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Appendix A

Basic Concepts Underlying

the PARAFAC-CANDECOMP
Three-Way Factor Analysis Model
and Its Application to Longitudinal
‘Data!-?

Richard A. Harshman and Sheri A. Berenbaum

In the following pages we present the basic concepts and assump-
tions underlying the PARAFAC-CANDECOMP factor analysis model
and consider possible benefits and disadvantages of this approach to
analyzing longitudinal data.

MULTIMODAL RELATIONSHIPS

Two-Way versus Three-Way Data

To understand three-way factor analysis, it is important first to
understand the difference between two-way and three-way data. A

1The authors appreciate the opportunity to work with the IHD staff on possible appli-
cations of PARAFAC. In particular we would like to thank Dr. Dorothy Eichorn, Norma
Haan, and Marjorie Honzik for their contribution and support throughout this study.
During the preparation of this appendix, S.A.B. was supported by NIMH Grant # MH
14647.

2PARAFAC and CANDECOMP are two procedures for three-way analysis that were
developed independently but are essentially equivalent. PARAFAC stands for PARAllel
FACtors factor analysis and is described in Harshman, 1970, 1972b, 1976. CAN-
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multivariate data set usually consists of a rectangular array of obser-
vations. Such sets are organized according to two intersecting “modes”
or “ways” of classification. For example, in a set of personality mea-
surements, the data point x; might correspond to the score on the ith
personality variable which was obtained by the jth individual and thus
the two modes of classification would be “variables” and “persons.”
Frequently, factor analysis deals with a matrix of correlations between
variables; in this case the data point r; would represent the correlation
between variables i and j. Here, both “ways” correspond to the same
basis of classification—“variables.” (This case is considered two-way
because it takes two intersecting classifications—the row variable and
the column variable—to locate a single datum.)

It is becoming more common to collect three-way data. For example,
a two-way array might be collected for each of several experimental
conditions, producing a three-way set where “conditions” represents
the third mode. Most relevant here is the fact that longitudinal mul-
tivariate data usually have a three-way form of organization. For
example, in a set of longitudinal personality measurements, x;; might
correspond to the score of the ith personality variable, as measured on
the jth individual, on the kth occasion. Or, the data might consist of
correlations, so that the data point r;;, corresponds to the correlation
between variables i and j, computed from their values on the kth
occasion. (If the data are correlations, it is not necessary that the same
individuals be measured on the different occasions; a cross-sectional
approach is also possible.) (For useful discussion of these and related
distinctions among types of data see Carroll & Arabie, 1980.)

Two-Way versus Three-Way Factor Analysis

Traditional forms of factor analysis can only be applied to a two-way
array. For this reason, longitudinal researchers have had to factor
their three-way data by indirect means, e.g., “collapsing” the three-way
array into a two-way summary matrix, by averaging over one of the
three modes. However, such a procedure entails considerable loss of
information. In particular, it does not allow the analysis to incorporate
any of the three-way structural relationships among the observations.
To reduce loss of information, longitudinal analyses are often done by
dividing the data set into a series of two-way “slices” and then perform-

DECOMP stands for CANonical DECOMPosition and is described in Carroll and Chang,
1970. We sometimes refer to the basic model as the “PARAFAC-CANDECOMP model,”
but often call it simply the “PARAFAC model” for short.

/

/



Basic Concepts Underlying the PARAFAC-CANDECOMP 437

ing a separate factor analysis on each slice. However, it is then neces-
sary to compare the factors across slices in order to recover three-way
information. Here again, any systematic three-way relationships are
not available to the factor analysis procedure itself. Another limitation
of such piecewise approaches is that there are several different ways to
“slice” a three-way longitudinal array. The most obvious, perhaps, is to
produce a two-way slice for each occasion, but one might instead want
to make a slice for each person, so that each slice would be a two-way
longitudinal matrix of variables by occasions. Alternatively, it is some-
times useful to consider a slice for every variable, so that each slice is a
longitudinal matrix of persons by occasions. With each method, dif-
ferent aspects of the three-way structure of covariation are revealed
(see, e.g., Cattell, 1952).

In the last 10-15 years several new types of factor and principal
component analysis have been developed which can directly analyze
three-way data sets (e.g., Bentler & Weeks, 1979; Carroll & Chang,
1970; Corballis, 1970; Harshman, 1970, 1972a, 1976; Joreskog, 1971;
Kroonenberg & de Leeuw, 1980; Sands & Young, 1980; Tucker, 1963,
1966). Yet, surprisingly, few attempts have been made to apply these
methods to longitudinal data. The potential benefits of such applica-
tion seem considerable: several of these three-way methods should be
able to extract common factors that describe the covariation of var-
iables both across persons and across time, without losing the distinct-
ness of the two aspects of variation. Some of these models promise
uniquely determined factors—potentially resolving the ambiguities of
rotation that have hampered two-way factor analyses. Although the
three-way methods vary in their assumptions, generality, and in the
complexity of the resulting solutions, many of them should prove valu-
able for studying longitudinal multivariate patterns. We have concen-
trated on exploring applications of one of these techniques, PARAFAC.

THE PARAFAC-CANDECOMP MODEL

PARAFAC provides what is probably the simplest three-way
generalization of traditional factor analysis, yet it is also one of the
most powerful—when its particular assumptions are appropriate to the
data. But these assumptions are somewhat restrictive. PARAFAC is
not a completely general model appropriate for any type of three-way
data. For example, some data may need to be transformed before they
are suitable. Therefore, a clear understanding of the model is impor-
tant not only for correct interpretation of PARAFAC solutions, but also
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for determining it | correct application to various types of three-way
data. We consider first a formulation of the model for analysis of raw
data (or centered and rescaled data). Then we develop the equivalent
model for analysis of covariances computed from the raw data.

