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An Application of PARAFAC to a Small Sample
Problem, Demonstrating Preprocessing,
Orthogonality Constraints, and Split-Half
Diagnostic Techniques

Richard A. Harshman™and Wayne S. De Sarbo

In this appendix, we present in detail the procedure involved in
a single application of PARAFAC three-way factor analysis to real
data. The data are from a pilot marketing study and consist of
the ratings of 25 stimuli (names of automobiles and celebrities)
made by each of 34 raters, using a set of 39 bipolar rating
scales. The objective of the analysis is to determine the connota-
tive and semantic dimensions describing the celebrities and auto-
mobiles in order to decide which celebrity should be chosen as
spokesman for a given automobile.

This application is intended to provide a demonstration/ex-
planation of what PARAFAC is and what it does, for those to
whom "an example is worth a thousand equations." It is also
intended to serve as a guide for those who perform or are about
to perform their own analysis of a three-way data set. The data
are typical, since stimulus ratings by each of several subjects on
each of several ratings scales is probably one of the most common
kinds of three-way social sciences data. Since it is a small data
set, it highlights the need for good methodology to enable maxi-
mum information recovery without misinterpretation of random
error as meaningful patterns. The analysis problems that come
up are the ones frequently encountered in analyzing such data;
they are also typical of many other kinds of three-way data. The
techniques used to preprocess the data, to test dimensionality, to
determine stability of the solution, and so on are the basic ones
needed in all careful three-way analyses. Thus, this article
could be viewed as an illustrative companion to the general dis-
cussion of diagnostics provided by Harshman (see appendix A).

Factor analysis could never be properly conducted in a "one-
shot" run through the computer—unfortunately, too many social
scientists have used it that way. Its proper use has always
required careful planning, followed by a series of analyses. In
the analysis stage, study of the results of a given analysis is
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followed by reanalysis, extracting a different number of factors,
using a different rotation procedure, and so forth. Based on
what is learned from each solution, a new analysis is performed
and the process is repeated until the optimal solution is obtained.
The need for such a careful, multistage analysis process is even
greater with PARAFAC three-way factor analysis, and this article
provides an example of how it is done.

This application demonstrates: (a) three-way preprocessing
and its effects on the solution; (b) the method of split-half
cross-validation and how it is used to test the stability and
reliability of each solution; (c) how comparison of split-half
results for different numbers of factors is used to establish the
maximum number of dimensions; (d) how application of orthogonal-
ity constraints to one loading matrix is used to overcome "degen-
erate" solutions and permit recovery of additional meaningful
dimensions; and (e) the process of interpretation of a three-mode
solution—how the loadings from all three modes (scales, stimuli,
and subjects) can be used to strengthen insight into the nature
of each dimension and how comparison of interpretations across
several dimensionalities helps to refine judgments about the
"proper" dimensionality and the meaning of the factors that are
obtained.

While the use of diagnostic procedures is always important (see
appendix A), it becomes particularly important in this type of
application because of the small subject sample that was employed
(only 34 in all, 17 in each split-half). The results demonstrate
how proper use of split-half validation can be used to determine
the number of dimensions that can in fact be reliably extracted
from such small samples and how stable the extracted dimensions
are. The fact that at least three (and probably four or five)
dimensions could be reliably recovered from split-half samples as
small as 17 shows just how encouragingly robust and powerful
these three-way methods are.

THE PROBLEM
Motivation for the Analysis

The example is drawn from a marketing application in which the
motivating question is: How can one select an appropriate commer-
cial spokesman for a given brand or product? By applying
three-way factor analysis to semantic differential rating scale data
on products (in this case, automobiles) and potential spokesmen,
we hope to discover the underlying connotative overtones of the
spokesmen and products, enabling us to display both in a common
multidimensional semantic space. By using such a space, we will
be able to make better informed judgments about how the over-
tones of a particular spokesman might reinforce or interfere with
the desired impression for a particular product. This type of
marketing application is a special case of a methodology called
connotative congruence analysis, which is discussed in more detail
in the longer manuscript from which this appendix was taken
(Harshman and De Sarbo 1981).
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The Data

The data consists of ratings of each stimulus word on 39 bipolar
seven-point scales. The stimuli used are given in Table C-1, and
the concepts labeling the poles of the rating scales are given in
Table C-2. The approach is based on the semantic differential
technique (Osgood 1962; Osgood, Suci, and Tannenbaum 1957),
At the top of each page of the subject's test booklet was the
name of a celebrity or car make; on the twenty-fifth page, the
subjects rated themselves on the same 39 scales. Below the
stimulus name were the 39 bipolar rating scales. The subject
would place a mark somewhere along each bipolar scale, indicating
how strongly he thought the stimulus named at the top of the
page was related to the adjective at one end or the other of the

TABLE C-1. Stimulus List

Twelve Celebrities Tested (Aided Recall):

1. Bob Hope (Comedian)
2. John Wayne (Actor)

3. Muhammed Ali (Boxer)

4, Farrah Fawcett (Mode1)

5. Ralph Nader (Consumer Rights)
6. Orson Welles (Drama)

7. Sammy Davis, Jr. (Singer)

8. Arnold Palmer (Golfer)

9. Jerry Lewis (Comedian)
10. John Travolta (Actor)

11. Barbara Walters (Newscaster)
12. Mary Tyler Moore (Actress)

Twelve car makes tested:

13. Ford

14, Buick

15. Chevrolet
16. Cadillac
17. Oldsmobile
18. American Motors
19. Chrysler
20. Dodge

21. Plymouth
22. Lincoln
23. Pontiac
24, Mercury

25. Self
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TABLE C-2. Bipolar Adjectives for the 39 Semantic Differential Scales

Adjective pair Adjective pair

1. Pleasant --= Unpleasant 21. Expert --- Novice

2. Strong --- Weak 22. Masculine --- Feminine

3. Formal --- Informal 23. Slow --- Fast

4. Dynamic --- Static 24, Superior --- Inferior

5. Usual -=-= Unusual 25. Ugly --=- Beautiful
6. Colorless --- Colorful 26. Simple --- Complex

7. Leading --- Following 27. Trustful --- Distrustful
8. Plain --- Ornate 28. Austere --- Lush

9. Sophisticated --- Naive 29. Smooth === Rough

10. Liked --- Disliked 30. Public --- Private
11. Disreputable --- Reputable 31. Obscure --- Famous

12. Superficial --- Profound 32. 01d === New

13. Mature ~== Youthful 33. Orthodox --- Heretical
14. Rational ~--- Intuitive 34, Graceful === Awkward

15. Familiar --- Strange 35. Efficient --- Inefficient
16. Positive --- Negative 36. Light --- Heavy
17. Careless --- Careful 37. Interesting --- Boring
18. Aggressive --- Defensive 38. Large --- Small
19. Hard --- Soft 39. Attractive --- Unattractive
20. Active --- Passive

scale. For example, one stimulus name was "John Wayne" and one
of the rating scales was "Light 1 2 3 45 6 7 Heavy." If the
subject thought John Wayne was "Heavy" in some metaphorical
sense, he would circle a number on the right-hand side of the
scale. The "heavier" he thought Wayne to be, the further to the
right his circle would be.

The 39 scales were selected to tap the basic semantic differen-
tial dimensions of Ewvaluation, Activity, and Potency and also to
get at qualities related to previously published theories of "source
credibility" (Kelman and Howland 1953; McGuire 1969): Expert-
ness, Attractiveness, Trustworthiness, and Likability. We also
included other aspects thought relevant to connotative congruence
of these stimuli (see Mowen 1980). In addition, each rater also
answered 30 questions regarding attitudes and driving styles.
For example, some of the items were: "I usually look for the
lowest possible prices when I shop" and "I admit I try to keep up
with the Joneses." These were collected to shed possible light on
the market segments that particular subjects might represent and
to aid in the interpretation of the person loadings that would
eventually be used to help interpret the dimensions.

The data input to the PARAFAC analysis consisted of a 39 x 25
x 34 array. Each row of the input data corresponded to the
ratings of the 25 stimulus items on one of the 39 scales; each set
of 39 rows corresponded to the ratings provided by one subject.
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DATA ANALYSIS
Preprocessing

To demonstrate the importance of data preprocessing, we first
present the results of a three-dimensional analysis of the raw
data (Table C-3). We see here a more or less uninterpretable
solution.  The first dimension is probably adjusting for the
different constant offsets of the various rating scales from a true
zero origin. Note that the mean value in Mode C (the mode
chosen to reflect the scale of the data in this study) is around
3.5, which is the center of the 7-point rating scale. The differ-
ent loadings in Mode B range from close to zero to close to 2.0,
This would reflect differences in the additive constant for the
different scales. The pattern of variations in this mode suggests
that the zero-point was taken to be that point on the scales
corresponding to high positive evaluation of the stimuli. Dimen-
sions 2 and 3 show the classic pattern of degeneracy discussed
by Harshman and Lundy (chapter 6). As shown in Table C-4,
the loadings are highly correlated in. all three modes and the
product of the three correlations—that is, Mode A x Mode B
x Mode C correlation—is negative.

