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“How can | know if it's ‘real’?” A Catalog of
Diagnostics for Use with Three-Mode Factor
Analysis and Multidimensional Scaling

Richard A. Harshman

Far too often, solutions obtained by multivariate procedures—
including factor analysis, multidimensional scaling, and cluster
analysis—are interpreted, and even published, without adequate
evaluation of their reliability or wvalidity. Particularly among
inexperienced users, there is an uncritical and somewhat cavalier
approach to determining what parts (or which version) of an
analysis to accept. Clusters or dimensions are frequently taken
to be "real" whenever an interpretation can be projected onto
them by the imagination of the analyst. On the other hand,
dimensions that don't fit preconceptions and are hard to interpret
tend to be dismissed too easily. While some users may make a
feeble attempt at justifying their choice of dimensionality by
examining improvements in fit values, little effort is otherwise
expended in determining whether clusters or dimensions are stable
or reliable, whether the model is appropriate for the data,
whether the algorithm achieved correct convergence, whether
serious outliers are present in the data, and so forth.

On the other hand, more experienced and sophisticated users
often do employ diagnostic checks, but the particular ones that
are applied will differ from one user to the other. Many of the
techniques employed by a given analyst may have been developed
by the analyst himself, handed down by word-of-mouth, or picked
‘up from a passing reference in a published article. Consequent-
ly, inexperienced users have little chance of being exposed to
such procedures, except by apprenticing to someone who knows
them or by reinventing the techniques themselves. While pub-
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lished accounts exist for some of these techniques, they are
unfamiliar to most potential users; as yet, there is no com-
mon body of accepted, well-known methods available. And,
because many editors are also unaware of the importance and
proper use of diagnostics, they permit publication of articles
that lack essential evidence for the wvalidity of the solutions
presented.

This is, to say the least, an unfortunate state of affairs, and
this informal article is one attempt to initiate changes. In the
following discussion, I will first point out the role that diagnos-
tics can and should play and the questions that they can answer.
I will then briefly try to convey the range and nature of diag-
nostic procedures that can be used in factor analysis and MDS by
providing an informal list and brief description of those proce-
dures of which I am aware, including brief mention of some still
being developed. As we shall see, a number of different methods
can be used to check the optimality, reliability, and wvalidity of a
three-mode analysis solution. In fact, the potential variety of
diagnostic techniques for cluster analysis, three-mode factor
analysis and MDS is so substantial that it could (and hopefully
will) constitute a major area of growth and refinement of multi-
variate methodology in the next few years.

In this informal listing or "catalog," an attempt is made to
develop a natural classification scheme for the diagnostics, based
on the type of information they need (such as the data itself, the
factor loadings resulting from a single analysis, loadings from
several analyses, and so on) and which aspects of the solution
they focus on (including the fitted parameters of the model, the
residuals from the fit, or indices of overall goodness-of-fit). The
catalog is intended only as an introduction or overview of some of
the possible diagnostics that can be used at various stages of an
analysis. It certainly is not a thorough exposition; detailed
questions of how to use these diagnostics are not covered, al-
though brief descriptions of applications are sometimes given.

The objective is to increase awareness of the methods, to
generate interest and discussion, and to suggest methods that
have been omitted from the list—perhaps as an initial step toward
a more complete treatment in the future—and to encourage inves-
tigators to begin using these diagnostics. For some of the pro-
cedures, such as diagnostic interpretations of loadings patterns,
enough information is provided so that investigators should be
able to use the methods to guide them during three-way PARA-
FAC analyses. For other more esoteric or incompletely developed
procedures, only enough information is provided to suggest the
possibilities that may later become perfected.

Diagnostics for cluster analysis are not considered here. While
proper diagnostics are just as important in cluster analysis as
they are in factor analysis and multidimensional scaling, cluster-
analytic diagnostics often involve somewhat different procedures.
In order to avoid undue complication, this article focuses on the
use of diagnostic procedures in factor analysis and multidimen-
sional scaling, especially those that are well suited for the
three-way intrinsic axis methods PARAFAC-CANDECOMP and
INDSCAL. Many of the techniques discussed, however, would also
be suitable for Tucker's model and for other three- and two-way
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methods. The appropriate adaptations should usually be apparent
to the reader.

OBJECTIVES FOR DIAGNOSTIC PROCEDURES
Two Roles for Diagnostics

Diagnostics have both an exploratory and a confirmatory role. In
their exploratory role, they provide guidance during the conduct
of an analysis. With such guidance, one can adjust the param-
eters of successive analyses to maximize sensitivity to the char-
acteristics of the data, rather than stop with the automatic appli-
cation of standard data preprocessing and data-analytic options.
In their confirmatory role, they lend greater assurance to any
conclusions drawn from the final factor-analytic or MDS solution.

Exploratory Role

Most of the diagnostics to be discussed in this article are not
merely directed at establishing the reliability and wvalidity of a
solution that has already been selected for interpretation.
Rather, they are important tools for deciding "what to do next"
as one proceeds through the course of the analysis. This use of
diagnostics goes hand-in-hand with an interactive view of data
analysis. From this perspective, a factor-analytic or MDS anal-
ysis is not a "one-shot" application of an automatic procedure but
a multiple-stage interplay between the data analyst and the data,
involving repeated cycling between application of the program for
analysis and application of diagnostics for evaluating the outcome
of the latest stage of the analysis. In this role, diagnostics
answer questions such as: Are more iterations required? Should
one extract additional dimensions? Are orthogonality constraints
necessary?

Confirmatory Role

The confirmatory use of diagnostics for factor analysis and MDS
is important to protect both the user and the scientific community
from misleading and inappropriate solutions. When used in this
way, diagnostics confirm that the analysis model appears appro-
priate for the data and that the resulting solution is reliable,
optimal, and generalizable. Hopefully, as we become more sophis-
ticated, such confirmation will come to be viewed as an essential
part of any solution, and future editors will expect a written
description of the diagnostics used and the results obtained, as
part of the necessary supporting evidence for the conclusions
drawn from any analysis. Thus, as familiarity with diagnostics
grows, minimal standards of evidence for reliability and wvalidity
should develop, helping to screen out some of the most meaning-
less applications of factor analysis and MDS techniques from the
literature.
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General Objectives

When using diagnostics, there are at least four basic things that
one seeks to determine about a given analysis: (a) theoretical
appropriateness, (b) computational correctness, (c) statistical
reliability, and (d) explanatory wvalidity. It is important to
establish these characteristics for any analysis, be it two- or
three-way, dimensional or cluster. - However, here we
formulate the problem only in terms of three-way factor analysis
and multidimensional scaling, particularly the intrinsic axis meth-
ods PARAFAC-CANDECOMP and INDSCAL. To elucidate each of
the four basic characteristics listed above, we discuss it in the
context of specific questions concerning a three-way analysis
problem.

