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A three-way array must be represented in two-way form if its structure is to be described and
manipulated by means of matrix notation. Historically, two methods, here called “array stretching’
and “array slicing’, have been used. More recently, however, array slicing has often been overlooked,
resulting in a loss of mathematical flexibility. ‘Stretching’ involves matricizing (unfolding) the three-
way array and applying one’s mathematical operations to the resulting two-way matrix; this results
in expressions that are often quite useful for parameter estimation but which are relatively long and
require practice to interpret properly. ‘Slicing” involves taking a representative two-way subarray
and applying operations to it; this often gives compact and easily understood expressions but
requires the introduction of extra matrix names and becomes awkward if the array is not ‘slicewise
regular’. In this paper the advantages of each approach are demonstrated and compared by applying
them to a set of models from the Tucker and Parafac families. In addition, we show how slicewise
representation can be improved by using (i) angle brackets to eliminate the need for extra diagonal
matrices, and (ii) ‘encapsulated summation’ notation to allow representation of array structure that is

orderly but not slicewise regular. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tucker developed the first three-way factor analysis in the
1960s [1-3]. In order to work with three-way arrays, he had to
overcome the basic restriction of matrix notation to two-way
arrays. To do so, he developed several methods of represent-
ing three-way structure and expressing the application of
linear transformations to that structure. One method was to
use a scalar expression (usually a sum of products of model
parameters) to stand for a ‘representative’ array element.
This approach produces statements of models that are often
relatively easy to understand and hence it continues to be used
by many researchers when introducing a multilinear model.
The main problem with the ‘representative element’
approach is that the scalar expression cannot easily be used
in a matrix equation or product. Hence it is not well suited
for expressing the application of linear transformations such
as rotations of co-ordinate systems in the latent factor spaces.
However, Tucker developed two matrix-based methods of
representing three-way structure that are fully compatible
with standard matrix multiplication.* The first method was
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‘He also defined a special product ‘«©’ to allow matrix array
multiplication ‘in the depth mode’ [2] and a matrix array product ‘x,’
[3], but these will not be considered here.

the use of a matrix expression (involving one or more
subscripted matrices) to stand for the structure of a
representative array slice [1,2,4]. By implication, the structure
it described applied to all slices and hence it described the
entire array. For simplicity we will call this the “array slice’ or
simply the ‘slice’ approach. Tucker’s second method was to
use the full three-way array, but only after converting it into
two-way form [3,4] by what has been called ‘unfolding’ or
‘matricizing’ [5]. He referred to the two-way converted array
as a two-mode matrix with one ‘elementary mode’ and one
‘combination mode’ [3]. As a contrasting metaphor to “slice’,
we will call this method array ‘stretching’ in this paper, but
we are not proposing it as a general alternative or replace-
ment to “unfolding’ or ‘matricizing’.

Thus Tucker provided the foundations for both ‘slice” and
‘stretch” representations of three-way structure. More re-
cently, however, the ‘slice’ notation has been somewhat
overlooked. We believe this results in a loss of mathematical
flexibility and simplicity. The purpose of this paper is to
review the above-mentioned developments and, through the
use of examples, to compare the different methods of
representing three-way structure. The examples will show
that sometimes the “stretch” notation is best but other times
the “slice” notation is to be preferred. In addition, we propose
a couple of improvements in the ‘slice’ notation to make it
more transparent and effective.

The examples which we use to assess and/or demonstrate
the different methods of representing three-way structure
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Table I. Scalar representation of eight (quasi) multilinear models

Model name

Representative array element

1 Tucker3 Xijk = Z Z zt: airbjscktgrst
r S
2 Tucker2 Xijk = zr: Z: airbjsgrsk
3 Two versions of Tucker's TMMDS/ Carroll’s IDIOSCAL Yirk = Z Z il
PR
Yirk = Er: 2 AirCrr GrriChy A
"
4 Tuckerl Xijk = > Air&rik
r
5 Parafacl Xijk = > airbjrCrr
r
6 Indirect fit Parafacl(or orthogonal Parafac2) YViirk = Z ﬂirC%,ﬂi/r
T
7 Parafac2 Yiik = Z Z iy Cr P Cho Aty
PRl
8 Paratuck?2