Before preprocessing, the data is liable to contain unwanted
constants and two-way interactions that interfere with the ability
to define axes uniquely. For one thing, PARAFAC expects
ratio-scale data and the raw data is interval-scale at best.
Additional reasons why unpreprocessed data may not provide
meaningful solutions are discussed in Harshman and Lundy (chap-
ter 6). To overcome this degeneracy, the data were centered on
Modes A and B (stimuli and scales) and size-standardized on
Modes B and C (scales and subjects). This double-centering
removes the overall additive constant and all one-way "main
effects," as well as subject-stimuli and subject-rating scale inter-
actions, since these are constant across Mode B and Mode A,
respectively. The data were size-standardized on Mode B (rating
scales) because it was thought that some scales might show much
less variance than others simply as an artifact of the choice of
overly extreme labels or because of "ceiling effects" (such as all
celebrities being rated as "famous"). Size standardization permit-
ted all the rating scales to be approximately equally weighted in
the analysis and provided comparability of loadings across levels
of Mode B. The subject mode was also size-standardized to
ensure that all subjects contributed equally to the solution and to
remove differences in the size of responses that might arise from
response styles such as "extreme" responding versus "moderate"
responding. This combination of preprocessing options has been
repeatedly found to give good results with three-way rating scale
data. The preprocessing required four iterations to reach the
standard convergence criterion (less than .01 deviation from
requested equality of mean-squares in all modes).

Which precise combination of centering and standardization
options to select is not always obvious, although the nature of
the application and the data collected can render valuable insights
into appropriate preprocessing options. In general, one must
consider which additive constants, two-way interactions, and



TABLE C-3. PARAFAC Three-Dimensional Unconstrained Solution

Unpreprocessed Data

for Raw

607

Mode A
1 2 3
1 .96 .73 .53
2 .88 1.07 1.21
3 1.06 .50 14
4 1.06 .19 -0.89
5 .99 1.29 1.46
6 1.01 1.36 1.74
7 1.04 .45 -0.18
8 .93 .96 .88
9 1.04 .67 .08
10 1.04 .27 -0.80
1 .99 1.06 .95
12 1.02 43 -0.13
13 .94 1.18 .86
14 1.00 1.20 1.23
15 .96 .88 A
16 1.06 1.33 1.81
17 1.00 1.14 1.10
18 .97 .96 .06
19 1.02 1.47 1.56
20 .96 1.02 42
21 .97 1.29 .85
22 1.05 1.37 1.92
23 1.01 .83 .39
24 1.03 .91 .56
25 1.00 .88 .73
Mode B
1 2 3
1 .25 1.14 -0.97
2 .30 1.22 -1.41
3 .66 .99 -1.40
4 .1 1.31 -0.99
5 1.66 -0.90 .75
6 2.02 -1.41 1.14
7 .21 1.42 -1.45
8 1.71 -1.07 .87
9 .34 1.28 -1.43
10 .16 1.21 -1.02
1 1.74 -0.85 1.04
12 1.14 -0.49 .89
13 .72 .70 -1.23
14 .94 .39 -0.86
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Continued
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Mode B

1 2 3

15 .20 .96 -0.84
16 .09 1.37 -1.19
17 1.46 -0.66 .99
18 .23 1.19 -1.08
19 .85 .33 -0.47
20 .09 1.24 -0.91
21 © .27 1.29 -1.48
22 .68 .63 -0.89
23 1.65 -0.72 .37
24 .16 1.42 -1.42
25 1.74 -0.98 .75
26 1.35 -0.71 1.02
27 49 .78 -0.80
28 1.58 -0.80 .66
29 .26 1.14 -0.98
30 .58 .42 -0.09
31 2.06 -1.09 .87
32 1.12 .01 -0.49
33 1.14 -0.22 ~0.04
34 b 1.37 -1.08
35 .40 .91 =0.74
36 .91 -0.09 .75
37 .27 1.30 -1.16
38 .73 .73 -1.18
39 .20 1.28 -1.03

Mode C
1 2 3

1 3.7 3.08 1.54
2 3.74 3.78 2.24
3 3.94 3.20 1.98
4 3.67 3.28 1.47
5 3.76 3.30 2.02
6 3.79 3.59 2.00
7 3.86 3.66 2.01
8 3.79 3.17 1.48
9 3.79 3.69 1.84
10 3.70 2.84 1.60
11 3.81 3.93 2.16
12 3.76 4,07 2.28
13 3.82 3.59 2.15
14 3.72 3.88 2.07
15 3.82 4.1 2.27
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TABLE C-3. Continued

Mode C
1 2 3
16 3.77 3.22 1.80
17 3.7 3.22 1.49
18 3.82 3.31 1.56
19 3.87 4,37 2.61
20 3.47 3.36 2.10
21 3.7 3.32 1.95
22 3.98 2.51 1.53
23 3.88 3.47 2.03
24 3.62 2.80 2.12
25 3.55 2.56 1.28
26 3.70 2.7 1.45
27 3.78 2.87 1.41
28 3.79 3.37 1.70
29 3.68 3.32 1.57
30 3.67 3.84 2.05
31 3.45 1.92 1.17
32 3.64 2.33 1.16
33 3.69 2.66 1.60
34 3.80 3.38 1.56

Root-Mean-Squared Contribution for Each Factor

3.744 3.328 1.835

FIT (R2) = ,337

inequalities of variance are most likely to cause problems. A
certain amount of trial and error is often necessary to check
alternative preprocessing schemes. (Indeed, in the example
considered here, we tried an additional standardization of wvari-
ances for the stimuli but decided that meaningful differences in
overall concept salience were obscured and so did not use this
standardization in our final analyses.) The preprocessing pre-
sented above should be considered as one of several useful possi-
bilities.

Factor Analysis Procedures

The analysis proceeds in a stepwise fashion, moving from a set of
one-dimensional analyses to the two-dimensional analyses, and so
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TABLE C-4. Correlations of Factor Loadings for Analysis of Unpreprocessed Data

Mode A
1 2 3
1 1.00 -0.31 -0.21
2 -0.31 1.00 .93
3 -0.21 0.93 1.00
Mode B
1 2 3
1 1.00 -0.98 .89
2 -0.98 1.00 -0.95
3 .89 -0.95 1.00
Mode C
1 2 3
1 1.00 43 35
2 43 1.00 83
35 .83 1.00

on, until various diagnostics (to be described) indicate that too
many factors have been extracted. A given step consists of
using several different random starting positions to obtain several
PARAFAC solutions at the given dimensionality, followed by the
application of a number of comparisons and diagnostic checks to
evaluate convergence, optimality, stability, and generalizability of
the solutions obtained. If the diagnostics indicate that the solu-
tions obtained are appropriate, we proceed on to the next higher
dimensionality. After covering a range of dimensionalities, fur-
ther comparisons of loadings and fit values across different
dimensionalities provide a basis for selecting the "correct" solu-
tion(s) for final interpretation. (For an introductory survey of
diagnostic procedures for three-way factor analysis, see appendix
A in this volume.)

To select the preferred solution at each dimensionality, and to
determine the "correct" dimensionality for final interpretation, we
employed several interrelated techniques: (1) to evaluate the
optimality and stability of the factors obtained at each dimension-
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ality, we obtained and compared three independent solutions using
three different random starting points for the iterative proce-
dure;3 (2) the fit values of optimal, converged solutions were
plotted as a function of the number of factors extracted, in order
to estimate the dimensionality beyond which additional dimensions
would only produce small, gradual improvements in fit, attribut-
able to fitting "noise" in the data; (3) the correlations among
dimensions within each solution were examined in order to check
for highly correlated dimensions, indicative of extracting too many
dimensions or other such problems; (4) the reliability and gener-
alizability of the dimensions obtained at a given dimensionality
were checked by comparing results obtained from different split-
halves of the data set; (5) the interpretability of the results was
examined at each dimensionality; (6) the evolution of the inter-
pretations obtained at successive dimensionalities was examined by
comparing different dimensional solutions.

An initial series of PARAFAC analyses was performed without
imposing constraints concerning the orthogonality or obliqueness
of dimensions. After certain diagnostics suggested that orthogo-
nality constraints might be useful, an additional series of analyses
was performed with the dimensions constrained to be orthogonal in
Mode B (that is, across rating scales). The original objective of
this constrained procedure was to clarify dimensions obtained in
the unconstrained analyses. It turned out, however, to reveal
additional structure in the data. We describe the details of the
unconstrained analyses first.

Unconstrained Analyses

The initial series of analyses was performed in one through seven
dimensions. At each dimensionality, three independent random
starting positions were used for the iterative procedure to check
for local optimum solutions. The resulting three solutions were
compared to evaluate the stability or uniqueness of the dimensions
and to reduce the chance of being misled by a local optimum.
The loading patterns for the obtained dimensions were correlated
across the three solutions to measure their agreement (using the
PARAFAC utility program CMPARE). Stable solutions were ob-
tained in all dimensionalities between one and five, as indicated
by correlations of .999 between corresponding dimensions from the
three different starting positions. At six and seven dimensions,
some solutions did not converge and others converged to different
places. (We used the default PARAFAC criterion for conver-
gence; that is, from one iteration to the next, no loading should
change more than one-tenth of one percent of the root-mean-
square average loading value on that factor in that mode.)
Because various diagnostics pointed to three as the highest
dimensionality that could be relied on with this data set (as will
be explained below), an extended effort was not made to deter-
mine the optimal, converged form of the solutions for five- and
higher-dimensional solutions.

Fit Values. At each dimensionality, several different good-
ness-of-fit measures were computed. The R? values for the 1
through 7 dimensional constrained solutions were as follows:
1D = .123; 2D = .195; 3D = .258; 4D = .293; 5D = .333; 6D =
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.363; 7D = .383. Examining the R? values, we see that by using
three dimensions, PARAFAC is able to account for roughly 25% of
the data variance. How good is this figure? Experience with
other three-way data, plus some Monte Carlo simulations, sug-
gests that these values are not particularly high, but they are
high enough to be compatible with correct recovery of major
dimensions in the data. It must be remembered that PARAFAC
fits the "uncollapsed" three-way array and thus these figures
represent the ability of the factors to reproduce individual rat-
ings. They should not be compared to fit values from studies
using averaged data. Yet, while PARAFAC fits the individual
ratings, it fits all the raters at the same time, and so it is able
to take advantage of patterns that are consistent over many
raters to improve the accuracy of its estimates of the loadings for
stimuli or scales. This gives PARAFAC an ability to detect
patterns that would normally only become apparent in averaged
(collapsed) data.

