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The PARAFAC Model for Three-Way Factor
Analysis and Multidimensional Scaling

Richard A. Harshman and Margaret E. Lundy

INTRODUCTION AND OVERVIEW
Motivation for PARAFAC

One of the oldest and most troublesome issues in factor analysis
is the "rotation problem." Because the two-way factor model is
inadequately constrained by the data, there are an infinite num-
ber of possible solutions consistent with any given data set.
These alternatives correspond to different rotations (or more
general transformations) of the coordinate axes in the factor
space. To overcome this rotational indeterminacy, factor analysts
have appealed to special criteria, such as "simple structure," to
guide the selection of a preferred solution. But these rotation
criteria are not part of the factor model itself, and the additional
assumptions involved often seem hard to defend on empirical
grounds. A further difficulty arises because of disagreement as
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to which additional assumptions—or which rotation criteria—are
most appropriate for determining the orientation of factors. Since
alternative factor rotations sometimes. lead to different and con-
flicting empirical generalizations, the problem of rotation is a
serious one for those who seek to apply factor analysis to scien-
tific problems.

PARAFAC is a three-way factor analysis/multidimensional
scaling procedure that was developed in order to overcome the
rotation problem, at least for certain classes of data. It uses
three-way data in order to obtain richer information about the
underlying factors than is possible with two-way data, thus
providing an empirical basis for determining the "true" factor
axes. The method generalizes Cattell's idea of parallel propor-
tional profiles (1944), which is described below, into a particular
strong three-way model of factor variation. (This model is close-
ly related to the CANDECOMP model of Carroll and Chang 1970,
which is also described below.) When the PARAFAC model is fit
to data, a unique orientation of the factor axes is obtained as a
direct consequence of determining the best-fitting factors for a
given data set. Thus, if the model is appropriate, it eliminates
the need for an additional factor rotation process based on con-
troversial factor orientation criteria; the location of axes is an in-
trinsic characteristic of the factor solution itself.

Theoretical arguments (to be discussed below) indicate that
intrinsic axis solutions provide a stronger basis for discovery of
empirically meaningful factors than is typically provided by other
criteria, such as principal components orientation, rotation to
simple structure, and so forth. These arguments seem to be
supported by results obtained when the model is applied to real
data; the unrotated PARAFAC intrinsic axis factors are often
quite meaningful (for instance, Gandour and Harshman 1978; Haan
1981; Harshman, Ladefoged, and Goldstein 1977; Harshman and
Papcun 1976; Kettenring 1983; Meyer 1980; Snyder, Walsh, and
Pamment 1983; Terbeek 1977; Dawson 1982; Harshman and Reddon
1983; Sentis, Harshman, and Stangor 1983; Trick 1983; Weinberg
and Harshman 1980). Thus, it appears that PARAFAC can indeed
provide a solution to the rotation problem in many situations.

In addition to providing meaningful intrinsic axes, PARAFAC
has the extra advantage of directly decomposing the three-way
array without requiring that it be "collapsed" into a two-way
version. This is not a distinctive feature, of course, since
PARAFAC shares this advantage with all the other three-way
analysis procedures discussed in this volume. But the PARAFAC-
CANDECOMP model does provide a particularly simple description
of the structure of a three-way array, involving only one set of
factors that are common to all three modes. In some cases,
however, a more complex description is needed, and Tucker's
three-mode model or one of the other models discussed in this
volume might be preferable.

Limitations of PARAFAC and Attempts to Reduce Them

It is important to stress that the PARAFAC model for three-way
arrays is not a completely general one. As we will discuss below,
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Tucker's three-mode model is more general and can thus provide
solutions for data that cannot be adequately analyzed by PARA-
FAC. The reason for this is that Tucker's model is both more
complex and weaker in its underlying assumptions. This creates
the advantage of giving Tucker's model greater generality; how-
ever, it also creates a disadvantage, as it causes the model to be
underdetermined by the data. Consequently, the solution ob-
tained with Tucker's model does not have the intrinsic axis prop-
erty; hence, after fitting the model, one must perform a series of
factor rotations to obtain interpretable axes. This requires using
additional rotational criteria to select a preferred solution, and
one must face the same controversies concerning rotation that
plague two-way factor analysis. As will be argued below, one
would like to have intrinsic axis solutions whenever feasible.
Therefore, one might adopt the following strategy: first, try to
obtain an intrinsic axis solution by fitting PARAFAC; then, if
additional structure seems present, or if the intrinsic axis solu-
tion is uninterpretable, proceed to apply the more general models,
rotating axes to aid interpretation.

In the last five or six years, considerable effort has gone into
broadening the applicability of PARAFAC, and several useful
findings have been made:

a. By means of data preprocessing, the model has been extended
to embrace a wider class of three-way data, while still re-
taining the important intrinsic axis property.

b. In some situations, however, meaningful solutions are not
obtained, even with careful preprocessing, indicating that the
extended PARAFAC model is apparently not general enough.
For such cases, specially constrained methods of PARAFAC
analysis have been developed (for instance, requiring ortho-
gonality of axes in one mode) that often allow an interesting
subset of the wvariance to be fit; useful intrinsic axis solu-
tions can then be obtained, although additional systematic
variance remains and should be analyzed with a more general
model.

c. Diagnostic procedures have been developed that will alert the:
investigators to problems with the data or the analysis pro-
cedures (see appendix C in this volume).

d. And finally, still under development are even more general
models that will allow the intrinsic axis property and other
advantages of PARAFAC to be obtained with still wider
classes of data.

Overview

Before discussing these more recent developments (see chapter
6), we will first consider the basic forms of the PARAFAC three-
way factor analysis model: (a) the raw data or profile data form;
(b) the form for analysis of covariance matrices; and (c) the form
for multidimensional scaling (essentially equivalent to the IND-
SCAL model). Next, we will examine the intrinsic axis or "unique-
ness" property of the model, briefly discussing its limitations and
our interpretation of its significance. We will then consider the
relationship between PARAFAC and some other models, including
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two-way factor analysis and Tucker's three-mode factor analysis.
Finally, in chapter 6 we will consider the more recent PARAFAC
extensions and other developments mentioned above.

THE BASIC PARAFAC MODEL
PARAFACL Applied to Raw Score or Profile Data
Generalizing the Two-Way Factor Model

The Traditional Factor Model. Let us begin by recalling the basic
two-way factor-analytic model. The factor structure underlying a
particular data point x;; can be represented in scalar form as

q
Xij = 21 (girfjr) + € (5-1)
re

and in matrix form as
X = AF- +E , (5-2)

where X is a two-way data array with n rows and m columns,
Although X might be any kind of data, let us assume, for con-
venience of discussion, that the n rows represent attributes
(variables), and the m columns represent entities (cases, such as
persons); thus, Xx;; represents the wvalue of the Jjth variable
obtained for the jth case (person). For a model in terms of g
factors, A is an n by g matrix of factor weights on wvariables,
often called factor "loadings," and F is an m by g matrix of
factor weights on cases or persons, often called factor "scores."
The term q¢;, represents the weight of the ith variable on the rth
factor; similarly, f;j, represents the weight of the jth case on the
rth factor. The weights represent the degree to which the factor
is expressed in the particular variable or case. The size of the
contribution of factor r to x;; is thus a function of its importance
both for that variable and for that person. E represents a
matrix of random error terms (and "specific factor" contribu-
tions).

The model (5-1) and (5-2) can be considered either a principal
components model or a common factor model, depending on our
assumptions about E. Current usage among some psychometri-
cians assigns the terms "factor" and "factor score" specific mean-
ings, which precludes their application to dimensions obtained by
fitting a principal-components-like model. However, this conven-
tion is not followed by other factor analysts, such as Horst
(1965), and to simplify exposition it will not be strictly followed
here. We will often use "factor" in a general sense as a latent
component of the kind described by (5-1), regardless of the
assumptions about the error terms. We will also use the more
general terminology of Kruskal (1978, 1981, and chapter 2), who
calls (5-1) a bilinear model because its nonrandom or structural
part is a bilinear expression. (The structural part of [5-1] is
bilinear because it would be linear in the gjr coefficients if the fir
coefficients were considered fixed or given and vice versa.) Our
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use of the term "factor" in the more general sense and our adop-
tion of Kruskal's classification scheme both allow us to focus on
the characteristics of the structural part of the model independent
of the particular assumptions made about the stochastic (random
error) part. (For more details on Kruskal's terminology, see
Kruskal, chapter 2, in this volume.)

The PARAFAC Three-Way Generalization. The PARAFAC
generalization is based on Cattell's (1944) idea of parallel propor-
tional profiles, which we will discuss in more detail in a later
section. We simply note here that it describes the relationship
between the factor loadings on two different occasions in which
the factors change their relative influence. It specifies that if on
the second occasion the influence of a given factor is increased
by some amount, then on that occasion all the loadings for that
factor should be increased by the same proportion. Thus, if the
influence of factor 2 were increased by 20%, then all the gqj,
coefficients should be 20% larger.

One easy way to express proportional changes without rewrit-
ing all the g coefficients is to introduce a third set of loadings,
or ok, coefficients, corresponding to occasions. Just as the gqj,
coefficients proportionally increase or decrease the contributions
of factor r from wvariable to variable, the ok, coefficients pro-
portionally increase or decrease the contributions of factor r from
occasion to occasion. If for occasion k the coefficient represents
a 20% increase in the effect of factor r relative to some baseline,
then the revised loadings might be thought of as (okrajr), where
okr = 1.2, An equivalent perspective is to consider the loadings
to be fixed but the factor scores increased by 1.2 on the particu-
lar occasion. Thus, we might write the factor score for occasion
k as Okrfjr.

Although Cattell conceptualized his principle of parallel propor-
tional profiles as a means of relating the factors obtained in two
different factor analyses of two different data sets, we generalize
his notion to apply to the simultaneous factor analysis of many
different occasions (factor analysis of a three-way data array).
Thus, instead of xjj, we now consider the triply subscripted data
entry Xjjk, an element from a data array organized in terms of
three different ways or (in Tucker's terminology) "modes" of
classification. To extend the earlier example, the three modes of
the data array could correspond to wvariables, persons, and
occasions., The three modes could also refer to stimuli, rating
scales, and individuals doing the rating, or any other such
classifications that would define a data cell in a three-way array.

To maintain generality, we will often refer to the three modes
of a data array as "Mode A," "Mode B," and "Mode C." From the
point of view of PARAFAC, there is nothing distinctive about the
mathematical properties of any mode as compared to any other. -
Because PARAFAC will be applied to many different kinds of
three-way arrays, we no longer have any particular reason for -
treating the expression of factors in one of the three modes
differently from the expression of factors in another.. Therefore,
we drop the distinction between factor "loadings" in one mode and
factor "scores" in another. We consider factors to have weights
or loadings in all three modes, and these loadings are of the same
kind in all modes, although we might choose to scale them differ-
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ently in one mode or another (see below). We thus change
notation, from f;, for a factor score to b;, for a Mode B factor
loading, and from oy, to ¢y, for a Mode 'C factor loading. The
PARAFAC generalization of the two-way factor model of (5-1)
takes the following simple form:

q
lek = 21 (airb/'rckr) + e//k . (5—3)
r=

Here, xjjk is an entry in a three-way data array; it might, for
example, be the score on the jth variable obtained by the jth
person on the kth testing session. The a;, term represents the
loading of factor r on the jth level of Mode A; in terms of our
example, it would stand for the importance or size of contribution
of the rth factor to the jth variable. Similarly, b;, represents
the loading of factor r on the jth level of Mode B and so stands
for the importance or size of the contribution of the rth factor
for person j. Finally, the cy, coefficient stands for the loading
of factor r on the kth level of Mode C and in our example data
set, would represent the importance of factor r on occasion k.
Kruskal (1981, 1983, chapter 2) describes (5-3) as a trilinear
model, since there are now three different sets of loadings, and
the model is linear in each set if the other two are considered
fixed. (Quadrilinear and higher-order generalizations have also
been envisioned [Harshman 1970, 22] but have not been imple-
mented in the PARAFAC program. However, the CANDECOMP
procedure implemented by Carroll and Chang [1970] will analyze
up to seven-way tables.)

The matrix representation of the PARAFAC model is in some
ways less elegant than the scalar one. The evenhanded treatment
of all three modes by PARAFAC results in a three-way symmetry
of the model that is easy to represent in scalar terms but harder
to carry over into matrix notation.! To facilitate the use of
conventional matrix notation, we must divide up the three-way
array- into a stack of two-way matrices. The direction of division
is arbitrary—we could divide the array in any of several different
ways. Let us adopt the convention that the three-way array is
"sliced" into matrices corresponding to different levels of Mode C.
Thus, the array is represented as a stack of two-way matrices,
each matrix being n by m and corresponding to a Mode A by
Mode B set of observations; there would be p such matrices; one
for each level of Mode C. We then write an expression repre-
senting all "slices" in the array by means of describing its arbi-
trary kth slice, just as we wrote a scalar expression describing
all the elements in the array by describing its arbitrary jjth
element.

If we let X; represent that n by m matrix, which is the kth
“slice of the n by m by p three-way array, we can then write the
expression

X¢k = ADg B” + Ef , (5-4)

where A is an n by g factor-loading matrix for Mode A, B is an
m by g factor-loading matrix for Mode B, and Dy is a g by g
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diagonal matrix, with diagonal elements taken from the kth row of
C, a p by g factor-loading matrix for Mode C. Thus, the diago-
nal matrix Dy provides weights for the kth occasion, which step
up or down the sizes of the columns of A (or, equivalently, the
rows of B”). The r diagonal elements of Dy thus represent the
effect of the changes in the relative importance or influence of
the r factors on occasion k.

Scaling and Interpretation of A, B, and C Matrices. As we
have already noted, traditional two-way factor analysis has devel-
oped different names for the Mode A versus Mode B weights. In
the example described above, if we considered only one occasion,
the Mode A weights would be called factor loadings and the Mode
B weights would be called factor scores. In addition to distinc-
tive names, the two sets of weights have become associated with
different scaling conventions and frameworks of interpretation,
These conventions enhance the meaning of the weights by allowing
one set (the loadings) to be interpreted as standardized regres-
sion coefficients—beta weights—and sometimes as correlations
between variables and factors, while the other set (the scores)
can be interpreted as z-scores describing the amount of each
factor attributed to each case.

Since PARAFAC views the three modes as being interchange-
able, it seeks to treat them evenhandedly. Thus, the basic model
is worked out in a more general fashion in which the weights
need have no special interpretation other than describing the
linear composite of factors that would predict the data. This is
analogous to the interpretation assigned to regression weights
when neither the predictors nor the predicted variable are stand-
ardized in any way. It also means that with appropriate scaling
of the output, PARAFAC-CANDECOMP can be viewed as a three-
way generalization of the singular value decomposition of a two-
way matrix. (For a discussion of the singular value decomposi-
tion, see Green 1978orKruskal, chapter 2. For an application of
PARAFAC to provide the singular value decomposition, see Red-
don, Marceau, and Jackson 1982.)

However, by adopting special conventions for standardizing
both the input data and the output A, B, and C matrices, it is
possible to produce PARAFAC weights that are strictly analogous
to the loadings and scores of traditional factor analysis. PARA-
FAC solutions obtained in this way will have one mode that can be
given the same special interpretations that traditional two-way
loadings are given (for instance, as factor-variable correlations in
the orthogonal case), while the other two modes can be inter-
preted as typical z-scores analogous to estimates of factor scores.
Other standardizations that provide more general interpretations
are also possible. The issues involved in standardization of data
and loadings to achieve different meanings require some know-
ledge of the effects of different kinds of preprocessing (discussed
in chapter 6), and so the relevant conclusions cannot be proven
here. A more detailed discussion and proofs are provided in
appendix 5-1. To show what is possible, however, we present in
the following few paragraphs a summary of some of the most
useful results.

Suppose, for example, that we are planning a PARAFAC analy-
sis of a three-way set of profile data consisting of a group of
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variables measured on a set of cases under several different
conditions. Furthermore, suppose that we wish Mode A, the
variable weights, to be interpretable as loadings in the traditional
sense, with Modes B and C weights interpretable as factor or
component scores for the cases and conditions. To permit this we
must standardize the data in a certain way before the analysis,
and then we must standardize the loadings in a certain way after
the analysis. Before analysis, the data must be mean-stand-
ardized or "centered" (that is, have means removed according to
the procedures described in chapter 6) across levels of Modes B
and/or C. In addition, the data must be size-standardized within
levels of Mode A so that each level of Mode A has a variance of
1.0. After the analysis, the output loadings must also be stand-
ardized. The mean-squared loading for Modes B and C must be
set to 1.0 so that Mode A loadings will reflect the scale of the
data.

If these things are done, the Mode B and/or C loading matri-
ces will be composed of z-scores, with each column having zero-
mean and unit variance. This leads to two possible interpre-
tations. In one, the Mode B and/or C weights are themselves
factor scores of the traditional kind.? In the other, they repre-
sent average factor scores, while the actual factor scores are
taken to be estimated by the bj,Ckr products. For simplicity of
discussion, we only consider the second interpretation in this
chapter. From this perspective, each PARAFAC weight (such as
bjr) corresponds to an average (that is, root-mean-square) factor
score. For example, bj, will give the root-mean-square score for
factor r across all observations at level | of Mode B. This root-
mean-square average will be equal to the standard deviation of
the factor scores at that level, if the other mode is centered (for
instance, bj, will be the standard deviation of the factor scores
at level j of Mode B if Mode C is centered, and vice versa). For
each factor, the outer product of its Mode B and C PARAFAC
weights will give a table of traditional z-score factor scores, with
rows corresponding to levels of Mode B, columns to levels of Mode
C, and entries (bj cks) corresponding to the individual factor
score of case | in condition k for factor r.

If the entries in the factor score table for factor r are un-
correlated with the corresponding entries in the table for factor
r*, then factors r and r* are "orthogonal" in the traditional sense
(assuming zero factor score means as before). In terms of our
example, this will happen whenever the two factors have orthogo-
nal loadings in Mode B or C (or both). Thus, to have an "or-
thogonal solution," in which every table of factor scores is or-
thogonal to every other, it is sufficient that either the Mode B or
C PARAFAC loading matrix have mutually orthogonal columns.
(In fact, this latter condition is sufficient to produce orthogonal
factor scores even when the factor score means are not zero.)

In a suitably standardized orthogonal PARAFAC solution, Mode
A loadings can be interpreted as correlations between variables
and underlying factors, just as in an orthogonal two-way solu-
tion. Conversely, if the tables of factor scores have correlated
entries, the PARAFAC Mode A loadings will be interpretable as
standardized regression coefficients—beta weights—in the same
way as the traditional factor loadings that appear in the factor
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pattern matrix of an oblique two-way solution.

