reproduced here. Instead, results from 
the 80 experiments with synthetic data will be summarized according to those conditions which 
were found to affect the explanatory validity of the solutions. Three things should be considered 
in this regard: (1) the effect on the solution of the number of factors chosen to be extracted from 
a given data set; (2) the data characteristics necessary to adequately determine the correct 
solution for a given latent factor structure; (3) the data characteristics which affect the ability of 
the analysis procedure to reach convergence, and the properties of different types of solutions 
prior to convergence. 
 

A.  Effects of extracting different numbers of factors 
 

Before performing any analysis, one must decide how many factors to extract from the data, 
i.e. how many factors to specify in the model which is to be fit to the data. An understanding of 
the consequences of extracting the correct number of factors, versus too few or too many factors, 
is essential for interpretation of the solutions obtained. On the basis of such information one can 
then revise the estimate of the number of factors present, and reanalyze the data. 

 
(1)  If the number of factors extracted from the data is the same as the number of factors 

actually present (i.e. used on input to create the data) then the solution is unique and "true" in 
that it exactly discovers the latent factor structure built into the data. (This uniqueness holds, 
however, only if the data set is "adequate". The conditions of data adequacy will be discussed 
below.) The factor loadings need not fall into any simple structure or other natural pattern. The 
factors may be orthogonal or oblique. An example of a set of factors which are neither 
orthogonal nor displaying simple structure, yet which were correctly recovered from both a 1000 
and a 64 point data set is given in Table 1. (The 64 point solution was for the first 4 intervals in 
each mode.) 

 
(2)  If fewer factors are extracted than are present in the data, and the data is adequate, then 

the solution is unique, but (of course) incorrect. The resemblance between the recovered solution 
and the true factor pattern will depend on how "wrong" the estimate of the number of factors 
was. In a limiting case, if the true number of factors was only 1 larger than the number extracted, 
and one of the factors used to create the data made only small contributions to the data values, 
then the resulting solution will closely approximate the true solution except that the small factor 
will be omitted. In less ideal cases, the extracted factor structure will be proportionately more 
distorted, as it tries to account for the contributions of the additional (missing) factors within the 
fewer factors allowed on analysis. Examples for three and four factors are reproduced in Tables 
3A and 3B. 
 

(3)  If more factors are extracted than are present in the data (i.e. used to create the data), the 
solution which is extracted is not 
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TABLE  3A 
Distortions Due to Extracting Too Few Factors 

 
Occasion Loadings (Input) 
 Factor 4 Factor 3 Factor 1 Factor 2 
1 1.724 1.315 1.020 1.020 
2 0.172 0.0 1.531 2.194 
3 0.690 0.395 1.020 0.357 
4 0.517 1.579 0.510 0.918 
5 1.897 1.710 0.918 0.510 
 
Person Loadings (Input) 
 Factor 4 Factor 3 Factor 1 Factor 2 
1 1.620 2.258 0.980 1.078 
2 1.268 0.161 1.078 0.980 
3 0.352 0.887 0.0 0.980 
4 0.493 0.484 0.882 0.0 
5 1.268 1.210 2.059 1.961 
 
Test Loadings (Input) 
 Factor 4 Factor 3 Factor 1 Factor 2 
1 1.647 0.942 1.000 0.600 
2 0.494 1.319 1.100 0.700 
3 0.577 1.225 0.900 0.800 
4 0.659 1.131 1.200 0.900 
5 0.741 1.037 0.800 1.000 

*                *                * 
Occasion Loadings (Extracted) 
 Factor 1 Factor 2 Factor 3 
1 2.068 1.424 0.961 
2 0.054 -0.340 2.048 
3 0.234 0.124 0.720 
4 0.335 1.869 0.668 
5 2.309 1.922 0.603 
 
Person Loadings (Extracted) 
 Factor 1 Factor 2 Factor 3 
1 1.621 3.424 1.398 
2 1.268 -0.618 0.906 
3 0.176 0.731 -0.079 
4 0.575 -0.147 -0.285 
5 1.359 1.610 3.061 
 
Test Loadings (Extracted) 

 Factor 1 Factor 2 Factor 3 
1 1.285 0.409 0.739 
2 0.518 0.549 0.800 
3 0.504 0.521 0.763 
4 0.632 0.462 0.993 
5 0.561 0.447 0.849 
 
Three factors extracted from data generated by four input factors. Many of the loadings are similar despite the too 
few factors extracted. Note, for example, the correspondence between the input loadings for factor 4, and the 
extracted loadings for factor 1 (factors are labeled according to their position in the extracted matrix, but their 
columnar position has been rearranged to facilitate comparison with the input factors). 
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TABLE 3B 
Distortions Due to Extracting Too Few Factors 

 
Occasion Loadings (Input) 
 Factor 3 Factor 2 Factor 1 
1 1.316 1.020 1.020 
2 0.0 2.194 1.531 
3 0.395 0.357 1.020 
4 1.579 0.918 0.510 
5 1.710 0.510 0.918 
 
Person Loadings (Input) 
 Factor 3 Factor 2 Factor 1 
1 2.258 1.078 0.980 
2 0.161 0.980 1.078 
3 0.887 0.980 0.0 
4 0.484 0.0 0.882 
5 1.210 1.961 2.059 
 
Test Loadings (Input) 
 Factor 3 Factor 2 Factor 1 
1 0.942 0.600 1.000 
2 1.319 0.700 1.100 
3 1.225 0.800 0.900 
4 1.131 0.900 1.200 
5 1.037 1.000 0.800 
                                          *                *                 * 
Occasion Loadings (Extracted) 
 Factor 1 Factor 2 
1 1.509 1.050 
2 -0.306 2.155 
3 -0.103 0.580 
4 1.876 0.551 
5 2.023 0.664 
 
Person Loadings (Extracted) 
 Factor 1 Factor 2 
1 3.924 1.511 
2 -0.927 0.808 
3 0.425 -0.592 
4 -0.314 -0.863 
5 1.891 4.136 
 
Test Loadings (Extracted) 
 Factor 1 Factor 2 
1 0.287 0.417 
2 0.466 0.525 
3 0.419 0.486 
4 0.391 0.646 
5 0.337 0.527 
 
 
Two factors extracted from data created by three factors. The extracted factors show less correspondence to the 
input factors than in Table 3a. 
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TABLE 3C 
Non-uniqueness Due to Extracting Too Many Factors  

 
Occasion Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 0.306 0.066 1.700 1.772 
2 1.835 2.103 0.142 2.048 
3 0.143 0.994 0.622 1.100 
4 0.572 0.281 2.453 0.066 
5 2.144 1.557 0.084 0.015 
 
Person Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 1.817 0.354 1.187 0.988 
2 0.629 0.741 1.110 0.854 
3 0.791 1.255 0.223 1.235 
4 0.996 0.867 1.247 0.969 
5 0.766 1.783 1.233 0.954 
 
Test Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 0.368 0.677 0.556 1.623 
2 0.345 0.312 1.751 2.033 
3 0.309 0.382 1.746 0.277 
4 0.294 0.408 0.346 2.186 
5 0.013 0.853 1.378 2.559 
                                                                 *               *               * 
Occasion Loadings (Extracted) 
 Factor 5 Factor 3 Factor 4 Factor 1 Factor 2 
1 0.306 0.065 1.663 1.781 1.738 
2 1.835 2.103 -0.824 2.291 1.149 
3 0.143 0.995 0.380 1.161 0.874 
4 0.572 0.280 3.664 -0.239 1.192 
5 2.144 1.557 0.118 0.007 0.048 
 
Person Loadings (Extracted) 
 Factor 5 Factor 3 Factor 4 Factor 1 Factor 2 
1 1.817 0.354 1.338 0.969 1.070 
2 0.629 0.741 1.304 0.830 0.959 
3 0.791 1.255 -0.544 1.333 0.819 
4 0.996 0.867 1.458 0.942 1.083 
5 0.766 1.783 1.445 0.927 l.069 
 
Test Loadings (Extracted) 
 Factor 5 Factor 3 Factor 4 Factor 1 Factor 2 
1 0.368 0.676 0.129 1.010 1.040 
2 0.345 0.311 0.480 0.885 2.419 
3 0.309 0.382 0.520 -0.423 1.925 
4 0.294 0.408 0.052 1.505 0.974 
5 0.013 0.852 0.355 1.412 2.170 
 
Five factors extracted from data created by four factors. Since the ratio of factors extracted to the true number input 
is not much greater than one, some factors (in this solution factors 1 and 2) were exactly recovered. Other extracted 
factors show various degrees of resemblance to input factors. 
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unique. Its resemblance to the true solution depends on the ratio of the number of factors 
extracted to the number of factors actually present. If this ratio is only slightly greater than one, 
then some extracted factors will match true factors, although which of the true factors will be 
recovered will depend on the starting configuration for a given analysis. Given the following 
ratios of the number extracted to the true number of factors, the number of matching factors 
might typically be 2 for 5/4, 3 for 6/5, 0 for 3/2, and 0 for 6/3. The non-matching factors will 
usually include both some which bear a rough resemblance to true factors and some which are 
completely different from any of the true factors. An example displaying matching and both 
kinds of non-matching factors is given in Table 3C. 
 

Because of the characteristics of  PP  analysis just described, the investigator has two 
interlocking criteria for determining the correct number of factors to extract from adequate data: 
(1) the largest number of factors that still gives a unique solution; and (2) the traditional criterion 
of the largest number of factors which still significantly improves "fit". 

 
B. Conditions of an adequate data set 
 
According to the fundamental theory of PP factor analysis (Sections II and III, above) a 

unique solution requires data for a number of measures on a number of persons collected on at 
least two occasions, with system-variation of the factors present across these two occasions. This 
basic requirement was confirmed in experiments with synthetic data. Data sets containing only 
one occasion of measurement (in effect, two-way data sets) failed to yield unique solutions when 
factors were fitted to them by TBU or the quick algorithm. Similarly, three-way data sets in 
which all the factors had constant loadings across the occasions (i.e. with no system-variation) 
did not yield unique solutions regardless of the number of occasions. 

 
On the other hand, it was possible for all factors to be uniquely determined and correctly 

recovered if their columns of loadings on the different occasions were distinct. (For two columns 
to be distinct, it is apparently sufficient that they be linearly independent.) Thus, even when one 
factor did not change its influence across occasions, it could be correctly recovered in the 
analysis so long as no other factor was similarly constant. 

 
If, in a given data set, only some factors had occasion loading patterns distinct from all 

other factors (e.g. see Table 4A), then only the distinct factors would be uniquely determined in 
the solution. For example, a data set was created in which three of the four latent factors had the 
same increasing pattern of loadings across occasions. Analysis of this data gave non-unique 
solutions for three of the four factors extracted. Further, the one factor which was uniquely 
determined in the otherwise different solutions (as evidenced by its occurrence in 
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the same form in each solution) was found to be an exact match of the one factor which had a 
loading pattern across occasions which was distinct from the other three factors. This type of 
result is encouraging, since it indicates that the conditions underlying the data need not be 
completely adequate in order to recover some valid factors. When there is inadequacy for some 
factors, the solution does not collapse as a whole, but rather one factor at a time. Any factors 
which do show the necessary distinctness across occasions of measurement can be uniquely 
recovered in the solution. 
 