Traditionally, two-way analyses of this three-way data might
typically deal with ratings averaged over the thirty-four subjects,
and such averaging would reduce the error variance of the data
and would thus improve the fit values of the analysis consider-
ably. To see what the fit value would be with a more traditional
analysis of this data set, we "collapsed" the 25 x 39 x 34 array
into a 25 x 39 x 1 array of mean ratings by averaging over
subjects. When these "collapsed" data were analyzed by PARA-
FAC, the dimensions obtained were, of course, not unique in axis
orientation. But consistent fit values were obtained from dif-
ferent starting positions. In three dimensions, a fit value of
R = ,829 was obtained, which means that PARAFAC could account
for 68.7% of the variance of the averaged data by using three
factors. This higher fit value should reassure those investigators
who are used to examining fits for two-way analyses of averaged
data, since PARAFAC analysis of the "uncollapsed" data should
provide equivalent accuracy in the recovery of the underlying
structure, with the additional advantage of determining the ori-
entation of axes uniquely.

Another way one might express the same concern about the
seemingly "low" R2 of .25 is by asking whether this reflects the
ability of the model to recover structure or simply its ability to
fit "noise" in the data. To provide some information on this, we
took advantage of the Monte Carlo data synthesis options available
in PARAFAC and constructed an array of synthetic data similar to
ours but consisting entirely of random noise. In particular, we
constructed a 25 x 39 x 34 array of uniformly distributed random
deviates, with a constant standard deviation of 1.0. We then
preprocessed this array in the same way as the real data had
been preprocessed and submitted it to PARAFAC for analysis in
three dimensions, from three different random starting positions.
The resulting solutions were all different (presumably because
there were no systematic dimensions in the data), but the solu-
tions all had approximately the same R? values: .0224, .0223, and
.0214. The R? in all cases indicated that PARAFAC could fit only
about two percent of the error of an array of this size. Since it
could account for 25% of the wvariance of our real data, it seems
clear that this figure is not primarily due to fitting noise in the
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real data (at least if our admittedly simple Monte Carlo example is
any indication).

To obtain an estimate of the number of major dimensions un-
derlying the patterns of variation in the data, several plots of fit
versus dimensionality were made. Figure C-1 shows one such
plot, based on R2?, or the variance accounted for by the PARA-
FAC model at each dimensionality. Preliminary results of Monte
Carlo studies suggest that the plots of R? may provide the best
indication of "true" dimensionality. The increases in explained
variance should be large at first, because each higher dimension-

Figure C-1. Plot of Dimensionality versus R?2? for Unconstrained
Solutions
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ality incorporates another major factor explaining a new systematic
aspect of the variations in the data. However, when the remain-
ing wvariance is primarily random error, extraction of additional
dimensions should produce only a small and consistent increase in
R? at each step. Figure C-1 does not have a striking "elbow,"
but might suggest that there are 3 major and 2 to 3 minor addi-
tional dimensions in these data. Plots of other measures of fit
suggest slightly lower bounds, with R suggesting 3 dimensions
and log(l - R?) suggesting that there are just two major factors,
Thus, as sometimes happens, the plots of fit versus dimension-
ality are ambiguous, none containing striking and unequivocal
evidence for a given dimensionality. Thus, we are forced to rely
even more strongly on more fundamental indications of dimension-
ality, based on correlations both within and across split-half
solutions.

Within-Solution Correlations among Dimensions. One indication
that too many factors are being extracted from a given data set is
the occurrence of highly correlated factors in all modes. One
factor may "split up" into 2 similar versions of itself or more
general mixing and overlap of factors may occur. With our data,
this phenomenon occurred when we went from 3 to 4 factors.
The correlations between factors within each mode are shown for
the two- and three-dimensional solutions in Table C-5. The
highest correlations are in Mode A, corresponding to similar
patterns of loadings across celebrities and automobile makes.
Even for this mode, however, the highest correlation in the
three-dimensional solution is .41 and in the two-dimensional
solution is .50. Contrast these moderate correlations with the
very high correlations between dimensions one and two in the
four-dimensional solution displayed in Table C—6. (This pair of
dimensions corresponds to a splitting up of what was dimension
two of the three-dimensional solution; dimension one of the three-
dimensional solution has become dimefision three, and the old

TABLE C-5. Correlations among Dimensions for Two- and Three-Dimensional
Unconstrained Solutions

Two Dimensions Three Dimensions
1 2 1 2 3

Mode A 1 1.00 .50 1 1.00 -.36 .26
2 .50 1.00 2 -.36 1.00 - 41

3 .26 -1 1.00

Mode B 1 1.00 -.24 1 1.00 .01 -.12
2 -.24 1.00 2 .01 1.00 .24

3 -.12 .24 1.00

Mode C 1 1.00 4 1 1.00 =1 -.14
2 4 1.00 2 -.11 1.00 .39

3 -.14 .39 1.00
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TABLE C-6. Correlation within Modes for the Four-Dimensional Unconstrained
Solution

Correlations of Factor Loadings

1 2 3 4
Mode A 1 1.00 0.86 0.08 0.39
2 0.86 1.00 0.30 0.17
3 0.08 0.30 1.00 0.46
L3 0.39 0.17 0.46 1.00
Mode B 1 1.00 -0.92 0.79 -0.65
2 -0.92 1.00 -0.80 0.61
3 0.79 -0.80 1.00 -0.72
3 -0.65 0.61 -0.72 1.00
Mode C 1 1.00 0.86 0.30 0.47
2 0.86 1.00 0.33 0.53
3 0.30 0.33 1.00 0.34
b 0.47 0.53 0.34 1.00

dimension three of the three-dimensional solution has become
dimension four.) Note, a further splitting occurs in the five-
dimensional solution to produce a subset of several dimensions for
which all of the intercorrelations are above .8. In Mode A, there
are only two members of this set, but in Mode B there are four
and in Mode C, three. This pattern of degeneracy for the four-
and five-dimensional solutions clearly- indicates that one has gone
beyond the number of dimensions that is capable of being distin-
guished by our sample of 34 subjects, at least by means of -an
unconstrained solution.* .
Split-Half Evaluation of Reliability. The strongest evidence for
the "reality" of a factor—namely, that it is due to systematic
influences and not just random noise—is the demonstration that
the same or similar versions of the factor can be found in several
independent samples of data. To provide a check on the general-
izability of our solutions over independent samples of data, split-
half techniques were employed. The total sample was randomly
divided into two subsamples of 17 each; for purposes of discus-

*At the time this manuscript was written, the theory of degen-
erate solutions had not been developed to the degree that is
described in Harshman and Lundy (chapter 6). We would now
consider the pattern in the four-dimensional solution to indicate a
classic degeneracy with respect to dimensions one and two.
Thus, we are not surprised that application of constraints allows
additional dimensions to be recovered.
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sion, these subsamples are labeled R and S. In order to guard
against an "unlucky" split (for instance, one which by chance
allocates most of the subjects who use a particular dimension into
one of the two groups, and thus fails to find that dimension in
both subsamples despite the "reality" of the dimension), a second
division of the sample was made, roughly orthogonal to the first,
For the second division, an even-odd respondent split was used
and the resulting samples are labeled £ and O. The total sample
of N = 34 is labeled T.

Because our total sample consists of only 34 subjects, the
split~half subsamples are somewhat smaller than one would con-
ventionally wutilize for reliability comparisons. With such small
subsamples (N = 17), one may be able to verify the larger, more
pronounced dimensions, but smaller, more subtle effects may be
lost against the background noise. Nonetheless, we proceed with
a description of the split-half comparisons both to provide what
verification we can in this specific case and also to demonstrate in
general how this important part of the analysis procedure is
carried out. The reader should keep in mind, however, that
failure to find replication of a factor in two split-halves, when
each is based on only 17 subjects, may merely be an indication of
too small a sample size to define the factor against the back-
ground noise. On the other hand, if a factor is found to repli-
cate, this would provide strong evidence that the factor was the
result of fairly sizable systematic effects generalizable across
samples of subjects.

PARAFAC analyses in two through six dimensions were per-
formed on the four subsamples, and the results were compared by
computing correlations among dimensions. The two-dimensional
solution was verified through the random split-half analyses.
That is, similar solutions were obtained for each split-half of the
random split, and each resembled the total group solution (Table
C-7). Interestingly, however, the even-odd split did not verify
the two-dimensional solutions. Comparison with the total sample
solution (Table C-7) revealed that while both dimensions of the
even split-half matched those of the total group solution, only one
dimension of the odd split-half matched the total solution, and,
surprisingly, this was different for Mode A versus B. Apparent-
ly, because of an "unlucky split", dimensions one and two were
not as clearly the most important dimensions in the odd split, so
the solution adjusted itself to bring in components of dimension
three. However, for purposes of validation of a set of dimen-
sions, "once is enough." If a given dimension were due to
random noise, it should not replicate in any split-half comparison.
Consequently, the R versus S cross-validation is adequate to
verify the "reality" or nonrandom nature of the two dimensions of
the two-dimensional solution. A more sophisticated comparison
—such as to the three-dimensional solutions—is not needed.