By applying the same preprocessing and standardization proce-
dures to other combinations of modes, it is possible to interpret
either Mode B or C PARAFAC loadings as factor loadings of the
traditional kind. And even if the data are not centered in the
necessary way, it is still possible to generate interpretations of a
more general kind (in terms of mean-squares contributed by
factors, and so forth). (These various combinations of input
data processing and output loading standardization may seem
complicated to select and cumbersome to employ in any actual
analysis, but experience shows that this is not the case. They
are available as defaults and/or easily specified options in the
recent versions of the PARAFAC program; hence, they can be
applied and the effects of different standardizations can be com-
pared with little or no effort.) For further discussion of the
different types of preprocessing and output standardization,
including mathematical proofs of some of the assertions made
above, see chapter 6 and appendix 5-1.

The Conceptual Model Underlying PARAFAC

Behind any mathematical model created for data analysis there
must lie a conceptual model. The conceptual model provides a
framework for logical or semantic interpretation of the terms in
the mathematical model and thus determines the conditions under
which its application to data can be deemed reasonable. In order
to fully understand the PARAFAC generalization of two-way factor
analysis, we need to consider the way in which it generalizes the
conceptual as well as the mathematical two-way model. This task
is not as straightforward as it might first seem. As has been
pointed out previously (Harshman 1970, 19-25), the two-way
mathematical model of factor analysis is an ambiguous represen-
tation of several fundamentally different conceptual models. And
although these conceptual models have equivalent algebraic repre-
sentations in the two-way case, their three-way generalizations
are quite different. For example, one gives rise to PARAFAC,
another to Tucker's three-mode model, and a third to a repre-
sentation that cannot be fit by any current model of three-way
data arrays and so must be fit indirectly.

System versus Object Variation. We can illustrate the implica-
tions of different conceptual models by comparing two models
(discussed previously in Harshman 1970) that involve a differing
"locus of action" for the factors. In the first model, the system
variation model, the factors reside in the system under study and
through the system affect the particular objects; the factor
influences exhibited by particular objects would thus vary in a
synchronous manner across a third mode such as occasions. In
the second model, the object variation model, separate instances
of the factors can be found in each of the objects, and these
within-object factors would not be expected to show synchronous
variation across levels of a third mode, such as occasions.

Consider, for example, an economist doing factor analysis of
several production measurements on ten industries across a num-
ber of different years. He might believe that any factors which
he uncovers—such as "raw material costs" or "energy costs"—re-
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flect aspects of the economic system under study. Thus, he
might find it natural to assume that when a factor increases its
impact on some occasion, it does so proportionally for all measures
and industries through the system. This would be a case of
system variation.

In contrast, consider a psychologist studying personality
change across time. He might think that the factors he uncovers
__such as introversion-extroversion—refer to a type of influence
rather than a single source of variation, with the actual effect of
introversion-extroversion occurring at innumerable independent
loci. Indeed, each individual under study would presumably be a
source of his own introversion-extroversion variation. In this
case, the factors would be considered resident in the objects
under study (the persons) rather than in some single system.
Thus, the variations across time (in introversion-extroversion)
would show a different pattern for each individual, corresponding
to his idiosyncratic experiences and life history. This would be a
case of object variation.

Mathematical Expression of the Two Models. These two differ-
ent conceptions of "factor" imply different three-way factor
models. To compare them, first consider this very general ex-
pression for factor variation in a three-way array, which we call
the unconstrained object variation model:

Xijk = L (@, figr) + €jjk (5-5)
r

Because the factor score component in (5-5) is triply subscripted,
there is no constraint placed on the pattern of variation of factor
scores across Modes B and C of the data. (Some may question
whether this is really a three-way model at all, since it is easy to
fit [5-5] by conventional two-way methods: Simply place all the
two-way slices of the three-way array end to end, thus "string-
ing-out" the data into a large two-way matrix that is i/ by jk, and
then perform a two-way analysis on this matrix. Nonetheless,
[5-5] is a reasonable model for a three-way array. Such ambigu-
ities of classification are not uncommon when one considers ex-
treme limiting cases of particular ideas.)

The system variation concept of factor wvariation would imply
that

fikr = bjrckr > . (5-6)

which says that if we consider object | on occasion k, we find
that the influence or expression of factor r is stepped up or
down by an amount ck,. This shrinkage or expansion in the
importance of factor r occurs in parallel for all objects, but the
effect for any particular object is proportional to the basic sensi-
tivity of object j to effects of factor r (as designated by bj,).
Thus, the change in the cost of energy would affect the different
measures and different industries in proportion to their energy
dependency.

Another example of an appropriate application of the system
variation model is semantic differential or similar data, in which
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each of several stimuli are rated on each of several scales by 3
number of different judges. It is reasonable to assume that the
set of rating scales taps a smaller set of underlying attributes
(factors), and that these attributes are found across all the
different stimuli and are used to greater or lesser degree by most
of the judges. Moreover, suppose we assume that: (a) underly-
ing attributes change in their relative value from one stimulus to
the next (consistently across scales and judges); (b) that each
judge is more or less sensitive to each attribute factor (consis-
tently across stimuli and scales); and (c) that each scale can be
described as measuring some combination of these basic attributes
(more or less consistently across the stimuli and judges). Then
we can justify the assumption that the influence of a given factor
goes up or down proportionally as one goes from one stimulus to
the next, one judge to the next, and one attribute or rating scale
to the next. The rating scale example of system wvariation is
particularly useful in that it demonstrates the actual symmetry of
the PARAFAC system variation model; the requirement is that
factors change influence proportionally across the levels of each
mode. We need not focus on a particular mode as representing
factor loadings and the others as representing factor scores,
except to facilitate discussion. It also shows how the "system"
involved in the system variation model might be quite abstract.
In the case of the ratings, the system is presumably the cogni-
tive/semantic system in which the dimensions of meaning are
"~ defined; this allows a given dimension to be expressed to a
greater or lesser degree by a given rater, a given stimulus,
and/or a given scale.

In contrast to the system variation model, we might consider
the object variation model to be represented as follows:

Xijk = A (bjr ¥ Vig) +oejjp (5-7)

Here, the basic factor score for object j on factor r is modified
on occasion k by a variation vji,; this variation is not necessari-
ly similar to the variation of any other object.

Other Types of Data. Data that requires the generality of the
unconstrained object variation model (5-5) or the object variation
model (5-7) cannot be adequately described by more restricted
models such as PARAFAC or Tucker's three-mode model. How-
ever, there are intermediate forms of wvariation in which these
more restricted models might be wuseful. For example, many
longitudinal data sets may contain a combination of object and
system variation. To analyze such data, one might fit the system
variation part and treat the object variation as "error." One
might instead choose to fit the data initially with a model that
does not distinguish the two parts (for instance, [5-12], below;
also see the discussion in Harshman and Berenbaum 1981 and
application in Haan 1981).

There are also forms of systematic three-mode wvariation that
are less general than (5-7) but more general than (5-3). Some of
these will be captured by the extended PARAFAC model, to be
discussed below. Others require three-way models with a more
complex structure, such as Tucker's three-mode model, but may
be captured in part by specially constrained PARAFAC analyses
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(see chapter 6). Tucker's three-mode model is based on a con-
ceptualization of "factor" that is different from either the system
variation or object variation models. For Tucker, a factor does
not represent a distinct additive source of variation in the data;
rather, it represents an idealized aspect or pattern of variation in
a given mode, which generates the data by interaction with
different idealized aspects of other modes. Tucker's model thus
conceptualizes a separate set of factors for each mode of the data
(indeed, the number of factors in one mode need not match the
number of factors in another). This model will be considered
further when PARAFAC is compared with other three-way factor
analysis procedures.

Because the application of PARAFAC to raw or profile data
presupposes the system variation model, it is important to con-
sider the type of variation expected in one's data before perform-
ing an analysis. -If one believes that object variation is likely to
be the main kind of factor variation found, then direct application
of PARAFAC is not warranted. However, an indirect application
of PARAFAC analysis is still possible, provided the data is pre-
processed by conversion to covariances before analysis. We will
show in the next section that this data transformation allows one
to fit a version of the PARAFAC model appropriate for object
variation data.

PARAFAC1 Applied to Covariance Data
Importance of Covariance Analysis

Because factor analysis provides a structural model for one's
original observations ([5-1] and [5-2]), it would seem natural to
obtain factor loadings and factor scores by directly fitting this
model to a set of data. Some investigators (including Horst 1965;
Kruskal 1978) have favored this approach, pointing out that it is
the most mathematically and logically straightforward method of
estimation. Historically, however, factor analysis has focused on
analysis of correlations rather than the raw data, and this per-
spective has maintained its dominance to the present day, perhaps
because of the reduction in computational effort that it permits.
Consequently, factor analysis is usually performed by what Krus-
kal (1978) calls the indirect fitting approach: The data are first
transformed into a set of correlations among variables (or cases),
and then a factor model (derived from [5-1]) is fit to the cor-
relations. It turns out that in the two-way case, these approach-
es are equivalent. That is, the indirect fitting of the data based
on a least-squares fit of the derived factor model to the cor-
relation matrix vyields the same loadings as the direct least-
squares fit of (5-1) to the z-score matrix. Thus, the distinction
between fitting methods has not been given much attention (aside
from Kruskal 1978 and McDonald 1979).

With three-way data, the equivalence between direct and
indirect fitting no longer holds. The results of direct and in-
direct PARAFAC analysis differ both at the statistical level, in
terms of the precise values of the loadings and residual errors
that are obtained when fitting the system variation model to a
given data set, and at a deeper structural level, in terms of the
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patterns of data variation that can be implicitly represented b
the solution. The different structural implications of the two
approaches were pointed out earlier (Harshman 1972b), but the
differences in statistical characteristics are only now becomin
known. Because we are still investigating these statistical differ-
ences, we will only briefly summarize some current findings and
will focus the bulk of our discussion on the different structural
models that can be fit by the two methods.

Statistical Nonequivalence. 1In the three-way case, direct and
indirect fitting will provide identical loadings only in very special
circumstances that would not be realized with real data (for
instance, when factors are orthogonal in Mode B and the data are
fit perfectly, or when all the variance is not fit by the extracted
dimensions but the unextracted dimensions—systematic and error
—are perfectly orthogonal to the extracted dimensions in both
Modes A and B). With realistic cases involving fallible data and
less than orthogonal dimensions, the loadings obtained by indirect
fitting may show varying degrees of resemblance to those obtained
by direct fitting. Generally, the resemblance is fairly close, but
in a few of these cases, the differences can be large enough to
substantially affect interpretation.

Currently, our interpretation is that the general equivalence of
two-mode solutions obtained by least-squares direct and indirect
fits depends in part on the arbitrary axis orientation that is
possible in the two-way case but not in the PARAFAC three-way
case. In the two-way case, it is always possible to obtain suc-
cessive best fitting dimensions that are orthogonal to all previous
ones in both modes. As a result, successive solutions are "nest-
ed," in the sense that the best fitting two-dimensional solution
forms the first two dimensions of the best fitting three-dimen-
sional solution, and so on. In the three-way case, the best
fitting dimensions are not generally orthogonal to one another in
both modes, and they cannot be made orthogonal because of the
intrinsic axis property. Thus, the nesting of solutions does not
generally occur. And since in the indirect solution Mode A is
represented twice, Mode C loadings are squared, and Mode B is
not represented at all (see below), the degree and pattern of
effective variance overlap of dimensions will be different from the
direct fitting solutions. Hence, reduced-rank approximations (for
example, the two-dimensional approximation of a three-dimensional
data set) obtained by direct versus indirect fitting methods will
involve different compromises and so will not generally be the
same. The only circumstance in which the compromises would be
the same is when the nonarbitrary PARAFAC orientation of axes
happens to provide orthogonal dimensions in both Modes A and B.

Nonequivalent Structural Implications. As we shall see below,
both direct and indirect methods can be used to fit the system
variation model to three-way data. However, indirect fitting does
not make use of the same information in the three-way array, and
it involves different assumptions about the patterns of three-way
data variation. As a result, it can also be used to fit non-sys-
tem-variation versions of the PARAFAC structural models. For
example, the indirect fitting approach permits PARAFAC (and
Tucker's three-model model) to handle object variation data and
thus provides a means of fitting three-way models that have much
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greater generality. At the same time, the simplest PARAFAC
implementation of the indirect fitting approach requires assump-
tions about factor orthogonality that are not required by the
direct fitting approach. These structural differences will be
considered in detail in the following sections.

The differences in statistical and structural characteristics of
direct and indirect fitting in the three-way case make it important
to consider in some detail the implications of analysis of covar-
jances as opposed to raw or preprocessed profile data. Unless
the investigator understands the different implications of the two
approaches, he may not be able to properly determine which is
most appropriate for a given problem.

Approach and Terminology

In the discussion that follows, we focus on analysis of summed
cross-products and covariances rather than analysis of correla-
tions. This gives our discussion greater generality, since corre-
lations are a special case of covariances in which the data for
each variable are scaled to have unit wvariance, and covariances
are in turn a special case of summed cross-products, in which the
data for each wvariable have zero-mean. There is also a more
serious reason for avoiding correlations, however. As we will
show below, computing correlation matrices for each of several
occasions would generally impose separate scalings on each vari-
able for each occasion, which would complicate any expression for
the size of contributions of factors to a given wvariable across
occasions. Thus, we will see that analysis of correlations is not
in general appropriate for either PARAFAC, Tucker's three-mode,
or other current three-way factor analysis models.

The analysis of covariances by PARAFAC can be thought of in
either of two ways: (a) as fitting to covariances the same model
used for raw data ([5-3] and [5-4]); or (b) as fitting to the
covariances a model derived from (5-4), one which represents the
structure that would underlie covariance matrices if they were
computed from raw data with structure described by (5-4). From
the first perspective, the model is unchanged but the solution is
said to take on a "special form" (for example, Mode A loadings
equal Mode B loadings). From the second perspective, the spe-
cial form of the solution corresponds to the special form of the
derived model. In either case, the same computational algorithm
can be used to perform the analysis, since the special form
emerges as a result of the data rather than as a result of any
constraints imposed by the analysis procedure. Thus, we con-
sider the two perspectives to be interchangeable and so will
sometimes talk of the "PARAFAC1 model for covariances" and at
other times talk of the "PARAFAC1 model" in a more general way
that is meant to include its application to raw data, covariances,
and even multidimensional scaling applications.

We refer to "PARAFAC1" rather than simply "PARAFAC" in
order to distinguish the model of (5-3) and (5-4) and its deriva-
tives (such as [5-10], below) from generalizations such as (5-9),
which is called "PARAFAC2" (Harshman 1972b), and (T1-7) (see
Table 5-1), which is called "PARAFAC3." These latter general-
izations require different computer algorithms and can no longer
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be considered trilinear models (for instance, PARAFAC2 is quinti-
linear, at least from one perspective).

Deriving the PARAFAC1 Covariance Model
from the Raw~Score Model

A General Expression for Cross-Products. Suppose we begin with
data that have PARAFAC latent structure, as described in (5-4),
and compute cross-products among variables for each occasion, as
follows:

Cr = (XgX37) . (5-8)

By substituting the PARAFAC representation of X from (5-4)
into (5-8), we get

Cr = (A DB~ +Ex) (ADgB~” + Eg)” ,

and if we assume that the error is orthogonal to the systematic
part, the cross-products of error and systematic terms drop out,
leaving

Cr, = (ADyB ") (AD(B )" + (ExE%)
By taking transposes and regrouping terms, we obtain
Cir = ADy(B'B)y Dy A~ + E,E* ,

and if we let W= (B-B), the matrix of cross-products among
Mode B factor loadings, we get the general PARAFAC model for
cross-products:

Ck = A DkW DkA‘ + EkE’k . (5-9)

For maximum generality, we have developed (5-9) in terms of
summed cross-products. Several special cases should be noted.
If the Xk matrices are individually row-centered (so that the
mean for each variable in each matrix is zero), then C, is the
deviation sums of squares and cross-products matrix for occasion
k. By taking the further step of dividing each entry in Cy by
m, the number of entries in each row of Xg, then C, represents
the covariances among variables on occasion k and (5-9) gives the
general PARAFAC representation of the structure underlying a
three-way array of covariance matrices.

PARAFAC2. The model (5-9) corresponds to the PARAFAC2
generalization of PARAFAC (Harshman 1972b). PARAFAC2 is a
nonorthogonal factor model for summed cross-product and co-
variance matrices and will be discussed briefly later in this
chapter. The standard algorithm used to fit (5-4) to data cannot
be used to fit this model to data.

The W matrix, the only new component to the PARAFAC2
model, can be interpreted as describing obliqueness or mnonin-
dependence among the factors in the mode over which covariances
were computed (Mode B). When the Xy are row-centered and
multiplied by 1/m so that the Cjg become covariance matrices, the

\
J
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B~ matrix in the underlying PARAFAC representation of X, is
also row-centered. If we absorb the 1/m multiplier of X4 into B,
then the B~”B matrix becomes a matrix of covariances among the
Mode B factor loadings.

1f the columns of B (rows of B~”) are further scaled so as to
have mean-square of 1.0, with compensatory rescaling of the Dy
(which is always possible; see appendix 5-1), then W becomes a
matrix of factor intercorrelations, and (5-9) corresponds to a
three-way generalization of the two-way oblique factor analysis
model. The A matrix is the same n by g matrix of factor load-
ings that appears in (5-4), Dy is the same g by g matrix that
gives the weights of the factors on occasion k, and Wis a g by g
matrix that in this case gives the cosines of the angles among the
factors. For this special case, W could be designated ¢ to cor-
respond with traditional notation for the factor intercorrelation
matrix. Finally, Ef E% gives the residual covariances not fit by
the model.

PARAFACIT. If we make the additional assumption that W =1
(that is, that the factors are orthogonal in Mode B), then the W
matrix in (5-9) disappears, and the model can be written as
follows:

Ch = AD; A"+ E;E% - (5-10)

This is called the "PARAFACI1 model for covariances" (or other
cross-product data). The numeral "1" designates that it corre-
sponds to the simplest PARAFAC model and can be fit by the
same algorithm as is used to fit (5-4) to a raw data matrix.
Thus, as noted earlier, it can be considered an alternative appli-
cation of the original PARAFAC procedure, one in which the
solution takes on a special form. When this model is fit to co-
variance data by the same general three-way PARAFAC algorithm
used to fit (5—4) to profile data, the first and second tables of
factor loadings (which in [5-4] would correspond to Mode A and
Mode B loadings, respectively) start out containing different
values but end up at convergence to be identical to one another;
this is a natural consequence of the symmetry of Modes A and B
that occurs when the input data are covariances. Furthermore,
the Mode C matrix obtained by analyzing the C; will contain the
squares of the factor weights for occasion k, namely, the squares
of entries that would be obtained if the raw Xj; matrices were
analyzed. This occurs because each covariance is a mean of
cross-products, and in each cross-product, the Mode C weight
occurs twice and hence is squared.