Recall that the traditional two-way factor model for a raw data point
can be written (for ¢ factors) as follows:

Xij = ailf}l + aizf;-g + -+ alsf;s + -+ aiqf;'q + e,-j (1)

Consider an interpretation of this equation in terms of personality
factors. For such data, x;; would represent the score obtained by the jth
person on the ith personality variable or item. In the model, a;; repre-
sents the loading of the ith variable on the first factor, that is, the
amount that the ith variable is affected by (or measures) the first
factor, while f;, represents the loading of the jth person on the first
factor, that is, the amount that the first factor is expressed in that
individual—how much of that factor the individual has. (This person
loading is traditionally known as the individual’s “factor score” on that
factor.) By multiplying these two loadings together, the term a;f},
represents the contribution of the first factor to the data point x;. (It is
apparent, for example, that if either the jth person’s loading or the ith
variable’s loading on that factor is very small, the factor will not con-
tribute appreciably to the observed data point x;;.) In like manner, the
term a;,f;, refers to the contribution of the second factor, a;f;; repre-
sents the contribution of factor s, and so on for the rest of the g factors.
The term e; is an error term and représents the unique or unsystem-
atic part of the data point that cannot be fit by the ¢ common factors.
(For further details on e;, see section on assumptions about error
terms.)

The PARAFAC-CANDECOMP Model Applied
to Score Matrices

To continue our example using personality item scores, suppose we
are dealing with a longitudinal array of such scores, where a given set
of items was administered to the same individuals on several different
occasions. If we applied the PARAFAC model directly to such data, the
underlying structure of a personality item score would be represented
as follows:

e = QufiiWri + QoofioWis + + - 4+ QisfisWrs +

Ct QigfigWre T e (2)
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In this equation, x;; represents the score on the ith personality item,
as obtained by the jth person, on the kth occasion. On the right-hand
side of the equation are ¢ + 1 terms. The first g of these terms repre-
sents the contributions of the ¢ common factors to the observed score;
the last term is an error component. In this three-way model data
point, the a and f coefficients have the same meaning as in the two-
way model: they are variable loadings and person loadings. However,
in each term there is an extra coefficient, the w,, coefficient (e.g., wy,
for factor 1, w,, for factor 2, etc.). These w,, coefficients are occasion
loadings, and are perfectly analogous to the a; and fj; coefficients
taken from the two-way model. For example, wy, is the loading of the
first factor on the kth occasion, that is, the amount that the first factor
tends to be expressed on the kth occasion, the size or importance of the
factor on that occasion. (In more precise terms, w, is proportional to
the standard deviation of the contributions of the first factor on the kth
occasion, provided these contributions have zero mean; otherwise, w;,
is proportional to the root-mean-square average of the contributions of
factor 1 on the kth occasion.)

In terms of the algebra of the model, Eq. 2 represents perhaps the
simplest and most mathematically straightforward three-way
generalization of factor analysis possible. Conceptually, however, it
involves more than might at first be apparent. PARAFAC was not
developed simply because it seemed a natural extension of the two-way
model. Rather, it is a formalization and extension of Cattell’s (1944)
insightful theoretical approach to solving the problem of factor rota-
tion. This approach postulates that any “real” factor present on two
occasions will maintain, across the two occasions, a simple proportion-
ality of factor loadings or factor scores. In PARAFAC, the w, values
are the proportionality coefficients which relate the loadings of a given
factor across occasions. When this proportionality assumption is ap-
propriate, the factor axes which reveal this proportionality are
uniquely located in the factor space, the “real” factors are determined
in a way not possible with two-way factor analysis. (This point is dis-
cussed in more detail in the section on uniqueness.)

Such proportionality is not, however, always a reasonable assump-
tion. Consider, for example, the problem that arises when we try to
apply the PARAFAC model in a simpleminded way to longitudinal
personality data. The model implies an exceptional orderliness in the
way that individuals change their personalities across time.

When interpreting the model, we can imagine that the w coefficient
multiplies either the person loading (factor score) or the item
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loading—the results are mathematically equivalent. With the person-
ality data example, it is perhaps more appropriate to consider the item
loadings as fixed and the individuals’ factor scores as changing across
occasions. Under this interpretation, an individual’s loading (factor
score) at time & for factor s can be written fj;w,,. This implies that on
occasion k, everyone’s loading on factor s goes up or down in proportion
to the occasion loading w,. For example, if ws; = 1.0 and w,, = 1.3, so
that factor s increases 30% from occasion 3 to occasion 4, then
everyone’s factor score is increased by exactly 30% between these two
occasions. If factor s were Extroversion, then everyone would become
30% more extroverted during this period. Such an orderly pattern of
change seems unlikely when one is dealing with individual per-
sonalities. It seems more reasonable to expect that the circumstances of
each person’s life will produce a change in any given personality factor
that is specific to the individual. Each person may change by a dif-
ferent amount, and some may even change in the opposite direction
from others.

The pattern of variation in which every data source shows the same
percentage increase in the expression of a given factor across a particu-
lar time period may be more appropriate for the description of data
drawn from points in some causally interconnected system. For exam-
ple, if the data sources were points in an individual’s brain, and the
variables were measurements of different kinds of brain activity, it
might be reasonable to expect all points of observation to show a coor-
dinated proportional increase in the amount of a certain brain activity
from one time to the next. For such reasons, the type of orderly varia-
tion implied by Eq. 2 has been called “system variation” (see Har-
shman, 1970, pp. 19-21 for further discussion). In contrast, when the
sources of variation across time are thought to reside independently
inside each data source (e.g., persons), the resulting variation is
termed “object variation” (Harshman, 1970, pp. 22-25). In the object
variation case, one might write the expression for person j’s factor
score for occasion & as follows: fiy = (fis + V), where v;y, represents
the idiosyncratic shift or variation in the factor score for person j on
occasion k.

Some longitudinal data sets may display a mixture of object varia-
tion and system variation. Even with personality data, there may be in
the life span of most persons certain common experiences that cause a
trend toward increases or decreases in particular factors at particular
times (e.g., a factor of “responsibility” might generally tend to increase
as individuals age). By applying the PARAFAC system variation
model directly to the raw score or deviation score matrices for such
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data, one would obtain w,, values that would represent the systematic
part of the cross-time variation. Such an approach may be more appro-
priate with longitudinal growth data, for example, than with personal-
ity data. However, it is possible to factor analyze both the system
variation and object variation parts of the temporal variation by treat-
ing the data in a slightly less direct fashion, that is, by taking
covariances or deviation cross-products of the variables on each occa-
sion and then analyzing the resulting three-way set of covariance or
cross-product matrices according to the PARAFAC model. Both system
and object variation will contribute to the covariances. Furthermore,
though the distinction between system and objection variation disap-
pears in covariance analysis, it can be recovered. If desired, the two
types of variation can be reconstructed after the factor analysis, and
studied separately or in combination. This is the approach that was
taken in our work at IHD.