Questions of Theoretical Appropriateness
1. How appropriate is our basic multivariate model?

a. Is the analysis model we intend to employ appropriate for
the kind of question we want to ask? For example, are
we really looking for latent dimensions, or would taxo-
nomic clusters be more appropriate? (If clusters, would
we want hierarchical or additive, disjoint or overlap-
ping?) Do we want additive main effects and unre-
stricted interactions, such as an ANOVA would provide,
or the structured kind of multiplicative interactions that
multidimensional models provide, or both?

This one set of questions must be answered without
diagnostics, before any analysis has been started.

b. Is the analysis model we seek to employ appropriate for
the data? Is the structure underlying the observed
relationships more treelike, implying a cluster model, or
more spacelike, implying a factor-analytic or MDS model.

This question is still largely theoretical, but some
diagnostics are beginning to be developed to aid the
investigator in making this decision.

2. Which of the various three-mode factor-analytic or MDS
models is most appropriate for these data?

a. Is our data distancelike, so MDS is appropriate, or
profilelike so that factor analysis is appropriate, or is it
scalar-product or covariancelike, again calling for factor-
analytic models?

b. Are the three-mode data likely to provide the appropri-
ate pattern of variations in latent factors across all three
modes, so that unique determination of axes by PARA-
FAC or INDSCAL is possible? Or, instead, is the third
mode simply a set of replications differing only by
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random variations? Or is some intermediate, partial, or
more complex variation pattern likely?

If there are genuine differences between the levels of
the third mode, are these likely to be appropriate for
the strong "system variation" model that allows direct
fitting, or is the "object variation" model more appropri-
ate, calling for indirect fitting?

Would Tucker's three-mode T2 or T3 model be more
appropriate for these data? Would complex variations in
factor obliqueness or factor interaction contribute g2
major part of the data variance?

If distancelike data are involved, should these be con-
sidered squared distances?

If the rows and columns correspond to the same set of
entities, are the relationships among. them symmetrical
(that is, does Xjj = Xxjj?), or are there systematic
asymmetries that need to be described, perhaps calling
for a more general model such as DEDICOM?

Should one consider a model that specifies orthogonal
loadings in one or more modes—for instance, to fit a
hierarchical factor solution?

3. Should the data be preprocessed or reexpressed in particular
ways to make it appropriate for the model or to bring out its
most interesting properties?

a.

Is the data likely to contain conditional origins, additive
constants, and two-way interactions requiring centering
of one or more modes to make it appropriate for the
ratio-scale model?

Should the variances or mean-squares of the wvariables,
subjects, occasions, or whatever be standardized?

Is reweighting of wvariables, subjects, or other subsets
of the data desirable to minimize the influence of unreli-
able data or to stress aspects of the data where good fit
is most important?

Should nonlinear transformations be employed, such as
log transformations?

Questions of Computational Correctness

4. Has a particular iterative fitting procedure converged to the
desired optimum?

a.

Are there indications of incomplete convergence due to
an overly lax convergence criterion?
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b. Is there very slow convergence of some solutions because
of a bad starting position or of all solutions because of
certain properties of the data?

c. Once convergence has been established, is it converg-
ence to an uninteresting local optimum or to one of
several competing interesting solutions? Or is there
well-behaved convergence to the same solution regardless
of starting position?

To what extent is the solution independent of starting posi-
tion? Do some parameter values change as a function of
starting position, while others are fairly stable? Is the
configuration of points after rotation to congruence indepen-
dent of starting position? If we are using intrinsic axis
methods, do we obtain the same orientation of axes regard-
less of starting position of the iterative procedure, or is the
orientation dependent on starting position (and, perhaps,
not uniquely determined by the data) for some or all dimen-
sions?

Questions of Statistical Reliability

6.

What is the stability of the solution across subsamples of the
data? If some characteristics are more stable than others,
which details of the solution are stable enough to justify
interpretation? Which conclusions are generalizable to new
sets of subjects, or wvariables, or occasions, and so on?
What kinds of generalizability do we have (for instance,
across subjects, across variables, across occasions, and the
like); which kinds do we desire?

Have we chosen the correct dimensionality? Are all our
dimensions stable enough to be recognized in two split-half
subsamples? If not, are there other compelling reasons to
retain any of the unreliable ones? Alternatively, are there
further stable dimensions that we are overlooking?

Questions of Explanatory Validity

8‘

Are the results interpretable? How are the obtained dimen-
sions related to outside information about the wvariables,
stimuli, individuals, and so on? Are our problems of inter-
pretation, if any, more likely due to the data, to the anal-
ysis procedure, or to limitations of our understanding?

Are there nonlinear relationships among dimensions that
would indicate the appropriateness of a nonlinear model of
lower dimensionality? Should we consider nonlinear reex-
pression of the data?
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10. What are the properties of the residuals?

a. Do they have patterns indicating data structure not
captured by the current analysis? Should ANOVA,
cluster analysis, or some other procedure be applied to
the residuals in order to uncover features that the
factor analysis would miss?

b. Are there extreme outliers (or groups of outliers) in the
data that might have unduly biased the solution? Should
some data points be replaced by missing-data codes and
the analysis run again?

11. Do properties of the obtained loadings indicate that a differ-
ent version of the three-way model—such as a different
extended model—would have been more appropriate? Should
different data preprocessing methods have been used?

12. If the current analysis has produced a reliable, meaningful
solution, what new experiments could be conducted to test
the hypotheses emerging from these results? How could
other available data confirm or conflict with the general
conclusions you have drawn?

OUTLINE OF THE CATALOG OF DIAGNOSTIC TECHNIQUES

There is a large variety of techniques that can be used to help
answer the questions listed above. Although there is not space
in this appendix to provide a detailed explanation of all these
techniques, I will provide an informal list or catalog of those
known to me and will sometimes include a brief statement of how
they are used. But before presenting the catalog, I will first
give an overview, in outline form, as a guide to the more detailed
discussion to follow.