We were surprised to find that the three-dimensional (uncon-
strained) solution was not validated by the split-half procedure,
despite the fact that all three dimensions seemed highly interpret-
able (the interpretation will be discussed below). In both the R
versus S and E versus O comparisons, one or more. dimensions
fail to correlate highly across the two halves of the data. Com-
parison of each split-half solution with the total group solution
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TABLE C-7. Correlations for the Two-Dimensional Unconstrained Split-Half Analyses

Mode A
S 0
1 2 1 2
R 1 .89 .29 £ 1 .50 -.56
2 -.42 .88 2 -.95 -.32
T R S E 0
1 2 1 2 1 2 1 2 1 2
T 1 1.00 .50 .95 -.52 .98 45 .98 -.55 .53 -.57
2 .50 1.00 .35 -.93 .40 .99 47 -.96 .99 42
Mode B
S 0
1 2 1 2
R 1 .94 -.06 £ 1 .67 -.92
2 -.10 -.82 2 -.50 -.27
T R S E 0
1 2 1 2 1 2 1 2 1 2
T 1 1.00 -.26 .96 -.06 .99 -.17 .95 .20 .69  -.99
2 -.26 1.00 -.18 -.85 -.22 .99 -.19 -.93 .51 .35

(labeled T) revealed that one of the two solutions in each split-
half pair had broken down (Table C-8). While solutions R and E
each contained all three dimensions of the total-group solution
(although in different orders), their corresponding halves, S and
O, showed various patterns of degeneracy. For Mode A, compari-
" sons between the total group solution T and split-half solution S
showed dimension T-1 correctly recovered as S-3, but T-2 split
into two different dimensions, recovered as S—1 and S-2. This
splitting of T-2 left no room for the third dimension (T7-3) to
emerge in the S split-half solution. Oddly, in Mode B, T-3 was
represented; in fact, it had split into two dimensions and "crowd-
ed out" T-2. In some sense, we might claim that all three dimen-
sions were replicated, but not in both modes simultaneously. It
is perhaps more correct to say that the S split-half solution is in
some sense degenerate. For the E versus O split, similar com-
ments apply, with the E split replicating all three dimensions of
the T solution, but the O split showing wvarious patterns of
nonreplication of particular dimensions in particular modes. (The
R versus E comparison cannot be used to validate the reality of
the dimensions, since they are not independent; half of their
subjects are in common between the two samples.)
As might be expected, given the three-dimensional solutions,
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the four- and five-dimensional split-half analyses showed even
greater numbers of highly intercorrelated dimensions, with factors
splitting into several copies of themselves and other degeneracies
emerging. This was consistent with the behavior of the total-
group solutions and indicated that four or more dimensions could
not be recovered from this sample by means of unconstrained
analyses.

The three-dimensional solution for the total group consisted of
relatively uncorrelated, stable, and (as we shall see below)
interpretable dimensions. The failure to recover these dimensions
consistently when analyzing the split-half data sets suggested
that perhaps 17 subjects was just too small a sample to recover
three dimensions reliably. Since recent experience with other
data indicated that premature emergence of degenerate solutions
could be blocked by applying constraints to the form of the
solution, it was decided to try constrained analyses of this "Cars
and Stars" data set.

Constrained Analyses

PARAFAC allows analyses to be performed subject to the con-
straints that the columns of factor loadings in a particular mode
or modes be mutually orthogonal or mutually uncorrelated. By
imposing such a constraint on our solutions, we hoped to block
the emergence of the degeneracies in which a dimension splits into
two highly correlated versions of itself. This would hopefully
allow us to detect additional weaker dimensions that were previ-
ously obscured by a premature "breakdown" of the solution. The
"reality" of these additional dimensions would then be tested by
split-half methods and by consideration of their interpretability.
It was hoped that with the constraint, 17 subjects might be
sufficient to recover three reliable dimensions.

Constraining a single mode is often sufficient to block the
emergence of highly correlated dimensions in all modes, provided
that the correct mode is selected and that there is not some
strong internal characteristic of the data promoting highly corre-
lated factors. By constraining only one mode, the other two
could take on whatever form was consistent with the data, and
the solution would be a closer approximation to the "natural"
unconstrained form. It was decided that Mode B (the rating-scale
mode) should be constrained to be orthogonal, since (a) Mode B
loadings were most orthogonal in the unconstrained three dimen-
sional solution, and hence if a "real" replicable solution existed in
both split-halves, it might not be distorted by requiring Mode B
to be orthogonal; and (b) interpretation of the dimensions was
primarily based on the scale loadings and such interpretation
would be facilitated by keeping the patterns of scale loadings
distinct for the different dimensions. It was not necessary to
choose between orthogonality and zero-correlation constraints,
since the centering of Mode B resulted in zero mean loadings in
this mode and consequently both types of constraints become
equivalent.

A series of constrained analyses was run in dimensionalities
from one through seven. As before, three random starting
positions were used in each analysis to check stability; checks
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of fit values, correlations among dimensions (Mode A and C), and
comparisons of split-half solutions were used to evaluate the
maximum valid dimensionality.

Fit Values. The R? values for the 1 through 7 dimensional
constrained solutions were as follows: 1D = .123; 2D = ,195;
3D = .257; 4D = .293; 5D = ,322; 6D = .340; 7D = .353. Figure
C-2 presents the plot of fit versus dimensionality based on R? or
variance accounted for, as before. Once again, the evidence is
somewhat ambiguous. In general, however, these data seem to
suggest the presence of at least three dimensions, with perhaps a
smaller fourth and possibly even fifth and sixth dimensions. The
question may thus become not how many dimensions there are,

Figure C-2. Plot of Dimensionality versus R? for Constrained
Solutions
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but rather how many can be reliably determined on the basis of
only 34 subjects, with 17 in each split-half data set.

Within-Solution Correlations among Dimensions. Naturally, the
imposition of orthogonality constraints on Mode B prevents us
from using this mode to check for factor-splitting and highly
correlated dimensions. However, we can check Modes A and C,
since these were not constrained. It turns out that the imposi-
tion of constraints on Mode B succeeded in suppressing factor-
splitting degeneracies in all modes, for all the solutions that we
considered, including four-, five-, and six-dimensional solutions.
While this prevents us from using high correlations as a diag-
nostic of extracting too many factors, it does clear the way for
the use of the more important split-half testing on the three-
dimensional solution (and on higher dimensional solutions, if
warranted).

Split-Half Evaluation of Reliability. For two- through six-
dimensional solutions, split-half analyses were performed and
compared. As before, the two-dimensional solution was verified
by appearance in the various split-halves of the data; however,
there was some difficulty in replicating dimension two for Mode A
(Table C-9). For three dimensions, both the R versus S and the
E versus O split-halves cross-validated the total-group solution
for all three dimensions, thus confirming our suspicion that the
third dimension was, in fact, "real" (Table C-10). Furthermore,
the total-group three-dimensional constrained solution was almost
identical to the three-dimensional unconstrained solution (Table
C-11), which is not surprising since the unconstrained solution
was close to orthogonal in Mode B. The near identity of the
constrained and unconstrained solutions is nonetheless important
to note, because it implies that the split-half confirmation of the
constrained solutions in fact provides split-half validation of the
three-dimensional unconstrained solutions, as well, and supports
our notion that the failure to cross-validate by means of uncon-
strained analyses was probably due to too few subjects in each
split-half sample.

To determine whether additional reliable patterns existed
beyond the three dimensions obtained in the unconstrained solu-
tions, we examined correlations between split-half solutions in
four through six dimensions. Tables C-12, C-13, and C-14
present the relevant cross-split correlations.

Somewhat surprisingly, the comparison of split-halves provides
evidence for additional reliable dimensions beyond the third. As
Table C-12 indicates, a constrained four-dimensional solution is
cross-validated by clear replication in split-halves. While the
order of dimensions three and four is reversed in sample S rela-
tive to sample R (indicating a reversal of their relative importance
in terms of variance accounted for in the two subsamples), there
is only one large correlation in each row and column of the matrix
of cross-solution correlations. Furthermore, all these correlations
are high. For Mode A they are .89, .92, -.88, and .92; for
Mode B they are .96, .93, -.94 and .89. (The occurrence of a
negative correlation for dimension three simply means that it was
reflected in solution S relative to R.) The E versus O split also
provides support for four dimensions, although some of the
correlations are not as high as in the R-S split, and in fact drop
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TABLE C-9. Correlations for the Two-Dimensional Constrained Split-Half Analyses

Mode A
S 0
1 2 1 2
R 1 .83 .60 £ 1 .92 -.34
2 -.27 74 2 .48 .60
T R S E 0
1 2 1 2 1 2 1 2 1 2
T 1 1.00 .30 .89 -.27 .98 .26 .89 .03 .81 -.66
2 .30 1.00 .66 .71 .30 .99 .61 .79 .79 .49
Mode B
S 0
1 2 1 2
R 1 .85 46 £ 1 N -.26
2 -.40 .80 2 .30 79
T R S E 0
1 2 1 2 1 2 1 2 1 2
T 1 1.00 .00 .85 -.42 .99 -.03 .83 -.26 73 -.67
2 .00 1.00 .51 .73 .03 .99 47 .76 .67 .72

as low as .81 and .85. In Mode A, the E versus O matrix of
cross-split correlations shows additional large correlations in rows
2 and 3, indicating, perhaps, a less stable axis position for the
second and third dimensions in the E versus O split. Overall,
however, these results provide strong support for the presence
of four reliable dimensions. .