The PARAFAC-CANDECOMP Model Applied
to Covariance Matrices

Before we discuss the PARAFAC model for covariances, let us first
recall, for comparison, the traditional two-way factor model for cross-

products or covariances:
Cij = @@ + Qppajy + 00 taait o a0, ey 3

Here, a;, and a;, represent the loadings of personality variables i and j
on factor s, as before. The observed covariance c;; is simply the sum of
the cross-products of the factor loadings for the two variables, plus
error. (For simplicity, discussion here is restricted to the formulation
for orthogonal factors.) We discuss covariances, rather than correla-
tions, because the covariances properly reflect changes in variance
across occasions: computation of correlations on each occasion would
impose a standardization within each occasion that would disturb the
desired proportional relationships between factors across different oc-
casions.

The three-way generalization of this covariance model can be de-
rived from Eq. 2 (Harshman, 1972a). It has the following simple form:

— 2 2 “ e 2
Cije = Ai1@j1 W1 T Qp@jWiks + + Qi QWi +
ot Q@i W T €k 4)

Here c;; is the covariance between variables i and j, computed across
persons, on occasion k. (Alternatively, it can be the sum rather than
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the average of deviation cross-products, the covariance “uncorrected
for sample size,” as in Chapter 5.) The a;; and a;, represent the loadings
of variables i and j on factor s, as before. The w? coefficients are the
occasion loadings, indicating the size or importance of factor s on occa-
sion k. These occasion loadings correspond to those of Eq. 2, with one
difference: whereas the raw-score formulation (Eq. 2) was in terms of
w,s coefficients that are proportional to the standard deviation of fac-
tor s on occasion k, the covariance or cross-product formulation of Eq. 4
involves w?,, coefficients that are proportional to the variances of the
factors, that is, these loadings are exactly the squares of the w,, load-
ings of Eq. 2. (The occasion loadings are squared in Eq. 4 because the
cross-product of two variables contains a w,, coefficient for each vari-
able.)

Note that any reference to an individual’s factor score has disap-
peared from Eq. 4. As a result, it can be shown (Harshman, 1972a) that
fitting Eq. 4 to a three-way set of covariances does not entail the strong
assumption of system variation that is entailed by Eq. 2. Although Eq.
4 allows the overall factor score variance to change from one occasion
to the next, it does not require that the percentage change in factor
score size be the same for each person; only the average change in
factor size appears in the equation. Thus it does not matter whether
individual shifts are coordinated or not. Because the weaker assump-
tions of Eq. 4 are consistent with data showing object variation, this
model may provide an appropriate means of analyzing longitudinal
personality score data.

It may seem that going from Egs. 2 to 4 results in the loss of valuable
information about the factor scores of individuals. In fact, however,
this loss is only temporary. We show below that factor scores for indi-
viduals can be recovered, once the common factor loadings are ob-
tained.

UNIQUENESS OF SOLUTION

Significance of Uniqueness

We now consider what is perhaps the most important property of the
PARAFAC-CANDECOMP model: its ability to determine factors
uniquely, without “rotation.” The potential significance of such a
capability is apparent to anyone familiar with the history of factor
analysis and the controversy that has surrounded the issue of factor
rotation. In the personality domain, for example, Cattell has advocated
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oblique simple structure; Eysenck and Guilford have preferred ortho-
gonal solutions while differing on how to bring additional empirical
information to bear cn the rotation process. As a result, differences in
rotational procedure have repeatedly led to debates about the correct
description and interpretation of dimensions underlying the variables
in a given domain (Eysenck, 1977, versus Guilford, 1977, provides a
recent example of such a dispute). As Comrey (1967) has said, “The
rotation process has been the target of much criticism, and continues to
be the weakest link in the entire [factor analysis] process.”

Because of the variety of rotations possible with any set of factors,
some psychometricians suggest that there is no such thing as a “real”
or “correct” set of factors for describing the patterns of covariation in a
particular data set. They interpret the different possible rotations of a
given set of factors as representing alternative, equally valid, ways of
describing the same set of relationships.

Indeed, when factors are used only for convenient description of a
given two-way data set and not for inference beyond that data set, this
relativistic attitude may be justified. For some investigators, however,
factor analysis provides one of the main sources of empirical informa-
tion on which to build new explanatory constructs; such constructs are
intended to have broad application beyond the limits of a particular set
of data. For these researchers, the attempt to identify “real” or “expla-
natory” factors is simply another expression of the time-honored scien-
tific endeavor of attempting to identify the underlying causes of ob-
served regularities. Certainly, theorists such as Cattell and Eysenck
consider their factors to have such causal implications (Cattell, 1952;
Eysenck, 1970, Chapter 12), and thus, for them, the dispute over alter-
native sets of factors is both meaningful and important.

Differently rotated factors will often give rise to different scientific
hypotheses about underlying causes in a given data domain and thus
will lead to different predictions about the outcome of possible experi-
ments in that domain. (For example, different factor theories of in-
tellectual abilities give rise to different predictions about patterns of
intellectual change due to drugs, brain damage, etc.) Clearly, in such
cases those factors that lead to the most accurate predictions should be
considered the most accurate descriptions of “reality” in that domain.
Of course, any scientific construct is only an approximation to “real-
ity,” and the constructs derived from factors are probably rougher ap-
proximations than many. Yet there seems no reason why factor-
derived constructs should not be granted the same empirical status as
other scientific constructs, as long as they play the same sort of role in
generating scientific hypotheses that are empirically testable.
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One real objection to using factors as starting points for the de-
velopment of explanatory constructs is that they are often dependent
on relatively arbitrary decisions concerning rotation. The choice of a
“simple structure” rotation, for example, is often fairly hard to defend
on empirical grounds, and when this is so, any claim of explanatory
validity for the particular factors that result from such rotation has
little internal support. If it is claimed that such factors have greater
empirical validity, this claim usually needs to be supported by a series
of external verifications of their distinctive predictions (i.e., predic-
tions that would be implied by those factors, but not by factors obtained
through alternative rotations; see Harshman, 1970 or 1976, for further
discussion). Certainly the extensive series of investigations and inter-
locking experiments conducted by researchers such as Eysenck, Cat-
tell, and Guilford give their findings much greater weight than the
results of any one or two factor analyses in isolation. Nonetheless, the
differences in rotational philosophy of these investigators has appar-
ently led them down different paths, and their conclusions, therefore,
represent somewhat different perspectives on the nature of personal-
ity.