The catalog is organized into four subsections, based on the
type of information being examined by the diagnostic procedures
in that section:

I. Zero-fit Diagnostics: Data diagnostics to be performed
before doing the three-way analysis.

II. One-fit Diagnostics: Analysis diagnostics based on examina-
tion of the results of a single fit (such as an analysis from
a particular starting position, at a particular dimensionality,
using a particular set of analysis options).

III. Many-fit (single data set) Diagnostics: Analysis diagnostics
based on comparisons across several different fits made to
the same data set (such as using different random starting
positions, different dimensionalities, or different analysis
options).

IV. Many-fit (many data sets) Diagnostics: Analysis diagnostics
based on comparisons across fits made to different or
partially different data sets (such as random split-halves of
the subject sample, or stimulus sample, or overlapping
subsamples such as used in jackknifing and bootstrapping).
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For the analysis diagnostics in categories II and III, the
procedures are further categorized according to whether they are
based on examination of the loadings, examination of the resid-
uals, or examination of the overall goodness-of-fit measures. For
section IV, they are broken down into several different kinds of
reliability evaluation procedures. This system of classification
might be helpful for finding the proper diagnostic to use when
one is considering a particular part of the computer output or for
highlighting certain logical or mathematical relationships among
procedures. The outline of the catalog is as follows.

1. Zero-fit Diagnostics

A. Checking for outliers

B. Checking reliability of the data

C. Determining the structural form of the data

D. If data are distancelike, checking tree versus spatial
models

E. Checking appropriateness of three-way models using
two-way "collapsed" versions of the data

1. Comparison of the dimensionality of different two-
way ‘"collapsed" versions of the data—are the
estimates consistent?

2. Comparison of the configurations (that is, dimen-
sions after rotation to maximum agreement) across
different two-way "collapsed" versions of the data
—do special two-way interaction dimensions emerge
in certain pairs of modes?

3. Comparison of the dimensions (after rotation to
agreement) found in different slices of a given
mode.

II. One-fit Diagnostics
A. Based on examination of loadings
High correlation among factors
. Constant factors
. Nonlinear relationships among factors
. Interpretability
. Convergence checking
ased on examination of residuals
. Examining patterns in the relative sizes of mean
square error (MSE) for different levels of each
mode
2. Outputting residuals for detailed study
C. Based on overall goodness-of-fit values
1. Comparison of R with estimated data reliability
2. Comparison of the square root of MSE with expected
size of errors
3. Comparison of R and MSE

o s W

III. Many-fit (single data set) Diagnostics
A. Based on comparison of loadings
1. Across successive iterations
2. Across different solutions (different random starts)
at a given dimensionality
3. Across different dimensionalities (to study evolution
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of dimensional structure and interpretations)
B. Based on comparison of residuals
1. Across competing solutions at a given dimensionality
2. Across dimensionalities (to see for which part of the
data the fit improves when adding a particular
dimension)
3. In terms of error distributions
C. Based on comparison of overall fit values
1. Across iterations (to check convergence)
2. Across solutions—identifying local optima, incom-
plete convergence, and so on
3. Across dimensionalities—classic search for "elbow"
in fit versus dimensionality curve

IV. Many-fit (many data sets) Diagnostics

A. Comparisons across split-halves of the data
1. When to split
2. How to split
3. How to compare across splits

B. Resampling methods of estimating reliability: bootstrap-
ping and jackknifing
1. "Jackknifing
2. Bootstrapping

C. Cross-validation techniques testing fit when dimensions
are applied to a new sample

D. Randomization tests—comparison of "shuffled" data with
observed data to obtain significance tests for three-way
variation

E. Comparison of analyses across experiments

It is hoped that this system of classification will be generally
helpful and may loosely correspond to the order in which some of
the tests may be conducted. However, it is not intended to
provide an actual strategy for the interactive use of these diag-
nostics or for guiding one's choices while performing an analysis.
Such strategy questions are not considered in detail in this

paper.

CATALOG OF DIAGNOSTIC TECHNIQUES

In this section, an attempt has been made to list the wvarious
diagnostic comparisons, tests, or procedures that can be employed
to help answer the questions presented in the previous section.

I. Zero-fit or Data Diagnostics: To be performed before doing
the three-mode analysis.

A. Examination of data to detect outliers, with the possi-
bility of omitting outliers from the analysis by declaring
them as missing data (while saving their identity for
subsequent study).

B. Evaluation of reliability of the data—by comparing
replications, computing test-retest correlations for each
subject or variable, or by comparison of corresponding
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cells on either side of the diagonal of supposedly sym-

metrical data, and so on. Possible elimination of sub-

jects, conditions, and the like that have insufficient
reliability. Also use reliability estimates for comparison
to later variance accounted for by the model.

C. Determination (mostly on the basis of outside informa-
tion or theory) of whether the data is likely to be more
distancelike, profilelike, or scalar-productlike, so that
the appropriate analysis model and procedure can be
selected.

D. If the data are thought to be distancelike, evaluating
whether a tree-structure or spatial model for the dis-
tances is more appropriate; this can be approached by
fitting the alternative models and comparing fit, but
recent work of Carroll, Pruzansky, Tversky and others
is developing some test statistics that can be computed
from the data itself, such as the skewness of the
distribution of distances.

E. Examination of systematicity of wvariation across each
mode, by means of two-way analysis of "collapsed"
versions of the three-way data; to help determine which
kinds of three-way variation are present and thus
which three-way model is useful. This approach is still
largely untested, and these procedures are not as
essential as others to be discussed later, but the
following are examples of steps that might be useful:

1. Plots of successive eigenvalues or singular values of
data collapsed across various modes; do the plots
reveal systematic dimensionality in all three modes?
Is dimensionality similar across different modes, or
might Tucker's model be more appropriate?

2. Examination (and possibly canonical correlation) of
eigenvectors or singular vectors extracted from
various two-way "strung out" or "collapsed" ver-
sions of the data; how are these related? For
example, do the Mode A vectors of the A-B col-
lapsed data resemble the Mode A vectors of the A-C
collapsed data?

3. Canonical correlation of eigenvectors or singular
vectors extracted from successive layers of the data
sliced across a given mode; how similar are the
dimensions in the different layers of the three-way
array?

One-fit Diagnostics: Analysis diagnostics that utilize results
of a single fit—for example, diagnostics for a solution
obtained from a particular starting position, at a particular
dimensionality, using a particular set of analysis options.
A. Examination of the fitted parameters—the factor load-
ings.*
1. Examination of correlations and cross-products
among factor loadings for each mode.