Consequences of Indirect versus Direct Fitting

If the raw data can be assumed to have a structure similar to
(5-4) and the factors are orthogonal in the mode over which
covariances are computed (in the example above, if B“B is diago-
nal), then the PARAFACI1 model for covariances (5-10) is appro-
priate and the factor loading matrix A obtained by indirect fitting
will usually be quite similar to the matrix obtained by direct
factoring of the raw data. However, indirect fitting does not
optimize the same fit criterion as direct fitting: One is least-
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squares to the covariances, the other least-squares to the profile
data. As noted earlier, these criteria are not strictly equivalent
in the three-way case and can sometimes lead to differences in
the resulting solution that are large enough to affect interpreta-
tion. Thus, some thought should be given to selection of the
approach that would seem most appropriate for any given prob-
lem.

The solution obtained by indirect fitting will entail some initial
loss of information, because loadings for Mode B of the raw data
do not occur. (However, they can be estimated after the analysis
by regression methods.) On the other hand, there may be some
economy of computation in the indirect fitting procedure if there
are many more levels to Mode B than to Mode A. These are not
usually the main considerations, however. When the direct fitting
model is deemed appropriate and gives interpretable results, it
would often seem more straightforward and thus preferable.

There is one respect in which the indirect fitting model might
sometimes seem too restrictive. If the factors are not orthogonal
in the mode over which covariances are computed, then the
PARAFACI model for covariances is not strictly appropriate and
the solution will be distorted to some extent. If the divergence
from orthogonality is not great, then the distortion will be quite
small and will not affect the interpretation of the factors. If,
however, the underlying factors are actually quite oblique in the
mode over which covariances were computed, then the solution
will be considerably distorted and a PARAFAC1 analysis may be
misleading or uninterpretable. Thus, the necessity of assuming
that the factors are orthogonal in the mode over which covari-
ances are computed can occasionally be a serious disadvantage of
the indirect fitting approach. Note that direct fitting of (5-4) to
the raw data does not make any assumptions concerning the

}umns! orthogonality ofsfactor-loading matrix B. Thus, it would usually
e cem preferable to use direct fitting when other considerations
are roughly equal.

Sometimes, however, the restriction on the solution imposed by
the implicit orthogonality assumption in the covariance model
(5-10) is a help rather than a hindrance. Certain difficult data
sets—in which the patterns of factor variation do not closely
approximate those of any PARAFAC model (see chapter 6)—tend
to produce degenerate solutions when the raw data is analyzed
directly using the PARAFAC1 raw data model (5-4); very highly
correlated factors occur and interpretation is not feasible. These
degenerate solutions appear to be less likely when indirect fitting
using (5-10) is employed, in part, perhaps, because of the
stability resulting from the implicit orthogonality assumption,
which tends to block the appearance of highly correlated factors.

The most important advantage of indirect fitting has not yet
been discussed, because is it not apparent from our derivations
thus far: By analyzing cross-products or correlations rather than
raw data, one can estimate the parameters for models more gener-
al than (5-4), while still retaining the desirable intrinsic axis
property. In particular, one can obtain meaningful intrinsic axis
PARAFAC solutions when the raw data follows the object variation
model, and it is even possible to fit data sets in which a different
sample of cases is measured at each level of Mode C, so that
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there is no direct correspondence whatsoever between the factor
score for a given case on one occasion and the score on the next.

periving the PARAFACI1 Model for Covariances
from More General Assumptions

Sampling from Several Populations. Let Xy be an n by my data
matrix, consisting of measurements of n variables on mg cases.
Assume that there are p such matrices obtained by sampling from
p different populations, and that while the number of cases in the
samples may differ, all samples are measured on the same n
variables. If we postulate that these variables tap the same set
of factors in all the samples, but expect that the relative impor-
tance of the factors may change across populations and therefore
samples, then we might represent the underlying structure of
such data as follows:

Xk = ADg Bk + Ep . (5-11)

Here, A is a common n by g factor-loading matrix for all samples;
Dy is a diagonal g by g weight matrix that gives the relative
importance of the g factors on the kth occasion; and By is an my
by g matrix of person weights or factor scores for sample k. Eg
is an n by mg matrix of error terms for occasion k.

In its raw data form, (5-11) cannot be fit by the PARAFAC
model. One could perform a two-way analysis, by "stringing out"
or concatenating all the matrices, to obtain a single matrix with n
rows and as many columns as cases in all samples combined. Of
course, the two-way analysis of this array will not have the
intrinsic axis property. However, the data can be indirectly fit
by PARAFAC if they are first converted to cross-products (co-
variances if the Xy were all row-centered). This analysis will
have the intrinsic axis property.

Let Cx be the kth such cross-product or covariance matrix,
defined as in (5-8). By substituting the expression Xy from
(5-11) into (5-8) and then applying the same steps that follow
(5-8), we obtain:

Cyk = ADg (B B)Dx A-+ (ELEg)
If we let Wy = B By , then
Ck = A Dk Wk Dk A° + (Ek E7<) . (5-12)

This is a general expression for the factor structure of the kth
matrix of summed cross-products. If the data arrays had been
row-centered, then this would be an expression for deviation
cross-products, and if Cy is divided by mg, then Cy is a co-
variance matrix, and Wy can be standardized to represent cor-
relations or cosines among the factors in Mode B for occasion K.
This then becomes a three-way generalization of the oblique factor
model. In this generalization, the angles among the factors are
not expected to remain constant across different levels of Mode C.
Hence, this is more general than the PARAFAC2 model derived
earlier by assuming system variation.
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The model (5-12) is similar to Carroll and Chang's IDIOSCAIJ,
model (1972). It is more general than Tucker's three-mode
model, although it is a special case of a variant of Tucker's model
that Kroonenberg and de Leeuw (1980) call the "Tucker2" model,
The representation of (5-12) was also discussed by Meredith
(1964). The relations among such models will be considered in g
later section.

In many cases, it will be reasonable to assume that the factors
maintain roughly the same intercorrelations across the different
levels of Mode C; hence, Wy =W, a common matrix of angles
among factors for all covariance matrices, In this case, (5-12)
reduces to (5-9), the PARAFAC2 model.

If we assume that in all samples the factors are orthogonal in
Mode B, then W =1 and (5-12) reduces to (5-10), the PARA-
FAC1 model for covariance matrices. Thus, the PARAFAC1 model
for covariances can be derived from assumptions far less restric-
tive than the system variation model from which it was originally
obtained. Consequently, PARAFAC1 can be used to estimate the
factors underlying raw data of the very general form (5-11),
provided that indirect fitting is used.

Object Variation in One Population. In the case where all By
matrices are measured on the same subjects, and so are all the
same size, then (5-11) can be taken as a representation of a
three-way data array with object wvariation. Thus, PARAFACI
can also be used to analyze object variation data, by means of
indirect f1tt1ng

However, in all these applications of PARAFACI, there is the
need to adopt an orthogonality assumption that was not part of
the system variation model: We must assume that the factors are
orthogonal in the mode over which the covariances were computed
(in these examples, Mode B).

Issues of Scaling and Interpretation

Scaling of Loadings and Data. As noted earlier, nonstandardized
loadings can be interpreted as describing relative importance of
different variables for a given factor by simply comparing their
sizes within a column of the loadings matrix, provided the data
sum of squares is similar across wvariables. However, if one
wants to make additional interpretations of loadings in terms of
correlations between factors and data and so forth, and if one
wants PARAFAC loadings to be directly comparable to the loadings
that are obtained in two-way factor analysis of correlation matri-
ces, then special standardization of the data and of the output
loadings is required. In essence, the covariance matrices must
be scaled so that the average covariance matrix would have unit
diagonals and therefore be interpreted as a correlation matrix,
The loadings must be scaled so that the identical Mode A and
Mode B tables jointly reflect the scale of the data, with the Mode
C table having column means of 1.0. (This arrangement is dis-
cussed in appendix 5-1.) With this rescaling, factor loadings of
the traditional kind are obtained. It is important to note, how-
ever, that one cannot simply proceed by converting the covari-
ance matrices individually to correlation matrices and then analyz-
ing the correlation matrices.
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Inappropriateness of Correlations. 1f, in the above deriva-
tions, Wwe had proceeded to rescale the covariances to obtain
correlation matrices, no simple PARAFAC representation would
have been possible. Such rescaling destroys the comparability of
the A matrix across levels of Mode C. To see this, let us write
the expression for a correlation matrix Cx. Let Dg be an n by n
diagonal matrix with diagonal entries equal to the reciprocal of
the square roots of the diagonals of Cx. We can write an ex-
pression for the kth correlation matrix as:

Cyr= Dy ADg WDy A" Dy+ Dy Ep Ef Dy . (5-13)

Thus, Dg rescales the entries in Cx from covariances to correla-
tions. However, this causes the factor-loading matrix A for each
occasion to be row-rescaled. In order to analyze correlations, we
would need a model with a separate Ay matrix for each occasion,
permitting Ai=Dg A, or with special row-rescaling Dy parameters
in the model to modify the factor loading matrix for each occa-
sion. None of the existing models for three-way data—including
PARAFAC and Tucker's model—incorporate such parameters.
They do not really need to, however, when use of covariances
avoids the problem completely. It should be clear from the
above, then, that correlations are not only inappropriate as input
for PARAFAC—they are inappropriate for any currently existing
three-way factor analysis procedures. Similarly, Jéreskog (1971)
points out that correlations are not appropriate input for his
methods of factor analysis in multiple populations.

One of the motivations for use of correlation coefficients is to
remove arbitrary differences in the scale of variables by setting
all variables to a constant unit mean-square. This objective can
be accomplished within the context of covariance analysis by
standardizing the total variance of each variable across all levels
of Mode C, rather than the separate variances within each level.
Thus, we would use an unsubscripted D matrix in (5-13), for
which the ith diagonal entry would be:

: CiikY 2.

N1y

d= (=
p K

In fact, this is a built-in PARAFAC option and has become a
standard procedure to use for PARAFAC analysis of covariance
matrices; it is called "equal average diagonal standardization."

Principal Components versus Common Factor Models

A further difference between direct and indirect fitting is that
indirect fitting allows a three-way generalization of either the
common factor or principal components models to be fit to the
data, whereas direct fitting only allows the three-way principal
components model to be fit. In this chapter, we have not
stressed the distinction between the principal components and the
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common factor models for factor analysis. In general, we agree
with Harris (1975) that from a data-analytic standpoint, the
distinction is not critical, since the two different factor estimation
methods usually give very similar sets of factor loadings.

From a theoretical standpoint, however, it seems clear that the
principal components model ignores an obvious source of bias that
is corrected by the common factor model. Consider any of our
expressions for the structure underlying a covariance matrix,
such as equation (5-10). The off-diagonal elements of the error
covariance matrix E4E % will tend to be small and randomly dis-
tributed about zero, due to the small covariances that arise b
chance among finite samples of random errors. They will not bias
the solution. The diagonals, however, will be systematically
larger and all positive, since each diagonal represents the co-
variance of an error component with itself, or, in other words,
the error variance for a variable. There is a good argument,
then, for ignoring the diagonal elements of a covariance data
matrix, since they are likely to contain larger error components
and be systematically biased upward from their "true" values
(defined as the contribution of the factors before the error
component is considered).

In some factor analysis procedures, it is not easy to fit off-
diagonal cells and ignore the diagonal cells. In such cases, an
alternative approach is sometimes used: The diagonal values are
modified before the analysis to more closely represent an unbiased
estimate of what they would equal if it were not for the inflating
effect of the error. These communality estimates may be based
on the squared multiple correlation between the wvariable and all
the other variables in the data set or on some other estimation
procedure. One of the more common approaches is to iterate on
the diagonals. This method uses the results of a factor analysis
to estimate the size that the diagonal cells would have if they
only contained common factor variance; it replaces the diagonal
with these estimates and then refactors the modified matrix. This
procedure is supposed to be iterated until it converges, although
tests have demonstrated that actual convergence usually takes a
larger number of iterations than have commonly been applied in
the past. In PARAFAC, the method used for ignoring the diago-
nals—and any other cells identified as containing missing data
—can be viewed as a modified version of this iterative estimation
procedure (see below).

In practice, the bias introduced by including the inflated
diagonal values in the data set often has very little effect on the
factor loadings (as Harris [1975] demonstrates). In some Monte
Carlo studies (including Velicer, Peacock, and Jackson 1982), the
principal components solutions have actually recovered underlying
structure as well or better than common factor solutions, perhaps
because of greater stability arising from the component model's
fewer parameters.

Whether there will be an appreciable difference between factors
determined using the principal component versus common factor
models will depend on the characteristics of the data being ana-
lyzed. When one is analyzing large matrices, the diagonal cells
constitute such a small proportion of the total data that the sys-
tematic bias introduced by including them in the analysis has a
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minimal effect on the final solution. Furthermore, unless the
communality estimates are widely divergent, the pattern of load-
ings is not noticeably changed, even with smaller matrices (Harris
1975) . Nonetheless, there are certain circumstances in which a
difference between the two methods may be noticeable. If the
covariance matrix is small—for instance, less than 15 or 20 vari-
ables—and if the estimated communalities are quite different from
one another, so that relations among diagonal elements would be
altered by communality estimation, then the common factor model
might be expected to give an appreciably more accurate solution.

A method for fitting the common factor model by direct decom-
position of the raw data array has been suggested for two-way
data by McDonald (1979) but has not yet been generalized to the
three-way case. However, when doing indirect fitting by means
of covariances, the common factor model is easily fit in the three-
as well as the two-way case, by simply ignoring the diagonal
and/or placing communality estimates in the diagonals of the
covariance matrices.

The PARAFAC computer program allows either model to be fit
to covariances. If the user decides to fit the common factor
model, the program takes the same approach as Harman and
Jones' (1966) MINRES procedure; namely, parameters of the
PARAFAC model are estimated by fitting only the off-diagonal
elements of the covariance matrices. One of the program's analy-
sis options allows the user to-ignore the diagonal cells of each
covariance matrix using the same technique that PARAFAC uses to
ignore cells with missing data (by continuous iterative reesti-
mation within the alternating least-squares algorithm; see Harsh-
man 1972b). The method appears to work quite well. In fact,
our experience suggests that this method may work better than
more traditional iteration methods commonly used with two-way
arrays, converging more rapidly to accurate estimates of the
appropriate values (as tested by Monte Carlo experiments). This
may in part be due to the fact that reestimation occurs repeatedly
during the factor estimation phase, not just at the end. It may
also be in part attributable to the stronger information provided
by the three-way data.

Initial applications of the common factor model to real data
problems have confirmed our theoretical expectations. With a
large problem (Haan 1981), including or ignoring the diagonals
made very little difference in the final A matrix—at most, a small
change in the second decimal place of a factor loading (based on
comparisons conducted in our laboratory but not reported in
Haan's article). This was to be expected, since the data (which
was from a longitudinal study of personality) consisted of 12
matrices, each of which was 86 by 86; thus, less than 2% of the
data cells were ignored when the common factor model was esti-
mated. Furthermore, examination of the communality estimates
showed that most were of comparable size. Conversely, the
common factor model provided a noticeably more interpretable
solution in a three-way analysis of the WAIS and WAIS-R intelli-
gence test standardization data (Harshman and Reddon 1983).
This latter data set had those characteristics that might lead one
to expect a difference; the 9 covariance matrices were small—only
11 by 1l1—and the communality estimates for the 11 variables
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turned out to differ considerably in size both within and acrosg
occasions.

The PARAFAC1 Model Applied
to Multidimensional Scaling of Proximity Data

The Relationship between Factor Analysis and Metric MDS

Multidimensional Scaling (MDS) is sometimes used in a broad sense
to mean any procedure that represents a large matrix of observa-
tions or relationships in terms of a small set of underlying dimen-
sions. PARAFAC is classed as a multidimensional scaling proce-
dure in this broad sense by Carroll and Arabie (1980). We shall
use "multidimensional scaling" in a more restricted sense, how-
ever, meaning a procedure that derives a dimensional representa-
tion of relationships among entities from data on their proximity
(such as pairwise similarity or dissimilarity). From this per-
spective, MDS is distinguished by the fact that it takes as input
a type of data that is not directly appropriate for factor or
component analysis: interpoint "distances," dissimilarities, or
other distancelike quantities. Distances are not suitable for
factor analysis because a distance cannot be directly decomposed
into the additive contributions of dimensions. As the Pythagorean
theorem demonstrates, it is the squared distances along dimen-
sions that add together to produce the squared distance between
two points in a space.

Nonetheless, factor analysis and multidimensional scaling are
very closely related. In fact, metric multidimensional scaling can
be accomplished by performing a factor (or principal component)
analysis of distancelike data that has been appropriately pre-
processed. The preprocessing turns dissimilarities into squared
interpoint distances and then converts these into scalar products,
which are essentially equivalent to covariances. Factor analysis
of the scalar products then proceeds in the same way as analysis
of covariance matrices. Thus, the application of factor or com-
ponent analysis to MDS problems involves a further example of
indirect fitting: an MDS distance model is indirectly fit to the
original distancelike data by directly fitting a factor or component
model to the covariancelike matrices obtained after the data is
preprocessed.

The conversion of dissimilarities to scalar products has been
described elsewhere (Kruskal and Wish 1978; Spence 1977; Tor-
gerson 1958) and will therefore only be briefly recounted here,
Three steps are involved for each subject: (a) an additive con-
stant is estimated which converts that subject's dissimilarities into
distances (that is, from interval-scale to ratio-scale measures of
subjective distance between stimuli); (b) each entry in the dis-
tance matrix is then squared; and (c) the matrix of squared
distances is then double-centered (row means are removed and
then column means are removed from the residuals, so that the
resulting matrix has both rows and columns summing to zero).
This last step removes undesired constants that entered at the
squaring stage and also adjusts the resulting scalar products so
that their origin is at the centroid of the configuration of stimu-
lus points in the space. The resulting values are all multiplied
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-.5 for geometric reasons, as explained in Torgerson (1958).