Two features of the non-unique solutions obtained with partially or completely 
inadequate data sets serve to distinguish them from the non-unique solutions obtained by too 
many factors. First, even when the ratio of estimated to true number of factors is small enough 
that some factors will be correctly recovered, it is not always the same factors which are 
recovered when different starting configurations are used. With partially inadequate data, 
however, the same factors will always be uniquely determined and recovered in the solution, 
regardless of the starting configuration used. Secondly, in these experiments the inadequate 
occasion loading patterns still seemed to be correctly recovered, even though the loadings for the 
other modes could not be correctly recovered. Thus the occasion loading patterns always 
displayed that lack of distinctness between the non-unique factors which was the cause of their 
non-uniqueness. By contrast, when too many factors are extracted, the loading patterns are not 
uniquely determined for any mode except for those factors correctly recovered as a whole. 
Considerations such as these provide important guides to interpretation of solutions obtained 
with real data. An example of loadings used to generate a partially inadequate data set and one 
solution obtained from data so generated is given in Table 4A. 

 
Although distinct loading patterns across two occasions might be theoretically sufficient 

to uniquely determine any number of factors, this sufficiency could not be established in these 
experiments because of practical convergence difficulties. These difficulties made it impossible 
to solve for more than 4 or 5 factors using a data set with only two occasions. Two occasions 
were never found insufficient, since convergence on a non-unique solution was never obtained 
with otherwise adequate data when there were only 2 occasions. However, since convergence 
could not be obtained with two-occasion data sets which had a large number of latent factors, the 
adequacy of a two-occasion data set for uniquely determining these large numbers of factors 
could not be empirically confirmed. 

 
Apparently, when the number of occasions is very small, specifically two or three, the 

properties of the hypersurface where the routine is seeking an optimum become such that the 
upward paths are narrow and twisted and convergence is difficult or impossible within a few 
thousand iterations. Before the development of the quick algorithm, these problems led to the 
conclusion that there must be at 
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TABLE 4A 
Factors Extracted from "Partially Inadequate" Data 

 
Occasion Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 0.333 0.333 0.333 1.772 
2 0.667 0.667 0.667 2.048 
3 1.000 1.000 1.000 1.100 
4 1.333 1.333 1.333 0.066 
5 1.667 1.667 1.667 0.015 
 
Person Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 1.817 0.354 1.187 0.988 
2 0.629 0.741 1.110 0.854 
3 0.791 1.255 0.223 1.235 
4 0.996 0.867 1.247 0.969 
5 0.766 1.783 1.233 0.954 
 
Test Loadings (Input) 
 Factor 1 Factor 2 Factor 3 Factor 4 
1 4.478 4.478 2.515 1.623 
2 4.204 2.062 7.915 2.033 
3 3.761 2.529 7.892 0.277 
4 3.574 2.703 1.565 2.186 
5 0.157 5.642 6.228 2.559 
                                                                 *               *                * 
Occasion Loadings (Extracted) 
 Factor 1 Factor 3 Factor 4 Factor 2 
1 0.333 0.333 0.333 1.772 
2 0.667 0.667 0.667 2.048 
3 1.000 1.000 1.000 1.100 
4 1.333 1.333 1.333 0.066 
5 1.667 1.667 1.667 0.015 
 
Person Loadings (Extracted) 
 Factor 1 Factor 3 Factor 4 Factor 2 
1 1.043 5.207 3.931 0.988 
2 0.861 0.877 1.704 0.854 
3 0.731 -1.183 -2.072 1.235 
4 1.050 1.654 2.058 0.969 
5 1.316 -1.556 -0.621 0.954 
 
Test Loadings (Extracted)  
 Factor 1 Factor 3 Factor 4 Factor 2 
1 11.641 0.971 -1.141 1.623 
2 13.192 0.095 0.893 2.033 
3 13.337 -0.101 0.946 0.277 
4 7.851 0.910 -0.920 2.186 
5 12.401 -1.399 1.025 2.559 
 
Loadings used to generate "inadequate" data, and one resulting solution extracted from such data. The latent 
structure used on input was "inadequate" to distinguish factors 1, 2, and 3, since they had the same pattern of 
loadings across occasions. A  typical solution extracted from this data set shows that only factor 4 was correctly 
recovered. 
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least as many intervals in each mode of an adequate data set as there are factors being extracted 
from the data set. For small numbers of factors this still seems to be a good rule. For large 
numbers of factors, 4 to 8 occasions might provide a good base for reasonably quick 
convergence, depending on the particular characteristics of the data set. (To date, experiments 
have been limited to a maximum of 10 factors because of trivial array size limitations, but the 
program is being modified for larger arrays in future experiments.)  Table 4B gives some 
approximate convergence times for data sets of different sizes and containing differing numbers 
of factors. It should be noted that a number of other characteristics of the data set will affect its 
convergence properties, as will be discussed below. Therefore, the iteration counts listed in Table 
4B are only indicative of reasonable but not necessarily average or minimal values. They all 
reflect values obtained with the quick algorithm using a relaxation factor of 1.275, starting from 
a random configuration of loadings. 
 

The discussion of data adequacy has focused, up to this point, on the conditions of only 
one mode. For the purposes of discussion this mode has been called "occasions", although the 
results would apply by symmetry to any single mode of a three mode matrix. The assumption of 
the adequacy of the other two modes has been implicit in the discussion of the effect of changes 
in the "occasions" mode. The experiments listed in Table 4B (with the exception of the last one 
listed) were consistent with this assumption. They each had at least as many intervals in the 
second and third mode as there were factors underlying the data. Further, in these two modes the 
pattern of loadings was distinct for each factor (i.e. was always linearly independent of the 
loading patterns for all other factors). 

 
The case of a single inadequate mode was studied most intensively both because it was a 

simplified approach to the general question of data adequacy, and because it was thought to 
represent the most common way in which data would be found to be inadequate. When there are 
difficulties with obtaining adequate data, these difficulties will frequently involve only one of the 
three modes. For example, it is sometimes easy to secure many measurements, and many 
individuals to measure, but more difficult to establish more than perhaps two or three occasions 
or conditions of measurement where there will be systematic differences in relative factor 
influence. 

 
A few experiments have been performed, however, where more than one mode was 

restricted (e.g. had fewer intervals than there were factors to be extracted). The results 
dramatically demonstrate the differences between the theoretical capabilities and properties of 
classical two-mode and the new three-mode  PP  factor analysis. In one experiment, 10 factors 
were correctly recovered from an 8 by 8 by 8 data matrix (this experiment corresponds to the last 
entry of Table 4B). Clearly, the mathematical rank of any two-way slice of this data matrix 
cannot be greater 
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TABLE 4B 
 

Computation Times for Some Data Sets Having 
Fewer Occasions Than Factors 

 
 

 Number of Factors Dimensions of Data 
Set 

Number of Iterations 
to Convergence 

a.  3 2 x 4 x 5 1000 
b.  4 2 x 6 x 7 1500 
c.  6 2 x 7 x 8 not close to conver- 

gence after 2000 
iterations 

d.  4 3 x 8 x 10 400 
e.  4 3 x 8 x 10 300 
f.  5 3 x 10 x 10 600 
g.  6 3 x 11 x 10 500 
h.  6 4 x 8 x 10 300 
i .  10 8 x 8 x 8 800 

 
  
 
 
Convergence times for 9 selected experiments. The number of iterations required to reach 
convergence increases with fewer intervals in the smallest mode of the data matrix, particularly 
as the number of factors becomes larger. 
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than 8, and classical two-mode factor analysis of any such slice could only reveal at most 8 
factors. Yet when all the "slices" are assembled into a three-way matrix and subjected to three-
mode  PP  factor analysis, 10 factors are correctly and uniquely recovered. 
 

The complete set of rules defining the minimal conditions of an adequate data set have 
not yet been determined. Non-minimal sufficient conditions can be described with some 
assurance, however. It appears that in order to uniquely recover N factors, it is sufficient that the 
data set have N different intervals in each mode (except where this would provide fewer data 
points than factor loadings, as in the case of 2 factors). This empirically derived rule of 
sufficiency will be supported by a mathematical proof in Section V. In addition, some weaker 
sufficiency rules have been described above for certain selected cases, and a type of sufficiency 
for the correct recovery of a given factor from an otherwise inadequate data set has also been 
defined. These results will have direct application to the analysis of real data, but further 
mathematical and experimental work needs to be done in order to rigorously define the minimal 
necessary conditions of an adequate data set, as a function of the number of latent factors 
present. 

 
C.  Conditions affecting convergence 
 
The ratio of the number of factors to the number of occasions (or to the number of 

intervals in whichever is the smallest of the three modes) is one characteristic of the data set 
which strongly affects convergence rate (as was discussed in B above). This points out the 
practical necessity of the generalization of the  PP  criterion from two to any number of "parallel" 
occasions. Additional conditions which affect convergence include: the presence of positively 
correlated factors; the presence of factors with highly unequal contributions to the data; the 
number of near zero loadings in the latent structure; non-uniqueness of the solution; and the 
starting configuration from which an attempt at optimization was begun. 

 
If two of the latent factors have a strong positive correlation (e.g. +.75 or higher) the 

similarity of their loading patterns apparently begins to pose problems for the optimization 
routine. Faced with two similar but not identical loading patterns across a given mode, the  PP 
analysis procedure usually reaches a rough fit and then struggles across a plateau where it tries to 
disentangle the influence of the two correlated factors. Convergence can be slowed in such 
circumstances as much as 4 to 10 times. 

 
Similar difficulties arise when one or more factors make only very small contributions to 

the data values relative to the other factors. Here, too, the program first finds a rough fit to the 
data and then has to spend a great deal of time transforming this "first guess" into the often very 
different solution required for a final good fit. The rough "first guess" gives results similar to 
extracting too many factors, since the small factors haven't exerted their influence effectively. 
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Often values are very different from the correct final values, and if one stopped at this point the 
solution would appear non-unique from different starting configurations. After this "first guess" 
the program goes through a long series of successive corrections to achieve small improvements 
in fit, as it tries to respond to the feeble influence of the small factors. One possible way to 
handle such cases may be to first solve for fewer factors. The program should converge fairly 
quickly on a unique solution. The factors in this solution would resemble the larger factors, only 
slightly distorted because of the influence of the unrepresented small factors. The loading values 
for these large factors can be used as a starting point for the solution involving more factors. 
Starting values for the small factors can be columns of zeros, or any other good first estimate. 
From such a starting configuration, convergence should proceed much faster than it otherwise 
would in the case of very unequal factors. 
 

If a number of zero loadings are present in the latent structure, convergence can be 
facilitated. Apparently this simplifies the path up the hypersurface by reducing the 
interdependencies among the variables. This effect has been most clearly noticed for Routine 
TBU. 

 
Convergence is greatly speeded when the solution is not unique, either because of data 

inadequacy or because of the extraction of too many factors. This might have been expected, 
since it should be easier to climb to the optimum by finding and following one of the many paths 
that would end up on that hyperplane defined by an infinity of alternative optimum solutions, 
than it is to find and follow one of the fewer paths that would converge on a unique point. The 
"more non-unique" the solution (e.g. the more the number of factors extracted exceeds the true 
number of factors, and thus the more divergent the possible loadings in the alternative solutions), 
the more the convergence is accelerated. Thus convergence speed might provide an additional 
confirmatory guide to the choice of the number of factors. 