*Points 1-3 are specific to an intrinsic axis model.
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a)

b)

Check for very high correlations between two
(or more) dimensions in all three modes ("very
high" means, roughly, above .8).

(1) If the pattern is consistently obtained
across starting positions, and the triple
product of the correlations for all three
modes is negative (that is, either one
correlation is negative or all three are
negative), this could signal a degenerate
solution (as discussed in chapter 6). 1If
the data have not been centered on one or
two modes, try additional centering. If
careful centering and standardization does
not remove the degeneracy, then a "hard-
core" degeneracy may be present, requir-
ing orthogonality constraints on at least
one mode.

(2) If the pattern only emerges at a relatively
high dimensionality and is not consistent
across solutions or split-halves of the
data, it might simply indicate that more
factors are being extracted than can be
supported by the data. In this case, the
triple product of correlations should as
often be positive as negative. If, after
applying orthogonally constraints, the
dimensions in question are still not inter-
pretable and are not similar across solu-
tions or split-halves, then this suspicion is
confirmed. But if orthogonally constrain-
ing one mode gives similar results across
split-halves, then dimensionality is not too
high (see example in appendix C).

Check for high correlations (above .6 or so)

between all or most dimensions, in all three

modes. This can indicate that too many dimen-
sions have been extracted and/or a general lack
of uniqueness of the solution, resulting in
arbitrary (correlated) combinations of the
"true" underlying dimensions appearing in all
three modes. If the triple product of correla-
tions is often positive and different patterns of
correlations are observed from different starting
positions and across split-halves, this is prob-
ably not a "degenerate" solution in the restrict-
ed sense used by Harshman and Lundy (chapter

6). Check if all dimensions of orthogonally

constrained solutions are replicable across

split-halves; if not, reduce dimensionality.

(However, if the configuration is reliable but

the axis orientation is not, as indicated by high

canonical correlations across split-halves, the
problem is not extraction of too many dimen-
sions but rather lack of conditions producing
unique axes. You must use additional levels of
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data or some external rotation criteria to obtain
unique axis orientation.)

Check for high correlations between particular
dimensions in one mode only, with lower cor-
relations between the same dimensions in the
other two modes. This does not indicate "de-
generacy" or that too many dimensions have
been extracted. Rather, it warns that certain
factors may not show the distinct patterns of
variation necessary to determine axis orientation
uniquely. (Note: Even if the correlated dimen-
sions are nonunique, the rest of the solution
could be uniquely determined.)

Examination of loadings, to check for one or more
"constant" factors (that is, factors for which all the
loadings are approximately the same size).

a)

b)

c)

A factor that is constant—that is, it has load-
ings of constant size and sign—in all three
modes indicates an overall additive constant in
the data that probably should be removed. The
size of this additive constant can sometimes be
estimated from the triple product across modes
of the factor's loadings. However, it is safer
to simply apply centering to one or more modes.
A factor that is constant in two modes, with
varying loadings in a third mode, indicates a
different additive constant for each slice (when
sliced so that the varying loadings correspond
to different slices of the data). Centering
across one or more of the constant modes
should remove this factor.

A factor that is constant in only one mode
simply indicates a "true" factor that doesn't
vary much across that mode. If there is only
one factor that is constant in any given mode,
then such a factor may be uniquely determined;
however, comparison across starting positions
and split-halves would be desirable to confirm
stability. If two (or more) factors have nearly
constant loadings within the same mode, then
their loading patterns may not be uniquely
resolved in the other two modes, and, some-
times, other nonconstant factors will be "con-
taminated" as well. Centering across the mode
in which the constant loading patterns occur
will eliminate these factors from the data and
may improve the recovery of the other factors.
(Note: A more detailed discussion of loading
patterns and their correspondence to main
effects, 2-way interactions, and 3-way inter-
actions, along with a discussion of the effects
of various centering schemes on such factors,
appears in chapter 6.)

Comparison of loadings across factors to check for
nonlinear relationships.
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Such relationships indicate either that the data

needs to be transformed nonlinearly and/or that the
actual latent factors combine nonlinearly to create
the observed data. Particular conclusions, includ-
ing the form of likely nonlinear relationships, can
be deduced from the study of the plots of loadings
of one factor against another or against functions of
several other factors. Nonlinear factor models can
sometimes be constructed on the basis of this type
of information.
Preliminary checking of interpretability of dimen-
sions for the given starting position, by detection
of meaningful and/or expected patterns of loadings
in each mode.

This can provide support for (or cast doubt
upon) the wvalidity of a particular solution. This
can also provide insight into relationships among
different solutions (such as why certain dimensions
split into more specific ones as dimensionality is
increased, or which aspects of a solution replicate
across split-halves, or whether alternative meaning-
ful solutions appear in different competing—Ilocally
optimal—solutions). However, an extensive study
of interpretability should normally be deferred until
other diagnostics indicate that one has a candidate
for an optimal solution (see below).

Checking convergence by examining the rate at
which loadings are changing across successive
iterations.

While this is technically a multiple-fit compari-
son, it is accomplished within an analysis from a
given starting point, and so will be briefly men-
tioned here. Convergence rates can vary greatly,
depending on the particular data being analyzed
and sometimes on starting position for a given
analysis, If the factor loadings are continuing to
change in small steady steps that do not diminish
appreciably in size (for instance, steps of 1%
change per iteration), then one cannot be confident
that the given solution is essentially the same as
one that would be obtained after many more itera-
tions. Comparison of a given set of loadings with
the loadings obtained 10, 20 or even 50 iterations
previously should indicate if the loadings are "set-
tling down" or if they are continuing to slowly
drift. More accurate evaluation of convergence can
be made by use of multiple starting points (see
below).

B. Examination of residuals.

1.

The Mean Squared Error (MSE) for the solution
should be of "reasonable" size, based on expected
precision of measurement, likely reliability of the
data, and so on.