When PARAFAC is used to perform three-way MDS, the math-
ematical model that is being indirectly fit to the data differs from
those that we have discussed previously. It is called the
nweighted Euclidean model." If, for examplg, we g:onsidered Xijk
to represent the distance between stimulus / and | as judged by
the kth individual, the weighted Euclidean model would represent
that distance in terms of a generalization of the Euclidean dis-
tance formula:

xijk = ( z (Wkr (@ir - air))2)1/2 + €ijk . (5-14)
r

In this formula, djr and gjr represent the stimulus projection of
the ith and jth stimuli onto dimension r, and Wkr represents the
weight that subject k places on dimension r, or, in other words,
the salience of that dimension for that subject.

Use of the PARAFAC program to indirectly fit the weighted
Euclidean model is essentially equivalent to use of Carroll and
Chang's (1970) INDSCAL procedure. Both PARAFAC and IND-
SCAL follow the same steps: First, transform the input data from
similarities or dissimilarities to distances; then, convert the
distances to scalar products; and finally, fit to the scalar prod-
ucts a trilinear model (5-3), which, because of the covariancelike
structure of the data, takes the special form of (5-10). In the
resulting representation, the A matrix gives the projections of
stimuli onto dimensions, and the D,i matrix gives the squares of
the dimension weights or saliences for the kth subject.

It is interesting that although INDSCAL and PARAFAC were
developed independently and from somewhat different perspec-
tives, both approaches led to the same trilinear model, based on
related reasoning about systematic variations of dimensions un-
derlying levels of a three-way array. We call (5-3) the "PARA-
FAC" model, alluding to Cattell's parallel proportional profiles
idea, from which it was derived. But Carroll and Chang devel-
oped the model from somewhat different perspectives related to
Horan's (1969) findings concerning individual differences in MDS;
they call (5-3) the "CANDECOMP" (for CANonical DECOMPosition)
model. Because of this parallelism, (5-3) is sometimes referred to
as the "PARAFAC-CANDECOMP" (Kruskal 1981) or "CANDECOMP-
PARAFAC" model (Carroll and Arabie 1980, 635).

Properties of Three-Way MDS Solutions

Advantages. When the trilinear model (5-3) is applied to scalar
products in order to accomplish multidimensional scaling, the
solutions have the same important intrinsic axis property as when
it is applied to raw profile or covariance data to accomplish
three-way factor analysis. This intrinsic axis property is per-
haps the most important reason INDSCAL has been such a popular
MDS procedure, with more than 75 successful applications to date.
The success of INDSCAL in multidimensional scaling strengthens
arguments for the potential value of the intrinsic axis property in
factor analysis, as well.

However, MDS applications are in some respects easier than
factor-analytic ones. For one thing, subtle preprocessing issues
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that arise in three-way factor analysis (which will be discussed ip
chapter 6) are avoided in MDS. Also, there are implied orthogo-
nality constraints resulting from the indirect fitting of the MDg
application that can increase the stability of the solution and help
to prevent oblique axis problems that sometimes trouble factor-
analytic applications. Finally, it appears from our accumulating
experience that the patterns of dimensional variation in three-way
profile data are sometimes more complex than provided for by the
system variation model; when this occurs, the recovery of sensi-
ble solutions requires special constraints on the form of the
loadings matrices. For all of these reasons, the general applica-
tion of the trilinear PARAFAC-CANDECOMP model to profile data
has been a more challenging problem than the application of thig
model to MDS data. Thus, it has taken longer to develop all the
necessary theory, as well as preprocessing and other techniques,
to make three-way factor analysis relatively trouble-free.

Orthogonality Assumptions. As we have pointed out previously
(Harshman 1972b; Terbeek and Harshman 1972; see also Carroll
and Wish 1974; McCallum 1976), the MDS application of the PARA-
FAC-CANDECOMP trilinear model (5-3) involves implicit ortho-
gonality assumptions that are not required in two-way multi-
dimensional scaling. Since fitting PARAFAC to scalar products is
equivalent to analyzing covariances, it requires the same kind of
assumption of orthogonality (discussed above). However, the
interpretation of this assumption is slightly different in the case
of MDS. When we analyze scalar products derived from dissimi-
larities, there is no "Mode B" over which we must assume uncor-
related variations in factor influence. Instead, the diagonal form
of the matrix W reflects the special orthogonal form of the Eu-
clidean distance formula. In the more general case, in which the
axes in a space are not orthogonal, (5-10) will not describe the
scalar products. Instead, a more general Euclidean formula must
be used, thus corresponding to (5-9) (see Harshman 1972b).

There is some evidence that oblique perceptual dimensions may
indeed arise when two or more properties by which people per-
ceive a set of stimuli are strongly associated in the minds of
those making the judgments. In an earlier unpublished study
(Harshman 1973), subjects judging the similarity of objects differ-
ing only in size and weight appeared to treat the dimensions of
size and weight as if they were oblique in their perceptual space.
Tucker (1972) also obtained MDS results that suggested oblique
dimensions.

Several three-way MDS models have been formulated to deal
with the case of nonorthogonal perceptual dimensions. If we
apply the PARAFAC2 model (5-9) to scalar product matrices, we
can obtain a three-way MDS solution with oblique perceptual
dimensions but involving the assumption of a common pattern of
obliqueness across all subjects. This model may share the PARA-
FAC1 intrinsic axis property, although the question of uniqueness
is more complex. (This will be pursued later in our discussion of
PARAFAC2.) An even more general model would allow different
patterns of obliquely related dimensions for each subject, as in
the very general covariance model (5-12). This model corre-
sponds to what Carroll and Chang (1972) call the "IDIOSCAL'
model and Kroonenberg and de Leeuw (1980) call the "Tucker2"
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or "T2" model. A version of this model that puts restrictions on
the different Wy is the Tucker application of three-mode factor
analysis to multidimensional scaling (Tucker 1972). Neither
IDIOSCAL, T2, nor Tucker's three-mode scaling provide intrinsic
axis solutions. ) _

Diagonal Cells in MDS. It often occurs that the distances or
dissimilarities used for MDS input are obtained in such a way that
the diagonal cells may not be directly comparable to the other
cells or indeed may be set to zero by assumption and not even
measured. For example, when subjects are asked to judge the
airwise dissimilarity of elements from some stimulus set, they are
often not presented with pairs consisting of a stimulus matched
with itself. Such stimuli are usually going to be judged to have
infinite similarity or zero dissimilarity by an alert subject; hence,
these trivial judgments are omitted to save time, even though
they might serve a valuable "anchor" function in the experiment.
When similarities are obtained by other means, such as stimulus
confusions, it still may often be the case that the diagonal cells
of the data matrices are subject to special considerations that
make them not directly comparable to the off-diagonal cells.

The question thus arises: Would it be advisable to ignore the
diagonal cells of MDS, much as is done when fitting the common
factor model in three-way factor analysis? As in factor analysis,
if the stimulus matrix is large and/or the subjective diagonal
values that might be estimated by the dimensions (that is, the
analogs of communality estimates) would be fairly uniform across
stimuli, then the solution would probably not be noticeably affect-
ed by ignoring the diagonals. But if the stimulus set were
small—as is common in MDS applications in which all pairwise
comparisons are needed—and the subjective diagonals somehow
divergent, then ignoring the diagonal might be useful. Explora-
tion of the effects of such an approach would easily be accom-
plished by means of the PARAFAC option to ignore diagonal cells,
but no systematic study of the effects of such a procedure has
yet been attempted.

UNIQUENESS PROPERTIES OF PARAFAC-CANDECOMP
Why is the Intrinsic Axis Property Important?

Viewed geometrically, a factor analysis or multidimensional scaling
solution provides two basic types of information: (a) a configura-
tion of points in a low-dimensional space; and (b) a set of axes
spanning that space. The configuration of points provides a
compact description of the observed relationships among the
things represented by the points. Such a description may clarify
our insight by simplifying the patterns we are trying to under-
stand, but it does not present us with anything essentially new.
The axes, on the other hand, can potentially take us beyond
observed relationships into new inferred ones. In the appropriate
conditions, the projections of points onto correctly oriented axes
could be taken to indicate relationships between observed surface
variables and unobserved, but empirically real, latent variables.
If a factor analysis can indicate which set of axes is most likely
to approximate empirically real processes, it can provide us with
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genuinely novel information. But if the choice of a particulay
axis orientation is somewhat arbitrary, or if it is based on a
criterion that is hard to defend empirically, the orientation of
factor axes will be less informative and inferences from factop
axes to theoretical constructs will seem dubious.

As noted in the introduction, PARAFAC was developed primari-
ly to provide a stronger theoretical/empirical basis for determin-
ing orientation of factor axes. This advantage is important tq
scientists who would like to use factor analysis inferentially,
either inductively, as an aid to development of theoretical con-
structs in a poorly understood domain, or deductively, as ;
means of testing previously hypothesized constructs with new
data. The intrinsic axis property of the PARAFAC model pro-
vides a plausible theoretical basis for such inferences when the
solution can be replicated across samples. In this section, we
explain the intrinsic axis property, discuss its mathematical basig
and its limitations, and show why it often provides stronger
grounds for attributing empirical reality to factors than the
grounds provided by simple structure or other commonly used
criteria.

Is there a "Most Valid" Rotation?

Some investigators have claimed that the particular orientation of
axes in a factor-analytic solution is not important. Different
rotations of a factor-analytic solution are said to correspond to
different yet equally valid perspectives on the same complex
phenomenon (for example, see Thurstone 1947, 332).

Such an attitude may be appropriate when one only uses factor
analysis to provide a condensed description of the particular data
set. However, if one uses it to obtain clues to the empirical
processes responsible for the observed patterns, then alternative
rotations cannot be considered "equally valid." They will lead to
competing hypotheses concerning the underlying empirical reality,
and these hypotheses will, in turn, lead to different and compet-
ing predictions of what would be expected in novel nonequivalent
situations. It is this difference in implied predictions that gives
empirical meaning to the claim that there is a "most wvalid" axis
orientation.

A search for the most wvalid rotation or orientation of factor
axes can be viewed as a part of the scientist's search for theo-
retical constructs that will prove the most generalizable (namely,
those constructs not only successful at accounting for patterns of
variation within the given data set, but those able to be used in
explaining patterns in new and systematically different data sets,
as well). Proportional profiles rotation seeks to maximize this
sort of generalizability.

The argument can also be made on less pragmatic grounds: We
believe that there are particular component processes that actually
exist in the empirical situation and that they are likely to be
better approximated by some factorial descriptions than others.
If we could identify those axes that most closely correspond to
the underlying component processes (which provide the best
description of them), we would know which axis orientations
should be considered most valid. Because of their better corre-
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spondence with empirical reality, we expect that such axes will
lead to the most successful scientific constructs or theories,
theories that will make the most accurate predictions in the widest
range of situations.

Consider, as one example, the classic debate concerning the
dimensions of intelligence. This is in part a debate over correct
orientation of axes in the factor space of intellectual tests. In
one position, we obtain a general factor and a set of uncorrelated
group factors corresponding to specific intellectual abilities. In
another orientation, we obtain several correlated broad intellectual
abilities. These alternative solutions are not just different per-
spectives, since they lead to different predictions concerning the
effect of drugs or brain damage on intellectual performance.
Empirical findings can provide support for one set of factors as
against the other. 1In fact, Bock (1973) has argued that recent
discoveries about the functional specialization of the two hemi~
spheres (based in part on effects of brain damage on cognitive
abilities) have helped to confirm those factor-analytic theories
that distinguish a broad class of verbal abilities from another
broad class of spatial abilities.

To take another example, consider a recent disagreement
between Eysenck and Guilford over the "real factor of Extrover-
sion-Introversion" (Eysenck 1977; Guilford 1977). Guilford (1977)
points out explicitly that the disagreement hinges on choice of
axis orientation. In order to resolve such disputes, appeal must
be made to empirical data beyond the particular two-way factor
analysis, in the hope that different predictions of the two differ-
ent factor-based constructs can be somehow tested empirically.

Limitations of Traditional Criteria for Orienting Axes

Since the two-way factor model provides a family of possible
solutions—all of which fit the data equally well—investigators
have had to devise additional criteria external to the model to aid
in selecting a "best" solution from among this family. Confirma~
tory factor analysis uses vrotation-to-target techniques and/or
allows loadings to be constrained in certain ways. Exploratory
factor analysis rotates to optimize some desired characteristic of
the resulting factors; wusually this is an index of simplicity,
although other criteria have also been employed (see Comrey
1967; Eysenck 1950). In many situations, however, the factors
that optimize these criteria may or may not be the "real" ones,
that is, the ones that most closely approximate the empirical
processes generating the observed relationships. For example,
we often do not have strong empirical reasons for preferring the
particular rotation of factors that maximizes simplicity, and hence
we do not have strong grounds for attributing empirical validity
to constructs that the simplest factors suggest. Furthermore,
controversy can arise because different investigators prefer
different rotation criteria and thus obtain differently oriented
factors. This occurred in the Eysenck-Guilford dispute mentioned
earlier,

We have discussed the limitations of traditional factor rotation
procedures elsewhere (Harshman 1970, 8-14) and will therefore
only briefly summarize some objections here. First of all, the
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likelihood of obtaining empirically valid dimensions by theoretically
guided target rotation will depend on the validity of the theory
used. Such rotations can provide evidence against a theory, if
the target cannot be approximated by any rotation of the obtained
factors. However, these rotations wusually provide only weak
evidence in favor of a theory; when factors can be found that are
consistent with a given target, the theory is not discredited, but
other rotations of the same axes may provide factors consistent
with other theories. Thus, target rotation will not usually result
in the discovery of theoretically novel dimensions.

A second objection is that rotation in search of meaningfu]
interpretations lacks objectivity. In addition, it is limited by the
investigator's notion of what is "meaningful"; a dimension may be
difficult to interpret because it reveals an unfamiliar truth about
the domain under investigation.

A final objection to current methods of factor rotation is that
the likelihood of obtaining valid dimensions by rotation to simple
structure (or its analytic approximations, such as Varimax)
depends on one's assurance that maximizing the simplicity cri-
terion is appropriate for the particular situation. Often, rela-
tionships between variables and underlying factors will not be
maximally simple. As Comrey notes:

If we sample at random from the entire universe of factors
and use predominately factor-pure measures, simple struc-
ture will no doubt give results which are reasonably satis-
factory. In many real-life factor analyses, however, where
selection of variables is anything but random, and measures
of considerable factor complexity sometimes predominate, one
can only hope that the simple structure criterion is approx-
imately applicable. . . . There is no particular reason why
the variance of the squared factor loadings must be maxi-
mized, except that loadings are more easily interpreted if
they are high or low rather than medium in absolute wvalue.
It may well be, however, that they should be in medium
range, rather than high or low, depending on the data
being analyzed. (Comrey 1967, 143)

The Principle of Parallel Proportional Profiles

Cattell (1944) reviewed seven principles for choice of rotation and
concluded that the "most fundamental" was one that he called the
"principle of parallel proportional profiles." This principle may
be thought of as an application of the method of cross-validation
to the problem of factor rotation, in order to determine empirical-
ly which rotation corresponds to "real functional unities in the
psychological situation." However, Cattell recognized that "to
require agreement in factors and factor loadings among correlation
matrices derived from the same or similar test variables on the
same or similar population samples, is an empty challenge. No
new source of rotation determination is introduced, for such
matrices will differ only by sampling errors and there will be an
infinite series of possible parallel rotations in the two or more
analyses." What is needed is a method for meaningful validation
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across samples, demonstrating a consistent empirical pattern that
would not be found if the factors were a mere "mathematical
artifact.” How could this be obtained?

The special and novel required condition is that any two
matrices should contain the same factors, but that in the
second matrix each factor should be accentuated or reduced
in influence by the experimental or situational design, so
that all its loadings are proportionately changed, thereby
producing, from the beginning, an actual correlation matrix
different from the first. (Cattell 1944, 274 [his italics])

Cattell states the principle even more clearly in a later article:

The basic assumption is that, if a factor corresponds to
some real organic unity, then from one study to another it
will retain its pattern, simultaneously raising or lowering all
its loadings according to the magnitude of the role of that
factor under the different experimental conditions of the
second study. No inorganic factor, a mere mathematical
abstraction, would behave in this way. . . . This princi-
ple suggests that every factor analytic investigation should
be carried out on at least two samples, under conditions
differing in the extent to which the same psychological
factors . . . might be expected to be involved. We could
then anticipate finding the "true" factors by locating the
unique rotational position (simultaneously in both studies)
in which each factor in the first study is found to have
loadings which are proportional to (or some simple function
of) those in the second: that is to say, a position should
be discoverable in which the factor in the second study will
have a pattern which is the same as the first, but stepped
up or down., (Cattell and Cattell 1955, 84 [their italics])

Although he was convinced of the potential importance of this
idea, Cattell had problems implementing it as a practical rotation
procedure. He developed an algebraic method for orthogonal
proportional profiles rotation of two sets of factor loadings (long
before a similar method was proposed by Schénemann {1972] for
MDS), but was unable to formulate a solution that allowed oblique
axes (Cattell and Cattell 1955). Even more discouraging, his
attempt at demonstrating a practical application of the orthogonal
method to real data was not successful. Finally, he realized that
his expectation of proportionality across occasions was an over-
simplification: The relationship between two solutions obtained by
conventional factor analysis of correlation matrices would be more
complicated. In 1955, he did not see how to overcome this prob-
lem (Cattell and Cattell 1955), but it was subsequently resolved
by Meredith (1964), who pointed out that strict proportionality
could be obtained by use of covariances rather than correlations.
More recently, Cattell refers to continued work on the method,
which he now calls "confactor rotation."™ He reports encouraging
results with synthetic data, but has yet (as far as we know) to
report a successful application to real data.3

PARAFAC overcomes the problems that plagued Cattell in
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several ways. First, Cattell's idea is generalized from a method
of comparing separate factor analyses into a true three~mode
factor-analytic model. Second, the basic model is formulated in
terms of the direct fitting of profile data, and so avoids the
restriction to orthogonal axes implied by the indirect fitting case,
Finally, the indirect fitting case is formulated in terms of summed
cross-product or covariance matrices, overcoming the problem of
nonproportionality, which occurs with correlation matrices. Also,
there is an oblique axis generalization for indirect fitting (PARA-
FAC2; see Harshman 1972b), which has been applied successfully
to at least one data set (Terbeek and Harshman 1972). Despite
these modifications, however, the basic idea behind PARAFAC ig
still the insight by Cattell that a search for proportional profiles
across several nonequivalent two-way data sets would determine
the most empirically meaningful factor axes. Thus, the recent
success of PARAFAC with many kinds of real data is a confirma-
tion of what he has been proposing for more than thirty years,

Nature of the Intrinsic Axis Property
What is Unique?