 
With analyses having unique solutions, the particular starting configuration used was 

often found to have a very significant effect on convergence time, sometimes causing variations 
in convergence time as great as 500%. But with the error free synthetic data, there appeared to be 
no problems with local optima. Although both TBU and the quick algorithm sometimes 
experienced slowdowns where they would display steady but very gradual progress up the 
hypersurface, the values of the parameters would never stop changing completely unless the 
program had achieved a near perfect fit to the data. 

 
In general, it seems that although difficulties are encountered with some types of data 

sets, the quick algorithm with the relaxation factor is adequate to allow analysis of most real data 
to which the PP model might apply. To cope with the remaining difficult cases, further 
development of the algorithm is being explored, in part by combining features of the quick 
algorithm with additional trend estimation techniques such as are found in Routine TBU. 
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The Analysis of Real Data from Vowel Sounds 
 

Although the experiments with synthetic data provide the only certain way to 
demonstrate the discovery of a true latent structure, they may not adequately simulate some other 
properties of real data which could affect performance of the analysis procedure. Therefore a set 
of real data was selected for analysis. 

 
The data consists of a set of measurements of formant frequencies (converted into pitch 

values in mels) for eight vowel sounds, as uttered by 11 individuals. The resulting data was a 4 
by 8 by 11 matrix of pitch values whose dimensions are formant, by vowel, by individual (Table 
5). This data is a subset of a four-way matrix of formant by vowel by individual by occasion, 
originally published by Ladefoged (1967, pp. 88-89). 

 
The theoretical interest in the data lies in the question of the nature of vowel quality. 

Phoneticians have been seeking an objective description of the features in the acoustic signal 
which are characteristic of the different vowels. It is important in this respect to distinguish 
between those differences in vowel quality that do not serve to identify the vowel (e.g. the 
different quality of different voices) and those characteristic qualities which do serve to identify 
the vowel. The second type of difference is of primary interest here. 

 
A set of dimensions for vowels has been developed by phoneticians through 

consideration of the positions of the tongue and lips, and through evaluation of subjective sound 
quality. But the systematic classification of vowels on this basis has not been clearly related to 
the particular objective characteristics of the acoustic signal which (presumably) the brain uses in 
recognizing vowels in speech. It is, however, generally agreed that the most important acoustic 
features are certain characteristic peaks in the spectrum of vowel sounds (Fant, 1960). These 
peaks are called "formants", and they are closely related to resonances of the vocal tract, as 
determined by the shape of the tongue, lips, etc. In the production of different vowels, the shape 
of these vocal organs is changed and thus the location of the formants in the sound spectrum 
alters. 

 
Careful study has failed to find a satisfactory relationship between the formant 

frequencies (or corresponding pitch values in mels) and the presumed dimensions of vowel 
quality. In fact, phoneticians have been unable to discover any physical dimensions which would 
serve to define the perceptual qualities which distinguish vowels (Ladefoged, 1967, pp. 100-103; 
Ladefoged, 1970). It was in hopes of discovering such relationships and giving objective 
acoustic definition to the dimensions of vowel quality that factor analysis of the formant data 
was carried out, using the proportional profile three-mode factor model. 

 
Since, as has already been noted, the  PP model is not completely general, its application 

to this three-way data set must be justified. 
 



 47 

TABLE 5 
Data Input for Formant 0 
1 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 
2 255.000 255.000 255.000 255.000 255.000 255.000 255.000 255.000 
3 135.000 135.000 135.000 135.000 135.000 135.000 135.000 135.000 
4 205.000 205.000 205.000 205.000 205.000 205.000 205.000 205.000 
5 350.000 350.000 350.000 350.000 350.000 350.000 350.000 350.000 
6 260.000 260.000 260.000 260.000 260.000 260.000 260.000 260.000 
7 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 
8 245.000 245.000 245.000 245.000 245.000 245.000 245.000 245.000 
9 325.000 325.000 325.000 325.000 325.000 325.000 325.000 325.000 
10 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 
11 365.000 365.000 365.000 365.000 365.000 365.000 365.000 365.000 

 
Data Input for Formant 1 
1 405.000 475.000 655.000 930.000 0.0 590.000 465.000 420.000 
2 275.000 455.000 695.000 855.000 760.000 555.000 460.000 370.000 
3 480.000 535.000 710.000 915.000 765.000 615.000 505.000 400.000 
4 395.000 505.000 745.000 995.000 810.000 590.000 535.000 340.000 
5 345.000 540.000 635.000 920.000 715.000 715.000 495.000 350.000 
6 290.000 415.000 730.000 945.000 0.0 725.000 430.000 290.000 
7 340.000 505.000 690.000 980.000 0.0 665.000 515.000 360.000 
8 335.000 455.000 715.000 910.000 715.000 720.000 415.000 360.000 
9 355.000 550.000 715.000 1045.000 0.0 435.000 505.000 335.000 
10 315.000 475.000 680.000 980.000 0.0 650.000 485.000 395.000 
11 370.000 505.000 765.000 1115.000 760.000 595.000 595.000 365.000 
 
Data Input for Formant 2 
1 1720.000 1620.000 1460.000 1370.000 0.0 0.0 0.0 0.0 
2 1620.000 1605.000 1485.000 1260.000 980.000 825.000 825.000 0.0 
3 1650.000 1620.000 1530.000 1305.000 960.000 795.000 695.000 695.000 
4 1790.000 1660.000 1620.000 1400.000 1015.000 895.000 855.000 0.0 
5 1765.000 1805.000 1620.000 1350.000 975.000 960.000 790.000 740.000 
6 1760.000 1645.000 1510.000 1455.000 0.0 0.0 745.000 735.000 
7 1670.000 1615.000 1510.000 1400.000 0.0 980.000 830.000 0.0 
8 1770.000 1620.000 1470.000 1380.000 980.000 940.000 0.0 0.0 
9 1880.000 1820.000 1700.000 1405.000 0.0 845.000 0.0 0.0 
10 1725.000 1670.000 1585.000 1430.000 0.0 0.0 0.0 0.0 
11 1775.000 1765.000 1645.000 1405.000 985.000 870.000 0.0 855.000 
 
Data input for Formant 3 
1 2030.000 1760.000 1760.000 1835.000 1835.000 1875.000 1965.000 2070.000 
2 1895.000 1870.000 1905.000 1720.000 1785.000 1720.000 1705.000 0.0 
3 1960.000 1885.000 1750.000 1855.000 1865.000 1825.000 1735.000 1735.000 
4 2135.000 1960.000 1895.000 1855.000 1940.000 1900.000 1795.000 2100.000 
5 2075.000 1955.000 2030.000 2050.000 2045.000 2040.000 2015.000 0.0 
6 2145.000 1865.000 2135.000 1670.000 1775.000 1750.000 2115.000 2160.000 
7 2040.000 1820.000 1820.000 1940.000 1800.000 1750.000 1680.000 1710.000 
8 2045.000 1860.000 1715.000 1840.000 2035.000 1945.000 1855.000 0.0 
9 2260.000 2060.000 2015.000 1995.000 2080.000 1985.000 2175.000 2240.000 
10 2200.000 1900.000 1850.000 1895.000 1965.000 1905.000 2045.000 2145.000 
11 2140.000 1950.000 1930.000 1985.000 2090.000 2095.000 2085.000 2175.000 
Formant pitch values (in mels) for the fundamental frequency ("formant 0") and the first three formants of eight 
cardinal vowels as spoken by 11 persons. Zero values represent missing data points, which during analysis were 
simply skipped and not "fitted" by the optimization program. 
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The application is of particular interest since none of the three modes represents a time 
dimension. Although throughout the earlier discussion of the  PP  model, the third mode was 
called "occasions", it could in fact be any third set of circumstances in which systematic 
variations of relative contribution of the factors might be expected. In the case of this vowel data, 
the measurements (formant pitch values) for the individuals (persons producing the vowels) are 
taken for eight different vowels (i, e, ε, a, ɑ, ɔ, o, u). 
 

The  PP or system-variation model is thought to be justified here because systematic 
general differences of factor influence are expected not only when one vowel is compared to 
another, but also from one person to the next, and from one formant to the next. 

 
By definition, the individual vowels must differ in their relative positions on the 

underlying dimensions of vowel quality, since it is these dimensional differences which are 
presumed to distinguish them. But it can also be expected that different persons will not use each 
of the underlying dimensions to exactly the same degree in their vowel production. The speech 
of some will tend, in general, to be slightly more prominent in the use of a certain aspect of 
vowel quality, and on the other hand have perhaps slightly less of a different aspect, consistently 
across all vowels. These differences could arise because some speakers tend to use a greater 
amount of lip rounding on all vowels, other speakers tend to speak with the tongue slightly 
higher in the mouth than is usual, etc. In addition, physiological differences in the shape of each 
person's vocal tract, differences in tongue size, etc., could be expected to cause shifts in the 
quality of that person's vowels compared to those produced by other speakers. These shifts 
would presumably be of different degrees for each of the underlying dimensions, since 
alterations of vocal tract shape would probably not have precisely equal consequences for all 
dimensions of vowel quality. 

 
The argument for system-variation seems less convincing with respect to the formant 

mode. There seems to be no obvious reason for expecting any particular pattern of factor 
loadings across the three formants. But of the various possibilities, the vast majority would show 
unequal and distinct loading patterns for each factor across the three formants. Therefore, it does 
not seem unlikely that the required system-variation would be present in the formant mode as 
well. 

 
Before actually performing an analysis, one can only argue that this system variation 

model of vowel quality is a plausible one. One cannot really know whether the model is, in fact, 
correct. But after the analysis the appropriateness of the model can be confirmed or not by 
examining the results. If one or more of the factors do not show the postulated system-variation, 
this should become apparent in the results of the analysis. From the experiments with synthetic 
data it was learned that if system-variation of a given factor's influence is not present across all 
modes of a data set, then that data set would not be "adequate" 
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for that factor, and the solution for that factor would not be unique. 
 

The analysis of this real data was performed by fitting one, two, and three factor  PP 
solutions to the data using Routine TBU. The quick algorithm could not be applied in order to 
speed computation because of the many missing entries in the data matrix (the missing entries 
appear as zeros in Table 5). Although attempts are being made to overcome the difficulty, the 
quick algorithm has not yet been modified to adequately deal with missing data. The problem 
arises because the computation of new values for a given mode requires intermediate products 
which involve the complete data set (equation 13). Routine TBU, on the other hand, can deal 
easily with missing values, since it does not require such intermediate products but relies instead 
on changes in the sum of the squared errors resulting with each attempt to "fit", by estimation 
from factor loadings, the non-missing values of the data set. Any missing value can simply be 
ignored by the program. 

 
After applying TBU to the vowel data, it became apparent that the data set possessed 

characteristics which substantially slowed the process of convergence. Since TBU is already 
slow compared to the special purpose quick algorithm, true convergence could not be obtained 
with many of the analyses. Nonetheless, by pushing convergence as far as computer time would 
allow, results have been obtained which are believed to represent reasonable approximations to 
what the values would have been at convergence. Because of the additional slowdown of TBU as 
the number of factors increases, solutions containing four factors were not attempted. This 
omission is less serious however, because the results with two and three factors show that any 
fourth factor, even if present, would only make a very small contribution to the values of the data 
points. And it has been demonstrated with synthetic data that omitting a small fourth factor will 
not substantially distort the loadings of the other three factors. 