An "Error Analysis Table," which prints out mean-
squared error for each level of each mode (for
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instance, for all the data points that involve a

particular stimulus or all the data points for a

particular subject, and so on) can be used to see

whether there are certain portions of the data that
are causing particular problems. In examining this
table, the following points should be checked:

a) Are any MSE values very high or very low,
relative to the others?

b) Are there systematic patterns in the larger
versus smaller MSE values? Do certain aspects
of the data cause problems, including unreéliable
groups of subjects, certain "difficult" types of
stimuli, and the like?

c) If the data being analyzed have unequal vari-
ances or mean-squares across the levels of a
given mode, the MSE differences among the
levels of that mode can be expected to mirror
these input differences. Levels that have
higher wvariance or mean square on input will
usually have higher MSE on output. Thus,
comparison of MSE values should take the input
mean-squares or variances into account. One
way to do this is to look at Stress at each level
rather than "raw" MSE. This problem does not
arise, of course, if the data have been size-
standardized within each level of the mode in
question.

d) If, in each mode, one or two very high MSE
values stand out, then the intersections of
these levels should be examined for outliers far
out of range (such as keypunching errors).
For example, if the MSEs for variable 7, person
2, and occasion 2 are all very high, then the
data point for person 2 measured on variable 7
on occasion 2 should be examined. (Note: Some
programs—including PARAFAC—contain an op-
tion to check each data point on input against a
user-specified range of possible valid wvalues.
Points outside this range will be identified in
the output and treated as missing values during
the analysis. It is recommended that such an
option be used whenever possible—for instance,
whenever the data consists of questionnaire
responses using a fixed response scale. The
points identified as outside the wvalid range
should then be checked and corrected.)

For more detailed analysis of residuals, some pro-

grams (including PARAFAC) provide the option to

write out the entire set of residuals on an output
disk file of the user's choice. When this is done,

the residuals can be examined in detail by using a

variety of standard analysis and graphics programs.

Residuals can be plotted against original data

values, a histogram of their distribution can be

plotted, and so on. Also, the residuals so output
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III.

can subsequently be input for further analysis by
more sophisticated procedures (such as cluster
analysis) or can even be used as input for anotheyr
round of three-way analysis, which would extract 3
set of additional factors with fitted (X) wvalues
completely orthogonal to the first set.

C. Examination of overall goodness-of-fit indices—for
instance, correlation between the data and the predicted
data, Stress, the ratio of the MSE to the mean-square
data value, and so forth.

1. How does the R value compare to the test-retest
reliability of the data (either known or conjec-
tured)? When sufficient dimensions are extracted,
it should be approximately the same as the expected
reliability of the data being analyzed, if the model
provides a good description of the systematic part
of the data. Keep in mind, however, that interest-
ing and informative structure can sometimes be
recovered even when much of the systematic part of
the data cannot be explained. Thus, an interpret-
able solution should not be rejected outright simply
because the R was, for example, less than half of
the data reliability.

2. How does the square root of the MSE value (that
is, standard deviation of the error) compare to the
expected size of typical error values? For example,
root-MSE of 1 to 2 might be reasonable for a 9-
point scale.

3. How do R and MSE compare? Usually, when R is
high, MSE will be small., However, when there are
a small number of very errant data points, it is
possible to get high R wvalues (fitting the very
large error variance due to these errant points) but
also very large and undesirable MSE values. Both
should be checked for reasonableness. (Comparing
variations of R and MSE wvalues across subsets of
the data provides a particularly useful check; see
below.)

Many-fit (single data set) Diagnostics: Analysis diagnostics
based on comparison across multiple fits made to the same
data set—for example, wusing different random starting
positions, different dimensionalities, different analysis
options, and so on.

A. By examination of the loadings.

1. Comparison of different stages in the iterative
process to assess convergence (this was also men-
tioned in II,A.5 above).

a) For assessing convergence, loading changes are
more important than changes in fit values. Fit
values will rapidly improve in the early itera-
tions of an analysis and then level off and show
only gradual improvement in later iterations
(when correct rotation is being established).
These gradual changes in fit values can occur
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when some of the loadings themselves are still
changing substantially. But since it is the
loadings that one will be interpreting, these are
the quantities that must be stabilized in order
to consider a solution to be properly con-
verged.

Loading changes should be small at "conver-

gence"; one standard option is to compare
changes due to one iteration with the RMS
average loading size for each dimension. A

conservative rule of thumb is that no loading
should change more than .1% of the RMS aver-
age size of a loading on that dimension (in that
mode) from one iteration to the next; alterna-
tively, the change should not exceed 1% across
10 iterations. This rule can be relaxed to allow
% or more, with well-behaved, quick converg-
ing data, but with such data, relaxing the
criterion is often unnecessary because conver-
gence is rapid anyway. Unfortunately, it is
with slow converging data that a more stringent
criterion is sometimes necessary to prevent a
misleading premature fulfillment of the con-
vergence test. (Premature declarations of
"convergence" can be detected by comparison of
results obtained from different random starts;
see III.2, below.)

Certain patterns of change can indicate conver-
gence difficulties in particular subsets of di-
mensions ("subspaces" of the solution). It
often happens that loadings for certain factors
converge more quickly than others. However,
it may occasionally occur that a few factors
almost never converge, although the rest of the
solution is stable. In this case, different
starting positions and/or different dimensionali-
ties should be tried. Are these "difficult"
dimensions highly correlated in a single mode,
indicating insufficient independent wvariation to
provide uniqueness of axes, or are they highly
correlated in all three modes, suggesting either
degeneracies (if the triple product of the
correlations is persistently negative) or extrac-
tion of too many factors (otherwise)?

Comparison of several allegedly converged solutions
obtained from different random starting places to
confirm convergence. Solutions that change slowly
enough to meet the convergence criterion may have
converged and come close to their terminal values.
Alternatively, they may have become trapped in a
difficult "ridge" on the surface that they are trying
to climb and consequently may be experiencing slow
convergence at values very different from the ones
they would eventually take on if allowed to iterate
indefinitely. Comparison of results obtained from
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different random starting positions can help in
discriminating these two situations and also provide
information on the strength of determination of
unique axes for different dimensions.

a)

b)

c)

Do several solutions (3-6) agree "closely
enough" for their differences to have no effect
on interpretation? If so, convergence and
uniqueness are both indicated.

If several solutions (3-6) agree approximately—

that is, they are "going toward the same place®"

—then setting a more strict convergence cri-

terion and continuing to iterate on any one of

the solutions should provide an accurate esti-
mate of the more fully converged solution that
would have been obtained with all of them.

Do the solutions fall in two or more groups?

For example, did two random starts give one

solution and four random starts give another?

If so, which dimensions are the same in both

groups; how do the other dimensions differ?