Although comparison of the five-dimensional analyses of the
random (R versus S) split-halves of the data (Table C-13) pro-
vides some support for a fifth dimension, the cross-sample corre-
lation for dimension five is fairly low. In the R versus S com-
parison, it is .78 for Mode A and .74 for Mode B. In the E
versus O comparison, the lowest cross-sample correlation (taking
into account the reordering of dimensions) is .66 in Mode A and
.67 in B, It may be that we have reached the limit of the num-
ber of dimensions that can be adequately cross-validated with this
data and this size sample. Also, in the E versus O comparison,
the plane involving dimensions two and four of each solution
seems to have some rotational ambiguity, since the four cross-
split correlations resemble an attenuated rotation matrix (first
row = -.50, .67, second row = .69, .63). No such rotational
ambiguity is indicated in the R versus S comparison correlations,
however.
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TABLE C-11. Correlations between the Three-Dimensional Constrained and
Unconstrained Total Group Solutions

Mode A
Orthogonal
1 2 3
1 1.00 -.35 .23
Unconstrained 2 -.32 .99 -.33
3 17 -.29 1.00
Mode B
Orthogonal
1 2 3
1 1.00 -.01 -.01
Unconstrained 2 .02 1.00 .09
3 11 .16 .98

TABLE C-12. Correlations for the Four-Dimensional Constrained Split-Half Analyses

Mode A
S 0
1 2 3 4 1 2 3 4
1 .89 -.40 .06 -.36 1 .91 -.13 -.08 -.00
R 2 -.29 .92 -.36 25 £ 2 -.61 -.47 .10 .81
3 .15 .23 .28 -.88 3 -.23 -.74 -.88 -.02
4 12 -.36 .92 -.20 4 .09 .92 .25 .11
Mode B
S 0
1 2 3 4 1 2 3 4
1 .96 -.03 -.03 -.20 1 93 -.21 01 .19
R 2 .01 .93 -.08 .12 £ 2 -.26 -.41 .08 .81
3 -.19 .13 .13 -.94 3 -.02 -.10 -.94 .01
4 -.00 -.02 .89 .10 4 .08 .85 -.03 b

*|ndi-cates-best solution of three (largest R?)

Correlations among six-dimensional analyses of the split-half
subsamples (Table C-14) indicate that we cannot recover six reli-
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TABLE C-13. Correlations for the Five-Dimensional Constrained Split-Half Analyses

Mode A
S 0
1 2 3 4 5 1 2 3 4 5
1 .90 .11 -.36 -.37 -.13 1 .86 -.42 .07 -.01 .08
2 .26 .92 -.47 -.17 .18 2 -.62 -.39 -,28 .66 .18
R¥ 3 .19 .06 .83 -.35 -.18 E3 450 .19 -.80 -.07 -.44
4 -,28 -.45 .21 .89 -.02 4y -.07 -.77 .25 -.51 .31
5 .02 .31 -.17 -.36 .78 5 =-.15 -.26 .01 .10 .92
Mode B
S 0
1 2 3 L3 5 1 2 3 4 5
1 .96 -.11 -.19 -.06 -.01 1 .86 -.44 .01 .15 .01
2 07 .90 -.20 .23 .02 2 =-.38 -.50 .22 .67 -.01
R*¥ 3 .19 17 .93 -.11 -.06 E3 .09 .12 -.90 -.10 =-.25
4 01 -.22 .09 .84 .15 4,22 .69 .02 .63 .02
5 =-.05 .10 -.03 -.33 74 5 -.01 .00 .21 -.03 .92

*}ndicates best solution of three (largest R?)

able dimensions. Evidently, such analyses have gone beyond the
limit of what we can resolve with this data, even using orthog-
onality constraints.

Given the somewhat gradual "trailing off" of our ability to
recover additional dimensions, the question arises as to which
dimensionalities we should consider in detail. If this "Cars and
Stars" study were a serious attempt to evaluate spokesmen for car
makes, rather than simply an example of how this technique might
work, we would probably consider the four- and five-dimensional
solutions quite carefully. We would also interpret the indications
of higher dimensionality as evidence for the need to repeat the
study on a larger sample, so as to better define the additional
dimensions. (However, there are also other aspects of the study
that would need to be improved at the same time; this 34-subject
"Cars and Stars" study might best be viewed as a preliminary or
pilot study.)

For purposes of demonstrating how we arrive at interpretations
of dimensions, we have decided to concentrate on the simpler
three-dimensional unconstrained solution, rather than emphasize
the refinements suggested by the smaller higher dimensions.
Some brief discussion of the four-dimensional solution will be
presented, however, to provide some insight into the type of
information that higher dimensions might add to our basic solu-
tion.



626 / RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

TABLE C-14. Correlations for the Six-Dimensional Constrained Spiit-Half Analyses

Mode A
S 0
1 2 3 4 5 6 1 2 3 4 5 6
1 .88 -.26 -.46 -.25 -.,02 -.37 1 .93 .30 .09 .03 -.27 -.08
2 -.39 -,93 -.37 -.31 .21 .26 2 -.53 -.64 -.18 .82 .26 40
R¥ 3 -,12 .20 -.68 .27 -.20 .83 E3 -.23 -.45 .80 -.16 -.26 .32
4 .03 -.31 -.45 -,33 -.,58 -.33 b -,12 .65 -.30 -.09 .31 .59
5 -.29 .02 .68 -.43 .08 -.10 5 .12 -.05 .23 -1 -.87 .01
6 .22 -.09 .27 -.67 .79 -.01 6 -.17 -.73 -.25 .04 .51 .06
Mode B
S 0
1 2 3 4 5 6 1 2 3 4 5 6
1 .93 -.14 -,19 -.18 -.08 .05 1 .95 .08 .00 .21 -.12 .01
2 .08 .86 .18 -.34 -,13 -.,19 2 -.16 -.41 -.11 .73 -.18 .36
R 3 -,12 .05 -.50 -.43 .68 -.06 E 3 .05 -.32 .81 -.23 -.09 .37
4 -,17 -.40 .20 -.59 -.31 -.44 L3 .06 .53 -.20 -.09 -.01 .76
5 -.13 -.02 .07 -.45 -,20 .82 5 -.08 8 .02 -.15 -.89 -.10
6 -.19 .08 -.77 .03 -.49 -.03 6 .12 -.58 -.47 -.41 -.,16 .18

*tndicates best solution of three (largest R?)

Interpretation of Dimensions
The Role of Interpretation

Interpretation of the PARAFAC dimensions plays a role in several
stages of the analysis. Preliminary scanning of the dimensions
for interpretability provides some useful guidance in the earlier
phases of analysis. With the "Cars and Stars" data, for example,
the apparent interpretability of all three dimensions of the uncon-
strained three-dimensional solution was one of the reasons we
were reluctant to reject the solution when split-half comparisons
did not validate it. (Another reason was the suggestion of a
third dimension in most fit versus dimensionality curves.) How-
ever, these preliminary attempts at interpretation are not nearly
as crucial as the stage of careful and detailed interpretation that
is required once a preferred dimensionality (or set of dimension-
alities) is selected.

The goal of connotative congruence analysis, as applied to our
marketing example, is to select an effective spokesman-product
relationship. As we shall see, this will often require artful
design of the spokesman's message so that it picks out particular
desired aspects of the spokesman's overtones and relates them in
the most fruitful way to those properties of the product that one
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wants to enhance. To construct such messages requires the best
possible understanding of the dimensions of perceived overtones
for a particular spokesman and product, as indicated by the
PARAFAC analysis.

The Method of Interpretation

As mentioned earlier, one advantage of using PARAFAC for this
type of study is that it provides direct estimates of loadings for
all three modes—the spokesman-product mode, the rating scale
mode, and the rater mode. However, it is the rating scale mode
(Mode B in our data set) that provides the primary basis for
interpretation of the obtained factors or dimensions. For each
dimension, there should be some rating scales with particularly
high (positive or negative) loadings. Furthermore, the scales
with high loadings on a given dimension should have one or two
overtone elements in common. It is these common elements that
primarily define the "meaning" represented by that dimension.

When interpreting the sizes and signs of the ratings scale
loadings, two points should be kept in mind. First, those scales
with the highest weights on any given dimension should be the
ones that most strongly exemplify the underlying meaning of the
dimension; as the loadings get smaller, the scales should show a
progressively weaker relationship to the common element of mean-
ing or "overtone" represented by the dimension. Second, both
ends of any bipolar rating scale should be considered when
assessing its relationship to the "meaning" of a dimension. For a
scale that loads positively on a given dimension, the word from
the high end of the scale should be used to interpret the positive
pole of the dimension, and the opposite-meaning word, from the
low end of the rating scale, should be used to interpret the
negative pole of the dimension. For scales with negative load-
ings, the situation is reversed—words from the high end of the
scale contribute to interpretation of the negative pole of the
dimension, and words from the low end of the rating scale con-
tribute to the positive pole.

After considering the rating scale loadings for a given dimen-
sion, one can obtain additional confirmation and/or further re-
finement of one's interpretation by examining the loadings in Mode
A to determine the common properties of those spokesmen and
products that have high loadings on that dimension. In addition,
if one has demographic, psychographic, or other relevant informa-
tion on raters or market segments, such information can be
related to the Mode C loadings to provide another check on the
sensibleness of one's interpretation.