PARAFAC was developed to help overcome the problems of rotation
by strengthening the factor model itself. PARAFAC incorporates into
the three-way extension of the factor model an important principle
first conceived by Cattell (1944), which takes advantage of the extra
information about factors present in three-way data to obtain a unique
set of factors without rotation.

Unlike two-way data, where factors produced by many alternative
rotations will fit the data equally well (forcing one to go outside the
data to test the implications of a given factor rotation), with the
PARAFAC model for three-way data, differently rotated factors will
not, in general, fit the data equally well. Thus one can empirically test
different potential factor rotations within the same data set from which
the factors are being extracted. (Of course, further confirmation from
experiments that go beyond the data would also be important.) With
longitudinal data, for example, different rotations of the possible fac-
tors underlying a set of variables will give rise to different predictions
concerning patterns of change in covariances among the variables
across time. If the data are adequate, there will be one “rotation” (i.e.,
one set of a, f, and w values) that fits the data across time better than
any other. By seeking and finding this unique set of factors, PARAFAC
provides an empirically grounded basis for selecting the best “rota-
tion,” that is, the best candidates for “real” or “explanatory” factors
underlying a given domain.
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The Basis for Uniqueness: The Principle
of Proportional Profiles

In 1944 Cattell proposed what he called “the principle of parallel
proportional profiles” as an alternative to the simple structure crite-
rion for selecting a preferred rotation of factor axes (Cattell, 1944). His
idea was simple, yet powerful: by comparing the factors extracted
separately from two different but related data sets, it should be possi-
ble to discover the “real” orientation of axes in the two solutions by
finding that orientation that brings their factor loadings (or factor
scores) into parallel, proportional correspondence across solutions. As
long as the two data sets are not equivalent, but instead possess the
same common factors in different relative proportions, there is only
one rotational position that will reveal this correspondence. It can be
shown that such a correspondence of proportional (rather than identi-
cal) loading patterns or factor scores would be very unlikely to arise in
two data sets by chance or as a mathematical artifact. Hence, its dis-
covery in real data would indicate some common empirical influences
acting to organize both data sets, but in different degrees in each.
Thus, Cattell argued that factors determined by rotation to parallel
proportional profiles would have stronger empirical meaning than
those given by other rotations of the same axes (Cattell, 1944; Cattell
& Cattell, 1955).

Because of mathematical and computational difficulties, the propor-
tional profiles criterion was not successfully implemented as a rotation
technique (Cattell & Cattell, 1955), and so was subsequently ne-
glected. The mathematical difficulties have more recently been over-
come, however, by noting that the principle of proportional profiles
implies a particular three-way generalization of factor analysis,
namely the PARAFAC models already discussed (Harshman, 1970,
1976). (Interestingly, the equivalent CANDECOMP model was de-
veloped without reference to Cattell’s idea. It is based instead mainly
on a rationale growing out of a consideration of individual differences
in multidimensional scaling; see Carroll and Chang, 1970.)

There is a sense in which the discovery of substantial proportional
changes in loadings across occasions can be taken to constitute confir-
matory evidence both for the empirical “reality” of the factors defined
by a particular rotation of axes and for the incorrectness of other rota-
tional positions. To see this, imagine the following oversimplified case.
A researcher is comparing covariances among a set of variables on
occasion 1 with the corresponding covariances on occasion 2. If the
investigator finds only small, random differences between the
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covariances on the two occasions, the comparison will provide no rea-
son to choose a particular rotation of the factors. Appeal must be made
instead to “simple structure” or other principles invoked to determine
rotations in two-way factor analysis. If, on the other hand, changes in
covariances across time showed certain systematic patterns, these pat-
terns could strongly imply a particular rotation of the factor axes.
Suppose, for example, that the covariances could be divided into three
sets: one set that consists of covariances showing no real changes
across the two occasions, only small random fluctuations; a second set
of covariances, all of which increase by approximately 20% (with ran-
dom fluctuations around this value); and a third set of covariances, all
of which decrease by approximately 35%. Suppose further, that the
three sets of covariances are, in fact, covariances among three distinct
sets of variables. What could an investigator conclude?

First, one would be compelled to acknowledge that the pattern of
changes is far too systematic and coordinated to have happened by
chance. Second, to explain all the covariances that shifted by the same
proportion, one would infer that the variables involved must share
some common influence, that is, the variance of a common factor.
Third, one would justifiably prefer a rotation of three underlying fac-
tors that assigned each factor to one of the three groups of variables
that show different shifts in covariances across time. With such a rota-
tion, the pattern of changes across time could be simply explained in
terms of changes in the variances of the factors. Other rotations would
not provide an explanation of the changes across time, and, in fact,
would be inconsistent with them. It would not be possible to have the
same factors on all three occasions unless they were rotated to be
consistent with the patterns of shift across occasions. Normally the
situation will be more complicated, because factors will probably over-
lap in influence and affect some of the same variables. Furthermore, a
given factor will affect different variables to different degrees. Yet the
mathematical idea is still applicable (though the resulting patterns are
harder to describe verbally) and the conclusion is still the same: cer-
tain coordinated patterns of change in covariances across time (or across
experimental conditions, or whatever else is represented by the third
mode) can help to identify the underlying factors that are changing.
Further, such coordinated patterns of change provide confirmatory
evidence for the particular rotation of factors that they help to identify.

Reliability Check

But how does one distinguish patterns of covariance-change across
time that are only random sampling fluctuations from those systema-
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tic enough to establish unambiguously a preferred rotation for the
factors? One method is to compare factors obtained in random split
halves of the data. The degree of similarity of factors found in two
subsets of a given data set can provide an impression of the stability of
the factors obtained and of the likelihood that they would be found by
someone analyzing a new sample of similar data. If approximately the
same set of factors and orientation of factors is determined in two
halves of one’s subject sample, the characteristic patterns are evidently
reliable enough to be repeatable, even with half as many subjects in
each sample. Features of the solution that do not replicate across split
halves should be interpreted with caution. (For examples of the use of
split-half validation of PARAFAC factors, see Gandour & Harshman,
1978; Meyer, 1980).