The presence of competing solutions found from

different random starting positions could have

several interpretations. Check the following
possibilities:

(1) One or more of the groups might represent
a local optimum where the program repeat-
edly "got stuck" on its iterative upward
search for the globally optimum set of
loadings. Compare the fit values for the
competing solutions. Are there differences
in the second decimal place? If so, the
set or sets with the lower fit value may be
a local optimum,

(2) How do the interpretations of each of the
two or more competing solutions relate to
those of solutions obtained at lower and
higher dimensionalities? Are the dimen-
sions in both competing sets interpretable?
Do they represent two different subsets of
a larger common set of dimensions that will
be obtained in higher dimensional solu-
tions? (Obviously, one must wait till more
dimensions are extracted to check this.)
If so, both competing solutions may repre-
sent "valid" but incomplete approximations
to the higher dimensional "true" solution.
(Note, however, that the form of the
dimensions will often be clearer in the
higher dimensional solution, where all valid
dimensions emerge, since in such a solu-
tion no dimensions need be distorted to
help adjust for the effects of a dimension
not yet extracted. On the other hand, if
determination of axis orientation is weak at
the higher dimensionality, the dimensions
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in this solution may seem less clear. When
too many dimensions are extracted, the
form of some of the dimensions often starts
to break down.)

(3) Are there two (or more) competing solu-
tions, with one (or more) of them showing
very high factor intercorrelations or other
signs of break down? The well-behaved
and interpretable solution should be pre-
ferred, particularly if it has a higher fit
value. (Occasionally, the well-behaved
solution may have a slightly poorer fit
value; nonetheless, it should probably still
be preferred.)

(4) Are there many different solutions (almost
as many as random starting positions)?
Across starting positions, do certain sets
of factors keep ' changing—recombining
differently? This could indicate that those
particular factors do not have a unique
rotation determined by the data.

(5) Are all or almost all factors changing
across different starting positions? This
would indicate rotational indeterminacy of
the solution as a whole and suggests either
that one mode of the data does not have
the required systematic variation of any
factors necessary to establish uniqueness,
or, alternatively, that substantially more
dimensions are being extracted than can be
supported by the data (for instance, at
least 50% too many dimensions).

Systematic comparison of dimensions across solutions

of different dimensionalities can shed light on

"family" relationships among dimensions in the

higher dimensional solution and reveal stronger

versus weaker aspects of the solution.

a) It may sometimes be useful to construct a
"Terbeek tree," showing which of the dimen-
sions in the two-dimensional solution (for ex-
ample, were present in the three-dimensional
solution) and so on. Display the correlations
or other similarity measures between the dimen-
sions at several different dimensionalities, from
one up to the maximum number extracted.
Such a "tree" of dimensional relationships will
reveal at each level whether a dimension split
into two dimensions, whether components of
several dimensions were drawn off to form a
new dimension, or whether an entirely new
dimension emerged. In this way, the tree can
relate the dimensions at all different dimen-
sionalities. = Hopefully, this will help one to
understand the process by which wvarious di-
mensions emerge. It may also suggest that at a
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By

certain dimensionality, a particular dimension ig
"contaminated" by other specific unextracted
dimensions or is otherwise distorted.

b) Is some sort of meaningful hierarchical stryc-
ture suggested by the tree? How related are
the interpretations of two dimensions that
"emerged" from a common ancestor in a lower
dimensional solution? Can these "family" rela-
tionships among dimensions themselves suggest
interesting interpretations of the data, much ag
a hierarchical cluster analysis would?

c) At what dimensionality was the interpretation of
a given dimension clearest?

examination of the residuals.
Comparison of residuals (or MSE values for specific
levels of each mode) across competing solutions at a
given dimensionality, to determine which parts of
the data are being fit by each solution. This may
occasionally be useful when one of two competing.
solutions is suspected to be due to peculiar charac-
teristics in a very restricted part of the data. If,
in one of the competing solutions, the fit value is
clearly lower for this part of the data but not for
others, the suspicion is supported.
Comparison of residuals (or MSE values for specific
levels of each mode) across dimensionalities to see
which part of the data has reduced fit when each
dimension is added. This will sometimes reveal that
one of the smaller dimensions extracted at higher
dimensionalities is mainly accounting for the vari-
ance of a single subject, variable, or whatevern It
might also show that the dimension is attempting to
account for certain '"outlier" points for several
subjects.
Comparison of distributions of the residuals at
different dimensionalities. Check, in particular,
whether there are still many large values in the
tails of the distribution at lower dimensionalities;
hopefully, these become less common as more dimen-
sions are extracted, approaching the desired low
frequency compatible with normally distributed error
at the "correct" dimensionality (unless other kinds
of structure are present that cannot be fit by the
factor model).

For more methods of looking at residuals of a

PARAFAC analysis, see Kettenring's article (cited

in chapter 5).

examination of overall fit values (R, R-squared,

Stress, MSE, and so forth).

1.

Comparison of fit values across successive iterations
to determine convergence. This is the "traditional"
method of assessing convergence of the solution.
As noted earlier, however, this method is not
recommended for our three-way intrinsic axis
models, since the fit values often change quite
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slowly during the later stage of a given analysis,
while the loadings themselves are still undergoing
considerable modification (due often to shifts of axis
orientations). However, 1in certain degenerate
solutions, the loadings of highly correlated factors
will continue to change, even though the improve-
ment in the fit is negligible (such as in the seventh
decimal place). In these cases, it is pointless to
wait for "convergence," since mathematical analysis
shows that there may be no local optimum. In-
stead, compare solutions from several starting
places to determine that after two or three hundred
iterations they show similar "nonconverged" loading
patterns.

Comparison of fit values across solutions obtained at

the same dimensionality but from different starting

positions

a) This permits evaluation of the relative progress
of several different solutions toward a common
solution; if all solutions in a given set are
"going to the same place," then pick the one
with the highest fit value for interpretation or
for continuation of the analysis with additional
iterations

b) If there are two or more competing solutions at
a given dimensionality, comparison of overall fit
values may indicate that the one that is difficult
to interpret is in fact an uninteresting local
optimum with substantially lower fit. Note,
however, that two solutions that differ in fit
might both be interpretable or '"interesting"
local optima; they may select different subsets
of dimensions from a larger set that will be re-
vealed at a higher dimensionality.

Comparison of fit values across dimensionalities in

an attempt to determine the best number of dimen-

sions to extract from a given data set. This is the
classic "scree" test or search for the "elbow" in the
fit-versus-dimensionality curve.

a) The scree test remains a very important method
of assessing dimensionality. It has a straight-
forward logical rationale and a simple graphical
method of implementation that make it easy to
understand and apply: Improvements in fit
(such as changes in R-squared) due to each
additional dimension are plotted against di-
mensionality. When the points begin to fall
onto a smooth line, one assumes that "real"
dimensions are no longer being extracted; the
small steady increments are presumably due to
fitting error. (Only the points that deviate
from the smooth fit-change-versus-dimension-
ality line should be taken to indicate "real"
dimensions; the older approach of including the
first point on the smooth "scree" line should
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not be followed.) Monte Carlo studies indicate
that the scree test, when used with care, ig
one of the most accurate methods of assessing
dimensionality.