A B
Xijk = D D iy “Chr Hrs s bjs
r S

(1) The familiar T3 model. (2) The T2 model, which only determines factors for two of the three data modes. (3) Known as either Tucker’s three-mode
multidimensional scaling (TMMDS) or Carroll’s IDIOSCAL model, this model fits a structure for a set of symmetric matrices such as covariance matrices
or scalar-product matrices; both authors also propose the second more detailed and informative version in which the varying factor interactions given by
the Iy are decomposed into factor weights and (cosines of) angles between factors. (4) The T1 model, which determines factors for only one of the three
modes. (5) The familiar Parafac/Candecomp model [12,13]. (6) The version of Parafac/Candecomp which extracts orthogonal factors by applying
Parafacl to symmetric matrices such as covariances, or, equivalently, the version of Parafac2 which is constrained to orthogonal factors. (7) The Parafac2
model for fitting covariances subject to the constraint that inter-factor cosines are fixed. (8) The Paratuck2 model which includes PARAfac-like uniqueness

[9] and TUCKer-like interactions among factors.

are eight multilinear or quasi-multilinear models of recent
interest in the chemometrics literature (e.g. in Reference [6]).
The names and the ‘representative element’ expressions of
each model are given in Table I. Three (rows 1, 2 and 4) are
from the Tucker family [1-3,6,7] and three (rows 5-7) are
from the Parafac family [6,8], while the models in rows 3 and
8 bridge both [9-11] (also J. D. Carroll and J.- J. Chang, paper
presented at the meeting of the Psychometric Society,
Princeton, NJ, March 1972).

2. THE TWO METHODS
2.1. Array slicing

In his first formulation of the three-way model [1], Tucker
used matrix predefinition and ‘stand-in” matrices to state the
model in matrix form. Starting with the representative
element formulation (model 1, Table I), he rephrased the
scalar expression as

Xijk = Z Z airbjs Z ChtGrst 1)
r S t

then defined
Nygk = Z Ckt8rst (2)
t

to produce the matrix formulation of T3 (Reference [1],
p- 127) as

Xi = ANB' (3)
Not just the statement of the model, but also rotation, array
preprocessing, etc. were discussed using array slice repre-
sentation, including cases in which the subscripts were
indices of latent, rather than surface, distinctions. The main
problem with this notation was that it was not completely
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transparent, because it required the predefinition of Ny,
which obscured the presence of C and G elements.

2.2. Array stretching

Tucker subsequently discovered a way to construct a single
matrix expression for T3 built simply from the four
parameter sets A, B, C and G [3]: he ‘matricized” (unfolded)
the three-way array so that it became a partitioned two-way
matrix, then represented the structure of this matrix by using
a combination of standard matrix multiplication and a
Kronecker product of the parameter matrices. This would
initially lead to the following expression for the T3 model:

Xq|Xz| - -+ [Xk] = A[G1|Ga] - -+ |GT)(C' ® B') (4)

where ‘®” represents the Kronecker product. This is not so
compact as (3), but the whole array is represented and no
predefined matrix is required. Note that whether Equation 4
should be written using C'®B’ or B'®C’ depends on whether
one uses the ‘right” or the ‘left’ direct or Kronecker product
(Reference [14], p. 81; cf. Reference [15], p. 55). Use of the
right product is more common, but not universal (see e.g.
Reference [16], p. 145). For simplicity, given all the other
novel notation, we did not use the left Kronecker product in
this paper; nonetheless, we suggest that it be considered in
the future. For one thing, it would restore agreement with
the usual convention that the fastest-changing index in a set
is the leftmost one. This would avoid conflicts of convention
such as in (5) below, where on the left side of the equal sign
we place the fastest-changing index, j, before k, but on the
right we must reverse this order because of the Kronecker
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product convention that the fastest-changing index is on the
right-hand matrix.

