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This was originally published in 1972 in UCLA Working Papers in Phonetics, No. 22, pp. 111-
117.  Some typographical, etc. errors in the original have been corrected here. 
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Introduction  
 
     The most important single fact about PARAFAC1 is that it provides a unique solution when 
the data fulfills certain necessary conditions.  It is obviously important, then, to determine just 
what these conditions are.  This problem has been approached in two different ways:  empirically 
and mathematically. 

Empirically, the necessary and sufficient conditions for uniqueness are explored by analyzing 
“synthetic” data.   This synthetic data is generated by computer so that the underlying structure 
and mathematical properties of each data set are known exactly.  The computer starts with 
factors and their relationships and then generates the data that those factors would produce.  In 
testing each data set, the PARAFAC1 program is used to repeatedly analyze the data from 
different starting positions.  When, for a given data set the PARAFAC1 program  converges on 
the same solution from all different starting positions, it is concluded that the PARAFAC1 model 
provides a unique description of that set of data.  From a number of such experiments on 
different types of data sets (i.e., different sized data sets, different types of factors underlying the 
data sets, etc.) it is possible to observe the common properties of those data sets which have 
unique solutions, and thus generalize to those conditions which any data set must fulfill in order 
to have a unique solution.  Further, it is possible to observe any regular patterns in the types of 
data that yield non-unique solutions and generalize to typical ways in which data sets can be 
“inadequate” to uniquely determine a solution.  When non-unique solutions occur, one can 
observe the ways in which uniqueness can partially or completely “break down”, and relate each 
type of non-uniqueness to a corresponding type of data “inadequacy”.  The results of such 
empirical studies of PARAFAC1 are described in Harshman (1970). 

Mathematically, the conditions for uniqueness are explored by attempting to derive them 
from the algebraic properties of the PARAFAC1 model.  If all our questions could be answered 
algebraically, there would be no need for the empirical studies (except to study the quirks of a 
particular algorithm, or the effects of different amounts and kinds of "noise" added to the data). 
Unfortunately, the algebraic properties of PARAFAC1 are relatively subtle, and most of all the 
mathematical insights are yet to be discovered.  The proof which is given below should be 
viewed as one more step in an ongoing effort to gain mathematical understanding of the subtler 
properties of PARAFAC1. 

The first uniqueness proof for PARAFAC1 was discovered by Robert Jennrich of the UCLA 
Department of Mathematics.  It was published, along with the results of a number of empirical 
studies on PARAFAC1, in Harshman (1970).  Jennrich’s Uniqueness Theorem showed that the 
potential for a unique solution exists when one has as many parallel two-way data sets as there 
are factors underlying the data.  For example, if there are three factors underlying a set of 
measurements, then one would need to have at least three measurements, on three objects, 
repeated on three 



 

 

112 

different occasions, to fit the uniqueness conditions required by Jennrich’s Theorem.  (Certain 
other conditions were also required which are described in Harshman, 1970). 

Empirical results, however, suggested that the conditions required by Jennrich’s theorem 
were stronger than were really necessary in order to determine uniqueness.  It was empirically 
possible to uniquely extract at least 6 factors from data sets having only three repetitions of the 
two-way tables (three different “occasions”).  The minimal conditions of uniqueness could not be 
determined, however, since convergence became too slow if the number of occasions was too 
small compared to the number of factors.  (See Harshman, 1970, chapter 4.) 

The proof which follows shows that two occasions can be sufficient to uniquely determine 
any number of factors, provided that the factors change size from the first to the second 
occasions and that the percent change of each factor is different than that of the other factors.  
The proof reveals some of the necessary and sufficient conditions for uniqueness.  These 
findings shed light, for example, on patterns of “partial breakdown” of uniqueness by clarifying 
how and why uniqueness fails, as well as when it fails. 
 
Theorem 
 
     If 
(1)  1 1 ′=X AD B  

(2)  2 2 ′=X AD B  
 
where A and B are n by l matrices which are non-horizontal (n≥l) and “basic” (of rank l) and D1 
and D2 are nonsingular matrices such that 
 (2b) 1

1 2 p
− =D D D     

where Dp has distinct diagonal elements. 
 
     And if there exists some alternate representation of X1 and X2, such as 

 (3)  
* * *

1 1 ′=X AD B  

(4)  
* * *

2 2 ′=X AD B  
 
then 

 (5)  
*

x=A A∆  

(6)  
*

y=B B∆  
 
where ∆∆∆∆x is some combination of a diagonal and a permutation matrix, and the same is true of ∆∆∆∆y 
(i.e., ∆∆∆∆x,  ∆∆∆∆y are nonsingular with one nonzero element in each column). 
 