 
In light of these limitations, the results reported as the two and three factor solution for 

this vowel set must be viewed as likely approximations, to be refined further when the quick 
algorithm is adjusted to cope with missing values, and also to be confirmed by obtaining and 
analyzing different sets of vowel formant data which do not have missing values. Both lines of 
work are currently being pursued. 

 
Nonetheless,  PP  factor analysis of this vowel data is not simply an exercise of the 

program, but has inherent interest from the viewpoint of linguistic phonetics. Further, it will be 
seen that the solution obtained possesses a highly meaningful form. The results therefore seem to 
demonstrate the usefulness of  PP analysis, even when operating under handicaps. 

 
 

Results of the Analysis of Vowel Data 
 
The analysis was carried out first for the four vowels (i, e,ε, a). 
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In order to determine the number of real factors, comparisons were made of both the amount of 
error remaining after convergence slowed or stopped, and of the uniqueness of the solutions 
obtained as one, two, and three factors were extracted. These criteria had to be used flexibly, 
however, because of the approximations caused by imperfect convergence, and also because of 
the distortions which would be caused by the presence of error variation in the data. On the basis 
of 10 analyses of the restricted four vowel data set, an apparent cutoff was obtained at two 
factors. The mean squared error of estimation was consistent at around 6,600 mels both for four 
different two-factor and for four different three-factor analyses. The analyses were performed 
from different random starting configurations. There were variations of only around 10% in the 
final mean squared error values for all eight of these analyses, and the three-factor solutions did 
not tend to have lower scores. With regard to uniqueness, the results were less clear. Both for the 
two-factor and three-factor solutions, there were similarities among solutions, but no clear 
uniqueness which could be said to hold for the loadings in all three modes. The vowel mode 
seemed to give the most consistent loading patterns. In all two-factor solutions the vowels 
showed a systematically increasing set of loadings on one factor and a systematically decreasing 
set of loadings on the other factor. Loadings for the person mode showed some similarities in 
successive analyses but could not be said to be recognizably unique even for two factors. The 
same was true for the formant mode. Even the three-factor solutions for the four vowel data set 
showed some interesting similarities in the vowel mode, as can be seen in Table 7. It was 
concluded that the error variation in the data, the convergence difficulties, and the possible 
distorting presence of a third factor were making the analysis difficult. 
 

In an attempt to minimize the inaccuracy due to incomplete convergence, a two-factor 
solution was carried to 350 iterations of Routine TBU (requiring 300 seconds of CPU time on the 
360/91). This represented at least five times as many computations as on any of the other 
analyses of the four vowel data set. Yet convergence still had not been achieved at the end of this 
time. These results were therefore taken as the best approximation, short of true convergence, 
obtainable for the loadings of two factors on the four vowel data. The obtained loadings are 
given in Table 6, and the position of the four vowels in the plane determined by the two factors is 
given in Figure 1. 

 
The data set was then expanded to include all eight vowels, and the analysis procedure 

repeated. An immediate improvement was noticeable in the stability of the solutions obtained for 
both two and three factors. Further, with this expanded data set the mean squared error of fit 
could be seen to drop from 7000 mels for two factors to 2800 mels for three factors. Although 
the precise values of the vowel loadings varied somewhat across analyses, they were roughly 
similar, and the patterns of the loadings was more clearly unique, for the three-factor as well as 
the two-factor solutions. In all cases there was one factor which would increase across the eight 
vowels, another factor which would decrease, and 
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TABLE 6A 
 

 TABLE 6B 

Two-Factor Analysis of Four Vowels 
 

 Two-Factor Analysis of Four Vowels 

Formant Loadings  Formant Loadings 
 Factor 1 Factor 2   Factor 1 Factor 2 
1 0.248 0.240  1 143.0430 126.4400 
2 -0.036 1.227  2 -20.7644 646.4220 
3 1.836 0.996  3 1058.9800 524.7240 
4 
 

1.952 1.536  4 1125.8900 809.2130 

Vowel Loadings  Vowel Loadings 
 Factor 1 Factor 2   Factor 1 Factor 2 
1 1.375 0.615  1 1.375 0.615 
2 1.151 0.783  2 1.151 0.783 
3 0.915 1.082  3 0.915 1.082 
4 
 

0.559 1.520  4 0.559 1.520 

Person Loadings  Person Loadings 
 Factor 1 Factor 2   Factor 1 Factor 2 
1 552.258 508.999  1 0.9575 0.9662 
2 553.917 489.476  2 0.9604 0.9291 
3 540.112 524.531  3 0.9634 0.9956 
4 587.279 533.850  4 1.0182 1.0133 
5 600.630 545.492  5 1.0413 1.0354 
6 597.261 486.751  6 1.0355 0.9239 
7 546.270 546.178  7 0.9471 1.0367 
8 567.719 502.570  8 0.9843 0.9540 
9 631.319 554.582  9 1.0946 1.0527 
10 589.327 526.453  10 1.0218 0.9993 
11 
 

578.573 
 

576.265 
 

 
 

11 
 

1.0031 
 

1.0938 
 

 
 
Two factors extracted by extended analysis of the data for the first four vowels.  Table 6b is the 
same as 6a, except that the normalization has been performed across persons so that formant 
loadings reflect true pitch values in mels. 
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TABLE 7 
 

Three Attempts at Fitting Three Factors to Four Vowel Data 
 
 

Formant Loadings  Formant Loadings  Formant Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 -0.578 -9.213 -1.154  1 0.054 0.222 2.015  1 0.896 -3.276 4.764 
2 0.442 10.930 4.140  2 0.260 2.031 -1.192  2 -2.052 3.040 -2.174 
3 2.081 0.972 0.000  3 1.767 0.477 1.412  3 2.605 2.952 -0.803 
4 
 

2.055 1.312 1.014  4 1.918 1.270 1.765  4 2.551 1.285 2.213 

Vowel Loadings  Vowel Loadings  Vowel Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 1.111 0.983 0.811  1 1.173 0.487 1.199  1 2.237 0.921 0.894 
2 1.025 0.942 0.862  2 1.065 0.702 0.987  2 1.610 0.930 0.901 
3 0.973 0.998 1.038  3 0.957 1.116 0.971  3 0.733 1.015 1.017 
4 
 

0.892 1.076 1.289  4 0.805 1.695 0.843  4 -0.580 1.134 1.188 

Person Loadings  Person Loadings  Person Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 792.646 -120.157 380.405  1 752.396 241.872 59.777  1 82.893 559.428 415.109 
2 782.005 -125.907 387.647  2 720.434 240.489 83.052  2 86.003 544.676 414.191 
3 790.147 -109.530 363.755  3 788.191 236.796 20.412  3 77.347 567.430 409.648 
4 836.736 -124.931 400.044  4 805.078 253.468 53.670  4 91.828 588.885 432.536 
5 857.004 -147.075 443.417  5 757.301 275.162 121.408  5 86.034 600.636 471.115 
6 820.388 -127.126 387.872  6 760.334 236.580 88.424  6 97.677 561.921 426.369 
7 805.151 -136.716 427.242  7 716.428 279.801 100.674  7 77.982 574.820 441.968 
8 802.046 -125.324 390.155  8 750.628 243.421 73.744  8 88.603 560.100 419.356 
9 885.816 -147.557 455.140  9 805.671 281.166 104.401  9 99.474 617.177 471.446 
10 834.089 -138.044 423.661  10 755.095 264.342 100.735  10 91.351 581.856 444.990 
11 
 

845.975 -151.325 474.186  11 735.898 310.031 120.937  11 87.519 602.929 465.261 

 
 
Sets of loadings resulting from separate attempts to fit three factors to the first four vowels.  
Although the vowel loading patterns were fairly consistent, the formant loadings and person 
loadings showed fairly large variations, indicating relative lack of uniqueness or very high 
distortion by error variations in the data.
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Figure 1.  Plot of the position of the first four vowels in the two-factor 
plane extracted from the four vowel partial data set. 
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a third factor which would first decrease and then increase. In most of the solutions there was a 
tendency for the end of the steadily increasing or decreasing factors to show "flattening" or 
decreased step sizes, and sometimes even to "curl around" slightly. (The flattening is evident in 
Table 8 for the vowel loadings of factors 2 and 3). 
 

Although much more stable than in the four vowel analyses, the loadings for the person 
and formant modes still showed somewhat greater variations than those of the vowel mode. In an 
attempt to reduce the variations due to lack of convergence, another prolonged analysis was 
performed. Iterations were allowed to proceed for 500 seconds on the 360/91. This provided 227 
iterations of TBU, fewer than on the four vowel problem because of the greater number of 
parameters being optimized and the larger data set. At the end of this prolonged analysis, 
complete convergence still had not been obtained, but the rate of change of the parameters had 
slowed considerably. Since results of this analysis were not strikingly different from the results 
of the prior, shorter analyses, the values obtained in this long analysis were taken as the best 
approximations to a three-factor solution for the vowel data set. The final values of the obtained 
factor loadings are given in Table 8, and the vowels are plotted in the space determined by these 
three factors in Figure 2. 

 
This three-factor solution seems to fit the data fairly well, since the average absolute 

residual is in the neighborhood of 50 mels, which represents perhaps 5% error across the data as 
a whole. 

 
The most striking aspect of the analysis of all eight vowels is the correspondence between 

the factors which emerged and the theoretical dimensions of vowel quality deduced on subjective 
auditory and physiological grounds by phoneticians. A plot of the eight vowels as located in a 
space of these three theoretical dimensions is reproduced in Figure 3 (from Ladefoged, 1967, p. 
140). Factor 1 of Table 8 would seem to correspond to the dimension of open-closed in Figure 3. 
Both in Ladefoged's diagram and in the results of the factor analysis (Table 8), the vowels seem 
to form a "U" on this dimension. Also striking is the correspondence of the other two 
dimensions. In both cases the vowels are consistently increasing on one dimension and 
consistently decreasing on the other dimension. Because of the symmetry of these two 
dimensions, however, it is difficult to identify which of the two factors (factor 2 or factor 3) 
corresponds to which of the two theoretical dimensions (roundedness or front-back) in 
Ladefoged's diagram. This problem could be solved by the addition of data on other vowels 
which, according to phonetic theory, do not have symmetrical relations on the two dimensions. 

 
This striking correspondence between two descriptions derived by completely 

independent means is strong evidence in favor of both the reality of the phonetician's theoretical 
dimensions, and the reality of the latent structure revealed by the  PP  factor analysis. 
 