3. NOTATION IMPROVEMENTS FOR
MATRICIZED ARRAYS

3.1. Tucker’s notation for unfolded arrays

As Equation 4 demonstrates, a disadvantage of array
stretching is that it can produce quite long expressions.
Tucker proposed a notational convention to make it more
compact, by attaching special pre- and post-subscripts to the
matrix names (Reference [3], p. 282). Using his notation, a
simple I x R matrix A is represented as ;A,, for example.
Reversing the index symbols in the pre- and post-subscripts
gives the transpose, so that if B = ;B, then B’ is ,B;. A product
such as AB' is represented by suppressing the repeated inner
matrix dimension and writing it as ;A,B. Finally, a
matricized array is written with multiple index letters in
either the pre- or post-subscript position to indicate the
combination mode. For example, ;X represents the parti-
tioned array on the left side of (4). Thus, Equation 4 can be
rewritten more compactly as

Xy = iAGen (1Cr ® sBj) )

3.2. Bro’s superscript unfolding specification
A different notational convention has been recently suggested
by Bro [6]. Also quite compact, it conforms more closely to
standard matrix notation than Tucker’s. This version provides
information about the unfolding in a parenthesized (and
unitalicized) uppercase superscript to the array name. For
example, the horizontally unfolded array ;X in (5) becomes
XTIR Likewise, for X unfolded vertically we have
X
Xz
X(le]) - | — (6)

Xk

and for horizontally adjoined transposes we have
XU = X3 X - - X ] 7)

Bro’s superscript-based unfolding notation also gener-
alizes in a natural way to situations not considered by
Tucker. For example, a four-way array might be unfolded or
matricized as

XKL = [X/111‘X/2,1| T |X;<1L] (8)
or as
X111 X12
XTI =50 | Xn | - 9)

In (9), both modes are combination modes; this might be
useful for certain theoretical purposes. It is easy to see how
unfoldings such as (6)-(9) can be represented, although less
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concisely, by extending Tucker’s format. However, this is not
the case for higher-way array structures such as
X(IK x JL x NM...)

Using this ‘superscript unfolding notation’, the T3 model
can be written as

X(IX]K) _ AG(RXST) (C/ ® B/) (10)

which deviates less from standard matrix conventions than

®).

3.3 Kiers’ simplification

Taking things one step further, Kiers [5] has recently
proposed a shorthand that can sometimes replace Bro's
notation with something even simpler. To use it, the
unfolding of the matrix must follow certain mode-order
conventions. Briefly, the conventions are that (i) there is
always one elementary mode and it determines the rows,
and (ii) in the combination mode the original array modes
are ordered sequentially, except for modes whose labels
alphabetically precede that of the elementary mode; these
occur sequentially at the end. (For a more precise definition
in terms of mode-order permutation, and helpful examples,
see Reference [5].) For unfoldings that follow these conven-
tions, the shorthand notation provides an elegant, concise
specification.

However, these conventions impose some non-trivial
restrictions. For example, even though the unfolding
patterns in (6)-(9) seem natural, Kiers’ notation cannot
represent them and so the superscript notation must be used.
Equation 10 is suitable, however, and it is by far the most
common case.

The Kiers shorthand indicates a matricized array by a
small non-italicized subscript containing the name of the
elementary mode, e.g.,

Xa = [Xa[Xa] - - [Xxk] (11)

This is sufficient to define the mode structure of the matrix
provided that it has been matricized to fulfil the order
convention. Likewise,

(vec(Xq))'
(vec(Xa) )'

(Vec(.XK))’

However, greater flexibility and uniformity are often
obtainable if one does not represent the unfolded matrix in
terms of frontal slices of X. By predefining matrices with
different slice orientations, one can write the alternative
matricizations as

Xp = [U3[Uy] -+ |U]] (12)
where U; is a K x | horizontal slice of X, and

Xe = [Uj|Uy] - [U]] (13)
where Uj is an I x K vertical slice of X. We see that use of
Kiers” subscript actually specifies two things: (i) explicitly,
what the row mode is, and (ii) implicitly, that the other

modes follow the shorthand’s order convention.
Using Kiers” notation on the left and Bro’s on the right,
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Table Il. Matrix representations of eight models using both ‘slice’ and ‘stretch’ approaches

Model Slicewise representation Stretched (unfolded) representation
1 Tucker3 Not possible? X, = AG,(C'®B)
2 Tucker2 X.=AGB’ X, = AG,(Ix®B')
3 TMMDS,/ IDIOSCAL Y, = AHA’ Y.=H.(ARA)