Proof 
 

We start with our expressions for X1 and  X2  from (1) and (2), respectively. 
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 Now let us seek the restrictions imposed on any alternate A matrix.  We can describe any 
alternate A matrix as our original A matrix subjected to some transformation TA as follows, 

 (7)  
*

A=A AT    . 

This is possible since the columns of A and 
*
A  must span the same space (e.g., X1).  In fact, we 

can write an expression for T using equations (1), (2), (3), and (4).  Since 

 (8)  
* * *

1 1′ ′=AD B AD B   , 

it then follows that by post-multiplying both sides by 
* *

1( )+′D B ,  the right pseudo-inverse of 
* *

1( )′D B , i.e., 
** * *

1 1
1( ( ) )− −′B B B D  

 

 (9)  
* * * * * * *

1 1 1 1( ) ( )+ +′ ′ ′ ′=AD B D B AD B D B  

(10) 
** *

1
1 1( ( ) )+ −′ ′=A A D B B D    . 

Let  
**

1
A 1 1( )+ −′ ′=T D B B D  and we obtain, by substitution, equation (7). 

 
In a similar fashion, we obtain 

 (11) 
*

B=B BT    . 
 
Now since TATA

-1=I, TBTB
-1=I, we write 

 
 (12) 

11
1 A A 1 B B( ) ( )−− ′ ′ ′=X A T T D T T B  

(13) 
11

2 A A 2 B B( ) ( )−− ′ ′ ′=X A T T D T T B  
or, simply regrouping parentheses, 
 (14) 

11
1 A A 1 B B( )( )( )−− ′ ′ ′=X AT T D T T B  

(15) 
11

2 A A 2 B B( )( )( )−− ′ ′ ′=X AT T D T T B  

which can be rewritten, substituting   
* *

A B, ′ ′ ′= =A AT B T B    as 

 (16) 
* *

11
1 A 1 B( )−− ′ ′=X A T D T B  

(17) 
* *

11
2 A 2 B( )−− ′ ′=X A T D T B    . 

 
Now since equations (3) and (16) both give expressions for X1 

(18) 
* * * * *

11
1 A 1 B( )−−′ ′ ′=AD B A T D T B    . 

Using the fact that 
*
A  and 

*
B  are basic and thus have left pseudo-inverses, we can pre- and post-

multiply by appropriate inverses, obtaining 
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(19) 
* * * ** * * * *

11
1 A 1 B( ) ( ) ( )( )( )−+ + + − +′ ′ ′ ′ ′=A A D B B A A T D T B B  

or 

 (20) 
*

11
1 A 1 B

−− ′=D T D T    . 
In precisely the same fashion, by operating on equations for X2 (i.e., equations (4) and (17)) we 
can obtain 

 (21) 
*

11
2 A 2 B

−− ′=D T D T    . 
Now equations (20) and (21) can be premultiplied on both sides as follows 

 (22) 
* **

11 1 1
1 1 1 A 1 B( )−− − − ′=D D D T D T  

 

 (23) 
* **

11 1 1
2 2 2 A 2 B( )−− − − ′=D D D T D T  

or 

 (24) 
*

11 1
1 A 1 B( )−− − ′=I D T D T  

 

(25) 
*

11 1
2 A 2 B( )−− − ′=I D T D T    . 

Setting these expressions equal to one another, we get 

 (26) 
* *

1 11 1 1 1
1 A 1 B 2 A 2 B( ) ( )− −− − − −′ ′=D T D T D T D T  

and post-multiplying both sides by B′T  we get 

 (27) 
* *

1 1 1 1
1 A 1 2 A 2
− − − −=D T D D T D    . 

 

Pre-multiplying both sides by 
*

1D  and post-multiplying by (D1)-1 we obtain 

 (28) 
**

1 1 1 1
A 1 2 A 2 1
− − − −=T D D T D D    . 

Now  D2(D1)-1=Dp from (2b) and we can let  

 (29) 
**

1
q 1 2

−=D D D    . 

We know that Dq is nonsingular since 
* *

1 2,D D  are nonsingular (if they were singular, the rank 

of 
* * *

1 ′AD B   would not be the rank of X1 and similarly for X2).  So from (29) and (2b), we can 
rewrite (28) as 
 (30) 1 1

A q A p
− −=T D T D    . 