Because the scree test is based on fit
values, it provides information that is com-
plementary to that provided by tests that are
based on replication of a pattern of factor
loadings (including split-half, bootstrap, or
jackknife methods). It will sometimes work
when they fail, and vice versa. For example,
when lack of independent variation in the
three-mode data causes the orientation of some
axes not to be well determined, then two split-
half solutions may differ in rotation for some
dimensions, and the "true" dimensionality may
be wunderestimated if one stops extracting
dimensions when loading patterns fail to repli-
cate. However, the scree test does not depend
on proper or consistent alignment of axes, since
the fit values are still well determined even
when axis orientation is not. Thus, the scree
test can indicate the presence of a systematic
configuration in higher dimensions, even when
the axis orientations fail to replicate. In this
situation, replication tests can only verify the
higher-dimensional configuration if they are
strengthened by inclusion of rotation-to-con-
gruence procedures or if regression or canon-
ical correlation is wused to find comparable
dimensions across solutions. But it is not
altogether a weakness of the replication tests
that they will not detect these higher dimen-
sions, since axes that are unstable should not
be interpreted. If one decides to apply some
rotation procedure such as VARIMAX to deter-
mine axis orientation in situations in which the
intrinsic axis property cannot be used, then
replication of the VARIMAX-rotated axes pro-
vides an appropriate test of which Iloading
patterns can be taken as sufficiently stable to
interpret.

Although we have been considering the
situation in which the scree test indicates a
higher dimensionality than the replication tests,
the opposite situation can also arise. A smooth
elbow on the curve can make the scree point
hard to identity. Dimensions that account for
only a small portion of the variance may not
show up clearly on the scree curve yet may be
replicable and theoretically important (for
instance, see Gandour and Harshman, cited in
chapter 5). When such dimensions replicate,
they should be included in the solution and
interpreted.
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In general, then, the scree and replication

(g,g.split-half) tests of dimensionality are com-

plementary and, whenever possible, should both
be applied and the results compared.

b) Unpublished Monte Carlo tests of different fit
measures suggest that while most fit measures
gave similar results, R-squared or variance
accounted for provides the clearest "elbow" at
the true dimensionality of synthetic data and
the flattest curve thereafter.

Many-fit (many data sets) Diagnostics: Analysis diagnostics
based on comparisons of fits made to different or partially
different data sets—for instance, random split-halves of
subjects or stimuli, overlapping subsets as used in boot-
strapping or jackknifing, and so on.

This is a particularly important diagnostic technique. It
gives the strongest basis for deciding what aspects of a
solution are statistically reliable and thus potentially gener-
alizable to new samples.

In the exploratory mode, these diagnostics can be used
to help determine optimum characteristics of an analysis,
such as dimensionality of a solution. When additional
dimensions replicate in two split-halves, for example, then
they deserve interpretation and probably should be included
in the solution in some fashion. When dimensions do not
replicate, they should only be interpreted with caution, and
the investigator should seriously consider reducing the
dimensionality of the solution.

In the confirmatory mode, these diagnostics assure the
investigator that the obtained dimensions are not simply
based on fitting noise in the data. Characteristics of the
solution that are demonstrably stable across samples are in
some sense "real"; they are characteristics of some larger
population. Those that are not stable in a particular test
may or may not be "real"; their apparent instability may be
due to small sample size, and the wvariations across sub-
samples may be reduced by taking larger samples. On the
other hand, the so-called "characteristics" may not show up
consistently in new samples of any size, because they are
due to random error. Thus, interpretations based on
characteristics that do not replicate may not be justified;
they may be attempts to interpret random sampling fluctua-
tions.

It is worth noting that the most important form of stabil-
ity that should be tested by these techniques is stability of
conclusions or interpretations. The key objective of any
method of evaluating reliability—be it split-half, bootstrap-
ping, or whatever—is to determine whether the important
points of interpretation (such as the scientific conclusions
or the recommendations for action) that are drawn from a
particular sample are justified, at least to the extent that
they can be generalized to equivalent samples.

In addition to this qualitative evaluation of the "robust-
ness" of conclusions, more quantitative methods of measur-
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ing stability can often be used to place confidence boundg
around the values of particular parameters in a given
solution. These techniques are usually applied to assesy
the reliability of the loadings, although they can also be
used to place confidence bounds around fit values, angles
between dimensions, and the like. There are several
different methods of assessing reliability of factor-analytic
and MDS solutions, including analysis of split-halves,
resampling methods such as bootstrapping and jackknifing,
cross-validation by application of a given set of loadings to
a new data set, randomization tests, and full replication of
data collection and analysis, with or without meaningful
variations.

A. Comparison across split-halves of the data.

1. When to split. Analysis of split-halves of one's
data can be risky if one has only a few subjects to
begin with., The half-size sample may be too small
to reveal most of the interesting patterns. The
number of subjects needed in each split-half de-
pends on the reliability of the data and the number
of dimensions one intends to try to verify. With
most social sciences data (including rating scale
data), a minimum of 10-15 in each half would be
needed to verify a few of the largest dimensions,
To more sensitively test for smaller dimensions,
35-70 in each split-half is preferable. With 100+ in
each half, the method becomes a very powerful way
of verifying consistencies of subtler relationships
within each dimension or of estimating the reliability
of less robust characteristics of the solution, such
as the angle between dimensions. And with these
larger split-halves, one can demonstrate the reli-
ability of dimensions that do not contribute large
portions of variance but may be theoretically inter-
esting; it also allows one to reliably extract larger
numbers of dimensions.