Three-Dimensional Unconstrained Solution

The loadings for the three-dimensional unconstrained solution are
presented in Tables C-15, C-16, and C-17. To aid in our dis-
cussion of this solution, we will use a graphical representation of
each dimension, which provides a visual summary of the relative
strength of different items that load substantially on the dimen-
sion. Figure C-3 diagrams the loading patterns for the first
dimension of the three-dimensional solution. Information on all
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TABLE C-15. Mode A for Three-Dimensional Unconstrained Solution

Mode A: Cars & Stars & Self

1 2 3
1 -0.78 0.12 0.16
2 -0.37 0.27 -1.71
3 -1.77 -0.72 -1.51
4 -0.24 -1.16 2.84
5 -0.21 0.35 -2.19
6 -0.60 1.58 -1.20
7 -0.77 -0.96 0.09
8 -0.15 0.28 -0.01
9 -0.14 -0.84 -0.27
10 -0.15 -1.71 0.49
11 -0.04 0.37 -0.61
12 -0.72 -0.33 1.77
13 1.18 -0.26 0.25
14 0.18 0.90 0.22
15 0.53 -0.47 0.45
16 -1.18 2.15 -0.35
17 0.21 0.68 0.13
18 2.31 -1.65 0.62
19 0.93 0.96 -0.11
20 1.70 -0.91 0.24
21 2.16 -0.21 0.39
22 -1.37 2.08 -0.47
23 0.03 -0.48 0.28
24 0.03 -0.21 0.37
25 -0.74 0.17 0.09

Note: Factor one loadings should be reflected (reversed in sign) to be
consistent with the discussion and Figures 24-26.

three modes is presented on the diagram. To save space, only
items with moderate to high loadings are plotted, leaving bare the
crowded area around the zero-point where items unrelated to the
dimension are found. To further save space, the contribution of
a given rating scale (in the plot of Mode B loadings) is usually
represented by only its high-end adjective, rather than following
the more correct procedure of plotting its high-end adjective on
one pole of the dimension and its low-end adjective on the other.
(In the text, however, the contribution of the unplotted compli-
mentary adjectives will be mentioned, along with the plotted
ones.) Note that in Figure C-3, the signs of loadings for Mode A
and B have been reflected to simplify discussion. In effect, we
simply reverse the poles of the dimension and call it "flashiness"
instead of "plainness." (All loadings in Figures C-3 through C-5
have been multiplied by 100 for convenience.)
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TABLE C-16. Mode B for Three-Dimensional Unconstrained Solution

Mode B: Rating Scales

1 2 3

1 0.70 -0.70 -1.79
2 0.67 -0.55 1.18
3 -0.04 -1.91 -0.38
b 1.24 1.22 0.53
5 -1.43 -0.38 -0.84
6 -1.81 -0.22 -0.35
7 1.14 0.11 1.05
8 -1.57 0.66 0.57
9 0.76 -1.33 -0.31
10 1.07 -0.27 -1.27
11 -0.89 1.1 -0.19
12 -0.27 1.20 -0.63
13 -0.62 -1.79 0.49
14 -1.06 -1.32 0.58
15 0.79 0.04 -0.30
16 1.12 -0.18 -0.81
17 -0.42 1.39 -0.21
18 1.03 0.84 1.29
19 -0.13 0.83 1.91
20 1.36 1.62 1.03
21 0.70 -0.77 0.97
22 -0.03 0.38 2.14
23 =1.49 -0.86 -0.35
24 1.28 -0.60 0.07
25 =1.42 0.65 1.19
26 -0.87 1.46 -0.30
27 0.24 -0.44 -0.81
28 -1.31 1.04 0.99
29 0.58 -1.10 -2.03
30 0.16 1.30 0.39
31 -1.56 0.10 -0.21
32 -0.90 -1.12 0.55
33 -0.98 -1.08 -0.92
34 1.33 . -0.23 -1.52
35 0.25 0.84 0.50
36 0.03 1.66 -1.10
37 1.06 0.19 0.01
38 0.01 -1.36 0.65
39 1.25 -0.40 -1.74

Note: Factor one loadings should be reflected to be consistent with the
discussion and Figures 24-26.

To interpret dimension one, we focus first on the Mode B
loadings. Words such as "colorful," "famous," "ornate," "grace-
g g
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TABLE C-17. Mode C for Three-Dimensional Unconstrained Solution

Mode C: Subjects

~

1 2 3
1 0.36 0.26 0.30
2 0.34 0.34 0.36
3 0.34 0.46 0.25
4 0.18 0.25 0.36
5 0.41 0.31 0.26
6 0.1 0.53 0.36
7 0.29 0.22 0.29
8 0.38 0.27 0.41
9 0.22 0.26 0.29

10 0.16 0.39 0.30

1 0.38 0.34 0.25

12 0.33 0.37 0.24

13 0.42 0.24 0.18

14 0.29 0.36 0.32

15 0.46 0.29 0.29

16 0.24 0.41 0.28

17 0.12 0.14 0.21

18 0.06 . 0.33 0.27

19 0.34 0.35 0.15

20 0.54 0.23 0.22

21 0.37 0.32 0.26

22 0.51 0.21 0.21

23 0.35 0.31 0.33

24 0.13 0.22 0.20

25 0.05 0.15 0.25

26 0.35 0.21 0.14

27 0.43 0.13 0.22

28 0.29 0.29 0.38

29 0.45 0.18 0.27

30 0.20 0.43 0.37

31 0.20 0.09 0.21

32 0.28 0.20 0.30

33 0.25 0.21 0.17

34 0.35 0.23 0.35

Root-Mean-Squared Loading (Mode C) for Each Factor

0.3281 0.3010 0.2848
ful," Mactive," "attractive," and "superior" are found at the
positive end of this dimension, with their complements "colorless,"
"obscure," '"plain," "awkward," "passive," "unattractive," and

"inferior" at the negative pole. Something perceived as high on
this dimension is not just attractive and superior; it is even more
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Figure C-3. Dimension One: "Flashy"
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importantly famous and colorful, even ornate. Apparently, we
are not just pleased by such a stimulus but impressed and fasci-
nated as well. This interpretation of dimension one is consistent
with the patterns of relationships found in its Mode A loadings,
where Muhammed Ali, a very "charismatic" individual, has the
highest loading (the survey was taken during the period when he
was world champion and very popular). Both Ali and Sammy
Davis, Jr., are also somewhat "flashy" or "ornate" in their public
relations style. And while Bob Hope may not be "flashy" in the
same way, he is colorful and very famous. Indeed, fame or
renown must play a large role in this dimension, since all the
celebrities load positively on it. In terms of products, the posi-
tive pole of this dimension is characterized by two automobiles
that load much higher than any others: Lincoln and Cadillac. It
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is quite plausible that our sample of raters (MBA students)
regarded these two makes as imbued with a special aura of im-
pressiveness, a special symbolic renown. And the plush appoint-
ments of these automobiles might be considered "ornate" by some;
certainly they are far from "plain." From a slightly different
perspective, the possession of one of these makes might be con-
sidered a "flashy" and impressive gesture—appropriate for Sammy
Davis, Jr., or Muhammed Ali. On the opposite end of the Mode
A scale, we find American Motors and Plymouth; these names cer-
tainly do not have the same kind of "charisma" as Lincoln and
Cadillac.

In light of all the interpretive relationships noted above, we
will use the word "flashy" as a shorthand label for the overtone
pattern expressed by this first dimension. The reader should
avoid, however, the association of cheapness or tinsel-falseness
that some might associate with the word "flashy." We mean to
evoke something like impressive, colorful, renowned, dramatic,
"showy."

As a further source of insight into this dimension, we can
examine the characteristics of individuals for whom this dimension
is important. Mode C loadings (after row normalization) give the
relative importance of the three dimensions for each subject.
Correlating the dimension one (Mode C) loadings with responses
to each of the psychographic questions reveals whether individu-
als for whom "flashiness" or impressive and colorful renown is
highly salient tend to answer certain questions differently than
those for whom the flashiness dimension is unimportant. We find
that people who tended to ignore this dimension of "flashiness"
when rating cars and celebrities tended to be unimpressed by the
mechanical properties of fancy cars. They were more likely to
agree that "fancier, more expensive cars, probably break down a
lot" (r = .54). They would also tend to be thrifty ("Those who
know me would consider me to be a thrifty person" [r = .51] and
would agree that "miles per gallon statistics are very important to
me in my selection of a new car" (r = .40). It is quite plausible
that such persons would not pay much attention to the "flashy"
dimension of automobiles (or people). On the other hand, since
"flashy" cars are expensive to purchase and to run, it is reason-
able that those who find "flashiness" very salient do not care as
much about financial considerations and consider big cars reliable.
Such patterns of attitude would serve to reduce the cognitive
dissonance that would arise from simultaneously longing after a
"flashy" car and at the same time realizing that it was too expen-
sive and unreliable. At a more general level, we might speculate
that individuals who are unimpressed by "flashiness" in general
(such as those who would be unimpressed by this quality of
Muhammed Ali or Sammy Davis, Jr.) would tend to be more prac-
tically oriented and perhaps thrifty. Of course, these latter
comments are highly speculative and so should be tested in a
subsequent study before being taken too seriously.