 55 

 
 

TABLE 8A 
 

 TABLE 8B 

Three Factor Solution for All Eight 
Vowels 

 

 Three Factor Solution for All Eight 
Vowels 

Formant Loadings  Formant Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 0.455 0.274 0.249  1 26.8267 80.8016 162.4620 
2 -1.458 0.869 0.647  2 -85.9634 256.2650 422.1390 
3 1.066 0.960 1.343  3 62.8511 283.1010 876.2490 
4 
 

3.937 1.896 1.762  4 232.1250 559.1230 1149.630 

Vowel Loadings  Vowel Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 1.661 -2.370 2.629  1 1.661 -2.370 2.629 
2 0.576 -2.059 2.538  2 0.576 -2.059 2.538 
3 -0.190 -0.658 2.007  3 -0.190 -0.658 2.007 
4 -1.197 1.318 1.233  4 -1.197 1.318 1.233 
5 0.607 2.899 0.143  5 0.607 2.899 0.143 
6 1.224 2.877 -0.005  6 1.224 2.877 -0.005 
7 2.144 2.880 -0.156  7 2.144 2.880 -0.156 
8 
 

3.176 3.113 -0.388  8 3.176 3.113 -0.388 

Person Loadings  Person Loadings 
 Factor 1 Factor 2 Factor 3   Factor 1 Factor 2 Factor 3 
1 60.215 290.334 628.164  1 1.0213 0.9845 0.9628 
2 50.124 274.292 617.065  2 0.8501 0.9301 0.9458 
3 43.419 280.509 630.385  3 0.7364 0.9512 0.9662 
4 59.646 293.643 659.668  4 1.0116 0.9958 1.0111 
5 58.310 312.318 680.971  5 0.9890 1.0591 1.0437 
6 71.227 283.766 644.470  6 1.2081 0.9623 0.9878 
7 42.056 285.500 641.036  7 0.7133 0.9681 0.9825 
8 60.625 296.037 638.089  8 1.0283 1.0039 0.9780 
9 72.603 308.226 694.827  9 1.2314 1.0452 1.0650 
10 65.631 301.906 658.913  10 1.1132 1.0238 1.0099 
11 
 

64.702 317.330 683.434  11 1.0974 1.0761 1.0475 

 
 
Three factors extracted by extended analysis of the full set of eight vowels.  In Table 8b, data is 
normalized across persons rather than formants to give formant loadings in mels as in Table 6b. 
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Figure 2a.  The full set of eight vowels plotted on the three factors 
extracted from the complete data set. 
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Figure 2b.  The eight vowels plotted in the same space as Figure 2a, with 
the factor axes removed for clarity.  A box is constructed 
around the vowel points in the same manner as was done in 
Ladefoged, 1967, to facilitate comparison with his figure 
(reproduced in Figure 3). 
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Figure 3.  (reproduced from Ladefoged, 1967, p.140)  The relations of the 
eight vowels on three dimensions of vowel quality which have 
been hypothesized by phoneticians on the bases of auditory 
quality, tongue position, and other considerations.  These 
hypothetical dimensions had not been successfully defined in 
terms of objective properties of the sound signal itself. 
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  Additional information about the three factors is given by their loadings on persons and 
on formants. Since both the person mode and the formant mode showed less stability in the 
repeated short analyses than did the vowel mode, interpretation of their loading patterns should 
be made with caution. It is interesting to note, however, that the three columns of person 
loadings are positively correlated with one another. This suggests that the physiological or 
linguistic variations from person to person which affect a given aspect of vowel quality also tend 
in various degrees to affect the other two aspects of vowel quality. Furthermore, the fundamental 
frequency value (low vs. high pitched voice) for each person also correlates positively with that 
person's loadings on the three factors. People who speak in higher pitched voices tend to have 
smaller vocal tracts. The pattern of correlations given in Table 9 might be taken to suggest a 
physiological influence, such as vocal tract size or male-female differences in tract shape, to 
account for the individual differences in the relative emphasis of the three aspects of vowel 
quality. At this point, however, such interpretation is highly speculative.* 
 

The correlations shown in Table 9 are also useful in helping to explain the convergence 
difficulties encountered with this data set. It was discovered in the experiments with synthetic 
data that high positive correlations among the loadings for two factors in any mode will cause a 
significant slowdown in the process of convergence. The correlation of .90 between the person 
loadings for factors two and three is even higher than the artificially constructed correlations 
which slowed convergence with synthetic data. Therefore, it is not surprising that convergence 
was particularly difficult with this data set. 

 
The formant mode factor loadings are perhaps the hardest to relate to external knowledge. 

They provide a definition of changes in the three dimensions of vowel quality in terms of 
changes in the pitch of the three formants. For this purpose a normalization of the data which 
gives the person loadings a mean of 1.0 and lets the formant loadings reflect values in mels is 
perhaps more revealing (as was done in Table 6B and Table 8B). Since the objective acoustic 
definition of the phonetician's three theoretical dimensions of vowel quality is still largely a 
mystery (Ladefoged, 1967, pp. 103, 140-141), phonetic theory cannot be used to directly 
evaluate the plausibility of these values. On the other hand, if the interpretation developed here 
for these three  PP  factors is further confirmed, and if the formant loadings for these factors can 
be well defined in future factor analyses, then an objective acoustic definition of the three 
theoretical dimensions of vowel quality might finally have been determined. 

                                                           
* Questions could be raised, for example, about the sign of the correlations between the 
"backness" factor and the other factors. However, such details of interpretation will not be 
discussed in this article. 
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TABLE 9 
 

Correlations Among Person Loadings and 
Fundamental Frequency of Voice 

 
 

 Factor 1 
("Open � 
Closed"?) 

Fundamental 
Frequency (F0) 

Factor 3 
("Back"?) 

Factor 2 
("Spread"?) 

Factor 1 
("Open- 

Closed"?) 
 

  
.42 

 
.57 

 
.55 

Fundamental 
Frequency (F0) 

 
 

   
.71 

 
.73 

Factor 3 
("Back"?) 

 

    
.90 

 
 
 
 
 
 
Correlations among person loadings from Table 8, plus fundamental frequency or voice pitch 
from Table 5. Columns have been arranged to show that the pattern of correlations is similar to 
that expected when there is a single influence responsible for most of the covariation. 
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V.  A UNIQUENESS THEOREM FOR PP FACTOR ANALYSIS 
 
 

An empirical demonstration of uniqueness of solution for the three-mode  PP  model was 
presented in Section IV. This type of evidence for uniqueness leaves open the possibility that in 
some very unusual circumstances, not adequately covered in the empirical tests, the uniqueness 
might not hold. A formal mathematical proof of uniqueness would rule out such a possibility and 
provide the user with an important reassurance of the validity of the technique. 

 
The following proof of uniqueness of the  PP  solution was discovered by Dr. Robert 

Jennrich.*  It requires that the factor loading matrices of each mode have a rank equal to or 
greater than the number of factors. This appears to be a stronger requirement for uniqueness than 
was found necessary in the empirical experiments (see Section IV).  Therefore the theorem 
should be taken as formally establishing that, for N factors, an N by N by N data set can be 
sufficient for a unique solution. A further theorem will be required to determine the minimal 
conditions necessary for uniqueness. 

 
 

Jennrich's Basic Uniqueness Theorem** 
 
Theorem:  If   i j kO P T O P Tl l l il jl kll l

′ ′ ′=∑ ∑    and if the matrices O, P, T each have rank   L ≤ 
I,J,K, then 
 
(15)  O' = ORD1,  P' = PRD2,  T' = TRD3 
 
where R is a permutation matrix and  Dl, D2, D3  are diagonal matrices with 
D1D2D3 = I. 
 
Proof:   Let   ijk i j kx O P Tl l ll= ∑ ,  and let  OlPlTl  denote the lth columns 
of  O, P, T respectively. Then 

                                                           
* UCLA Department of Biomathematics. The author is indebted to Dr. Jennrich both for his proof 
and for the basic form of the quick algorithm.  
 
** O, P, and T are here used to represent the weights designated by o, a, and F in equation 2 and 
O, I, and M in equations 8 and 9. The operator  ⊗   represents the direct or Kroneker product. 
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(16)  x O P T O P Tl l l l l l′ ′ ′= ⊗ ⊗ = ⊗ ⊗∑ ∑  . 
 
Clearly the spaces spanned by O1 , O2, ... Ol  and  O'1, O'2, ... O'l  are the same and, 
consequently, there exist  alm  such that 
 
(17)  r rO a Ol lr

′ = ∑  . 
 
Similar statements hold for  P  and  T, and hence 
 
(18)  r s t r s trstx a b c O P Tl l ll= ⊗ ⊗∑  . 
 
From which it follows that 
 
 (19)  r s t rs sta b cl l ll δ δ=∑  . 
 
Using the fact that  (clt)  is non-singular and considering the case when r ≠ s, gives 
 
(20)  r s rsra bl l δ= ∑  . 
 
Consequently,  (alr)  and  (bls)  have exactly one non-zero element in each column. Moreover, 
the same statement holds for  (clt)  and all non-zero elements are in the same positions in the 
three matrices. This establishes the first assertion. The second follows from 
 
(21)  r r ra b c 1l l ll =∑  . 
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VI.  GENERALIZATION TO NON-LINEAR FACTOR MODELS 

 
 

When non-linear patterns of factor influence underlie a set of real data, the solution 
obtained by fitting the linear  PP  model to that data will be a distorted description of those 
influences. In order to strengthen the accuracy and explanatory validity of a  PP  solution, such 
distortions should either be eliminated or recognized and taken into account. 

 
The concepts of system-variation and proportional profiles were used in Section III to 

develop the linear  PP  factor model. In a similar fashion, they will be used here to develop  PP 
models incorporating nonlinear and interacting factors. There are two possible approaches to 
developing non-linear  PP  factor analysis:  (1) to generalize the  PP  mathematical model to non-
linear form, and "fit" this non-linear model to data;  (2) to "fit" the linear model to data, but seek 
ways of recognizing when the results indicate the presence of non-linear influences, and, when 
such indications are present, seek ways of transforming the linear solution into a non-linear 
solution involving fewer factors. Both these approaches have been explored in a preliminary 
fashion, and some initial results have already been determined. 

 
 

A Non-Linear  PP  Model 
 

The most direct approach to non-linear  PP  factor analysis is to change the factor model 
to include non-linear relationships. This can be accomplished simply by altering the equations 
(9), in which the data is estimated on the basis of the current parameters of the model, and then 
applying the same optimization techniques of Routine TBU to fit the parameters of this set of 
modified equations to the data. The first step in this process requires the development of an 
appropriate conceptual foundation for a non-linear three-mode PP factor model. It was decided to 
formulate a mathematical model that could describe "interaction" of factors. 

 
In many areas of biology, psychology, economics, etc. concepts of basic processes or 

influences have been developed which would seem to call for interacting factors. For example, it 
might be expected in analyses of brain activity that certain underlying EEG "generators" will not 
simply add their effects to those of other "generators". Instead, it is likely that some brain 
activities will be involved in controlling, or moderating others. 

 
Evidence for "moderator" variables has been presented by Saunders (1956) in relation to 

different psychological predictors of grade point average. In a study of "Method Factors", 
Campbell and O'Connell (1967) have uncovered systematic evidence of factors whose influence 
seems 
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multiplicative rather than simply additive, and they suggest that these results may cast doubt on 
the basic appropriateness of the additive factor analysis model for many applications (Campbell 
and O'Connell, 1967, pp. 424-425). More recently, Ladefoged has cited evidence for the 
necessity of a "moderator" relationship among some presumed latent dimensions or features of 
phonetic units (Ladefoged, in press). 
 