Y, = AD;®, DA’ Y= ((Col)«d)ARA)
4 Tuckerl X; = AG, X, =AG.,(IkRT))
5 Parafacl X = AD,B’ X, = AL(C' ®B') or X, =A(C ©® By
6 Indirect Parafacl (or orthogonal Parafac2) Y, = AD?A’" Y. = (L(C'oC)) (IL(A @A) or

Y. = (C' © C')diag(vec(Iz))(A @A)

7 Parafac2 Y, = AD,®D,A’ Y. = (C' © C')diag(vec(®))(ARQA)’
8 Paratuck? X, = A “DH °D,B’ X, = (°C’ A ') diag(vec(H))(B@A)’

Xy is a two-way slice (Le. the kth frontal plane) taken from the three-way array X; Yy (i.e. the kth frontal slab of the three-way array Y) is equal to XiX;; Gy is
the kth frontal slice taken from the core array G; A, B and C are parameter matrices for modes A, B and C respectively; Dy is a diagonal matrix holding the
kth row of C in its diagonal; and ® is the matrix of cross-products of mode B loadings at the kth level of mode C (i.e. the kth frontal slice of ®). In Parafac2
the ® matrix is fixed across all k. For the TMMDS/IDIOSCAL model the H matrices on the first line are equivalent to the corresponding product in the
following line. H in Paratuck?2 is of course the (possibly rectangular) matrix of interactions between the mode A and B factors.

@ This becomes possible if one allows a mixture of slice and stretch approaches in a single model. The representative slice can then be written as
X = AG,(c; @ B)', as pointed out by R. Bro (personal communication, November 2000). It also becomes possible in pure slicewise representation by

means of ‘encapsulated summation’, as explained later in this paper.

P This is often written without the exponent when it is clear from the context that the elements are squared quantities.

Equations (11)-(13) are respectively

X, = XHIK)
Xp = XKD (14)
XC — X(KXI])

The shorthand notation is clearly more compact, but the
superscript mode-order notation is useful in this example
because it allows us to show explicitly how Kiers” mode-
order convention is carried out. It makes plain that the first
mode appearing in the combination mode is nested in the
other one (e.g. mode B is nested in mode C in X,) and that the
structures only differ by a cyclic permutation of modes, as
stated in Reference [5]. It also shows the size of the
combination mode. Note that X,, by itself, does not reveal
whether X is an unfolded three-, four- or higher-way array,
although the context would usually make this clear.

3.4. Khatri-Rao product

The final notational enhancement used to facilitate the
‘stretch’ approach is the columnwise Kronecker product,
typically denoted by ‘®" and referred to as the Khatri-Rao
product [17].* It can be defined as

AOB=[bi®a;|by®ay |- | br ®ag]
= [vec(a1b)) | vec(ashy) | - - - | vec(agby)] (15)

where A and B both have the same number of columns and
‘®’" is the standard Kronecker product.

* The usefulness of this operation in multilinear modeling is demon-
strated by the fact that it was independently (re)invented by Bro to
facilitate the work described in Reference [6]. For this reason, we have
sometimes referred to it as the Khatri-Rao-Bro (KRB) product.

Copyright © 2002 John Wiley & Sons, Ltd.

By using this product, many models are simplified further.
For example, Bro (Reference [6], p. 22) writes matricized
Parafac/Candecomp as

XPIR — A(CoB) (16)

4. COMPARISON OF THE TWO
APPROACHES

Now we may directly compare the “stretch” (unfolding or
matricizing) and ‘slice” (representative matrix) methods of
representing three-way structure. The eight models in Table
I are rewritten in Table II using both “slice’ and “stretch’
approaches.

The stretched representations in Table II follow Kiers’
convention in using a non-italic subscript to indicate the
elementary mode. This clearly facilitates a more compact
representation, particularly with the Tucker models, but
one must use extra care when trying to interpret or compare
model structures. For example, some matrices with the
same elementary mode may differ in the form of the
combination mode, however, depending on the model.
This occurs here for G, which is R x ST, R x SKand R x JK
respectively for the T3, T2 and T1 models. Note also that the
®. in the TMMDS/IDIOSCAL model is a K x RR unfolded
version of an R xR x K @ in which mode C is the
elementary mode. The I, used for the Parafacl models (as
suggested in Reference [5]) is an R x RR matricized version
of the three-way super-identity array I which contains ones
on the super diagonal and zeros elsewhere, it should not be
confused with Ix (or I; or Ig) used in the representation of
T2 (or T1 or indirect Parafacl), which is an identity matrix
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of order K (or ] or R respectively). The ‘" used in the three-
mode scaling model represents the Hadamard (or element-
wise) product.