Figure C-4 presents a graphical summary of the loading pat-
terns for dimension two. Considering first the Mode B loadings,
we find that the positive pole of this dimension was high loadings
for "formal," "mature," "heavy," "passive," "complex," "arge,"
"careful," and "sophisticated," while the negative pole loads on
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Figure C-4. Dimension Two: "Mature/Conservative"

PSYCHOGRAPHICS
MODE A MODE B CORRELATED WITH
MODE C LOADINGS
300 —— 300 —— (.37) WANTS TO KNOW WHAT
TOMORROW BRINGS
(.30) PREFERS TURNPIKE OVER
CITY DRIVING
225 + 225 +
CADILLAC
LINCOLN FORMAL
MATURE
150 -+ ORSON WELLES 150 +
LARGE
SgPHISTICATED
CHRYSLER oot
75 — BUICK 75 -+ OLD; ORTHODOX
SLOwW
EXPERT
o+ o+
75 4 75 +
JERRY LEWIS
DODGE DISREPUTABLE; AUSTERE
SAMMY DAVIS JR SUPERFICIAL
DYNAMIC
FARRAH FAWCETT (P:XEH-CESS
150 T 150 T~ SiMPLE
AM. MOTORS ACTIVE
JOHN TRAVOLTA LIGHT
-225 4 -225 4+
-200—— -300——
"informal," "youthful," '"light," "active," "simple," "small,"
"careless," and "naive." This seems to be a dimension of ma-

turity, heaviness, and formality. Looking at Mode A to confirm
our interpretation, we find that Orson Welles has by far the
largest positive loading of any celebrity. Compared to other
celebrities, he would indeed be considered more mature, formal,
and heavy. John Wayne and Ralph Nader have loadings near zero
(not shown on Figure C-4; refer to Table C-15). On the op-
posite pole we have John Travolta, Farrah Fawcett, Sammy Davis,
and Jerry Lewis, all of whom seem particularly youthful, informal,
active, and arguably "light." These Mode A loading patterns
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confirm our interpretation of dimension two. In terms of auto-
mobile makes, there is another sharp contrast: Cadillac and
Lincoln are similar to Orson Welles in terms of formality, ma-
turity, and heaviness, with Chrysler and Buick also tending to
be viewed as somewhat formal. On the other pole, American
Motors is the most informal, youthful, and light of the makes,
with Dodge showing the same overtones but to a considerably
smaller degree.

Finally, if we examine the correlations of the psychographic
responses of our raters with their weights on dimension two, we
find that the individual for whom this dimension is highly salient
"wants to know what tomorrow has in store for him" (r = .37)
and "prefers turnpike to city driving" (r = ,30). The person to
whom this dimension is not important presumably lives more for
today. These correlations suggest that the individual to whom
dimension two is particularly salient may tend to be more con-
servative and prefer the mature, formal, and careful to the
immature, informal, and careless. Consequently, we have named
this dimension "Mature/Conservative" as a shorthand for the
qualities that we surmise might be important to one who values
the positive end of this dimension.

Dimension three (Figure C-5) most strongly emphasizes "femi-

nine," "soft," and "smooth" on the positive pole versus "mascu-
line," "hard," and "rough" on the negative pole. At a slightly
lower level, words such as "pleasant," "attractive," and "grace-

ful" load on the positive pole, with their opposites loading on the
negative pole. This dimension seems to capture the sensual and
aesthetic qualities associated with the feminine-masculine dis-
tinction. Clear confirmation of this is provided by the Mode A
loadings, where Farrah Fawcett and Mary Tyler Moore are at the
positive pole and Ralph Nader, John Wayne, Muhammed Ali, and
Orson Welles at the negative pole. The most sensuous female has
the highest positive loading, with Mary Tyler Moore quite a bit
lower and Barbara Walters rated least "feminine" of all. It is
surprising, perhaps, that Ralph Nader is viewed as most "mascu-
line," but his emphasis of the critical, rational, sophisticated
aspect here associated with masculinity may be responsible for
this. The ranking of the other male celebrities is as we might
expect, with John Wayne and Muhammed Ali being high, and some
male entertainers such as Jerry Lewis, Bob Hope, and Sammy
Davis being rated much lower. The automobiles all have fairly
weak positive or negative loadings on this dimension. This seems
plausible enough, since any sensual and gender related overtones
of automobiles will surely be much less dramatic than those of
celebrities such as are rated in this study. Although subtler,
these automobile overtones appear to be modestly reliable (as
indicated by comparison of loadings across split-half solutions)
and consequently might be useful,

Individuals for whom this dimension is particularly salient tend
to endorse the following psychographic questions: "When I must
choose between the two, I usually dress for fashion, not comfort"
(r = .48), and "I admit that I try to keep up with the Joneses"
(r = .32). This suggests that the person is somewhat status—
conscious or perhaps is concerned about appearances. The
person also tends to "live a long way from friends and relatives"
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Figure C-5. Dimension Three: "Feminine, Soft, Smooth"
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(r = .39) and feels that "miles-per-gallon statistics are very
important to me in my selection of a car" (r = .33). It is not
clear as to why these last two psychographics should correlate
with high salience of this dimension.

The third dimension contains several different threads of
"Femininity-Masculinity," which might not always coincide in
particular cases. Orson Welles might be rated relatively masculine
for a different reason than Muhammed Ali. Similarly, Lincoln and
Cadillac might be rated more masculine than Chevrolet and Amer-
ican Motors because of size or weight rather than appearance.
One can always check back to the individual ratings of the stimuli
(averaged across raters) to test for particular scale by stimulus
interactions that might deviate from the general pattern indicated
by the dimension as a whole. Furthermore, we have evidence
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from the appearance of small fourth and fifth dimensions, which
pull some of these threads apart, that there are aspects of dimen-
sion two and three that are not as cohesive with the dimension as
a whole, as the three-dimensional solution might suggest.

In addition to the factor loadings themselves, there are other
outputs from the PARAFAC analysis that can aid in interpreta-
tion. We cannot take time to discuss all of these here, but will
briefly mention one example. Table C-18 presents the error
analysis table from the PARAFAC three-dimensional unconstrained
analysis of the total group. The figures in the table are the
mean-squared error values for each level of each mode of the
data. By examining these values, one can determine whether
certain parts of the data were better described by the PARAFAC
model than others. This is particularly straightforward for Modes
B and C, where the data were standardized so that each level has
a mean square value of 1.0. Thus, for these two modes, the
numbers in the error analysis table represent the variance not
accounted for at each level—that is, for each stimulus (Mode B)
and for each rater (Mode C). Examination of these tables re-
veals, for example, that rating scales 6, 8, 20, 26, and 36 were
particularly well fit by the model. These represent the adjectives
"colorful," "ornate," "active," "simple," and "heavy" along with
their opposites. On the other hand, judgments on rating scales,
15, 27, 30, 35, and 37 were particularly poorly fit by the model.
These scales contain the adjectives "familiar," "trustful," "pri-
vate," "inefficient," "boring." Some scales that are very poorly
fit in three dimensions might become better fit by the smaller
additional dimensions that could emerge from a four- to six-
dimensional analysis of a larger data set. Other scales might
need companion scales to define a dimension more clearly. "In-
efficient versus efficient" is an example of a scale that relates
clearly to automobiles but not so obviously to celebrities; it also
is somewhat isolated and has no closely related adjectives to help
it define a dimension. The fact that only 6% of the variance of
this rating scale was explained by the three-dimensional analysis
(leaving a mean-square error of .94) is consistent with the idea
that we were here concentrating on major connotative dimensions.
If we would want, in a subsequent analysis, to define some less
connotative and more directly descriptive scales, we might want to
elaborate "Inefficient-Efficient" into a small cluster of scales
related to fuel efficiency and extract additional small dimensions
from our data until this dimension emerges (if it does). How-
ever, such a dimension would presumably have only modest load-
ings, at best, on the celebrities (although Ralph Nader, for
example, might get relatively high loadings for efficiency and
Jerry Lewis for inefficiency).

The Mode C mean-square error values from the error analysis
table could be wuseful in determining whether the judgments of
certain types of individuals—such as certain segments of the
market—were better fit by the model than those of other indi-
viduals and/or market segments. One would know, then, which
types of generalizations to trust more and perhaps would want to
modify the rating scales or stimuli to better tap those segments
that were not well accounted for in this analysis. With our data,
for example, we see that the ratings of subjects 24, 25, 31, and
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TABLE C-18. Error Analysis for Three-Dimensional Unconstrained Solution

Mode A Mode B Mode C
1 0.79%4 1 0.749 1 0.722
2 0.925 2  0.707 2 0.667
3 0.970 3 0.708 3 0.628
4 0.786 4 0.772 4 0.745
5 0.925 5 0.707 5 0.683
6 0.69% 6 0.633 6 0.607
7 0.756 7 0.732 7 0.79%
8 0.635 8 0.665 8 0.637
9 0.783 9 0.742 9 0.808
10 .0.901 10 0.803 10 0.753
11 0.988 1 0.715 11 0.696
12 0.638 12 0.745 12 0.714
13 0.737 13 0.671 13 0.742
14 0.439 14 0.753 14 0.700
15 0.586 15 0.936 15 0.632
16 0.926 16 0.846 16  0.714
17  0.578 17 0.737 17 0.926
18 0.708 18  0.754 18 0.825
19 0.717 19 0.748 19 0.746
20 0.671 20 0.662 20 0.616
21 0.544 21 0.702 21 0.709
22 0.738 22 0.674 22 0.661
23  0.605 23 0.759 23 0.690
24  0.638 24 0.735 24 0.899
25 0.866 25 0.693 25 0.918
26 0.595 26 0.818
27 0.949 27  0.751
28 0.673 28 0.708
29 0.673 29 0.697
30 0.874 30 0.666
31 0.705 31 0.910
32 0.815 32 0.803
33 0.812 33 0.871
34 0.708 34  0.715

35  0.944

36 0.532

37 0.887

38 0.739

39 0.680

33 were particularly poorly .fit by this analysis, whereas the
ratings of subjects 3, 6, 15, and 20 were particularly well de-
scribed by the PARAFAC three-dimensional analysis. If we knew
enough about these particular subjects, we might be able to draw
useful conclusions about what type of individual our analysis best
describes.
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The levels of Mode A were not rescaled to a constant mean-
square as part of the preprocessing for this analysis, because it
was thought useful to allow those stimuli that elicited stronger
feelings to maintain this greater importance in the analysis and
thus have larger resulting loadings. Consequently, the relative
sizes of the mean-square error values for Mode A would have to
be divided by their mean-square values at input to obtain a more
appropriate idea of relative wvariance accounted for. Such infor-
mation would be useful, for example, if it indicated that judg-
ments relating to certain products of importance to the study
were not at all well fit by the model. Generalizations with re-
spect to those products should then be made with much greater
caution. Alternatively, one might want to deliberately extract
more factors (as long as reliable factors could be obtained) ex-
amining the error analysis table at each dimensionality to see if
the additional dimensions provide for a better account of the
products in question.