Now this implies that TA
-1 (and thus TA) is diagonal and/or permutation.  To see this, consider 

two elements in a given row of TA
-1.  Let us take tab

-1 and tac
-1 elements from row a and in 

column b and c.  From (30) we can write the scalar equations  
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(31) -1 q -1 p

ab aa ab bbt (d )(t )(d )=  
 
(32) -1 q -1 p

ac aa ac cct (d )(t )(d )=    . 
 
Now if both tab

-1 and tac
-1 are nonzero we could simplify by dividing both sides of equation (31) 

by tab
-1, and both sides of (32) by tac

-1, such that 
 
(33) q p

aa bb1 (d )(d )=  
 
(34) q p

aa cc1 (d )(d )=     
 
from which we would obtain  
 
(35) q 1 p

aa bb(d ) d− =  
 
(36) q 1 p

aa cc(d ) d− =  
or 
 (37) p p

bb ccd d=    . 
 
     But this contradicts our hypothesis that all diagonal elements of Dp are distinct.  Evidently, we 
cannot take two nonzero elements from any row of  TA

-1.  But since TA
-1 is nonsingular, each 

row has at least one nonzero element.  In the same fashion (but by taking two elements from the 
same column) we can show that each column has at most one nonzero element. 

But any nonsingular matrix which has only one nonzero element in each row and column is 
either a diagonal or a permutation matrix, or some combination thereof.  Hence, TA

-1 (and thus 
TA ) is diagonal and/or permutation. 

But ∆∆∆∆x is defined as some matrix which has just this form, so we can let 
  
(38) x A=∆ T  
 

(39) 
*

A x= =A AT A∆    . 
 
In the same fashion using symmetry we can obtain 
 

 (40) 
*

B y= =B BT B∆    . 
 
     We can see that when two elements of Dp are not distinct, the corresponding factors are not 
uniquely determined, while the remaining factors (with elements of Dp distinct from all other 
elements of Dp) will still be uniquely determined.  This explains how the uniqueness can break 
down “in stages” as discovered empirically in Harshman (1970, pp. 39-44). 
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Application to INDSCAL and other models 
 
     By taking the case where matrix B=A, the minimal conditions theorem applies to analysis of 
scalar-product and cross-product matrices, providing that one assumes orthogonal factors.  Thus 
it applies to Carroll and Chang’s INDSCAL model (Carroll & Chang, 1970), and provides 
minimal conditions of uniqueness for INDSCAL solutions.  By the same type of interpretation, it 
provides a uniqueness proof for the orthogonal factor case of PARAFAC2 (for a description of 
PARAFAC2, see Harshman, 1972).  The general oblique proof for PARAFAC2 has not yet been 
discovered (although progress has been made using reasoning which is along the same lines as 
the proof reported here). 
 
Further work to be done 
 
     Of course, not all questions about the uniqueness of PARAFAC1 have been answered by this 
minimal conditions theorem.  For example, it does not deal with the circumstance where some or 
all of the DI matrices are of a lower rank than the full number of factors—i.e., when some factors 
have a zero influence on some occasions.  Empirical results show that this circumstance need not 
interfere with uniqueness when there are a sufficient number of occasions.  Just how many are 
necessary and sufficient has not been mathematically determined.  Of course, if any two of the DI 
matrices satisfy the conditions of the preceding theorem, then they will suffice to provide the 
unique solution.  But when no two such DI exist, uniqueness must be determined by a more 
complicated set of interdependencies.  Jennrich’s Uniqueness Theorem applies to this more 
complicated circumstance whenever there are as many “occasions” as factors.  It thus establishes 
some possible sufficient conditions for uniqueness in such a case.  In this respect Jennrich’s 
theorem in “stronger” than the minimal conditions theorem presented here, although it does not 
handle the situations where there are more factors than occasions, or provide minimal conditions 
for uniqueness when two DI are of full rank.  In these respects the theorem presented here is 
“stronger”. 
 
     Another interesting empirical finding which is not covered by either proof is the discovery 
that 10 factors can apparently be uniquely determined by an 8 by 8 data set.  This would 
correspond to the case where the A and B matrices in the minimal conditions proof were 
horizontal rather than the current stipulation that they are square or vertical.  Mathematical 
treatment of this number of factors in such a sized data set poses the problem of carrying through 
the proof without the pseudo-inverses of A and B.  This, too, is a problem for further work in the 
future. 
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