Precautions in addition to checking for the replicability of particular
features of one’s solution are advisable. The factor model represents a
particular type of linear additive approximation to the patterns pre-
sent in the data. Such a simple approximation is often quite useful and
adequate for empirical investigations, but this will not always be the
case. One must be aware of the limitations of the model one is fitting to
the data and sensitive to any indications that a more complex model
may be required. (For example, certain types of violations of the model’s
linearity assumptions can be recognized and interpreted by looking for
nonlinear relationships between PARAFAC factors, an approach less
likely to be feasible with two-way factor analysis; see Harshman, 1970,
Chapter 7.)

Necessary Conditions for Uniqueness

As is apparent from the foregoing discussion, PARAFAC depends on
distinctive patterns of variation of factors across the third mode (e.g.,
time) to separate the influences of the different factors and thus deter-
mine the best orientation of factor axes, that is, to identify the unique
factors. If, however, the factors do not change in distinct ways, but
instead certain factors always change their sizes together, and to the
same degree, across the third mode, then PARAFAC will not be able to
resolve the influence of these factors into unique components.

Consider the following algebraic analogy (borrowed from Harshman,
Ladefoged, & Goldstein, 1977). In the simple equation x + y = 20,
there is no unique solution because an infinite number of x, y pairs
will satisfy the weak constraints imposed by this specified relation-
ship. This example corresponds to the kind of nonuniqueness of load-
ings that occurs in two-way factor analysis. However, if we consider
additional information about the unknown parameters, for example, if
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we consider several related equations in parallel, such as x + y = 20
and 2x + 3y = 55, and if we require the same values of x and y to
satisfy both equations, we obtain a unique solution. Similarly, parallel
analysis of several data sets in terms of a common set of factors (un-
known parameters) can provide a unique solution for the factors. But it
is essential that the coefficients of x and y do not have the same ratio
to one another in the two simultaneous equations. If the second equa-
tion were 2x + 2y = 40 it would not provide any new constraints on the
solution, and so would not provide a unique solution. The ratio of the
factor sizes for two factors must differ across at least some of the occa-
sions in order for the three-way data set to determine a unique solution
for those factors. (If most of the factors vary in independent fashion
across occasions, but two factors always change size together, then all
factors except those two will be uniquely determined.) For more de-
tailed discussion of uniqueness, and mathematical proofs, see Har-
shman, 1970, 1972b, 1976; Kruskal, 1976, 1977.

Before a factor analysis is performed, distinct patterns of variations
for each factor might be expected but one could not be certain that they
would be present. After performing the analysis, however, one can
partially verify the presence or lack of distinct patterns of factor varia-
tion across time by examining the table of occasion loadings (the w,
coefficients). If the patterns of variation of these loadings across time
are distinct for each factor, then the interpretation of the solution can
proceed with greater confidence. However, if several columns have
very similar patterns of loadings, then those factors may not be
uniquely determined. One must proceed with caution in interpreting
those factors and certainly test the solution for uniqueness and relia-
bility by methods described above and elsewhere (e.g., Harshman et
al., 1977).

IMPLEMENTING THE MODEL: COMPUTATIONAL
CHARACTERISTICS OF PARAFAC-CONDECOMP

To properly evaluate any application of PARAFAC, one must ap-
preciate not only the differences between the two-way and three-way
factor model, but also the resulting basic differences in computational
procedures. Even with two-way factor analysis, one cannot simply “in-
put the data and output the results.” It is important to test various
alternatives, select the most appropriate options, and make informed
decisions at various stages of the analysis. With PARAFAC, an in-
telligent understanding of the basic stages of the computational proce-
dure is even more important. There is a specific series of steps for
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determining the correct number of factors and ensuring that the opti-
mal solution has been obtained for any given number of factors.
Understanding these steps and evaluating how well the results sup-
port the conclusions drawn by the investigator is an important part of
evaluating any PARAFAC analysis.

The computational characteristics of PARAFAC differ from those of
conventional factor analysis in two basic respects: (a) the factors must
be extracted simultaneously rather than successively, and thus a sepa-
rate analysis must be performed each time a solution with a different
number of factors is to be examined; (b) each solution is obtained
iteratively, rather than by a “closed form” direct computation; con-
sequently checks must be made to ensure that the iterative procedure
has reached an optimal solution and that the same optimal solution
will be obtained consistently.

Finally, for longitudinal applications of PARAFAC involving
analysis of covariance, we propose a modified method of computing
factor scores. This could be considered a third computational difference
between our approach and conventional two-way factor analysis. It is
useful to consider all three of these differences more carefully.

Simultaneous Extraction of Factors: Testing Effects
of Different Numbers of Factors

Conventional two-way factor analysis normally proceeds by extract-
ing factors stepwise, that is, first extracting one factor, then extracting
a second factor from the variance that is left over after removing the
first factor, and in this way removing succeeding factors from a given
data set. In this conventional procedure, the first factor will be the
largest, explaining as much variance as is possible with one factor,
with the next factor explaining as much residual variance as possible,
and so on. Such an approach imposes certain arbitrary restrictions on
the form of the factors. First, it causes the factors to be orthogonal to
one another in all modes. Further, because it maximizes the variance
extracted by each successive factor, it forces the early factors to repre-
sent a combination of influences whenever such a combination can
explain more variance than can a factor that represents a single under-
lying pattern of influence. Such “raw” unrotated factors are not nor-
mally interpretable.

In two-way factor analysis, the stepwise approach causes no prob-
lems because a subsequent rotation is used to “untangle” the combina-
tions of influences in the unrotated factors. However, for PARAFAC
the incorrectly rotated (sequentially extracted) factors would actually
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capture less of the data variance than the same number of factors in
the correct orientation. To take advantage of the important uniqueness
of PARAFAC in determining the best factor orientations, it is neces-
sary to extract all the desired factors simultaneously. This procedure
provides the best estimate of each factor, given the presence of others,
and removes the arbitrary restrictions imposed by sequential extrac-
tion. Because of the requirement of simultaneous extraction, one must
perform a separate analysis at each dimensionality to be examined.
Thus, for example, one must perform a four-dimensional analysis, and
then a separate five-dimensional analysis, to compare the form of the
factors in four- and five-dimensional solutions. Generally, it will not be
the case that the factors in the five-dimensional solution are identical
to those found in the four-dimensional solution plus one additional

factor.