A simple PP factor interaction model could be formulated as follows: 
 
(22) xkji = okl ajl Fli + bl(okl ajl Fli)(ok2 aj2 F2i) + ok2 aj2 F2i … 
 
where the "b" coefficients represent the degree of interaction between two factors. Given m 
factors, there would be  m(m-1)/2  such coefficients, as there are that many distinct factor pairs, 
not including the case where a factor is paired with itself. If we include terms where a factor 
"interacts with itself", the model becomes immediately extended to include a contribution from 
the squared factor value. There are many cases of square and inverse square relationships in the 
physical sciences, and there seems no basis on which to discount their likelihood elsewhere. In 
this expanded model there would be  m(m+l)/2  interaction terms and corresponding "b" 
coefficients. 
 

Obviously, there are many other non-linear generalizations which could be made 
including logarithmic, exponential, and higher order polynomial terms. Unless some guidelines 
can be found for determining which models to apply to the data, the researcher seems to be faced 
with an embarrassing excess of possible models. A practical approach to handling this problem 
will be developed in relation to the linear analysis of nonlinear data described below. 

 
 

Analysis by "Fitting" Non-Linear Models 
 

Synthetic error free data was created according to model (22) and then was analyzed by 
Routine TBU, using a modification of the  PP  analysis described in Section IV. The 
modifications consisted in altering the equations being fit to the data  (9)  to include interaction 
terms as in equation 22, and requiring TBU to estimate not only the O, I, and M weights (for the 
o, a, and F values) but also the set of "b" coefficients of interaction. The quick algorithm cannot 
be used, since it assumes a linear model. Only the more general TBU allows the parameters of 
any nonlinear factor models to be directly fit to the data. 

 
Difficulties of slow convergence were immediately encountered with this technique. 

Whereas linear solutions of two factors could be accomplished in 50 seconds on the IBM 360/91, 
convergence on the non-linear solution for two factors and one "b" weight took over 600 
seconds. Therefore, only 8 of these non-linear experiments have been carried out. It 
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had been planned to use techniques of "group relaxation" to speed up the optimization routine, 
but these have been left undeveloped since more efficient means of accomplishing non-linear 
analyses seem possible using the technique of transformation from a linear solution, as will be 
discussed below. 
 

Unique solutions were obtained with these non-linear models which exactly matched the 
latent non-linear structure used to create the data. Correct estimates of the loadings and of the 
size of the "b" interaction term were found for data sets generated by two factors and one 
interaction. Convergence difficulties precluded trying higher numbers of factors. Aside from 
convergence difficulties, the models and techniques seem to directly generalize to the non-linear 
factor-interaction case. But because of these convergence difficulties, no meaningful systematic 
test could be made of conditions of data "adequacy". 

 
 

Linear Analysis of Non-Linear Data 
 

When data created with a non-linear latent structure was analyzed with the linear model 
of Section IV, a number of interesting consequences were observed. The number of factors 
uniquely extracted became larger than the "true" number of latent (non-linear) factors. Four 
linear factors were extracted from data generated by two factors plus two nonlinear terms (one 
"interaction" and one squared factor value).  Data generated with a two factor version of the 
simple interaction model  (22)  looked, on linear analysis, as if it contained three factors. The 
best "fit" (least errors of prediction) was only obtained with three factors, and the three-factor 
solution was still unique. 

 
An examination of the tables of loadings, (Table 10), revealed the most important 

property of all. The loadings on the third factor were all equal to the product of the loadings of 
the first two factors. 

 
From a consideration of Jennrich's Uniqueness Theorem (Section V) these interesting 

results obtained by linear analysis of non-linear data structures could have been predicted in 
advance. The theorem imposes no restrictions besides minimum rank on the factor loading 
matrices. Therefore matrices of loadings can be considered in which the loadings of some certain 
factors are equal to a simple non-linear transformation of the loadings of other factors. Consider, 
for example, a three factor case where the loadings of one factor of the matrix are equal to the 
product of the corresponding loadings of the two other factors. When the linear model is used to 
synthesize data with this type of matrix, it will add the contributions of three "independent" 
factors, but the contribution of the third "independent" factor would always be exactly equal to 
the product of the contributions of the other two factors. Now if the third factor were dropped 
from the matrix, and only two factors were used, but a non-linear equation were used to generate 
the data according to the model of equation 22, three separate contributions 
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TABLE 10 
 

Linear Analysis of Data Generated by Two Interacting Factors 
  
Occasion Loadings (Input) 
 Factor 1 Factor 2 
1 0.857 0.857 
2 1.285 1.842 
3 0.857 0.300 
 
Person Loadings (Input) 
 Factor 1 Factor 2 
1 0.625 1.080 
2 1.125 0.600 
3 1.250 1.320 
 
Test Loadings (Input) 
 Factor 1 Factor 2 
1 1.027 0.972 
2 0.0 0.972 
3 0.840 0.0 
                   *               *               * 
Occasion Loadings (Extracted) 
 Factor 3 Factor 2 Factor 1 
1 0.856 0.854 0.650 
2 1.287 1.846 2.125 
3 0.856 0.300 0.225 
 
Person Loadings (Extracted) 
 Factor 3 Factor 2 Factor 1 
1 0.623 1.074 0.665 
2 1.125 0.602 0.675 
3 1.252 1.324 1.660 
 
Test Loadings (Extracted) 
 Factor 3 Factor 2 Factor 1 
1 1.030 1.020 1.068 
2 -0.002 0.986 -0.012 
3 0.840 0.002 -0.003 
 
Results of linear analysis of non-linear data. The factor loadings of the two input factors were 
used to generate data according to the non-linear interaction model of equation (22) in Section 
VI. The normal linear PP model was then used to extract factors, and discovered three (rather 
than two) unique factors. The loadings on factor 1, however, turned out to be equal to the product 
of factors two and three. 
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would again be added to each data value, and these contributions would be equal to the 
individual contributions of the two factors, plus the product of their contributions. The resulting 
data for both cases would be identical. 
 

The linear solution of such a data set would be unique for 3 factors (given "adequacy" of 
the data). The recovered sets of loadings would show two independent factors, and a third factor 
whose loadings were equal to the product of the loadings of the other two factors. This unique 
linear solution would be obtained regardless of whether the data were generated by a special 
three-factor "linear" matrix or instead by a two-factor matrix where the factors interacted in the 
generation of the data. 

 
If real data were analyzed with a linear factor model and the loadings were found to show 

such a systematic relationship, the natural conclusion would be that there were in fact only two 
factors present, and that the third "factor" represented contributions to the data variance from an 
interaction of the two other factors. This conclusion would be justified because the likelihood of 
a real third independent linear factor having such a relation to the other two factors would be 
very small. 

 
As has been noted by Bartlett (1953), and McDonald (1967a), such "product term 

factors" would arise in classical factor analysis if non-linear relationships were present 
underlying the data. But they could not be identified because of the rotational indeterminacy of 
the classic factor solution.  Among the many possible rotations only one would reveal the 
systematic relationship between factor loadings which would correctly indicate the presence and 
nature of any non-linear influences. In the classical model there was no way to select this 
rotational position. Because of the uniqueness of the PP solution. this position is selected 
"automatically", or more correctly, the problem does not arise. 

 
These results suggest that the loadings from any linear  PP  analysis should be plotted 

against one another to detect possible non-linear relationships. To detect more sophisticated 
relations, each mode should be taken separately, and in addition to plotting the loadings, the 
actual total factor contributions should be plotted against one another. This means that the 
products of the factor loadings should be computed as for estimation of the data (e.g. oklajlFli), 
and that these products, which are here called factor contributions, should be plotted for pairs of 
factors. This would allow identification of other types of non-linear relationships (e.g. 
logarithmic or exponential functions of the factor contributions) which could not be as easily 
identified from plots of the single loadings. 

 
Refined specifications of the relationships could then be computed by conventional 

curve-fitting techniques. This would allow precise 
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mathematical description of the form and degree of non-linearity, and give, at the same time, an 
expression of the degree of error of fit of a certain loading pattern to an assumption of any 
particular non-linear relationship. Eventually, statistical tests of the probability of any non-
linearity hypotheses might be possible. Much work in this area obviously remains to be done 
before this can be accomplished, however. 
 

This straightforward correspondence between types of linear and non-linear unique factor 
solutions allows a researcher to (1) recognize the presence of significant non-linear influences 
underlying his data; and (2) attempt to transform his linear solution into an undistorted non-linear 
representation involving fewer factors. It was noted earlier that there is an excessively great 
range of possible non-linear factor models which are available to the researcher. With this 
"linear" analysis technique, the question of which possible non-linear model to use is put off 
until the factor loadings are examined. Here the problem can be more easily handled. Visual 
inspection of the plots of factor loading relationships can directly suggest possible relationships, 
and can immediately rule out a great many of the relationships which might have seemed 
plausible before the initial linear analysis. The curve fitting techniques which can be used at this 
point are more familiar and perhaps easier to use than generalized non-linear  PP  analysis 
techniques. Certainly they use less computer time. 

 
Since the quick solution algorithm, which depends on a linear model, provides a great 

improvement in speed and cost of computation, the ability to apply these linear techniques and 
still recover nonlinear information has important practical significance. 

 
There are a number of somewhat abstract and philosophical questions of possible 

interpretation of non-linear relations among columns of factor loadings which will not be 
discussed in detail in this article. Some of these will, however, be touched on in Section VII, in 
the discussion of the strong relation between the technique for handling non-linearities developed 
here, and the approach of McDonald. 
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VII.  THE PP MODEL IN RELATION TO OTHER NON-LINEAR 
 

AND MULTI-MODAL FACTOR MODELS 
 

The foundation of the proportional profiles model is due to Cattell (1944, 1955), but the 
model and technique which have been developed here from that base are strongly related to the 
important work of Tucker (1963, 1964, 1966) and Carroll and Chang (1969a, 1969b) in the 
development of multi-modal models. The work of McDonald (1967a, 1967b) with non-linear 
generalizations of the classical factor model is closely related to our non-linear generalization of 
the  PP  three-mode model, and contributes substantial rigor and detail to its mathematical 
justification. When these studies are taken together with other recent developments (Shepard and 
Carroll, 1966; Carroll, 1969; Gnanadesikan and Wilk, 1969; Evans, 1967), it seems that the 
fields of factor analysis and multi-dimensional scaling are undergoing a process of rapid 
evolution. The degree to which the results reported in this article are related to all of these other 
contributions suggests that the process is one of convergent evolution, and that the convergence 
is towards a small but very general set of powerful techniques for multi-dimensional analysis. 

 
 

Tucker's General Multi-Modal Factor Model 
 

The generalization of factor analysis from two-way to higher order data sets was first 
accomplished by L. R. Tucker in 1964 (Tucker, 1964). In contrast to the models developed in 
this article, he developed a three-mode mathematical model which is much more general, 
covering the system-variation and object-variation types of linear three-mode data variation in 
one mathematical description. 

 
Tucker's Mathematical Model 
 
Using notation conventions as adopted earlier, Tucker's mathematical expression of the 

value of a data point would be as follows. 
 