Suppose we perform a PARAFAC-CANDECOMP three-way factor
analysis (or multidimensional scaling) of a set of matrices {X,}.
As described previously, we obtain a solution of the form

Xk = A DkB' + Ek' (5—15)

We now ask: Which characteristics of this representation are
unique? That is, among the alternative representations (of the
same structural form in the same number of dimensions) that
would fit the data as well, which characteristics must remain the
same, and which characteristics are free to vary?

It has been proven elsewhere (by Jennrich, reported in Harsh-
man 1970; and by Harshman 1972a; Kruskal 1976, 1977) that with
"adequate" data, the only alternative solutions involve changing
the order of columns and/or stepping all the entries in a given
column up or down by a constant multiplier. ("Adequate" data
will be defined below.) To express this algebraically, let an
alternative solution be represented as

Xe= AD, B+ Ep, (5-16)

where li is an_ alternative version of the factor-loading matrix A,
and similarly B and ISk are alternative versions of B and Dy,
respectively. The uniqueness or  intrinsic axis property of
PARAFAC-CANDECOMP insures that A can only differ from A by
a rearrangement of columns (which can be represented by post-
multiplying A by a permutation matrix P ) and/or a multiplicative
rescaling of its columns (which can_ be represented by postmulti-
plication of A by a diagonal matrix D,), which is compensated for
by an inverse rescaling of the columns of B and/or C. Similar
statements hold for the B and € matrices. (The permutation
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matrix P must both pre- and postmultiply Dy so that while the
order of the diagonal elements is changed, it remains diagonal.)
Thus, the alternative A, B, and Dy matrices must be related to
the corresponding "original" versions of these matrices as follows:

A = ABaP ’ é = Bﬁb P ’ bk: P‘DkﬁCP’ (5"17)

and since the diagonal of Sk is the kth row of é, we can also
write:

&=cD.P . (5-18)

In addition, since the effects of any internal rescalings (de-
scribed by the D matrices) must "cancel out," the D must conform
to the requirement that

B, D,D, = 1. (5-19)

These indeterminacies can be considered trivial because they
do not affect the interpretation of the solution. Geometrically,
the effect of the permutation matrix P is simply to "renumber" the
axes without moving them, and the effect of the rescaling ISa and
so forth is simply to stretch or contract the axis in one space,
with compensatory contraction or stretch of the corresponding
axis in the space of another mode. None of these changes affect
the orientation of the axes in any of the three spaces. Since it
is the orientation of axes that determines their meaning (by
determining the pattern of loadings or projections of points onto
the axes), the intrinsic axis property insures that the character-
istics crucial for interpretation of dimensions are uniquely deter-
mined as a consequence of simply minimizing the error of fit
(provided, as mentioned earlier, that the data are "adequate").

Although they do not affect interpretation, the indeterminacies
can be distracting when comparing different solutions; thus, they
are often removed by adopting simple conventions. The conven-
tion of ordering the factors from the largest to the smallest
variance-accounted-for will generally fix the columnar order, and
the convention of scaling two of the three loading matrices so that
each column has a mean-square of 1.0 will determine two of the
three matrices in (5-19). (Motivation for this second conven-
tion will be provided below when PARAFAC is compared to tradi-
tional two-way factor analysis.) The third D matrix will then be
determined by the requirement that the triple product of all three
internal rescalings be the identity matrix. To fix sign patterns,
dimensions in Modes C and A are reflected (multiplied by -1)
when needed so that their mean cubed value is positive, with
compensatory reflection(s) applied to Mode B.

Why is it Unique?

There are several perspectives from which the PARAFAC-
CANDECOMP intrinsic axis property can be explained: (a) in
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terms of the algebra; (b) in terms of the geometry; (c) in terms
of the added information used; and (d) as a function of "implicit
constraints" imposed.

Algebraic Perspective. The proofs of uniqueness (Jennrich, in
Harshman 1970; Harshman 1972a; Kruskal 1976, 1977) are too long
to recount here, but with the algebraic notation defined above,
we can quickly convey some idea of what is behind the unique-
ness, based on the approach taken in the Harshman (1972a)
proof.

First, let us recall the algebraic basis for the indeterminacy in
the two-way case. The rotation problem arises. because we can
start with any given factorial representation

X=AB"+E (5-20)

and generate an alternative representation by applying an arbi-
trary nonsingular linear transformation T to the loading matrix A ,
and the compensatory transformation T”~! to the "factor score"
matrix B, as follows:

A= AT, 8 =-8BT1, (5-21)

In the g-factor case, A is an n by g matrix whose columns give
the projections of the n variables onto the q factor axes. T is a
nonsingular g by g transformation matrix, the columns of which
give the projections of the original axes of A onto the new axes
of A, and so is an n by g matrix whose columns give the
projections of the variables onto the new axes.

It is easy to show that the resulting alternative representation
of X, that is,

X=AB +E, (5-22)
is equivalent to our original representation (5-20). Simply sub-

stitute from (5-21) into (5-22) to obtain:

X

(AT) (BT" )"+ E=A(TTHB" +E (5-23)

AB” +E .

In the three-way case, we can use a similar approach to
examine the question of permissible transformations of the A
matrices. Let us consider two alternative representations of a
given set of X, matrices, such as (5-15) and (5-16), again
defining the transformation generating the second set of factor
loadings and factor scores in general fashion, as in, (5-21). (We
will allow our alternative occasion-weight matrices, Dy, to be any
nonsingular diagonal matrices.)

By substituting from (5-21) into (5-16), we obtain the expres-
sion for X in terms of our original A and B matrices, and then
determine the conditions under which it is equivalent to (5-15).
The substitution of (5-21) into (5-16) vyields
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Xy = (AT) Dyg(B T-°1)- + E,
which, in general, simplifies to

Xe =A(T D, T1B” + E.
1f we define

He = TDeTL (5-24)
our expression becomes

Xy, = AHB” +E. (5-25)

The permissible T matrices—that is, the ones that produce alter-
native PARAFAC representations—are restricted to those for
which Hy is diagonal; otherwise, (5-25) will not have the appro-
priate PARAFAC form. Furthermore, Hi must equal D, if (5-25)
is to be wvalid.

Unlike the two-way case, we find that not all axis transforma-
tions T will work., If T is a general orthogonal or oblique trans-
formation, then Hj will not in general remain diagonal for differ-
ent Dy, as required by the PARAFAC model. In fact, it can be
proven that this will occur only if T is a diagonal or a permuta-
tion matrix, or some product of these_ (Harshman 1972a). This
corresponds to the case in which T = D,;P, so that the relation-
ship between A and A is as stated in (5-17).

It is easy to verify that when T has this form, the Xy repre-
sented by the alternative solution is equal to the original X,. By
substituting from (5-17) into the right-hand side of (5-16), we
obtain:

AbB.,B- =(AD,P)(P D D,P)(BD,P)" (5-26)

= AD, (PP (DB (PP (DB,B") . (5-27)

And because PP~ =1 for any permutation matrix P, these terms in
QJS—Z?) vaniosh. Further, since the diagonal matrices commute,

D,Ds=D,D,, and by using (5-19), we obtain:

Ab,B = AD(D,D.D,)B" = ADB" = X . (5-28)

If the foregoing discussion seems involved, it might be useful
to consider a simple algebraic analogy that makes the uniqueness
seem less surprising and which will also be useful when we con-
sider data "adequacy" below. PARAFAC-CANDECOMP performs
what might be thought of as the analog of using simultaneous
equations to obtain a unique solution: It performs simultaneous
factor analysis of several two-way matrices. While the equations
underlying a single two-way matrix are not sufficiently con-
strained to provide a unique solution, the PARAFAC-CANDECOMP
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equations used for the simultaneous factoring of a set of two-way
arrays do constitute a sufficiently constrained set of relations to
provide a unique solution, when the data are "adequate." To
borrow the example given in Harshman, Ladefoged, and Goldstein
(1977), the equation x + y = 20 has no unique solution, since an
infinite number of x,y pairs will satisfy the weak constraints
imposed by the specified relationship. Similarly, the matrix
equation AB” = X has no unique solution. However, if we re-
quire that our values of x and y also satisfy a second equation,
such as 2x + 3y = 55, then a unique solution is obtained. Like-
wise, if we require that the same loading matrix A satisfy two
different equations, A D;B~- =X, and AD,B~” =X,, then with
adequate data the A (and B, Dy matrices) become determined
uniquely, except for the trivial indeterminacies of columnar order
and scale noted above.

Geometric Perspective. Suppose we plotted the point configu-
rations for each of the two-way slices Xi of our three-way array,
but left out any axes. (These plots are easiest to visualize in a
two-dimensional case, so we might imagine that our plots are
based on the first two principal components of each slice.) When
the PARAFAC-CANDECOMP model is appropriate, we would ob-
serve a very similar configuration of points across the wvarious
slices. However, there would be certain systematic differences
between the plots. When we compared one plot to another, all
the points on one might be displaced outward from the origin
along a certain line by an amount proportional to their distance

from the origin along that line. This would correspond to a
"stretching" of the space in a certain direction. In other direc-
tions, the space might be "contracted." By comparing the sever-

al spaces, one can detect such stretching and contraction and
identify the directions along which the space is recurrently
stretched or contracted.

Now, to explain these systematic variations in the configura-
tions in terms of simple variations of a common set of factors, we
must select an orientation of factor axes in the spaces that "line
up with" the directions of stretch or contraction. Then, we can
account for the systematic displacements of the point locations
(the "stretches" or the configurations) as simply due to the
increase or decrease in the importance of particular factors. This
geometric interpretation bears a simple relation to the algebraic
representation: The A (or B ) matrix would describe the common
pattern of projections of points onto factor axes, and the Dg
matrix would give the stretches or contractions in the kth space;
that is, the rth diagonal cell of the D; matrix would describe the
proportion by which factor r was stretched on occasion k.

When one imagines looking at plots of two or more such
spaces, each resembling the others but stretched or contracted in
certain directions, it is easy to see how lining up the factor axes
with the directions of stretch will force a particular unique ori-
entation for the axes. Furthermore, to the extent that the axes
deviate from proper alignment with these directions of stretch,
the resulting factor solution will deviate from reproducing the
actual stretches in the configurations across different slices of
the three-way array, and so the goodness-of-fit will drop from its
maximum value. Thus, by simply maximizing the fit of the PARA-
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FAC—CANDECOMP model, one necessarily determines the axis
orientation, without any recourse to outside criteria such as
simple structure. )

Use of Richer Information. From both the geometric and
algebraic explanations, it becomes apparent that the PARAFAC-
CANDECOMP model takes advantage of the extra information
resent in a three-way array to determine the "true" factor axis
orientations. It is not surprising that proper use of this extra
information can resolve the rotational indeterminacy of two-way
factor analysis. Yet other three-way models, with access to the
same type of information, do not provide a unique orientation for
the factor axes because they do not use the information in the
same way. Tucker's three-way model, for example, allows repre-
sentations in which the axes can be oriented in any position, and
the Mode A axes can be oriented independently of the Mode B
axes, which in turn can be oriented independently of those in
Mode C. The model compensates for the effects of these varia-
tions by adopting a more complex representation of the relation-
ships among dimensions. Not only are there contributions from
the Mode A loadings of dimension one multiplied by the Mode B
and Mode C loadings for that dimension, but also contributions
from the Mode A loadings of dimension one multiplied by the Mode
B loadings of dimension two, times the Mode C loadings of dimen-
gion three, and so on for all possible combinations of dimensions
in the different modes. This model produces a family of more
complex representations that can generate the same patterns of
changes across the three-mode data set as the PARAFAC-CANDE-
COMP model (and which can generate more complex patterns, as
well). However, when the Tucker and PARAFAC models have
approximately the same goodness-of-fit, the PARAFAC repre-
sentation would probably be preferred because of its simplicity
and straightforward empirical interpretation. In fact, some
implementations of Tucker's model have methods of transforming
the solution so as to approximate PARAFAC-CANDECOMP-type
representations (see Kroonenberg and de Leeuw 1980).

Use of "Implicit Constraints.” 1t might be argued that fitting
the PARAFAC-CANDECOMP model is equivalent to imposing extra
constraints on the more general Tucker-type of representation.
(The exact form of the "constraints" that make the two models
equivalent will be discussed below.) From this perspective,
three-way analysis with a model "constrained" to optimize propor-
tional profile form is like two-way analysis with the solution
"constrained" to optimize simple structure or some other special
form. Using this analogy, one might argue that it is these extra
constraints of factor proportionality across levels of Mode C that
remove the rotational indeterminacy, just as "simple structure"
constraints remove the indeterminacy in the two-way case.

Even if one adopts this perspective, however, it is interesting
to note that the PARAFAC "constraints" do not specify anything
about the form of the factor-loading matrices A, B, or C. The
factors may be simple or complex in structure, and they may be
orthogonal or oblique (in the direct-fit case). PARAFAC-CANDE-
COMP does not specify preferred loading relationships within a
mode, as simple structure does, but rather constrains the way a
factor varies across different slices of the three-way array
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(e. Ay = ADy). We will argue below that the PARAFAC-CANDE-
COMP-type of "constraint" differs from other two- and three-way
constraints in that it is intrinsic to a plausible model of factor
variation, and that comparison of split-half solutions can be used
to test its appropriateness. Furthermore, if the model is found
to be appropriate, this result can be used to provide empirical
evidence in support of particular theoretical constructs being
inferred from, or tested by means of, the given solution.

When is it Unique?

Not all sets of three-way data contain the information necessary
to uniquely determine the orientation of factor axes; the data set
must be "adequate." If we think of three-way data as composed
of several two-way "slices," then the conditions of data adequacy
can be briefly summarized as follows: The slices must involve the
same set of factors and differ in the relative importance or con-
tribution of these factors.

Same Factors across Slices. All current three-way factor
analysis models (with the exception of Corballis and Traub 1970;
and Swaminathan, chapter 8) assume that there is a common set
of factors that generates data at all different levels of the three-
way array. The models only differ in terms of how the weighting
or pattern of combination of the factors is allowed to vary across
the different levels in order to account for systematic differences
between successive two-way arrays.

This assumption of a common set of factors may not always be
strictly appropriate. In a long-term Ilongitudinal study, for
example, the pattern of loadings on a given factor may shift
somewhat, because the meaning of test or personality items may
not be the same when administered to children as when adminis-
tered to adults, even if the underlying trait or process is the
same (Harshman and Berenbaum 1981). It is also possible that
the empirical entity represented by a particular factor will change
somewhat in "quality" or nature across time.

To take another example, suppose we are analyzing an array
of stimulus ratings, where each of several stimuli are rated on
each of several scales by several raters. The cognitive or per-
ceptual dimensions underlying the ratings may not have exactly
the same quality from one rater to another, even if they are
constant within a given rater across stimuli and rating scales.
Suppose two raters both use the dimension of "valuable-worth-
less." One rater may think of the dimension in a slightly dif-
ferent way than another, which would imply that one person's
pattern of factor loadings might differ from the other by more
than a simple proportional reweighting.

Nonetheless, the assumption of common factors but different
weighting or combination rules across the levels of the array is a
useful approximation that greatly reduces the number of parame-
ters in the solution and usually leads to an interpretable summary
account of what is going on. (For a successful application of
PARAFAC to lifespan longitudinal data, see Haan 1981,) Indeed,
the same kind of common factor assumption is basic to the use of
two-way factor analysis or multidimensional scaling.
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The PARAFAC-CANDECOMP model actually allows considerable
flexibility in the dimensional representation across levels, because
it does not insist that every factor be involved at every level of
the data. It is possible that some factors have zero loadings on
some variables, or on some people, or on some occasions. In
fact, one can imagine a complete change in the factor structure of
the slices over successive occasions, as one set of factors comes
to take on zero loadings and another begins to take on nonzero
loadings. The only "sameness" that must be assumed is the
qualitative sameness of a given factor across slices; that is, if a
factor is present on two or more occasions, it is assumed to have
the same pattern of factor loadings on those occasions, except
that it may be stepped up or down by the occasion weights.

Differences in Factor Importance across Slices. As Cattell
noted in the quote cited earlier, comparison of two-way arrays
that are merely replications of one another—differing only by
random sampling—will provide no added information over a single
two-way array; hence, it will not reduce the indeterminacy of the
solution. There must be systematic differences between at least
some of the slices of the three-way array. In particular, the
slices must differ in terms of relationships among variables, and
these differences must be attributable to shifts in the relative
importance of underlying factors. Furthermore, the pattern of
shifts must be distinct for each factor; if two factors shift in
importance in the same way across levels, they will not be
uniquely determined. In other words, each factor that is to be
uniquely recovered must have a pattern of effects in each mode
that is distinct from all other factors.

We can gain an intuitive understanding of the necessary condi-
tions for uniqueness by referring back to the same algebraic and
geometric analogies that we employed earlier.

Algebraic Interpretation. We have compared the simultaneous
factorization of several two-way arrays to the solution of simul-
taneous equations. As a simple example, we took the equations
x +y =20 and 2x + 3y = 55; in this case, there was only one
value of x and y that would satisfy both equations (namely,
x =5, y =15). However, if our second equation were 2x + 2y
= 40, there would be no unique solution. In order for x and y
to be determined uniquely, the ratio of the x coefficients in the
two equations must be different from the ratio of the y coeffi-
cients. Similarly, for two factors to be distinguished and their
loadings determined uniquely, there must be at least two levels of
Mode C for which the ratio of the coefficients for the first factor
differs from the ratio for the second factor. If two factors
always change by the same percentage across levels of Mode C,
then in the solution these two factors will not be uniquely deter-
mined.

Because all three modes have the same status in the basic
PARAFAC model (5-3), the requirement that factors have distinct
patterns of variation -applies in each mode. If two factors have
proportional loadings in any one of the three modes, but show
distinct loading patterns in the other two, then there will be a
family of possible solutions in which different linear combinations
of these two factors occur (for example, see Harshman 1970, 41).
(We note in passing that if +we factors have proportional loadings
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in two modes, they cease to be distinct factors; their contribution
is represented by a single factor that has loadings proportional to
theirs in the two modes where they were proportional, and has
loadings equal to a weighted sum of their loadings in the third
mode. The same thing happens if the two factors have propor-
tional loadings in all three modes.)