Iterative Computation: Checking for Convergence,
Optimality, and Uniqueness

To perform a PARAFAC analysis at a given dimensionality, an
iterative procedure is used. Unlike two-way factor analysis, there is no
direct “closed form” procedure for obtaining the optimal factor load-
ings. Instead, each solution starts with a random set of values for the
variable loadings, person loadings, and occasion loadings (the a, f, and
w coefficients). PARAFAC then improves this random first guess in-
crementally in small steps, increasing the fit of the solution to the data
at each step, until a final optimal solution is reached. Stepwise changes
are comparatively large at first, but gradually become smaller as the
solution approaches its final form. When these steps become vanish-
ingly small, the process is said to have converged. Obviously it is un-
reasonable to try to interpret a solution that is far from convergence,
because additional iterations may change the loadings enough to alter
the interpretation. Therefore it is necessary to establish, for each solu-
tion, that it is close enough to convergence to provide accurate esti-
mates of the final loadings.

Because PARFAC proceeds by successive iterations, different sets of
initial random loadings will cause the program to pass through a dif-
ferent series of intermediate stages on the way to the final converged
solution. It is important to determine, therefore, whether the final
solution obtained is completely determined by the data or is instead
partially a function of the random initial loadings. With data that have
the necessary independent variations of the underlying factors across
all three modes (as explained previously in the discussion of unique-
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ness), different starting points should converge to the same final solu-
tion, as long as the number of factors being extracted does not exceed
the number underlying the data. If too many factors are extracted, the
solution may be nonunique and differ with different starting points. (In
certain circumstances nonuniqueness may also occur when too few
factors are extracted, but this is less common. If, e.g., the “true”
number of factors is 5, there can be a unique 5-dimensional solution
but also sometimes two competing 4-dimensional solutions, each with
4 factors that resemble a different subset of the full 5 factors.) Local
optima can also cause problems by “trapping” the iterative procedure
in an invalid partial solution before it reaches the overall best fitting
solution for a given dimensionality.

To check that an obtained solution is the desired global optimum for
that dimensionality and that it is in fact unique and independent of
starting position, several analyses are conducted from different ran-
dom starting positions and the resulting solutions and fit values are
compared. The obtained factors are also compared with factors ex-
tracted at lower and higher dimensionalities to gain further informa-
tion on their stability. (For more detailed discussion of these, and re-
lated checking procedures, see Harshman et al., 1977.)

Method of Computing Factor Scores

Given item loadings for ¢ PARAFAC dimensions, factor scores can
be computed by the same regression technique often used in two-way
factor analysis. To obtain an individual’s q factor scores for a given
occasion, that person’s column of all item ratings (his/her column of
raw data for that occasion) is approximated by a weighted combination
of the g columns of all item loadings (the PARAFAC dimensions ob-
tained from the covariance analysis). The ¢ multiple regression
weights that yield the best-predicting combination of factor loadings
become the factor score estimates. They represent the amounts of the ¢
factors which, in combination, would produce a set of ratings most
resembling the individual’s obtained ratings for the given occasion.
Thus, they represent estimates of the amount of each factor that the
person has on that occasion.

As is well known, the regression procedure for estimating factor
scores generates an intermediate set of values called the factor score
coefficients. These coefficients provide a simple way of estimating any
individual’s factor scores from his data. For each factor, the coefficients
describe a weighted linear combination of the individual’s observed
item ratings that gives the best estimate of that individual’s factor
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score on that factor. If a person has high ratings on those items that
count strongly toward the particular factor, he/she obtains a high score
on that factor. With three-way data, our method of computing the
factor score coefficients is the same as is used in two-way factor
analysis, that is, we simply take the generalized inverse of the factor
loading matrix. However, our method of applying these coefficients
differs in two respects from the standard procedure for two-way factor
analysis: (a) we apply the coefficients separately to the subject’s data
on each occasion, and thus compute several sets of factor scores for each
individual; () we apply the coefficients directly to the uncentered raw
data to recover information about factor means.

In many applications, and particularly in longitudinal analysis, it
would be very useful to be able to compare factor score means across
groups or occasions. Because there has been some controversy about
the proper way to handle changes in factor means when analyzing
longitudinal data (e.g., Bentler, 1973, discusses problems with various
approaches), it may be useful to explain and justify the approach we
advocate (and which is used in Chapter 5). We remove any information
on changes in factor means before performing the PARAFAC analysis
and then recover the information at the time of estimating factor
scores. Recall that the first step in computing item covariances (or, in
Chapter 5, sums of deviation cross-products) involves centering the
data across persons (i.e., removing the mean from each column of each
of the data matrices according to the formula x;; = Xy — %ip). Natur-
ally this removes from the resulting covariances any information con-
cerning mean changes in the factor scores across occasions (or in dif-
ferent subsamples if these correspond to different levels of %). This is
desirable because it avoids possible “contamination” of within-occasion
covariances by the effects of any cross-occasion (or cross-subsample)
variance of the factor means that is not simply proportional to within-
occasion changes in factor variances (as might occur with certain sex or
cohort effects).

It can be shown that the recovered item loadings are not affected by
this centering (aside from avoidance of possible “contamination,” as
mentioned). However, centering across persons does affect the factor
scores. If we applied the factor score coefficients to person-centered
data, we would get person-centered factor scores, that is, each factor
score would represent a person’s deviation from the average person’s
score on that factor for that occasion and subsample (for occasion k we
would obtain fi. = fix — fs)- Torecover “raw” factors scores, that is,
scores that include the mean component, we apply the factor score
coefficients directly to the raw, uncentered data. We can then study
changes in factor means across times or subsamples by comparing the
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means of these factor scores. (Because the loadings for items are not
affected by centering, except as noted above, they provide an appro-
priate description of uncentered as well as centered data. Con-
sequently, the factor score coefficients obtained from such loadings are
also applicable to uncentered as well as centered data. Artificial addi-
tive constants in the data might introduce small additive constants into
the factor scores, but as long as these constants do not change appreci-
ably over time they should not affect the differences in factor means of
groups or occasions.) We believe this approach will generally solve the
problems noted by Bentler (1973) and others regarding the treatment
of mean factor changes in longitudinal factor analysis.