(23) �x kji  = oklajlFlig111  +  ok2ajlFlig211  +  …  +  okmajlFligmll  + 
 

 oklaj2Flig121  +  ok2aj2Flig221  +  …  +  okmaj2Fligm2l 
 

        … +  okmajpFligmpl 
 
        … + okmajpFqigmpq 

 
In this expression, a separate set of factors is extracted for each of the three modes of the 

data matrix, m for the occasion mode, p for 
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the measures, and  q  for the objects.  In addition, there is a special set of coefficients or loadings 
which are defined for each possible combination of a factor from any given mode with a factor 
from each of the other two modes. These are the gmpq terms. There are of course (m  times  p 
times  q) of these  g  terms. The data point is estimated by summing all combinations of the 
loadings for all factors, times the appropriate  g  values. Using more compact summation 
notation, Tucker's mathematical model can be expressed as follows: 
 
(24)  kji km jp qi mpq

m p q
�x = o a F g∑∑∑  

 
or using his notation completely: 
 
(25)  ijk im jp kq mpq

m p q
�x = a b c g∑∑∑  

 
Tucker's approach is to solve for a separate set of factors in each mode, and then generate 

a table of interactions or interrelations of these three sets of factors so that, taken together, they 
predict the individual data points. For a description of the details of Tucker's mathematical 
procedure and reasoning, the reader is referred to the original sources (Tucker, 1964, 1966; 
Levin, 1965). The discussion here will center on the relation between Tucker's model and the  PP 
three-mode model. 

 
Applied to the same set of data, Tucker's model and the  PP  model would not, in general, 

give the same results. Assuming an "adequate" set of system-variation data, an analysis by the 
PP model would give a unique explanatory solution. With the same data, Tucker's more general 
model would not give a unique solution. Clearly, then one could not make the same sort of 
argument for the "reality" or explanatory validity of the solution with Tucker's model. But an 
even more fundamental difference would exist between the solutions. The underlying conceptual 
models would differ so radically that the very meaning of the term "factor" would be different in 
the two cases. It is at this level of conceptual models that the most important comparisons can be 
made. The  PP  mathematical model can be considered a special case of Tucker's mathematical 
model, namely where the  gmpq  terms are 1 for all "diagonal" cells in the core matrix (where 
m=p=q) and zero everywhere else. The conceptual models, however, are altogether different. 

 
Tucker's Conceptual Model 
 
The most detailed discussion of Tucker's conceptual model is developed by one of his 

students, Joseph Levin, in an article dealing with the application of Tucker's techniques to two 
sets of real data (Levin, 1965, pp. 442-444). 
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  Levin begins his exposition of "the structure and logical meaning" of Tucker's model by 
stating that 
 

Three mode factor analysis is not a straightforward generalization of classical 
two-mode factor analysis. Two-mode analysis requires some modification before 
it can be generalized. It is, therefore, simpler, first to introduce a modified version 
of two-mode factor analysis and explain three-mode factor analysis as a 
straightforward generalization. (Levin, 1965, pp. 442-443) 

 
Instead of distinguishing two different latent conceptual models in classical factor 

analysis and generalizing them separately, Tucker substituted a new two-mode conceptual 
model, one that was suitable for generalization to the three-mode case. In it, a concept of "factor" 
was developed which was somewhat different from the classical meaning of the term. 

 
In classic factor analysis, there is a single set of latent variables or influences 

hypothesized to underlie the data. A factor analysis attempts to describe (by factor loadings) the 
degree to which this set of hypothesized entities influences the variables, and (by factor scores) 
the degree to which it influences the individuals being measured. This is diagramed in Figure 4a. 

 
In Tucker's revised two-mode model, factor analysis would identify two sets of 

hypothetical entities; one set which is measured by the variables, and a different set present in the 
individuals. The entities underlying the variables are called "idealized measures", and those 
underlying the individuals are called "idealized individuals". The revised factor analysis then 
attempts to describe three, rather than two, patterns of influence: (1) the influence of the 
"idealized measures" on the real measures, (2) the influence of the "idealized individuals" on the 
real individuals, and (3) the "interactions" * between the two sets of idealized entities. This model 
is diagramed in Figure 4b. 

 
Tucker's two-mode model has a straightforward generalization to the three-mode case. 

This involves a separate set of latent entities for each of the three modes, and a three-way matrix 
to describe their "interactions". 

 
For system-variation data, Tucker's conceptual approach would seem more complex than 

necessary. In a case where the  PP  model would discover 4 factors in a set of three-mode data, 
Tucker's general model would discover 12 (4 for each mode). Consider the earlier example of 
factor 

                                                           
* These "interactions" should not be confused with the "interactions" of factors of the non-linear 
model developed in Section VI. Tucker's "interactions" are between modes, and his model is still 
a strictly linear one. 
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analysis of the economy. The PP model would discover 4 factors with labels such as 
"inflationary pressure". Each factor would have characteristic influences or loadings on each 
business, each economic variable of that business, and on each occasion. Tucker's model would 
discover 4 "idealized businesses", 4 "idealized business measures", and 4 "idealized occasions". 
Each idealized business would contribute in varying degrees to the actual businesses, each 
idealized business measure would contribute in varying degrees to the actual variables, and each 
idealized occasion would contribute in varying degrees to the actual occasions. The core matrix 
would describe interactions among these idealized businesses, business measures, and occasions. 
Although both descriptions might be interesting and informative, Tucker's general approach, 
applied to simple system-variation data, clearly seems less parsimonious. Both models would 
predict or "fit" the data equally well, but Tucker's modification requires the postulation of three 
times as many hypothetical entities as the PP model. It also requires an additional set of 
relationships to be invoked, namely the "interactions" of the three sets of entities. The 
interpretation of entities such as "idealized businesses" and their interactions with "idealized 
occasions" seems somewhat more obscure than interpretation of system-variation factors, which 
are properties of the economy which differentially affect businesses, and which vary in activity 
or influence from one occasion to the next. 
 

One might feel tempted to anticipate, then, that Tucker's conceptual model could be set 
aside in favor of the system-variation and object-variation models. Once techniques of analysis 
according to the object-variation model were developed to the same practical degree as  PP  
factor analysis, one might feel that this model could cope with the cases not accessible by the  PP  
model, and one way or the other an easily interpretable "explanatory" solution could be obtained 
for any "adequate" set of three-mode data. 

 
Such, however, is not the case. Tucker's approach may seem less explanatory and 

parsimonious for simple cases of system-variation or object-variation. But other patterns of data 
variation can be envisioned for which neither of these two models (or even a combination of both 
models) would be completely adequate. For such cases of complex three-mode data variation, 
models must be developed that bear a strong relation to Tucker's pioneering general three-mode 
model. 

 
To develop the idea of these complex patterns of three-way data variation, it will be 

useful to resume the discussion begun in Section III of the object-variation model and its relation 
to the PP model. 

 
Object-Variation Model Applied to Non-Object-Variation Data 

 
The object-variation concept was given mathematical form in equation 4. But this 

equation applies to other patterns of data variation besides the object-variation type. It is, in fact, 
a fully general 
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(linear) mathematical model for three-mode data variation. Compared to Tucker's general model 
it gives a representation of the data which invokes fewer hypothetical entities (since it finds one 
set of factors, i.e. those underlying the measures) but is much less compact than Tucker's three-
mode description. In the object-variation model the factor score variations (the "V" values) for 
all individuals must be solved separately for each factor for each occasion. As a result, the 
solution not only generates a set of loadings for the factors on the variables, but a two 
dimensional array of "V" values for each factor. This yields a three-way matrix of reduced size, 
whose modes are factor by individual by occasion. 
 

This loss of compactness in two modes might be justified if the model allows one to 
discover (by applying the continuity maximization constraint) a compact set of loadings for the 
third mode which represents a good estimate of the real latent structure underlying the variables. 
But such a result would not provide any information about the latent structure of the individuals 
or the occasions. 

 
Sometimes, it might be possible to simplify or further analyze the tables of "V" values for 

each factor. A classic factor analysis of each factor's "V" table might reveal "secondary factors" * 
indicating a strong latent structure in the variations of the factor scores across individuals and 
occasions. These secondary factors could take many forms. One can predict for example what 
such an analysis would reveal if the data were of system-variation or object-variation type. 

 
If the original data had been of system-variation type, then an analysis of any factor's "V" 

table would give one secondary factor. The loadings of this one factor would be, in fact, the 
proportionality constants among occasions and among individuals which would have been 
discovered had the original data been analyzed using the  PP  model. 

 
Interpretation of such a "V" table analysis would be straightforward. And since one-factor 

solutions are unique, even with traditional two-mode factor analysis, this roundabout system-
variation solution would retain the uniqueness of the system-variation model. 

 
Similarly straightforward results would be found if the original data had been a perfect 

example of object-variation. All the "V" values for one individual would be uncorrelated with 
those of any other individual. In this case the "V" tables would have as many factors as 
individuals, and there is no additional theoretical information to be gained by such analysis. 

                                                           
* These are factors in the patterns of "V" values, not to be confused with "higher order" factors 
obtained by hierarchical factor extraction in classical two-mode factor analysis. 
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  But now consider intermediate situations. Suppose that a secondary factor analysis of 
each primary factor's "V" table reveals two or three factors in each table. How does one interpret 
this systematic but more complicated pattern of variations in factor scores? Could such a pattern 
ever be expected to occur in real data? 
 

The interpretation of intermediate data relationships in the "V" tables seems much more 
difficult than the two simple extreme cases of 1 factor or N factors (where there are N persons), 
but an analogy to the N factor case may be helpful. In the case of N factors for N individuals one 
would interpret this result as indicating that every individual is exposed to different 
circumstances which independently influence his variations in factor scores across occasions. In 
the case of personality measurements and factor types such as "hostility", one might suspect that 
the individual personal family and social circumstances of each person would change the degree 
of hostility in a person's makeup in a fashion independent of the changes in other individuals. 

 
Now if the individuals being measured came from three large communal living groups 

(e.g. orphanages, "communes", religious communities, etc.) some of the variations in the amount 
of hostility might be correlated among those individuals coming from a given living group, i.e. as 
each group went through "good" and "bad" phases. Three secondary factors might then emerge 
from an analysis of a given factor's "V" table. Each secondary factor would correspond to a 
living group. If enough "V" tables displayed three secondary factors, the separate secondary 
solutions could be rotated to parallel proportional profiles for a possibly unique solution. 

 
In the above interpretation, a separate set of factors has been isolated in each of two 

modes of the data matrix. Further analysis might sometimes reveal separate factors in the third 
mode. This concept of separate factors in each mode is similar to Tucker's concept of "idealized" 
entities in each mode. Interpretation of such interlocking latent structures can become very 
difficult. The approach to this problem through the analysis of "V" tables in the object-variation 
model may shed some light on possible criteria for unique explanatory solutions with these 
complex patterns of data variation. It may, for example, provide one approach to the discovery of 
rotation criteria for Tucker's three-mode model. As Tucker comments: " ... the freedom of 
transformation permitted by [Tucker's) model is both important and the source of many 
problems. There is a lack of uniqueness. This gives rise to many problems yet to be solved" 
(Tucker, 1966, p. 291). In the difficult area of these complex types of three-mode data variation, 
Tucker's concepts and the concepts developed here have much in common and much to gain 
from one another (for recent work on meaningful rotation criteria see Tucker 1966b, 1967). 
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McDonald's Non-Linear Factor Analysis 
 

McDonald's discussion of the mathematical foundations for non-linear factor analysis 
(McDonald, 1967a, 1967b) relate directly to the technique of non-linear generalization by special 
analysis of a linear solution developed in the latter part of Section VI. His important monograph 
(McDonald, 1967a) should be consulted by those seeking formal mathematical development of 
the application of the basic factor model and equations to cases of non-linear latent influences. 