Geometric Interpretation. As we pointed out earlier, the
orientation of factor axes can be established geometrically by
comparing the configuration of points derived from different
two-way slices and determining the directions along which one
configuration of points is stretched relative to another. But such
comparisons will only be informative if the factors are stretched
by different amounts. If two axes were each stretched by the
same amount, we would observe only a uniform dilation of the
plane in which those axes lie; all interpoint distances—that is,
their projections in that plane—would be increased to the same
degree. Since such a uniform dilation would be produced by an
equal stretch of any set of axes in that plane, regardless of
orientation, we could not determine the correct orientation of the
two axes in that plane from a comparison of these two configura-
tions. In order to distinguish and uniquely orient these two
factors, we would have to compare other spaces (using other
slices of our three-way array) until we found two spaces for
which the factors in that plane did not increase or decrease by
the same proportion.

Partial Uniqueness. The geometric interpretation of the neces-
sary conditions for uniqueness permits us to easily grasp how the
uniqueness need not break down entirely if the conditions are not
met for all factors. Those factors that have distinct patterns of
changes across three modes will be uniquely determined, but
those that do not will show rotational indeterminacy within the
subspace that they span. For a concrete example, consider the
comparison of two three-dimensional spaces in which factors 1 and
2 each increase by 50%, but factor 3 increases by 75%. The
second space will look like one that is uniformly expanded by 50%
and then stretched by an additional 25% along one direction.
This extra stretch will allow us to identify the axis orientation for
factor 3. But the plane in which factors 1 and 2 reside is uni-
formly expanded, and so the axes can be rotated to any arbitrary
position within this plane and still be able to reproduce the
relationship between the two spaces.

Theoretically, a partial breakdown of uniqueness should only
create ambiguities of interpretation within the subspace(s)
spanned by the inadequately distinct factors. In practice, how-
ever, if major factors are nonunique, it may seem as though no
interpretable solution can be obtained with a given data set.
This is because PARAFAC solutions are usually obtained in low
dimensionalities first, to determine if any sensible dimensions can
be extracted, before proceeding to higher dimensionalities. If
nonunique factors account for a substantial proportion of the
variance, these factors may emerge in the Ilower-dimensional
solutions, producing uninterpretable results that discourage
attempts at further analysis. '

When several factors are nonunique, it is commonly because
they do not change across one of the three modes. Such factors
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can be removed from the data by appropriate PARAFAC prepro-
cessing (by centering across the mode in which they are con-
stant). This allows the remaining factors to be analyzed success-
ly.

fulﬁ}ﬁrinimum Conditions for Uniqueness. Successive proofs of
uniqueness have established successively less stringent require-
ments for determination of unique axes. Jennrich's original proof
(in Harshman 1970) showed that g factors could be determined
uniquely if the A, B, and C matrices all have rank g. But
empirical results (Harshman 1970, 39-44) suggested that this
condition was stronger than necessary. Also, Cattell and Cattell
(1955) had presented an algorithm for orthogonal rotation of two
factor-pattern matrices to proportional profiles that would provide
a solution for any number of factors. In 1972, a PARAFAC
uniqueness proof was formulated that showed that if the factor-
loading matrices for two modes had rank g, the third mode need
only have two levels (and hence a maximum rank of 2), even if
there were more than two factors in the solution (Harshman
1972a). Uniqueness was obtained so long as each factor had a
distinct ratio of change across the two levels. Although it was
not stressed at the time, the proof also implied that even easier
conditions obtained when there were more than two levels. In
that case, not all factors need show distinct amounts of change
across any particular pair of levels; some factors might be distin-
guished by means of distinct changes between levels 1 and 2,
others by distinct changes between levels 2 and 4, and so on.

Some surprising uniqueness properties of three-way arrays
have been discovered empirically, one of which was reported in
the original PARAFAC monograph (Harshman 1970, 44). It was
found that more factors could be uniquely determined by a three-
way array than would seem possible from a conventional two-way
perspective. In particular, it was found that more factors could
be determined uniquely than there were levels in any of the three
modes of the data array! In the example cited, 10 factors with
random loadings were used to construct an 8 x 8 x 8 data array,
and PARAFAC correctly and uniquely recovered these 10 factors
upon analysis of the array. Since no two-way slice of such an
array could have more than rank 8, the unique recovery of 10
factors showed the remarkable degree to which the extra richness
of relationships in a three-way array permits recovery of informa-
tion that would not be possible in a two-way array.

Kruskal, intrigued by this empirical finding, undertook a
rigorous investigation of the mathematical issues of uniqueness
and generalized rank of three-way arrays. His results (Kruskal
1976, 1977) constitute by far the most complete treatment of this
question to date. Among other things, he shows mathematically
why 10 and even 11 PARAFAC factors can be uniquely determined
by an 8 x 8 x 8 array. He proves a number of important theo-
rems concerning uniqueness and generalized rank. However, in
this chapter, we will sketch only one of his basic results con-
cerning uniqueness.

To lay the groundwork for Kruskal's result, we first restate a
familiar fact concerning rank and then, in parallel terms, explain
a stronger property related to rank. Consider the n x g matrix
A. The rank of A is equal to ry if the columns are linearly inde-



162 /| RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

pendent in at least one set of r, columns from A, and if there is
no set of (r, + 1) columns from A that consists of linearly inde-
pendent columns. Now let us consider a stronger property,
which Kruskal defines but does not name, but which we shall call
k-rank ("Kruskal-rank"). A has k-rank of k, if the columns are
linearly independent in every set of k; columns from A, and if
there is at least one set of (k, + 1) columns of A that includes
linearly dependent columns. For example, if A has six columns,
all of which are linearly independent except one (which is a linear
combination of three others), then A has rank of five but k-rank
of three.

A PARAFAC solution consists of three factor-loading matrices,
each with its corresponding k-rank. We have used k; to repre-
sent the k-rank of A; in a similar fashion, we can let k, repre-
sent the k-rank of B and k., the k-rank of C. Kruskal shows
that if the factor-loading matrices A, B, and C provide an exact
g-factor PARAFAC representation of the three-way array X, this
representation is unique (up to trivial permutations and rescal-
ings, as discussed earlier) whenever

(ks + kp + ko) 2 (2g + 2) . (5-29)

(Most often, what we called X will in fact be X, the g-dimensional
fitted part of a data array of higher dimensionality.)

Not only does Kruskal's result prove that it is possible to
extract more factors than variables and still obtain a unique
solution, but it also confirms another surprising property that
was indicated by earlier results obtained with synthetic data:
PARAFAC can uniquely recover factors that are linearly depend-
ent on other factors. In unpublished research, we have found
that if a factor is a linear combination of three other factors in
two modes, but has linearly independent patterns of change in a
third mode, this factor can be uniquely recovered by PARAFAC
analysis. However, if it is only a linear combination of two other
factors, then it will not be uniquely recovered. While Kruskal's
articles do not make this consequence explicit, his result implies
that this will happen and further implies an even stronger result.
It follows from Kruskal's theorems that a factor can be a linear
combination of other factors in all three modes and still be
uniquely recovered, provided that it is a combination of a suffi-
cient number of other factors. (A factor that is a linear combi-
nation of three other factors in all three modes cannot be unique-
ly recovered, but one that is a linear combination of four other
factors can be uniquely recovered.) In further synthetic data
tests, we have recently verified that uniqueness holds under
these conditions as well.

Aside from their mathematical interest, such results have
potential bearing on the question of "higher-order" factors, which
are sometimes thought of as linear combinations of "lower-order"
factors. They are also relevant to the question of an oblique
axis generalization of the indirect fitting model (PARAFAC2),
since data computed from oblique axes can be reformulated as
data generated by orthogonal axes plus appropriate linearly
dependent extra dimensions (Harshman 1973). The surprising
strength of the intrinsic axis property suggests that all the
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interesting characteristics and potentials of PARAFAC-CANDE-
COMP trilinear representation of three-way arrays have yet to be

uncovered.

Empiricall Inferential Significance of the Intrinsic Axis Property

We have argued that the intrinsic axis property of PARAFAC-
CANDECOMP gives the factors obtained by this method a special
empirical significance. But some authors have questioned this,
pointing out that other matrix decomposition methods, such as
principal components, can also be interpreted as providing a
unique set of dimensions (for instance, see Schénemann 1972).
In fact, even two-way factor extraction followed by analytic
rotation (using Varimax or some similar criterion) can be inter-
preted as a two-step procedure that provides a unique solution.
Why, then, should the "unique axes" provided by PARAFAC-
CANDECOMP be any more meaningful than the "unique axes"
provided by these other methods? We suggest that there are two
basic reasons: (a) empirical plausibility; and (b) empirical con-
firmability.

Plausibility of Assumptions

The first basic consideration is the empirical plausibility of the
assumptions required to obtain a unique solution. With intrinsic
axis methods, one makes no additional assumptions beyond the
appropriateness of a particular three-way factor model. Since for
this model different axis orientations yield different fit wvalues,
the "correct" orientation of factor axes is established as an
intrinsic part of fitting the model to data. With the other meth-
ods, in addition to the plausibility of the factor model, one must
also consider the plausibility of the additional assumptions in-
volved in selecting axis orientation; as noted earlier, these as-
sumptions have little or no empirical rationale in many applica-
tions.

In principal components analyses, for example, the axis loca-
tions are fixed by the additional requirement that the first dimen-
sion explain the maximum amount of variance possible and similar-
ly that each successive dimension explain as much remaining
variance as possible. But if there are several factors underlying
a given data set, maximizing the variance explained by the first
dimension usually makes the first dimension represent a combina-
tion of the underlying influences operating in the situation,
rather than any one of them. It is not likely that real influences
or processes will correspond to axes which have the successive
variance-maximizing characteristics assumed by principal compo-
nents analysis. Likewise, as mnoted earlier, the assumptions
underlying simple structure rotation are often debatable, particu-
larly in the many common applications of factor analysis in which
the variables are not selected with an eye to eventual factor
rotation but are determined by other characteristics of the study.
With such data, the variables are likely to be factorially complex
and concentrated in a particular domain in a way inconsistent with
simple structure.
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It would be misleading, however, to say that PARAFAC in-
volves no new assumptions. The assumptions that determine axis
orientation are external to the factor model in the two-way case
and intrinsic to it in the PARAFAC-CANDECOMP three-way case,
As was pointed out earlier, the direct application of PARAFAC to
profile data requires the assumption of system variation, although
indirect fitting by means of covariance analysis allows weaker
assumptions. We argue that these assumptions are "natural" or
empirically plausible for many types of three-way data (so much
so that they constitute a straightforward generalization of the
factor model to three-way arrays). They are also, in a certain
sense, less restricting; there are no assumptions about the
pattern of factor loadings within a given occasion but only as-
sumptions about the form of factor variation between occasions.
Thus, the factors can have simple or complex structure and can
be -orthogonal or oblique (in the profile data case), whichever
best fits the data.

Confirmability

Since PARAFAC-CANDECOMP is not a completely general three-
way model, we need to make an argument for its appropriateness
when applying it to a given data set. When a PARAFAC solution
is to be used as a starting point for scientific inferences, this

argument needs to be particularly persuasive. Hopefully, it
would consist of more than pointing out the conceptual plausibility
of the model in a particular application. It would consist of

empirical evidence that two essential preconditions are fulfilled:
(a) the PARAFAC-CANDECOMP model is appropriate for these
data (at least as a first approximation); and (b) the pattern of
factor variation within the data is adequate to determine reliably
the orientation of axes. Only then can the orientation of axes in
the solution be taken as substantial evidence for or against
specific empirical hypotheses. (In the same sense, factors deter-
mined by rotation of a two-way analysis to some target orientation
or to the position that maximizes some "simplicity" function do not
provide substantial evidence for any empirical hypothesis until
one is persuaded of the likely appropriateness of the rotation
criterion.)

Fortunately, one can test whether the two essential precondi-
tions are fulfilled. It is an important consequence of the intrinsic
axis property that analyses can be performed in such a way as to
provide confirmatory evidence for both the appropriateness (or
partial appropriateness) of the model and the adequacy of the
data to determine a unique axis orientation. As far as we are
aware, it is not generally possible to obtain comparable internal
evidence for the validity of axes when their orientation is deter-
mined by other methods, such as simple structure or principal
components.

Empirical Tests of PARAFAC Axes. The simplest and most
common approach to testing a given PARAFAC solution has been
to use a split-half or double-split-half technique. Suppose we
wish to demonstrate that the pattern of factor variation across all
three modes of a given data set is appropriate and adequate to
determine a stable orientation of factor axes. If we split our data
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set into two halve:s (for example, by randomly assigning the
subjects to two different subsamples) and perform a separate
PARAFAC analysis of. each half, we can compare the solutions to
assess whether or not the necessary pattern of three-way varia-
tion was present in the .data. If the factors did not show ade-
quate proportional changes in relative importance across levels of
Mode C (as well as A and B), then the same set of axes will not
be obtained in the two solutions. Instead, arbitrary orientations
of factor axes will be obtained, and these will differ from one
split-half to the other. If certain factors are well determined,
but other are not, this too will be revealed. Thus, the observa-
tion of similar factors in two different split-halves provides
confirmatory evidence that the data contains enough systematic
variance of the appropriate kind to determine a unique, stable set
of factor axes.

The split-half procedure is an approximate test of stability,
but the results obtained will depend to some extent on the partic-
ular random split that is used for the test. More sophisticated
procedures allow one to minimize this dependence on a particular
split. The simplest approach is to use a double-split-half proce-
dure. "Orthogonal" splits can be generated by dividing the data
into four subsamples—call these S;, S», S3, and Sy—and defining
the two split-half comparisons as follows: Split One is (S + S3)
versus (S3 + Sy), and Split Two is (S; + S3) versus (S, + Sy).
With such a procedure, an accidental inequality between the
halves of one split is likely to be rectified in the other orthogonal
split. Validation of a given dimension in either of the two or-
thogonal splits is sufficient to demonstrate its "reality."

More sophisticated tests are possible using resampling methods,
such as "jackknifing" (Mosteller and Tukey 1977; chapter 8) and
"bootstrapping" (Efron 1982). In these methods, one takes
multiple repeated samples from the original data set and performs
independent analyses of these samples. By examining the varia-
tion in the solutions that result, inferences can be made about
the reliability of different aspects of the solution. A brief dis-
cussion of these techniques can be found in Gifi (1981, section
12) and a very simple introduction to bootstrapping is given in
Diaconis and Efron (1983). Weinberg, Carroll, and Cohen (1983)
have recently applied these methods successfully to INDSCAL
solutions.

It is also possible to perform significance tests for particular
structural characteristics in three-way data by applying the
methodology of permutation and randomization tests (Edgington
1969, 1980). For example, one can test whether there is signifi-
cant "system variation" in a three-way array by proceeding as
follows: Fit a PARAFAC model in g dimensions and note the
goodness-of-fit value (Stress or r-squared). Then randomly
permute the data observations across levels of Mode C but within
the same levels of Modes A and B (permuting the values of sub-
script k, but keeping the / and | subscripts unchanged). By
applying a different random permutation within each Mode C
"tube" of the data (a different permutation of the k for each j,j
pair), we can "scramble" the systematic variation across the third
mode while preserving the systematic variation across Modes A
and B, The resulting data will still contain g factors, but they
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will not show the systematic variation across Mode C necessary to
determine a reliable unique solution. If the null hypothesis of ngo
Mode C system variation is true, then the original data should not
differ systematically from these permuted data sets. If the
alternate hypothesis of system wvariation is true, the fit of the
PARAFAC model to the original data should be better than to the
permuted data.

Suppose we perform the permutation process 19 times and fit
the g-factor PARAFAC model to each of the permuted data sets.
We then rank the 20 fit values (19 permuted plus one nonper-
muted). If there is no system variation, the fit for the unper-
muted data is equally likely to be at any of the 20 possible
ranks. Thus, if the fit value obtained for all 19 permuted data
sets is less than that for the original nonpermuted data, we have
observed a ranking that would happen only one time out of 20
under the null hypothesis. Thus, we can reject at the .05 level
the null hypothesis of no system.variation; there appears to be
systematic variation across Mode C that is fit by the PARAFAC
model. (Similar applications of permutation tests to multilinear
models are described in Harshman, Green, Wind, and Lundy 1982;
Harshman and Reddon 1983; Hubert 1983).

No Similar Tests for Two-Way Solutions. Note the contrast
between intrinsic axis solutions and principal components or
simple structure solutions. With either of these latter methods,
the finding of consistent axis orientations across two split-halves
(or by other means, such as the bootstrap) does not constitute
evidence for their empirical validity. Similar axis orientations
necessarily occur, so long as the configurations of points in the
factor spaces are similar across split-halves, since these two-way
methods determine axis orientation by finding directions in the
configuration that maximize some simplicity or variance criterion.
Indeed, so long as the split-half configurations are similar, any
arbitrary rotation principle based on relations of axes to points in
the space (for instance, a "most-complex-structure" criterion)
would show similar results in the two split-halves. Obviously, no
evidence for the correctness of a particular rotation criterion is

provided by such a replication. For intrinsic axis methods,
however, a consistent configuration is not sufficient to ensure
consistent axis orientations. In each split-half there must be

systematic stretches and contractions of the configuration as one
proceeds across levels of the third mode, and these stretches
must be in consistent directions in the two split-halves. Thus,
replication of an intrinsic axis solution demonstrates the reliable
presence of those characteristics of the data postulated by the
three-way model and required to orient factor axes. Hence, in
some sense, it validates the criterion used for orienting axes.
Cattell (1978) and others have sometimes argued for the con-
firmability of simple structure rotation. They have suggested
that the occurrence of clear simple structure in the rotated
solution will provide evidence for the "reality" of the hyperplanes
and thus the appropriateness of seeking simple structure in the
first place. While there is some logic to this argument, the
conditions under which it might actually be persuasive seem quite
limited. The presence of "clear hyperplanes," with many near-
zero loadings on each factor, may often be an artifact of how the
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variables were selected (for example, if they were selected in
clusters of related items) and may not indicate any structure in
nature. But even if we could obtain "neutral" or representative
selections of variables, there is little distributional or Monte Carlo
data on the likelihood of obtaining various degrees of simplicity
tby chance" when the variables are selected "randomly." (How-
ever, see Cattell 1978, appendix A.6.) Furthermore, it is not
clear how to go about getting better data of this kind, since such
Monte Carlo work would very likely have to be based on question-
able assumptions concerning distributions of variables and of
factor loadings on variables. Thus, although there might be a
theoretical argument for the confirmability of simple structure,
based on clarity of hyperplanes when the variables are selected in
a certain way, this approach is much more difficult to apply in
practice than the one for confirmability of intrinsic axis solutions
by split-half or related methods. Consequently, the evidence
provided by split-half confirmation of an intrinsic axis solution is
usually much stronger.