SPECIAL ASSUMPTIONS UNDERLYING PARAFAC ANALYSIS
OF LONGITUDINAL DATA

In addition to the usual assumptions of factor or component analysis
(e.g., that scores are linearly decomposable into factors plus error),
certain further assumptions about the behavior of factors across time
are required for PARAFAC analysis of longitudinal data. It is impor-
tant to consider the various special assumptions or limitations that
may be implied by using particular forms of the PARAFAC model. One
can then evaluate the advantages and disadvantages of PARAFAC
compared to various other factor analytic approaches to longitudinal
data.

Factor Loading Invariance

Only one set of variable or item loadings is obtained by PARAFAC
analysis of the three-way data. These are the a;; values of Egs. 2 or 4.
Consequently, it is implicit in the PARAFAC model that the pattern of
loadings of variables on a given factor remains unchanged from one
occasion to the next. In other words, the factorial content of variables is
assumed to remain constant across occasions of measurement. This
provides a desirable base of common comparison across occasions, but
is seldom exactly true with variables that span long time periods. For
example, this assumption may not be strictly valid for the type of
personality data that we have been taking as an example; the meaning
of some items—their interpretation in terms of underlying traits—may
differ when used to describe a 40-year-old, compared to their meaning
when applied to an adolescent. For any longitudinal data set being
considered for PARAFAC analysis, the researcher must decide how
serious this problem is, that is, whether the probable changes in facto-
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rial content of the variables would be so great as to render useless the
PARAFAC approximation in terms of constant factorial composition
across time. Some flexibility here seems appropriate, however. Unless
it is reasonable to assume that one’s variables measure at least
roughly the same thing across time periods, then not only PARAFAC
but most other types of longitudinal analysis or comparison become
almost impossible.

It is often useful to obtain empirical information on the stability of
factorial content of items across occasions by doing separate two-way
factor analyses in the individual occasions or three-way analyses on
earlier versus later subsets of the data. For example, these methods
were employed to check the appropriateness of the PARAFAC analysis
of Q-sort items described in Chapter 5.

The Nature of Factor Score Changes

We have chosen an interpretation of PARAFAC in which the
changes across time are attributed to changes in the person loadings or
“factor scores” of individuals, rather than to changes in the variable or
item loadings (i.e., the w,, is taken to multiply the fj; rather than the
a;,). Other interpretations are possible, but this one seems to us to be
the most appropriate for the particular personality example we have
been considering. Having adopted this convention, let us consider what
limitations are imposed on the patterns of factor score change when the
PARAFAC-CANDECOMP model is applied to different types of data.

We have already seen how the direct application of PARAFAC to
raw-score matrices imposes the limitation that factor score changes be
proportional across occasions, that is, fig. = fisWxs. This strictest model
does not even allow for shifts of the factor means across time except
those proportional to changes in factor standard deviations. If one sus-
pects that other, additive baseline shifts may be present, the data can
easily be made suitable for PARAFAC analysis by centering the data
for each occasion across persons before performing the factor analysis.
(This removes any baseline shifts in factor scores and restores the
required proportionality of factor changes. If the data are otherwise
appropriate for direct PARAFAC, the centering will not affect the form
of the extracted variable loadings and will only remove the means from
the extracted person loadings. Information on baseline shifts in the
factor means can be recovered, if desired, by factor score estimation
procedures described above.)

Because of the assumption of system-variation in the direct applica-
tion of PARAFAC to raw data matrices, this kind of application should
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be restricted to data in which system-variation is likely to be present
(e.g., longitudinal growth data, economic system data, physiological
measurements, or data where the third mode represents various ex-
perimental conditions designed to alter systematically the relative in-
fluence of the underlying factors; for examples see Harshman et al.,
1977; Meyer, 1980). For such data, however, direct PARAFAC has
advantages over the indirect approach involving covariances. The di-
rect approach allows oblique solutions if they provide a better fit to the
data, whereas indirect analysis via covariances always gives ortho-
gonal factors—unless the more general model PARAFAC2 is used® (see
the following for further discussion of this point). The direct approach
also yields three distinct sets of loadings rather than two, removing the
need for estimating “factor scores.”

When system variation is not likely to be found, a more indirect
application of PARAFAC is warranted. If PARAFAC is applied to
covariance matrices computed from the data rather than to the score
matrices themselves, there are no restrictive assumptions imposed
concerning the patterns of changes in factor scores across occasions.
The data can follow object or system variation, or any intermediate
pattern (Harshman, 1972a). Furthermore, although the separate com-
putation of covariances on each occasion necessarily removes any in-
formation concerning mean changes in the factor scores across occa-
sions, this information can be recovered. In fact, it is possible to esti-
mate the specific object-variation pattern of each person’s changes in
factor scores across time. (See discussion of factor scores in the preced-
ing.) Nonetheless, one restrictive assumption about factor scores is
implied by using PARAFAC to analyze covariances, that is, that the
factor scores for the different factors are orthogonal across persons
within each occasion.

Orthogonal versus Oblique Factors

In dealing with the “obliqueness” of factors and of correlations
among factors, it is necessary to specify which mode of the three-way
data set is being considered. For example, two factors can vary in a

3A generalization of the PARAFAC model allows oblique factors to be extracted from
three-way sets of covariance matrices. This model, called PARAFAC2 (Harshman,
1972a, 1976), has only been implemented in an experimental program that is not fully
perfected. It is also more expensive to use because, at this point, it requires substantially
more computer time. To avoid additional complications that would have been introduced
by considering the PARAFAC2 model as well as PARAFAC, only PARAFAC was used in
these initial longitudinal investigations.
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correlated manner across persons and yet vary independently across
occasions. Traditionally, those doing factor analysis of personality data
have been concerned with the independence or correlation of factors
across persons. To them, “oblique” factors were ones that had corre-
lated factor scores. With our more general three-way model, we might
want to consider the orthogonality or obliqueness of factors in any of
the three modes; in terms of the personality score example, we might
consider the independence of person loadings, occasion loadings, or
variable loadings.