The stretched versions of the indirect fit models (3, 6 and 7)
in Table II have been presented in a way that emphasizes
their symmetry. However, there is an alternative representa-
tion for each that more closely parallels the corresponding
direct fit model. For example, rewriting the first IDIOSCAL
equation as Y, = AH, (Ix ® A’) (where H, includes squared
C-weights) puts it in a form more similar to the T2 repre-
sentation in the table, and rewriting indirect fit Parafacl as
Y, =Al, (C’ ® A’), where C = C*C, stresses its relationship
with direct fit Parafacl.

Note how the slicewise representation requires the ad hoc
construction of a set of diagonal matrices Dy that are not part
of the original parameter sets (in this case, A, B and C). It also
hides the fact that a set of model parameters for mode C is
contained in a matrix C that is completely parallel in form
and role to the parameter matrices A and B. An additional
limitation of this approach is apparent: it is not fully general
(unless augmented, as discussed below). It cannot represent
the T3 model, because that structure is not ‘slicewise
regular’, since at each level of a given mode (e.g. at each k)
a different weighted combination of core array slices is
formed to create the matrix relating the other two modes.

However, the slicewise representation is frequently more
compact and more intuitively transparent than the “stretched
array’ version. For example, the Parafac2 model (Table II,
row 7) has a simple intuitive structure in the slicewise
representation; it shows that the nature of the variation
across levels of mode C is simply a reweighting of the
columns of A, which is a helpful insight because such
reweighting has a simple interpretation as an increase or
decrease in factor influence. The relation of Parafac2 to other
models is also easily seen. Orthogonal Parafac? is a special
case of Parafac2 where ® =1I; in the other direction, it is
apparent that Parafac2 is a special case of Tucker’s three-
mode scaling [4] or Carroll’s IDIOSCAL [10,11] (see also J. D.
Carroll and J. J. Chang, paper presented at the meeting of the
Psychometric Society, Princeton, NJ, March 1972) in which
® = Py (i.e. factor interactions are no longer fixed). The same
information is implicit in the unfolded representation, but it
is less accessible.

Likewise, the slice representation of TMMDS (row 3) is
easily modified by decomposing Hy into an angle matrix and
a weight matrix (lower row 3); both Tucker and Carroll do
this, because in this form it can be interpreted as a weighted
cosine matrix of angles among dimensions. Its unfolded
version seems less straightforward. Whereas the slicewise
version uses only the standard matrix product, the stretched
version also uses the Kronecker, Khatri-Rao and Hadamard
products.

4.1. Completeness of slicewise representation
One might initially wonder whether a representative slice (or
vector, as below) is a ‘complete’ mathematical description of
an array, but in fact it contains all the information about the
array that is present in the unfolded version.

One might also wonder how easy it is to apply
mathematical operations and to derive new results when

Copyright © 2002 John Wiley & Sons, Ltd.

using representative slice notation, but, so long as both sides
of each equation are array slices, there is no problem.
Sometimes it may even be preferred over stretch notation.
For example, even after having developed the matricized
approach, Tucker used slicewise notation in many places in
his paper on three-mode MDS [4], presumably because it
was more effective in that context. The mathematical
flexibility and power of slicewise representation are also
demonstrated both by its use in the mathematical unique-
ness proofs for Parafac/Candecomp [18] and Partuck2 [9]
and by its use in the derivation of Parafac2 as a general-
ization of Parafacl [19], which we show here as an example.
If we substitute the Parafacl representation

X; = AD;B' (17)

into the slice representation for covariances (or cross-
products if Xi, is not suitably centred and standardised),
the Parafac2 model may then be easily obtained as

Covg = XX},
— (AD:B')(B'DA’)
— ADy(B'B)D;A’
— AD,®D,A’ (18)

In Reference [3], Tucker does a related derivation using a
matricized approach, but it is somewhat less compact.