Empirical Implications of Confirmation

Split-half or bootstrap confirmation of intrinsic axis factors has
empirical significance beyond simply verifying that the model was
(at least partly) appropriate and the data adequate. By demon-
strating the occurrence of a particular kind of systematic varia-
tion within the data, it presents us with a fact that is hard to
explain, except in terms of the conceptual framework that under-
lies the proportional profiles idea (that is, in terms of variation
of contributions of "empirical unities" of the sort conceptualized
by the PARAFAC three-way factor model).

To put it geometrically, suppose separate factor analyses of
individual slices of a three-way array reveal a series of parallel
configurations in which variables show basically the same relation-
ships, but in which the points in some configurations are dis-
placed outward from the origin in a particular direction by an
amount proportional to their distance from the origin and con-
tracted inward in other directions in a similar proportional way.
Suppose, in other words, that the configurations show the sort of
coordinated shifts of points describable as systematic stretches
and contractions, as postulated by the PARAFAC-CANDECOMP
model. This systematic pattern of relationships constitutes a
striking empirical fact about the data that is very hard to explain
except as the result of variations in the strength of a few under-
lying influences or processes that affect the relationships among
variables. The systematic displacement of points in a configura-
tion along a certain direction seems to imply some common influ-
ence on the several variables that get displaced, a common influ-
ence that has increased or decreased in magnitude from one
configuration to the next. In other words, there is an empirical
reality that corresponds (at least to some extent) to the abstract
mathematical "factor" oriented along the direction of stretch.

Inductive versus Deductive Use of Factor Analysis. PARAFAC
and related intrinsic axis methods significantly strengthen the
inductive or hypothesis generating ability of factor analysis.
When split-half testing (or similar methods, such as bootstrap-
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ping) confirms a set of dimensions, one can proceed with consid-
erably stronger confidence to the construction of empirical hy-
potheses based on these dimensions. However, the significance of
the split-half evidence can be both inductive and deductive. In
one sense, the appeal to split-half methods is itself a test of a
hypothesis; that is, in each half, one generates a hypothesis
about the orientation of axes and tests it by replication in the
other half, However, PARAFAC can also be used in a purely
deductive mode to test hypotheses generated by other means,
such as theory concerning configurations and axis orientations. .
In this- mode, it will usually differ from other "deductive" or °
hypothesis-testing applications of factor analysis in that the test
would not involve rotation-to-target to see how close a given
. matrix can be approximated; instead, the solution would be com-
pared to the theoretical matrix without rotation (but possibly with
rescaling of columns) to see how close both the configurational
part of the hypothesis and the axis orientation part of the hy-
pothesis agree. with the data.

The configuration and axis orientation aspects of theory can be
tested separately, however. If the fit value does not decrease
much when the PARAFAC solution is rotated from the observed
position to the position closest to the theoretical hypothesis, and
if the configuration provides a good match to theory, then the
evidence against the axes predicted by theory might be consid-
ered weak. However, if a PARAFAC solution in several different
data sets shows an axis orientation that diverges from theory in a
consistent manner, then the theory would be cast into doubt even
if the theoretical orientation of axes had only slightly poorer fit.
This is because the theory would presumably be unable to account
for the consistency of the divergent PARAFAC results.

Limitations on Empirical Interpretation. Replication of intrinsic
axis solutions—across split-halves or different experiments
—implies that something meaningful and systematic is going on
that can, at least in part, be captured by the PARAFAC-CANDE-
COMP model. But we must remember, of course, that this evi-
dence does not imply that the model is perfectly appropriate, just
that it captures enough variance to be a generalizable approxi-
mation to a more complex world. As noted earlier, for example,
the model's assumption that common factors are present at  the
different levels of the data may not always be correct. However,
the nature of the model is such that the axes established by such
an approximation are likely to retain empirical meaning, even
when the reality is considerably more complex.

When the reality is too complex for such an approximation to
capture the bulk of the systematic variance, analysis of both real
and simulated data suggests that the PARAFAC model will be
much more likely to give degenerate solutions, with uninter-
pretable highly correlated dimensions, than misleading interpret-
able ones. And when these degenerate solutions arise, there are
ways of constraining the PARAFAC solution so that a meaningful
subset of the variance can often be captured and interpreted.
With much more complex data, one might want to go to a more
general model, such as Tucker's three-mode model, but one then
loses the intrinsic axis property. To compensate for this loss, a
constrained PARAFAC solution might be attractive as a supple-
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ment; it could provide an intrinsic axis reference point to aid in
interpretation and rotation of the Tucker solution. Another
intermediate approach is to rotate Tucker's core matrix to approx-
imate diagonal form (McCallum 1976; Cohen 1974; Kroonenberg

1981b).

COMPARISON WITH TUCKER'S AND OTHER MODELS
Comparison with Tucker's Three-Mode Model
Tucker's Model "T3"

Tucker was the first to extend factor analysis to three-way
arrays (Tucker 1963, 1964, 1966), and his model is still the basic
reference point to which all other three-way procedures are
compared. It is a very general model and incorporates most of
the other three-way models as special cases. Kroonenberg and de
Leeuw (1980) distinguish two versions of the model: (a) Tucker's
original version, which reduces dimensionality of all three modes;
and (b) a variant, which only reduces dimensionality in two
modes (that is, it does not reduce the dimensionality of Mode C).
They call the first model "T3" and the second "T2." We will
adopt this terminology and concentrate our initial discussion on
T3.

Our objective in this discussion is to compare and contrast the
general T3 model and PARAFAC-CANDECOMP. For more details
on T3 and its applications, the reader is referred to the works
by Tucker (cited above) and to other chapters in this volume,
including those by Bloxom and Kroonenberg.

Tucker's T3 in Scalar Notation. If Xjjx is an entry in a
three-way data array, the model T3 can be written in scalar
notation as follows:

92 49p dc
Xijk = ) zairbjscktgrst . (5-30)
r=1 s=1 t=1

Here the a, b, and ¢ coefficients have the same meaning as in the -
PARAFAC model (equation [5-3]); they are the factor loadings or
weights for Modes A, B, and C, respectively. Tucker calls the
small three-way array of grs: coefficients the "core matrix." The
g coefficients describe the sizes of interactions among factors
across modes, as will be explained below. Instead of a single
summation, there is a triple summation that runs over all combina-
tions of entries in the three modes. The number of factors in
one mode does not necessarily equal the number in another, and
so in (5-30), g, is used to represent the number of factors in
Mode A, gp, the number in Mode B, and g, the number in Mode
C.

Since we have already discussed PARAFAC in some detail, we
begin our discussion of T3 by noting the basic characteristics
that the two models share. First, they are both designed primar-
ily for direct fitting of the data matrix rather than indirect
fitting of covariances, although, like PARAFAC-CANDECOMP, T3
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can be applied to covariances to perform indirect factor analysis
or to scalar products in order to perform multidimensional scalin
(for example, see Tucker 1972). Second, both T3 and PARAFAC-
CANDECOMP extend the idea of proportional changes in factor
contributions to include the third mode; the Mode C weights are
analogous to Mode A and B weights in that they simply multiply
the contributions of a given factor by a coefficient representing
the importance of that factor at a particular level of the given
mode. Third, both T3 and PARAFAC-CANDECOMP are even-
handed with respect to the role of different modes; all modes
have the same formal properties—none has a preferred or special
status.

There are, however, five main differences between Tucker's
model and PARAFAC. The first is conceptual; the other four are
algebraic and follow from the first one:

a. T3 is based on a different conception of "factor" than PARA-
FAC, although reconciliation is possible, as we shall see
below.

b. In T3, all between-mode combinations of loadings are permit-
ted, not only aj1b;1Ck1 but a;1bj3ck2, and so forth; hence,
each factor in Mode A potentially "interacts with" every one
of the factors in Modes B and C, in all possible combinations;
similarly, all factor combinations are possible for the other
modes.

c. T3 incorporates a fourth set of coefficients, the ¢g,s+, which
describe the size of the factor "interactions" across modes;
hence, T3 is a quadrilinear rather than trilinear model.

d. T3 allows the number of factors in Mode A (the number of
columns of A) to differ from the number of factors in Mode
B, which in turn may differ from the number in Mode C.

e. T3 does not have the intrinsic axis property but instead has
a greater transformational indeterminacy than two-way factor
analysis.

Differences in the Conceptual Model. As noted above, the
Tucker T3 model was derived from a different basic conceptual
idea of "factor" than that used by PARAFAC. Briefly, the
difference is that a PARAFAC factor is more global than a T3
factor. For PARAFAC, a factor represents an empirical entity,
process, or influence that is observed as a result of the situation
being measured, rather than as a result of any particular mode of
data classification or measurement. Thus, a single PARAFAC
factor would be expected to have influence across the levels of all
three modes of measurement. In other words, a PARAFAC factor
is not "in a mode" but in a situation itself, with influences on or
relationships with each of the three modes. In contrast, a T3
factor is conceptualized as an aspect, characteristic, or idealized
type of level of a given mode. From Tucker's perspective, it is
not the factors by themselves that generate variation in the data
but rather the interaction of factors, that is, the interaction of
particular aspects (factors) of Mode A with particular aspects
(factors) of Modes B and C.

The distinction may be clarified by an example. Suppose we
have a set of "semantic differential" data, a 25 x 30 x 200 array
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consisting of ratings of 25 stimuli on 30 rating scales, as made by
200 raters. From the PARAFAC perspective, the factors that we
are seeking are global "dimensions of affective meaning." In the
terms used by Osgood, Suci, and Tannenbaum (1957), these
semantic dimensions might correspond to "Evaluation," "Potency,"
and "Activity." Such dimensions are not "in" any of the modes
but are thought to be basic to the nature of affective meaning
and are thus a natural part of the data-generating situation;
through the particular stimulus-rating procedure, these global
dimensions have patterns of relative influence or importance
(given by loadings) for the several levels of each of the data
modes. Thus, the first column of the Mode A loading matrix
might describe the relationship between "Evaluation" and each of
the stimuli (that is, which stimuli were perceived as strongly
"good" or "had"). The first column of B would then describe the
relationship between "Evaluation" and the rating scales (that is,
which rating scales were strongly expressive of "goodness" or
thadness"). Finally, the Mode C loadings would show which
raters stressed evaluative aspects strongly in making their rat-
ings.

gFrom Tucker's perspective, the semantic differential rating
scale data is described differently. Just as each original data
value is the result of the interaction of a particular rater with a
particular stimulus and a particular rating scale, so the underly-
ing patterns in the data are described as the result of interac-
tions of features of stimuli, aspects of rating scales, and traits of
raters. The objective of three-mode factor analysis is to discover
those few different features or types of the stimuli (the Mode A
factors), kinds of components of the rating scales (the Mode B
factors), and traits or types of raters (the Mode C factors) that
permit an adequate description of the patterns underlying the
observed data variation. Tucker would call these factors "ideal-
ized" stimuli, "idealized" rating scales, and "idealized" raters.
The core matrix G gives the pattern of interactions among these
idealized entities .and hence might be thought of as a miniature
idealized image of the original data set.

A T3 factor-loading matrix for stimuli would then describe how
the patterns for each actual stimulus can be approximated by
some linear combination of the patterns for these idealized stimuli,
implicitly telling how much the stimulus partakes of each of the
idealized stimulus features. Likewise, the factor loadings for
scales describe how the pattern of scores for each rating scale
can be represented as some weighted linear combination of the
idealized scale characteristics; similarly, each rater would be
represented as some combination of the idealized raters or traits.
When a given rater makes a rating, each of his idealized traits
reacts to the various features (idealized stimulus components) in
the particular stimulus and to the characteristics of the particular
rating scale (the mixture of idealized scales in the actual scale) to
produce the rating.

Tucker's conception of "factor" is not the same as the conven-
tional notion most commonly used in two-way factor analysis.
Thus, while PARAFAC reduces to two-way factor analysis when
there is only one level to Mode C, this is not true of T3, unless
the core is an identity matrix. This point is made particularly
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clear when one reads the Levin (1965) explication of the Tucker
model.

Resulting Algebraic Differences. It is easy to see how these
two contrasting notions of "factor" lead to the algebraic differ-
ences between T3 and PARAFAC. For T3, the Mode A factors
are different in kind from the Mode B and Mode C factors, each
arising from a different source; thus, there is no reason to
require the same number of factors in each mode. However, for
PARAFAC, if a factor is present in the situation, it is reflected
in all three modes; hence, the dimensionality of the three modes
should be the same (except when a factor fails to vary or to vary
independently in a given mode—see below). For T3, interactions
between all factors of one mode and all factors of another is what
generates the data variance. Therefore, computation of all combi-
nations of loadings across modes and the use of a core matrix to
weight these combinations is natural and essential. But for
PARAFAC-type factors, such interaction between modes does not
have any meaningful interpretation and hence is not a part of the
model. (However, an interpretation of the core matrix in slightly
different terms is possible, as will be explained below.)

Lack of Uniqueness. Because of the complexity of relations
permitted by the core matrix, the Tucker three-mode model
permits free rotation or linear transformation of any three of its
four sets of component parameters, with no loss of fit to the data
(provided the compensatory transformation is applied to the
fourth set of parameters). This means, for example, that each of
the three loading matrices can be subjected to an arbitrary non-
singular linear transformation, and the inverses of these transfor-
mations can all be absorbed into the core matrix. Even system-
variation data, which has only one PARAFAC representation, can
be represented by T3 in terms of many alternative sets of fac-
tors, because each alternative set also has a different pattern of
interactions between modes.

Since the T3 model allows a far greater family of possible
solutions than were available for two-way factor analysis, it
places even stronger demands on the user for intelligent applica-
tion of rotation or transformation criteria; one might, for exam-
ple, use simple structure when appropriate, or target rotation, or
even rotation to transform T3 into a simpler model, perhaps based
on some external theory (as in Dunn and Harshman 1982). Such
"freedom of rotation" can prove useful for exploration purposes,
but many investigators regret the loss of the empirical information
which would have been provided by the intrinsic axis property.
As a compromise, some programs that fit the Tucker model include
options to approximate the simpler PARAFAC-CANDECOMP model
by a special rotation to approximately "diagonalize" the core
matrix and thus perhaps allow some of the information about
factors provided by intrinsic axis methods to be recovered (see
below).

Both PARAFAC and T3 models seem to make sense. Both can
be applied to the same data and yield useful insights. Are they
really, then, as different as they seem? As we shall see, the two
models can be interpreted in such a way as to make them much
more closely related. We will first see how the PARAFAC model
can be considered as a special case of the Tucker T3 model and
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how in this case the interpretations can also be parallel. We will
then look at the reverse relationship, constructing the T3 model
as a special case of PARAFAC-CANDECOMP. Finally, a particular
formulation of the T3 model in matrix terms permits it to be
interpreted in terms of "global" or PARAFAC-like factors that
vary in a more complex fashion than provided for in the PARA-
FAC-CANDECOMP model.

PARAFAC-CANDECOMP as a Special Case of T3 and Vice Versa

Embedding PARAFAC-CANDECOMP in T3. 1If we start with the T3
model but eliminate multiple interactions of factors across modes,
we obtain a special case of T3 that is structurally equivalent to
PARAFAC-CANDECOMP. This can be accomplished by simply
requiring that the core matrix elements grs+ be zero except when
r=s =1, in which case we specify that they are equal to 1.0.
(This equivalence is well known and has been pointed out by
many authors, including Carroll and Chang 1970; Harshman 1970;
Tucker 1972.) These restrictions turn the core matrix into a
three-way analog of an identity matrix, with zeros in all cells
except for the "superdiagonal" cells running diagonally through
the body of the cube from the upper left cell of the front slice of
the cube to the lower right cell in the back slice.

Now, suppose instead that we fit the more general T3 model
but after suitable rotation find that the core matrix has large
entries on the superdiagonal and small entries elsewhere. How
would we interpret this solution in terms of Tucker's conception
of "“factor"? Suppose for the moment that we are analyzing the
semantic differential data described earlier and that three large
superdiagonal cells are identified, so the core matrix is 3 x 3 x 3,
A Tucker interpretation might proceed as follows: There are three
different basic factors in the rating scale mode, which, under

suitable rotation, correspond to "Evaluation," "Activity," and
"Potency" (that is, all the rating scales employing highly evalua-
tive terms load on the Evaluation factor, and so forth). There

are also three major features of the stimuli. In the rotation that
"diagonalizes" the core matrix, these three stimulus mode factors
seem to group the stimuli that are highly evaluative into one
group, those that are highly active into another, and those that
are highly potent into a third, with stimuli showing a mixture of
several of these characteristics loading on several of the factors.
Thus, it might be appropriate to give the same names to the
three stimulus dimensions as to the rating scale dimensions.

It is also significant (so the interpretation might proceed) that
the Evaluation feature of the rating scales interacts almost exclu-
sively with the "good-bad" feature of the stimuli and very little
with the Potency or Activity aspects of the stimuli (a consequence

of the superdiagonal core matrix). Likewise, the Activity and
Potency factors of the scale mode interact mainly with the cor-
responding characteristics of the stimulus mode. Finally, the

patterns of ratings of different individuals seem to vary mainly in
terms of their relative emphasis on the three factors of the other
two modes. In such a state of affairs, it would seem plausible to
suggest that Evaluation, Activity, and Potency are "global" or
general cognitive-affective dimensions, determined perhaps by
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culture or human psychology, but in any case more general than
any particular mode of measurement by which the rating data
were collected. It appears that the same cognitive-affective
dimensions influenced raters' perceptions of both the rating scales
and the stimuli. In this sense, we might say that the first factor
of Mode A is the same factor -as the first factor of Modes B and C
and likewise for the second and third factors. We would conclude
that a common set of three factors appears in all three modes of
the Tucker analysis, thus arriving at a very PARAFAC-like
interpretation of the data.

Embedding T3 in PARAFAC-CANDECOMP: Method I. 1t is in-
structive to see how the structure and interpretive framework of
the two models can be made to correspond in a complementary way
by representing a general T3 data structure in PARAFAC-CANDE-
COMP terms. In the one-dimensional case, this correspondence is
trivial, since both models are directly equivalent. In the mul-
tidimensional case, however, we need some way to represent in
the PARAFAC-CANDECOMP model all the interactions provided for
by the T3 core matrix. The most direct but cumbersome way to
do this is to provide a distinct PARAFAC factor for each additive
component in the T3 model, that is, for the additive contribution
corresponding to each cell in the core matrix."