 
Not only has McDonald laid an important mathematical foundation for non-linear factor 

analysis, but he anticipated aspects of the particular short-cut analysis technique which was 
developed in part VI to avoid the slow-convergence problems of the generalized optimization 
technique. This short-cut involved searching among the loadings or contributions of each pair of 
"linear" factors for systematic non-linear relationships. McDonald confirmed Bartlett's (1953) 
claim that a nonlinear contribution would act as if it were an additional factor in the linear 
extraction process (McDonald, 1967a, 1967b). 

 
There are several important differences, however, between McDonald's non-linear factor 

analysis and the non-linear generalizations of  PP  factor analysis developed in Section VI. The 
most crucial difference is that the results of non-linear  PP  factor analysis are unique and 
"explanatory". The indeterminacy which is present in solutions obtained by the application of 
McDonald's technique to normal two-mode factor analyses is quite serious. Not only are the 
results indeterminate in terms of identifying the "meaning" of the factors, but even the basic form 
of the non-linear relationships is indeterminate as well. McDonald demonstrates that one basic 
non-linear model, that of interacting factors (similar to our equation 22) can be transformed by 
rotation into a fundamentally different model involving non-interacting factors, calling only for 
contributions from the squares of the factor loadings. He comments that "The alternative 
interpretation of data in terms of model (19) [non-interacting polynomial components] would 
entail a radically different psychological theory, and a choice between model (1) [interacting 
factors] and model (19) [certain polynomial factors] may rest on psychological considerations, if, 
indeed, a rational choice can be made" (McDonald, 1967b, p. 214). Such indeterminacy, and 
pessimism about "rational choice" among the different possible solutions would seem to cast a 
serious shadow on any attempt to discover the "true" nature and structure of a set of non-linear 
latent relationships. 

 
The whole question of rotation posed the gravest problems when McDonald's non-linear 

generalizations were applied to classical two-mode factor analysis: 
 
... the concept of simple structure may be difficult or impossible to redefine in the 
context of non-linear factor analysis. The whole question of factorial invariance 
will need to be reappraised in this context ... 



 77 

 
... Thurstone (1947) adopted the position that factors, conceived of as 
fundamental dimensions of ability, personality or the like, need not be thought of 
as orthogonal ... There is a good deal of impressive argument, by analogy with 
observable dimensions of physical entities, to justify this view. For our purposes, 
however, it proved necessary to stipulate that the latent variates or factors be not 
merely orthogonal, but completely mutually independent in the probability sense. 
If this stipulation is not made, there can be no distinction between linear and non-
linear factor analysis.  A fortiori, we cannot allow the factors to be correlated. 

                              (McDonald, 1967a, pp. 133-134) 
 

Many of the dilemmas that confronted McDonald do not apply to the non-linear 
generalization of the  PP  three-mode model. Most importantly, the uniqueness of the solution 
provided by the  PP  model allows a rational choice to be made between the alternative 
interaction and polynomial models which were confused in the non-linear two-mode analysis. 
Furthermore, this uniqueness allows a much more direct and straightforward search for all the 
nonlinear relationships that may be present among factors. McDonald's techniques were 
restricted basically to polynomial models (McDonald, 1967b, p. 133), although other relations 
could be theoretically derived by transformation from a series of polynomials. 

 
Since no rotations are necessary (or possible) with the unique solutions of the  PP  three-

mode model, the researcher is able to directly plot the loadings or contributions of each factor 
against the others, and to use curve fitting and optimization techniques to discover latent non-
linear relationships of all kinds, including logarithmic, trigonometric, exponential, etc. 

 
It is also important to note that the restriction to orthogonal factors is not present with  PP  

analysis. As long as one assumes that highly specific non-linear patterns of correlation among 
factors is unlikely, then it would be easy (in principle) to distinguish plots in which there is 
essentially a linear correlation but a good deal of random scatter, from those in which there is 
less scatter, but a clearly defined non-linear relationship, such as would be unlikely unless one of 
the apparent factors represented a non-linear contribution of the other factor. 

 
Clearly, however, there are ambiguities and philosophical difficulties in the interpretation 

of some of these relationships. A trivial one would be to determine whether one factor is the 
square of the second, or in fact the second is the "real" factor, and the first is a non-linear 
contribution which is a function of the square root of the second. More significant is the 
possibility of non-linear correlations among genuinely different factors. Perhaps some of these 
ambiguities 
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might be resolved in four-mode or higher order data sets. In other cases, one may be thrown back 
to the "most meaningful" interpretation. A detailed discussion of the philosophical and 
mathematical considerations involved in these decisions, insofar as they might matter (i.e. 
insofar as they might lead to different interpretations of the real phenomena underlying the data) 
must be deferred. 
 
 
Carroll and Chang's Model for Multi-Dimensional Scaling 
 

As an earlier version of this article was being prepared, the author was given copies of 
two unpublished papers by J. Douglas Carroll and J. J. Chang of Bell Telephone Laboratories 
(Carroll and Chang, 1969a, 1969b). It became clear from these most important articles that 
Carroll and Chang had independently discovered some of the most significant properties of the 
representation of data in terms of triple products, as in equation 9. Further, they had successfully 
applied this scheme to real data. For the interpretation of their results they developed a clear 
conceptual model which is related to the PP model, but which arises from considerations in 
multidimensional scaling rather than factor analysis. 

 
Carroll and Chang deal with a three-way data matrix composed of judged similarities 

between stimuli. The dimensions of the matrix are (1) the stimulus, (2) the stimulus to which it is 
being compared, and (3) the individual doing the comparison. They conceive that there should be 
systematic differences between the similarity values not only based on which two stimuli are 
being compared but also based on which individual does the comparison. Assuming that the 
individuals, in general, share a number of latent "dimensions" on which they compare the 
stimuli, they nonetheless can be expected to differ on the relative weights that they give to 
different dimensions (Carroll and Chang, 1969b, p. 3). 

 
The conditions of a system-variation conceptual model are fulfilled in the above 

description. But an adjustment is necessary before the final form of the mathematical model 
emerges. The theoretical expression for the judged distance between two stimuli is 
 

 (26)  ( )
r 2(i)

jk it jt kt
t=1

d w x -x= ∑  

 
for the distance judgment of the  ith  individual on the  jth  and  kth  stimuli (Carroll and Chang, 
1969b, p. 3). It is the normal Euclidean distance formula modified by the weight  (wit)  that the  
ith  individual puts on the tth dimension. The data is then transformed as follows: 
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The first step in the method of analysis is to convert the similarities into distance estimates. 
Under the linear assumptions we have made, this can be done by using one of the standard 
procedures described in Torgerson (1958). We then use the equations also described in 
Torgerson (1958, pp. 254-259) to convert the distance estimates for each subject into scalar 
products of vectors (to get the matrix of scalar products, we simply double center the matrix 
whose entries are  -1/2 2

jkd ). This gives us numbers  (i)
jkb ) , which, in the present case, be 

regarded as scalar products between the vectors  (i)
jty  , i.e. (ignoring error terms): 

 

 (27)  
r r

(i) (i) (i)
jk jt kt it jt kt

t=1 t=1
b y y w x x= =∑ ∑  

 
The last expression results from substituting  (i) 1/2

jt it jty w x=    . 
 
The rightmost expression in (27) above is equivalent to the mathematical form of the  PP 

three-mode model (2) as modified to estimate data (9). That it shows up in the context of multi-
dimensional scaling is further evidence of its generality and usefulness. 

 
Carroll and Chang had made the important discovery that this procedure could give a 

unique solution, although they did not present any proof or any description of the conditions 
under which uniqueness would be found to hold or fail. Instead, their highly successful results 
with real data were used to demonstrate the explanatory validity of the unique solutions obtained 
with the model: 

 
The model may not hold in every case, but if it does we gain a unique and 
hopefully psychologically meaningful orientation of axes, thus obviating the 
rotational problem and defining much stronger scales of measurement than is 
usual in multidimensional scaling. One example will be presented in a later 
section to support the argument that this in fact does happen. We have now 
collected many more cases (especially as yet unpublished data collected by 
Myron Wish) that lend credence to this notion. In essentially every case the 
dimensions have proved to be interpretable directly as they are derived from this 
analysis (i.e., without rotation). In cases where a set of  a  priori  physical or 
theoretical dimensions were known, the recovered (unrotated) dimensions have 
always (to date) corresponded to them in an essentially one to one fashion. We 
therefore argue that it is appropriate to analyze data in terms of this very strong 
and specific model, and that only if this model fails to fit the data adequately 
should one have recourse to a more general model. 

(Carroll and Chang, 1969b, pp. 6-7) 
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To analyze data according to this model, they devised an algorithm based on a procedure 
described by Eckart and Young (1936) which is similar to Jennrich's quick algorithm (before the 
addition of the relaxation factor). They have programmed their version to handle up to 7-mode 
data. 
 
 
Converging Models 
 

Other recent developments in factor analysis seem to be pointing in a direction similar to 
the  PP  model and the work of Tucker, McDonald, and Carroll and Chang, discussed above. 
Evans (1967) has developed a special purpose factor model for three-mode "growth data" which 
shares many features with the object-variation model developed in Section III. It expands the 
factor loadings on measures rather than the individual's factor scores, and provides special 
features for arbitrary means and variances found in most psychological tests. Although his model 
has no unique solution, Evans discusses the desirability of invoking Cattell's principle of parallel 
proportional profiles for rotation to a final solution, and he presents a computer algorithm for 
maximizing such proportionality of factor loadings on measures across occasions. Horst (1965) 
has also been working with techniques for handling three-way data matrices. Non-linear 
generalizations of two-mode factor analysis have recently been formulated by Carroll (1969) and 
Gnanadesikan and Wilk (1969). But these non-linear techniques, like McDonald's, are subject to 
problems of rotational indeterminacy which do not arise with the  PP  model. 

 
As has been noted earlier, there appears to be a rapid and convergent evolution taking 

place in certain areas of factor analysis and multi-dimensional scaling. As one result of this 
evolution, the model here called the proportional profiles model begins to emerge as one answer 
to the dual objectives of both greater generality (to incorporate multi-modal and non-linear data 
relationships) and greater strength or explanatory validity (to give stronger reasons for believing 
that a given solution corresponds in some close fashion to the "true" structure of the latent 
influences that generated the data relationships). 

 
This evolutionary progress calls for reexamination of the fundamental conceptual models 

underlying the mathematical procedures which have been developed. Examination of the 
meaning and appropriateness of different types of mathematical description of data relationships, 
as was done in this article, can lead to better approaches to "explanatory" solutions. 

 
Further conceptual, perhaps even philosophical epistemological questions need to be 

clearly formulated and the answers explored, before the modeling of non-linear and the more 
complex types of three-mode variations can be placed on a firmer "explanatory" foundation. 
(This situation is perhaps reminiscent of the philosophical questions that confronted the 
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early development of multiple-factor analysis itself.) Renewed exploration at this fundamental 
level, coupled with anticipated rapid advances in computing techniques, make it likely that a 
number of significant extentions of factor analysis, multi-dimensional scaling, and other related 
areas will emerge in the coming decade. 
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