When PARAFAC is applied directly to the three-way raw data (or
centered data) matrix, the factor loadings that emerge may be either
oblique or orthogonal in any or all of the three modes. The results in a
particular case will be uniquely determined by the structure of the
three-way data itself. But in the analysis of covariances, one of the
three modes “disappears” from the data. In the personality score
example, the person mode disappears because covariances among
items are computed across persons. The remaining two modes (var-
iables and occasions, in our example) are still free to display ortho-
gonal or oblique patterns of factor loadings, but to use the simple form
of Eq. 4 for analysis of covariances, it is necessary to assume that the
factor loadings are orthogonal in the mode that “disappeared.”

We are involved in a trade-off of restrictions. In terms of our person-
ality score example, the analysis of covariances allows us to relax the
restriction that the variation of factor scores across time follow the
system-variation pattern but imposes a new restriction of orthogonal-
ity on the variation of factor scores across persons on any one given
occasion (i.e., for n persons we assume that 3 = (fix) (fix) = 0, if s
+ t). (This restriction can be relaxed; see Footnote 3, p. 455.) ‘

Although the restriction to orthogonality across persons is probably
not exactly appropriate for most data sets, it will often serve as a
reasonable simplifying assumption, particularly for the purposes of an
initial investigation. When, for the “true” factors, the factor scores
would actually have been correlated, then the solution obtained by
analysis of covariances will provide a best orthogonal approximation to
those factors. (In practice, however, factor score estimates obtained for
these “orthogonal” factors may still be slightly correlated.) Unless the
“correct” factors are strongly correlated across persons, this orthogon-
ality restriction usually produces only a modest shift in the loadings
that does not substantially alter interpretation of the factors. For
object-variation data such as the personality score example, the trade-
off of restrictions involved in covariance analysis is a worthwhile one.
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Assumptions about Error Terms: Factor
versus Component Analysis

When we set forth the equations defining the PARAFAC model for
raw data (Eq. 2) and covariance matrices (Eq. 4) there were no specifi-
cations of the properties of the error terms e;,. Two approaches to
these terms are possible, one corresponding to a three-way generaliza-
tion of common factor analysis and the other to a three-way generaliza-
tion of principal component analysis. Requiring that the error terms be
uncorrelated across tests and persons results ih a three-way form of
common-factor analysis. Alternatively, specifying that these errors are
simply the (correlated) residuals from a least-squares fitting of the q
factors produces what is technically a three-way form of principal com-
ponents analysis. For raw-data factoring, only the component-like
analysis is currently programmed. However, for analysis of
covariances, program options exist to implement either approach.* If
the diagonals of the covariance matrices are left unaltered in the pro-
cess of analysis, then a principal-components-like solution is obtained.
If, on the other hand, the program option to iterate on the diagonal is
selected, so that the diagonal cells are continually re-estimated in the
course of the analysis, a common-factor type of solution is obtained. For
large covariance matrices such as were analyzed in Chapter 5, it
makes little difference which approach is taken. Because the diagonals
constitute a very small percentage of the total data, the changes in
their values that result from iteration have very little effect on the
values of the factor loadings. (However, when employing the common-
factor model, we should speak of our subsequently obtained person
loadings as “factor score estimates” rather than “factor scores.”)

Linear Independence of Factor Variations across Time

There is an additional assumption which is not necessary for the
factor model of Eq. 2 or Eq. 4 to be appropriate, but which is necessary
if one is to interpret the PARAFAC factors as “explanatory” and mean-
ingful without rotation. The patterns of change of factor “size” or var-
iance across time must be distinct for each factor. As discussed in the
section on uniqueness these distinct patterns of change across time are

4A portable FORTRAN computer program for PARAFAC may be leased from Scien-
tific Software Associates, 48 Wilson Avenue, London, Ontario, Canada N6H 1X3. Or,
write to Richard A. Harshman, Department of Psychology, University of Western On-
tario, London, Ontario, Canada N6A 5C2.
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the clues that allow PARAFAC to resolve the factors. Loosely speak-
ing, factors can be correlated across time, but should not be perfectly
correlated. (In fact, variations in a factor generally should not be per-
fectly predictable from any linear combination of the variations in
other factors. For a more precise statement of the required conditions
for uniqueness, see Harshman, 1972b; Kruskal, 1976, 1977.)

Because the potential for a unique solution is one of the most impor-
tant advantages of a PARAFAC analysis, the user should (a¢) make an
effort before the analysis to ensure that the required distinct patterns
of changes in the factor variance across time will be present in the data
collected, (b) verify these distinct changes after the analysis by exam-
ining the occasion loadings, and (c) check the reliability of the factor
orientations by performing additional split-half or “jack-knifing”
analyses.

SUMMARY AND CONCLUSION

New methods of factor analysis may have great value for analysis of
longitudinal data (as well as many other kinds of “three-way” data).
They allow the entire three-way longitudinal data set to be entered
into the analysis, without the usual requirement of “collapsing” the
data into a two-way array. Because a more complete set of information
is available to the analysis, a more complete and accurate description
of the data can emerge from the analysis. For example, factor loadings
for occasions as well as for variables, and factor scores for persons, can
all be obtained from the same analysis.

In this discussion we have focused on the PARAFAC-CANDECOMP
model for three-way factor analysis. This approach offers a particularly
important advantage over two-way factor analysis, specifically, unique
solutions. The additional information present in the three-way data
(i.e., the pattern of variation of factors across time, as well as across
variables and individuals) is used to remove the rotational ambiguity
present in two-way factor analysis. Provided that (a) the factors show
distinct patterns of variation across time, (b) the data are appropriate
for the PARAFAC model, and (¢) the solution is stable (e.g., across
split-halves of the data), then the PARAFAC-determined factor axes
have an empirical justification considerably stronger than any avail-
able in conventional two-way factor analysis: any rotation of those
factors would reduce their ability to simultaneously fit all of the data
matrices across the successive time periods.

When using the PARAFAC-CANDECOMP procedure for three-way
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factor analysis, it is important to keep in mind certain general assump-
tions implied by the model, along with the special assumptions in-
volved in its application to longitudinal data. These considerations can
be summarized as follows: investigators must be able to assume that
the factorial .content of their variables is relatively constant across
time (i.e., that approximately the same factors are present on the dif-
~ ferent occasions), and that the major systematic differences across oc-
casions arise from changes in the relative importance of the factors
from one occasion to the next. When these assumptions are appro-
priate, the PARAFAC-CANDECOMP method of three-way factor
analysis can be a powerful way to uncover meaningful factors and
study their changes across time.



	