4.2. Vector-based variants

As a stretching approach, vectorization of multiway data is
sometimes useful. Kiers [5] shows the Tucker3 model in
vectorized form as

vec(x) = (C® B ® A)vec(g) (19)
and the Parafacl model as
vec(x) = (COB O A)IR (20)

in which 1y is an order R vector of all ones. Clearly, the
vectorized representation is more symmetrical than the
matricized equivalents (models 1 and 5 respectively in Table
II), in that the vectorized representation does not need to
compound two modes (or N-1 for N-way models) into one
combination mode. For these and other models in which all
modes are symmetrical, however, both the vectorized and
matricized approaches are similar in terms of compactness
and ease of manipulation.

Conversely, it is not yet clear to us how to represent some
of the models (e.g. non-symmetrical models 3, 7 and 8 in
Table II) in vectorized form. Moreover, even if there is a
vectorized representation, it would very likely be less
transparent than the slice representation.

5. PROPOSED IMPROVEMENTS FOR
SLICEWISE REPRESENTATION

We now propose two notational modifications to make slice
representation more useful. The first is ‘encapsulated
summation’, which eliminates the need to predefine other
matrices and makes more transparent the components of a
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matrix. The second is ‘angle bracket” notation, variations of
which have already been used by others. It also improves
transparency by eliminating the need to predefine diagonal
matrices.

5.1. Encapsulated summation
We have seen Tucker’s slicewise representation of the T3
model in (3), where N hides the presence of C and G. If
hysk = >~ ciQrst (cf. Equation 2), we can write

t

Hy = <i thGt> (21)
=1

(using Hy instead of Nj to be consistent with the Table II
notation). We see that Hy is a sum of weighted R x S slices of
G. Using the matrix expression for Hy instead of Ny in (3), we
can instead represent the T3 model as

X =A (Z ckth) B’ (22)

We call use of this expression for Hy, instead of Hj itself,
‘encapsulated summation’. A similar technique may be used
for other models and with other types of encapsulated
expressions.

This representation for T3 is not new (see e.g. Reference
[20], p. 184), but it has not been used very often. However, its
value can be seen in this context. Encapsulated summation
means both that we need not predefine or use Hy (or Ni in
Tucker’s notation) and that the presence of parameters from
C and G is not obscured.

This representation of T3 is not only referentially but also
conceptually more transparent. The role of the parameter
sets is apparent in the sense that one can easily grasp how
each part is combined with the effect of the others. It also
plainly shows that the changes in factor/component inter-
actions are restricted to those that can be generated by
weighted combinations of slices of the core array G, thus
clarifying how T3 can be understood as a special case of T2.
This is useful, because one important interpretation of T3 is
in terms of an ‘oblique’ factor/component model in which
not only the factor sizes or weights but also the relations
between the factors change in a restricted way from one level
to the next. In spite of these advantages of encapsulated
summation for representing T3, however, it still has a
limitation: it does not make it immediately apparent that the
role of the three modes is entirely symmetrical.

5.2. Angle bracket notation

Instead of transforming vectors into diagonal accessory
matrices (e.g. ¢, into Dy), it is simpler and more
transparent to use the notation for the original vector
and surround it with angle brackets. The convention is
that, for any vector v,

U1 0 .
v) = 0 v, ... (23)

The usual notation for this is ‘diag(v)’, but this does not
lend itself well to inclusion in larger matrix expressions.
Just as with ‘diag( ), when the notation is applied to a

Copyright © 2002 John Wiley & Sons, Ltd.
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matrix, it is interpreted as a vector formed from the diagonal
elements. For example, if P is a matrix with N levels in its
smaller mode, then

P11
1 (24)

PNN

The first use of angle bracket notation is in References
[21] and [22]. Others have probably used related tech-
niques in other contexts. We recently discovered one
example where Sidiropoulos et al. [23] define a function
that generates a diagonal matrix from a designated row of
a Parafac factor loading matrix: they say ‘let D,, (®) denote
the diagonal matrix containing the (p + 1)-st row of ®
[then] ... X, = AD, (®)S’ (p. 2379). This, and probably
other similar ideas that were independently developed,
achieve similar results; we simply offer the angle bracket
notation as one possible alternative, one that might or
might not be found to be slightly simpler and slightly
more general.

Examples of several different uses of angle bracket
notation are presented below.