Four- and Five-Dimensional Solutions

The loadings for Mode A and B of the four-dimensional constrain-
ed solution are presented in Tables C-19 and C-20. The inter-
pretation of dimension one stays more or less the same as in the
three-dimensional solution. (Once again, we reflect the loadings
on Modes A and B of dimension one for purposes of interpreta-
tion.) Dimension two is similar, but not identical. While it
retains its formal, large, heavy, lush qualities, the "mature
versus youthful" overtone component is no longer as strong.
This component is now part of a new third dimension, along with
the ‘'"rational-irrational," ‘"careful-careless," and '"profound-
superficial" overtones previously associated with the masculin-
ity-femininity dimension (dimension three). Since the new di-
mension three has at its positive pole the terms "youthful,"
"naive," '"superficial," "irrational," "careless," and "disreput-
able," we might call it "impetuous youth" versus "responsible-
thoughtful-maturity." Dimension four is a simplified version of
the '"feminine-soft-smooth" dimension. It no longer has the
component of irrationality, carelessness, or superficiality asso-
ciated with femininity. On the other hand, "pleasant" now has an
even higher loading and consequently might be considered to be a
clearer expression of the sexy-sensual-feminine versus macho-
masculine dimension. Indeed, because rationality and sophisti-
cation are no longer considered part of masculinity, Orson Welles
loses his highly masculine rating. Muhammed Ali is now con-
sidered the most masculine, with John Wayne next; surprisingly,
Ralph Nader comes in third, before John Travolta and Jerry
Lewis.

One method of quantifying the degree to which each dimension
of the four-dimensional solution represents components taken from
the three-dimensional solution is by means of a table of correla-
tions between dimensions in the two solutions. Table C-21 gives
such correlations. Here, however, we have replaced the uncon-
strained three-dimensional solution by its very similar constrained
counterpart. This should not affect the conclusions much, be-
cause the two versions of the three-dimensional solution are so
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TABLE C-19. Mode A for the Four-Dimensional Constrained Solution

Mode A: Cars & Stars & Self

1 2 3 4
1 -0.87 -0.18 -0.28 -0.60
2 -0.34 -0.14 -1.33 1.45
3 -1.55 -0.04 0.80 2.80
b4 -0.33 -0.53 2.53 -2.08
5 -0.25 -0.56 -2.40 1.31
6 -0.57 1.39 -1.39 0.40
7 -0.72 -0.58 0.92 0.62
8 -0.23 0.06 -0.60 -0.49
9 -0.13 -0.84 0.19 0.66
10 -0.02 -0.98 1.98 0.98
11 -0.11 -0.04 -1.03 0.05
12 -0.94 -0.72 0.49 -2.18
13 1.17 -0.32 0.01 -0.18
14 0.92 0.93 -0.14 -0.56
15 0.46 -0.61 0.18 -0.38
16 -1.11 2.54 -0.33 -0.26
17 0.23 0.78 -0.05 -0.38
18 2.31 -1.68 0.63 0.10
19 1.03 1.24 -.09 0.04
20 1.71 -0.95 0.19 0.12
21 2.19 -0.20 0.08 -0.19
22 -1.33 2.38 -0.49 -0.20
23 0.03 -0.38 0.40 -0.04
24 0.05 -0.02 0.46 -0.13
25 -0.87 =0.41 -0.73 -0.85

similar (for example, see Table C-11)., The advantage of using
the two constrained solutions is that it allows us to consider the
Mode B part of the table, where dimensions are constrained to be
orthogonal, in terms of additive variance components. For Mode
B in Table C-21, correlations can be viewed as multiple regres-
sion weights, and the sums of squared correlations as wvariance-
accounted-for values. We note that the row sums of the Mode B
table all are equal to 1.0, indicating that all the variance of the
three-dimensional solution is retained in the four-dimensional
solution, only redistributed across the four dimensions as indi-
cated by the squares of the correlations in the table. The col-
umn sums of squared correlations indicate the proportion of
variance in each new dimension of the four-dimensional solution
which can be predicted from the dimensions of the three-dimen-
sional solution. Dimension one is almost entirely predictable from
the three-dimensional solution (.98) and this is almost all from the
old version of dimension one. Thus, dimension one can be con-
sidered unchanged. Dimension two is primarily composed of vari-
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TABLE C-20. Mode B for the Four-Dimensional Constrained Solution

Mode B: Rating Scales

1 2 3 b

1 0.69 -0.09 -0.42 1.82
2 0.65 -1.08 0.48 -1.30

3 -0.12 -1.99 0.3%4 0.46

4 1.31 0.99 -0.26 -0.77

5 -1.46 -0.07 -0.22 0.96

6 -1.79 0.08 0.12 0.63

7 1.21 -0.10 0.54 -0.99

8 -1.24 1.77 1.47 0.56

9 0.76 -1.23 0.42 0.43

10 1.09 0.21 -0.31 1.25
1 -1.20 0.05 -1.79 -0.82
12 -0.65 0.02 -2.34 -0.68
13 -0.42 -1.17 1.74 0.41
1% -0.76 -0.35 2.03 0.57
15 0.81 0.11 -0.15 0.15
16 1.16 0.19 -0.90 0.88
17 -0.73 0.33 -1.96 -0.89
18 1.09 0.46 0.27 -1.36
19 -0.13 0.13 0.37 -2.05
20 1.47 1.49 0.11 -1.03
21 0.88 -0.49 1.42 -0.37
22 -0.13 -0.68 0.19 -2.50
23 -1.55 -0.88 -0.03 0.34
24 1.35 -0.45 0.44 0.07
25 -1.02 0.30 0.25 -1.11
26 -1.01 1.02 -1.33 -0.28
27 0.36 0.30 0.43 1.26
28 -0.99 1.94 1.46 0.01
29 0.34 -1.26 -1.23 1.51
30 0.06 0.77 -0.74 -0.79
31 -1.58 0.23 -0.06 0.38
32 -0.80 -0.88 1.04 -0.07
33 -0.99 -0.72 0.02 1.1
34 1.0k -0.78 -1.67 0.57
35 0.55 1.72 1.12 0.32
36 0.07 2.15 -0.87 1.02
37 1.15 0.45 0.32 0.18
38 -0.21 -2.28 -0.13 -1.17
39 1.13 -0.21 -1.00 1.28

ance from the old dimension two, but 15%
be predicted from the old dimensions.
most "novel" dimension,

Dimension three
since only 57% of its .variance can be

of its wvariance cannot
is the

predicted by the dimensions of the old three-dimensional solution.
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TABLE C-21. Splitting Process for Four-Dimensional Constrained Solution

Mode A
4-D
1 2 3 4
1 .99 -.39 .02 -.07
3-D 2 -.35 .93 -.56 .21
3 .19 -.20 .73 -.84
Mode B
4-D
Row Sum
1 2 3 4  of Squares
1 .99 -.06 -.15 -.04 1.00
3-D 2 -.03 .83 -.43 -.35 1.00
3 .06 -.02 .60 -.79 1.00
Column Sum
of Squares .98 .85 .57 .75

The correlations show that it combines aspects of both the old
dimension two and dimension three. Finally, dimension four is
primarily the same as the old masculinity-femininity dimension,
but also contains some variance from the old dimension two. For
this dimension, 25% of its Mode B loading variance cannot be
predicted from the three-dimensional solution and hence may
represent new shades of meaning for femininity.

We can conclude from this four-dimensional solution that our
original "mature/conservative" and "feminine-soft-smooth" dimen-
sions (from the three-dimensional solution) were not simply single
overtones but rather were composed of several threads of conno-
tation, closely associated. It is perhaps an unfortunate comment
on the chauvinistic perspective of the MBA student sample used
for this study that masculinity tended to be associated to some
extent with rationality, seriousness, and sophistication, and
consequently came out on the same dimension in the three-dimen-
sional- solution. However, our disapproval is mitigated by the
fact that these two overtones were at least somewhat distinguish-
able to our subjects, as is demonstrated by the rearrangement
that occurs in the four-dimensional solution.
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FURTHER STEPS

The next step, after identifying the dimensions, is to use the
information they provide for the purpose of evaluating congruence
of automobiles and potential spokesmen. This is not simply a
matter of examination of the distance between points in the stimu-
lus space, but rather intelligent consideration of the nature of
different overtones and how they might interact. A further step
after that is to look at the person loadings and use them to
examine market segment differences. These and other theoretical
issues are discussed in the complete version of this article
(Harshman and De Sarbo 1981).

NOTES

1. This appendix was excerpted from a longer manuscript,
Harshman and De Sarbo (1981), which deals in more detail with
the theoretical issues of the particular marketing application, the
use of the dimensions for marketing decisions, and the relative
merits of this approach compared to MDS.

2. This work was done at Bell Laboratories, Murray Hill, New
Jersey, while Richard Harshman was on leave from the Department
of Psychology, University of Western Ontario, London, Canada
N6A 5C2. We are grateful to Bell Laboratories for the support
that made this research possible. :

3. Since three solutions were used for the full data, plus
3 solutions for each of the 4 split-halves (to be discussed below),
there were in fact 15 solutions obtained at each dimensionality
between two and six.
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