2. How to split.

a) In large data sets, random division into two
groups should be sufficient., But with smaller
data sets, one must guard against "unlucky"
splits, where the two halves are actually (by
chance) different. To guard against this, one
can use the "orthogonal split-halves" technique.
Divide the data randomly into four subsets: A,
B, C, and D. Then construct the following
alternative split-half divisions: (A + B) versus
(C+D); (A+C) wversus (B + D); and, if
desired, (A + D) versus (B + C). Check each
dimension or aspect of the solution for replica-
bility across these two or three different splits.
If the dimension replicates across any one of
them, it is tentatively verified, since any such
replication is very unlikely to happen by
chance.

b) If one is testing generalizability to new subject
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samples, (perhaps the most common test), one
splits the data into two subsamples of subjects.
However, one can treat other modes of the data
as representative samples from which one wishes
to generalize. For example, one might some-
times split across variables, occasions, and so
on. The question of which mode(s) to split is
related to the "random effects versus fixed
effects" question in analysis of wvariance.
Those modes that you consider "random effects"
—that is, those you consider simply a repre-
sentative sample of possible levels and for
which you would like to generalize any results
to other similar samples of levels—should in
theory be tested for generalizability by some
technique such as split-half or bootstrapping.
3. How to measure agreement across split-halves. As
noted at the beginning of this section, the most
important objective of reliability measurement is
usually to determine the generalizability of conclu-
sions or interpretations; but this often calls for a
difficult-to-quantify comparison of the conclusions
that would be drawn from two different split-half
solutions. More quantitative evaluation of the
similarity of characteristics of solutions, such as
patterns of loadings on a given dimension, can be
computed by means of correlation coefficients or
factor congruence measures. When loadings have a
mean near zero (for instance, if they come from a
mode that was centered), then correlations and
cross-product congruence measures give the same
result, but when the loadings are mostly positive
(or negative), then the different measures of
similarity stress different things. Cross-product
measures of factor congruence are often preferred
because they are sensitive to differences in overall
elevation as well as profile shape of the loading
pattern. However, cross-product measures of
similarity can give very high and possibly mislead-
ing results when two factors with all positive load-
ings are being compared. One's choice should
depend on which aspects of similarity are important.
I usually recommend correlation as a more stringent
test of factor similarity; it stresses those variations
in loading size that are crucial to interpretation.
However, there are circumstances in which correla-
tions can also be misleading, so careful considera-
tion is advised. (Insert C-1 goes here)

B. Resampling techniques for estimation of vreliability:

bootstrapping and jackknifing. Tukey's "jackknifing"
and Efron's "bootstrapping" techniques are beginning to
be used to measure the reliability of factor loadings and
fit values. In these procedures, the original data set
is used to generate several alternative versions, which
are all analyzed and the results compared. The more
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these alternative analyses differ, the less reliable is the

conclusion based on the original data set.

1. Jackknifing. In this technique, new data sets are
generated by omitting parts of the original data set,
For example, a data set consisting of ratings made
by 30 subjects could be used to construct 30 new
data sets, each with one subject's data missing,
Each of these data sets is then analyzed in the
dimensionality under test, resulting in 30 sets of
factor loadings. Reliability estimates are then
computed from the variations across these solutions.

2. Bootstrapping. In this technique, new data sets
are generated by sampling the original data with
replacement. For example, if there are 30 subjects
and generalizability across subjects is being tested,
then new data sets of size 30 could be constructed,
each of which is based on sampling of subjects with
replacement from the original 30. Thus, in each of
the new samples, some subjects will probably be
omitted and others will occur more than once. Once
again, the wvariability of loadings or fit values (or
other parameters, such as angles between dimen-
sions) across these new samples is used to estimate
the reliability of loadings or fit values in the
original data. (References for both bootstrapping
and jackknifing are given in chapter 5.)

Cross-validation by applying loadings to a new sample.

In some programs, such as PARAFAC and INDSCAL, it

is possible to input Mode A and B loadings that have

been determined by analysis of one sample and fit these
to a new sample, estimating only new subject weights.,

Alternatively, PARAFAC allows one mode to be input

and fixed and two to be estimated from the new sample.

The resulting fit value will show "shrinkage" because

you are no longer fitting error in two of the three

modes. A sample can be split in half and the dimen-
sions fit in each half can be applied to the subjects in
the other half for a double cross-validation.

Randomization tests. "Significance tests" for the pres-

ence of system variation, additional dimensions, or

other characteristics of the data can be obtained by
means of randomization tests, in which the results of
the analysis of the obtained data are compared with the
results of randomly permuted versions of that data.

For example, to test for system variation in a three-way

array, one can randomly permute the entries in each

"tube" of the data, thereby leaving the structure in

two modes intact but scrambling the structure in the

third mode. If the data are so permuted and analyzed

19 times, then under the null hypothesis, these 19

should not differ systematically from the original un-

permuted data. Thus, the null hypothesis of no system
variation can be rejected at the .05 level if the original
unpermuted data produced a higher fit value than the

19 permuted ones, since this fit ranking would have a
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probability of .05 under the null hypothesis. In a
similar fashion, tests for additional dimensions can be
constructed by permuting residuals from the lower
dimensional analysis, tests for systematic asymmetries
can be performed by randomly interchanging the xj;
and x  entries in each allegedly symmetric data matrix,
and so on.

E. Comparison across experiments. The most complete test
of the generalizability of a given finding is, of course,
when someone replicates the finding with a new sample,
perhaps incorporating some modest variations in the
methodology of data collection or subject selection,
followed by a new analysis. Results that are stable
across such replications demonstrate the strongest
evidence for generalizability.

SUMMARY

Diagnostic evaluation of the optimality, reliability, and validity of
solutions is often lacking in studies using multivariate method-
ology. Yet, the use of diagnostics is crucial because it enables
the analyst to address four basic questions underlying any multi-
variate analysis: (a) appropriateness of the model; (b) computa-
tional adequacy of the fitting procedure; (c) statistical reliability
of the solution; and (d) the generalizability and explanatory
validity of any resulting interpretations.

A number of important diagnostic techniques for factor analysis
and MDS are now available, including many that have been
recently developed, and they could play an important role in
promoting the growth and intelligent use of factor-analytic and
MDS procedures over the next few years. To increase awareness
of these techniques, an informal listing is presented of
diagnostics known to the author (including some still being
developed). In this listing, an attempt is made to develop a
natural classification scheme for the diagnostics, based on the
type of information they need (such as the data itself, the factor
loadings resulting from a single analysis, loadings from several
analyses, and so on) and which aspects of the solution they focus
on (including the loadings, the residuals, and the fit values).
Although detailed questions of how to use these diagnostics are
not covered, brief descriptions of usage are sometimes given in
the listing., Of the various techniques listed, the most important
are probably the methods of evaluating the reliability of any
characteristics of a solution (split-half, bootstrapping/jackknifing,
and so forth). These can be used to estimate maximum
dimensionality and decide which aspects of a solution are stable
enough to warrant interpretation.
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