5.2.1. Angle bracket notation applied to the Parafac
model
Using angle bracket notation, Equation 17 becomes

Xk = A(Ck>B/ (25)

from which it is immediately apparent that the weights for
the kth level of the third mode come from the kth row of C.
Generalizations are simple and natural, since n-way Parafac
becomes Xjy,... = A (ci)(dj)e,,)- - -B'.

The notation can be applied in other ways to emphasize
different perspectives on the model. For example, the
following is a visually evocative or mnemonic form that
avoids summation notation:

xiie = 1'(a;) (b;){cr)1 (26)

Once again, the generalization to x... =1 (aj(bj\cydy)- - -1
for the n-way case maintains the same simplicity and
symmetry. Angle bracket notation thus provides another
way to highlight the symmetry and multilinearity of the
model. Its flexibility is also demonstrated by the ease with
which an intermediate formulation can be obtained to
represent the model in terms of a vector from the array
rather than a scalar, as in

xjr = A(bj){ex)1 (27)

5.2.2.  Angle bracket notation applied to other models
Angle bracket notation also adds transparency to the
expression of quasi-multilinear models such as Parafac2
[19,20], where we have

Yk = A(Ck)CD(ck)A' (28)

We call this model guasi-multilinear because it is, strictly
speaking, non-linear (quadratic) in C and A, since the
parameters in these matrices enter twice. For comparison,
the fully multilinear analog of (28) is Paratuck?2 [8,20], which
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is written as X, = A “cp H <Bck> B'. Here there is a separate
weight matrix “C for the mode A factors and "C for the mode
B factors.

Finally, consider the more specialized model called one-
mode (singly dependent) PARALIND [24]. It can be made
more transparent by writing an expression for a single
element as

X = 1'(a;) H(b;) (cx)1

where H is rectangular because (a;) and (b;) have different
lengths. It is (typically) fixed in advance to have some special
form describing the linear dependences involved in the
relationship between factors in different modes.

6. ALTERNATIVES TO MATRIX NOTATION

If one is willing to abandon matrix notation, all the
complications discussed here can be avoided. Harshman
[25] has recently proposed an alternative to matrix notation
which represents arrays directly by incorporating index
symbols into their names and by providing rules for
operating on them based on the index symbols. For example,
xyjk or Xy are names of a three-way array. One advantage of
this notation is that it eliminates the need for either slicing or
stretching, since the three- (or n-) way arrays are directly
represented and operated on.

For example, the T3 model for a full array is written as
Xpk = AirRBjsCk1Grst and the T2 model as Xyx=Ar
BjsGrsk. Symmetric T2 is written as Yk = Air Hrrx Arg
and the TMMDS/IDIOSCAL version that displays the
structure of Hy is Yk = A (Ckr @Prrk Ckr)rrx Arg. The
Parafac2 special case is obtained by dropping the ‘k’
subscript from the ¢-element. Note that these expressions
do not describe slices or unfolded matrices, but rather the
three-way matrices themselves. Similar expressions can be
used to represent four- or n-way arrays.

Another alternative has been proposed by Alsberg [26]
and further studied and extended by D. S. Burdick (paper
presented at TRICAP 2000, the Third Annual Meeting on
Three-way Methods in Chemistry and Psychology, Faaborg,
July 2000). It is called “ball and whisker’ notation and is
based on graphical objects and rules for their connection and
transformation. It can express in visual terms the operations
necessary for n-way multilinear algebra.

7. CONCLUSION

When choosing a matrix method for expressing the latent
structure of a particular three-way array and/or represent-
ing transformations of its components, it is often useful to
consider both the nature of the model and one’s objectives.
With respect to models, stretched array or matricized
notation is well suited to some models such as T3, but
slicewise notation more concisely expresses other models
such as Parafac2. In terms of objectives, stretched array
notation (matricized or vectorized) is particularly useful for
the description and development of ALS estimation algo-
rithms. Sliced array representation is often useful for
compact and accessible communication of the ideas behind

Copyright © 2002 John Wiley & Sons, Ltd.

a given model in terms of its functional units and their
relations.

Just as the Bro and Kiers conventions for unfolded array
notation produce improvements in the stretched array
approach, so too the proposed angle bracket notation, and
for certain models the encapsulated summation notation,
will provide improvements in the representative slice
approach.
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