For simplicity, let us consider the case in which T3 has two
factors in each mode—and thus a 2 x 2 x 2 core matrix. To
represent data with this T3 structure in PARAFAC-CANDECOMP
terms, we could construct a PARAFAC model with eight factors,
one to represent each possible interaction of a T3 Mode A factor
with a T3 Mode B factor and a T3 Mode C factor. The PARAFAC
factor representing a given interaction would have loadings in
each mode corresponding to the T3 factor in that mode that was
involved in the interaction (see Figure 5-1). For example, the
PARAFAC factor corresponding to the gj;;2 term would have
loadings in Mode A corresponding to the second Mode A factor of
T3, loadings in Mode B corresponding to the first Mode B factor
of T3, and loadings in Mode C corresponding to the second Mode
C factor of T3. In order that these interactions have the correct
relative sizes, one mode, say Mode C, should have each set of
factor loadings multiplied by the corresponding core matrix ¢
value. There would appear to be considerable redundancy in
such a PARAFAC representation. In this example, the same set
of Mode A loadings would appear four times, each time linked with
a different set of Mode B and/or C loadings; similar redundancies
would occur in the other two modes (Figure 5-1).

What might we make of such a solution if it were obtained with
real data? Let us assume that the two factors involved are
Activity and Evaluation. Our first PARAFAC factor might have
Activity loadings in both Modes A and B and so we would inter-
pret it in the normal PARAFAC fashion as a factor representing
the connotative dimension of activity. But the second factor
might have Activity loadings in Mode A and Evaluation loadings in
Mode B, representing the contribution of the gji3; cell of the T3
core matrix. We would be forced to conclude that somehow the
raters were adding a component to their responses on evaluative
scales that was determined by the activity feature of the stimuli.
While at first this might seem peculiar, on reflection, we might
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Figure 5-1. Carroll's Method of Transforming a Tucker Repre-

sentation into the Corresponding PARAFAC-CANDECOMP Repre-
sentation
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conclude that for these raters, activity itself might seem good.
Thus, this factor, expressing an Activity-Evaluation interaction,
might be said to arise from a nonindependence of the two con-
cepts in the minds of the raters. Similar interpretations could be
made about the other '"interaction" factors; variations between
subjects in the weights assigned to these factors would corre-
spond to variations in overlap of Activity and Evaluation. Note
that here we are still talking of "global" factors of the PARAFAC
kind but interpreting the interaction components as arising from
dependent effects of these global factors—a kind of nonortho-
gonality.

Since PARAFAC already permits nonorthogonality of factors, it
might seem puzzling that additional factors would be needed to
express such -overlap of meaning. If activity has overtones of
goodness in the minds of our raters, then this could be repre-
sented by incorporating some loadings on evaluative scales into
the basic Activity dimension. Such a nonorthogonality in the
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basic factor, however, would produce the same pattern of corre-
lated overtones for all subjects. The addition of interaction
factors allows individual differences in the degree of obliqueness,
as determined by the Mode C weights. Tucker introduces this
kind of interpretation of core matrix interaction terms, for exam-
ple, when discussing multidimensional scaling applications of T3
(Tucker 1972). The nondiagonal cells of the first frontal plane of
the core matrix allow the model to represent one pattern of non-
orthogonality between dimensions. Likewise, the nondiagonal cells
of the second plane represent a different pattern of nonorthogo-
nality. Each subject's individual pattern of obliqueness is some
combination of these core patterns. It is with such reinter-
pretations that we can bridge the gap between the two models.

By embedding T3 in PARAFAC, it is possible to describe T3 as
a "special case" of the PARAFAC-CANDECOMP model, one in
which the factors do not all have distinct loading patterns within
a given mode but rather repeat their loading patterns to produce
all possible combinations of factors across the three modes.
Unfortunately, our chance of obtaining such a recognizable pat-
tern in a PARAFAC solution with real data is practically nil
(unless we employ special rotation methods), because the axis
orientation would not be unique. Recall that uniqueness requires
distinct patterns of factor wvariation across the levels of each
mode. In the PARAFAC solution that represents T3, there are
two sets of four factors in each mode that have identical loading
patterns (although these are different groups of four in each
mode) . Clearly, the requirement that factors show distinct
patterns of variation is grossly violated, and so this kind of
PARAFAC representation of data with general T3 structure will
show as much indeterminacy as the T3 representation.

While Method I provides the most straightforward way of
embedding T3 in PARAFAC-CANDECOMP, there are other ways
that require fewer PARAFAC dimensions. However, the less
mathematically inclined reader can skip the next two sections and
go directly to the section "Reconciliation of T3 and PARAFAC
Perspective" with no loss of continuity.

Simplifying the Representation: Method [lI. There are more
compact ways of embedding T3 in PARAFAC-CANDECOMP. A
first simplification allows us’ to reduce the number of PARAFAC
dimensions needed from one per cell of the core to one per cell of
the smallest face of the core. This is possible because, as noted
earlier, any two factors that share the identical pattern of load-
ings in two of three modes can be combined into a single factor.
Our initial method of embedding T3 in PARAFAC-CANDECOMP
systematically creates factors with identical loading patterns in
two modes. All factors, for example, that correspond to the
interaction of a particular Mode A factor with a particular Mode B
factor differ only in the Mode C loadings. Such factors can be
combined so that a more compact representation is obtained, with
one PARAFAC factor for each combination of Mode A and B fac-
tors from T3, rather than one for each combination of Mode A, B,
and C factors.

Suppose we take two factors with identical loading patterns in
Modes A and B but different patterns in Mode C. These factors
can be combined as follows:
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aitbjic k19111 + ai1bj1Ck29112
(5-31)
= aj1bj1(c k19111 + Ck2g112) .

In terms of our example, the two factors that have the Evaluation

attern of Mode A and B loadings can be combined into one, and
the two that have the Activity pattern of Mode A and B loadings
can also be combined into one. Similarly, the two factors with
Activity loadings in Mode A and Evaluation loadings in Mode B (or
vice versa) can be combined. The result is a four-dimensional
PARAFAC representation, and a new set of Mode C weights.

In general, we can use this technique to reduce the PARAFAC
representation of an arbitrary ga by g» by gc T3 model from
gagpdc PARAFAC dimensions to gagp PARAFAC dimensions, or
(by collapsing across Mode A or B) gbhqc or gaqgc dimensions if
this product is smaller. This procedure will work regardless of
the number of levels of the mode that collapses. For example, if
Mode C has the highest dimensionality, then we can define our
representation as

qdc
ajubjuCku = airbis (] CktGrst) (5-32)
=1
with
u=r+ (s - 13 ,

where u is the index of the PARAFAC factor, r, s, and t are
indices of the T3 factors in Modes A, B, and C, respectively,
and there is a distinct u for each a,b combination. (An alterna-
tive way of demonstrating that no more than g, times gp dimen-
sions are needed is given below, where a matrix formulation of
the model is considered.) :

Still More Compact Representations: Method IlI. By simplify-
ing the core matrix before applying (5-32), it is often possible to
achieve an even more condensed PARAFAC representation of a T3
structure. This simplification, interestingly enough, can be
accomplished by applying PARAFAC to the core itself. To sum-
marize briefly, by using enough PARAFAC dimensions, it is
always possible to find an exact PARAFAC representation of an
arbitrary core. In general this will require more PARAFAC
factors than Tucker factors—and thus more PARAFAC factors
than rows or columns of the core matrix (see Kruskal 1976,
1977)—but still relatively few dimensions compared to the number
required by Method II. This exact-fitting PARAFAC solution
provides a reexpression of the core in terms of a set of diagonal
matrices that are pre- and postmultiplied by particular transfor-
mations (in other words, in terms of an equation of the form
[5-4]). These transformations are then absorbed into the Tucker
A and B matrices to produce the new T3 representation. Because
of its intrinsic interest, as well as its relationship to previous
proposals for simplifying the T3 core (McCallum 1976; Carroll and
Pruzansky 1979; Cohen 1974), this procedure is described in more
detail in appendix 5-2.

Method III often compresses our PARAFAC representation of a
given T3 structure into considerably fewer dimensions than even
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Method II requires. For example, it is possible to represent
two-dimensional T3 data by means of a 2- or 3-factor PARAFAC
model.® In the case of larger core matrices, our Monte Carlg
tests indicate that the number of PARAFAC dimensions needed tq
embed the T3 model is considerably less than the g,qp upper
bound give by Method II. In the 3 x 3 x 3 case, it appears that
the PARAFAC model can be reduced from 9 to 5 factors. In the
2 x 3 x 4 case, the representation can be reduced from 6 to 4
factors. Examples such as this demonstrate that often many of
the cells in the core matrix are "nonessential" in the sense that
they could be constrained to be zero with no loss in fit.

Because one can transform a T3 representation into a PARA-
FAC representation by applying PARAFAC to the core, as de-
scribed in appendix 5-2, the question of how many PARAFAC
dimensions are required to embed a given T3 model reduces to the
question of how many PARAFAC dimensions are required to repre-
sent its core matrix. In the most general case, the core matrix
is simply an arbitrary three-way array, and so the number of
PARAFAC dimensions needed to represent T3 data that has g,
gdp, and g, dimensions in Modes A, B, and C, respectively, is
formally equivalent to the generalized or trilinear rank of a g, by
gp by g, three-way array. The issue of trilinear rank is consid-
ered in some detail by Kruskal (1976, 1977).6

Reconciliation of T3 and PARAFAC Perspective
T3 in Matrix Notation. A useful alternative perspective on T3

can be gained by considering the following matrix representation
of the model '

Xy, = AHEgB” + Ef, (5-33)
where
dc
Hy = z Cre Ge. (5-34)

t=1

In (5-33), Xk is the kth slice of the three-way data array, A is
an n by g, matrix of Mode A factor loadings, B is an m by g,
matrix of Mode B factor loadings, and Hy is a g, by gp matrix
giving the relationships between the Mode A and Mode B factors
for the kth level of Mode C (for instance, for the kth person if
Mode C represents individuals). For each k, the Hj; matrix is
obtained by taking a weighted sum of g, slices of the core matrix
G, with the weights given by the kth row of the Mode C factor-
loading matrix.’

Let us return once again to our example of the rating scale
data. On the one hand, (5-33) can be interpreted in terms of
"factors" in the sense meant by Tucker—as aspects, features, or
idealized levels of a given mode. Treating our semantic differen-
tial example from this perspective, Hjy gives the kth individual's
pattern of interactions of the stimulus features with the rating
scale attributes. On the other hand, it is possible to reinterpret
(5-33) in terms of "factors" in the sense meant by PARAFAC—as
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global influences acting in the situation and expressed in all three
modes; in our example, the factors would be basic semantic or
affective features, with Mode A giving their relation to the stimuli
and Mode B giving their relation to the rating scales. In this
second interpretation, H; would describe the way that the kth
individual modified the use of.)or shifted the overtones associated
with, these global factors.

In order to reinterpret Hy as describing individual differences
in use of global dimensions, we need to decide how to apply it to
the A and B matrices. In terms of our example, we need to
decide whether H, describes individual differences in the percep-
tions of the stimuli, in the semantic dimensions underlying the
scales, or in both.

Individual Differences in Mode A. One possibility is to apply
the Hj solely to the stimulus mode (which in our example we
assume to be Mode A), and so conceptualize the model as follows:

Xy = (A Hg) B’ (5-35)

or

Xy = AgB” . (5-36)

This approach attributes the variations in patterns of judgments
across different raters to wvariations in the perceptions of the
stimuli. The perceptual dimensions would be assumed constant
—an unchanging pattern of rating-scale loadings would reflect a
fixed notion of Evaluation, Activity, and Potency—but the degree
to which these properties were perceived as characteristic of
different stimuli would change from subject to subject.

Note, however, that the changes in perceived stimulus proper-
ties would only be of certain particular kinds. The model cannot
represent the fact that an individual point might be the only one
to shift position relative to other points in one rater's space.
The Hy produces a linear transformation of the stimulus space
and so describes coordinated changes in the positions of all the
stimuli. In fact, in the T3 model (as contrasted with the T2
model, to be discussed briefly below), the patterns of individual
variations are even more restricted: Every H, is made up of a
weighted combination of slices Gt of the core matrix, G, with each
slice describing a characteristic pattern of transformation of the
stimulus space. Thus, individual raters differ only in the degree
to which they incorporate one or another of these few basic
patterns of individual variation into their personal perception of
the stimuli.

As with PARAFAC-CANDECOMP, the stimulus space for subject
k might be stretched or contracted along the axes, but in addi-
tion it might also be subjected to rotation, shear, or other linear
transformations. If, for example, the space were compressed in
such a way that certain "active" stimuli were located closer to the
"good" ones and no longer at right angles to them, then we might
Interpret the solution as indicating that for person k those stimuli
were perceived as having a mixture of activity and goodness, not
simply activity alone.

Individual Differences in Mode B. Now suppose that we group
terms in the opposite way and interpret the model as
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1}

Xy = A (HgB") (5-37)
or

X, = AB% . (5-38)

With this grouping, the model .could be interpreted as describing
differences in the nature of the semantic dimensions across indi-
viduals. For example, the kth rater might have an Activity
dimension (column two of his By) that was a linear combination of
the basic Activity dimension (described by column two of B) and
Evaluation (column one of B ); this could be interpreted as indi-
cating that the notions of activity and goodness were not as
independent for this person as they were in the group space
described by B.8

Individual Differences in Both Modes. The third possible
interpretation of (5-33) involves splitting Hyg into two or three
pieces. Here Hjy is considered to be the product of several
matrices that represent transformations of both the A and B
matrices and possibly also a diagonal matrix of weights on the
dimensions. For example, we can let

Hk = Tak T‘bk or Hk = Tak Dk T ’bk ’ (5—39)
so that
Xe = (ATa)(The B?) or Xpe = (ATak)Dk (T B7)

Here we would interpret the differences in judgments made by
rater k as due to shifts both in the perception of the stimuli and
in the overtones of the fundamental semantic dimensions used in
making the evaluations. The more detailed representation would
insert a D, matrix of dimension weights between T_,, and T %, to
represent general dimension weights for occasion k. Alternative-
ly, we can view the dimensions as fixed except for differences in
weight or salience and the interactions among the dimensions as
changing across levels of Mode C. In this case, the Hjy matrix
would be written

Hk = DkaDk ’ (5-40)
so that
Xe = (A Dk) Ty (DkB’)

This latter approach is sometimes taken when X; is symmetric,
such as when the data are covariances. Then, T, expresses
obliqueness of axes and D, dimension weights or saliences.

We can see that by reinterpreting the H; matrices, we can
formulate an alternative conceptual framework for Tucker's three-
way algebraic model, one which involves the same sort of global
factors as underlie the conceptual framework for PARAFAC. That
is, loadings for a given column in all three modes can be inter-
preted as referring to the same factor. The greater complexities
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that can be represented by the Tucker model are seen as refer-
ring to more complex patterns of individual variations. In par-
ticular, these complexities are seen as referring to changes across
individuals in the perceived grouping of stimuli (5-36), in the
overtone content of semantic dimensions (5-38), or both (5-39).
Alternatively, the variations can be attributed to individual
differences in the interactions or obliqueness among dimensions
(5-40).

Different Dimensionality in Modes A and B. While reconcilia-
tion of Tucker and PARAFAC schemes of interpretation seems
feasible if there are the same number of factors in each of the
three modes, what can we make of the T3 models in which there
are a different number of factors in one mode compared to anoth-
er? At first this would seem to represent a serious block to
application of our scheme of reinterpretation. There is, however,
a simple solution: Situations in which T3 modes have differing
dimensionality correspond to situations in which two or more
PARAFAC factors do not show linearly independent patterns of
variation in a particular mode but are independent in the other
two modes. In the PARAFAC representation of this situation, all
three factor-loading matrices will have the same number of col-
umns, but the rank of the matrices would differ. With T3,
however, all loading matrices are by convention required to have
full column rank; thus, T3 would typically represent this situa-
tion by having fewer factors in some modes than others. With
fallible data, true linear dependence would normally not occur,
even if we filled out the T3 loading matrices for all three modes
to the dimensionality of the mode with the most factors; but
sometimes when this is attempted, the eigenvalues corresponding
to the last few factors are very small in certain modes and so the
corresponding dimensions are typically considered to make trivial
contributions in those modes. By convention, the factors are
eliminated from the modes to which they do not make substantial
independent contributions.

Suppose that for a particular stimulus set, two factors happen
to show a more or less identical pattern of variation across stimuli
(levels of Mode A), although they are clearly distinguished in
terms of their weights on rating scales and people. If we adopt
the usual practice of requiring that all the Tucker factor-loading
matrices A, B, and C have full column rank, then a Tucker
solution will be obtained in which the Mode A loading matrix has
one less dimension than Modes B and C. The "missing" linearly
dependent factor loadings in Mode A will be recreated, however,
if the rectangular Hy matrix is used to transform the Mode A
loadings, as in (5-36). There will be an extra column of elements
in Hy that will describe how to regenerate the "missing" loadings
in Mode A; that is, ( AHg) or Ay will have as many columns as B
and will contain the column of linearly dependent loadings needed
to go with the additional column of the Mode B and C factor-
loading matrices. By thinking of T3 as in (5-36), for example,
we can maintain our alternative interpretation in terms of "global"
PARAFAC-like dimensions, even when the dimensionality of the
formal T3 model varies across modes.

Transforming the Core to Approximate PARAFAC-CANDECOMP.
Once the T3 model is interpreted in a way consistent with the
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PARAFAC notion of "factor," it becomes possible to use propor-
tional profiles to help deal with the transformational indeterminacy
of the T3 solution. By rotating the solution into an approxima-
tion of PARAFAC form, we might be able to simplify the interpre-
tation of the T3 dimensions, while testing the feasibility of going
to a strict PARAFAC analysis (by observing how much the best
approximation still diverged from a true superdiagonal core ma-
trix). If a T3 solution can be rotated or transformed so that the
core is very close to being diagonal (or superdiagonal), then the
resulting axes can be interpreted in terms of the PARAFAC-
CANDECOMP model. An approximate intrinsic axis property will
apply, as well. In such a case, if the deviations from "pure"
PARAFAC-CANDECOMP structure are attributed to chance (the
off-diagonal core cells are considered to be small deviations from
zero due to fitting error in the data), then it might be appropri-
ate to replace the T3 solution with a true least-squares PARA-
FAC-CANDECOMP solution. If, on the other hand, there are a
few large off-diagonal cells in the core matrix, even after trans-
formation to achieve closest approximation to diagonal form, then
by studying the core, the analyst may be able to gain further
insight into the patterns of individual difference in the data,
(Current research on "degenerate" PARAFAC solutions, discussed
in chapter 6, suggests that strict minimization of all off-diagonal
core cells may not lead to the most interpretable rotation when
certain kinds of T3 structure are present. It may be better to
retain a few large off-diagonal cells when this will cause the
others to be much closer to zero and/or the loadings matrices to
be less correlated and more interpretable. Such a rotation of the
T3 core might produce factor loadings that correspond to an
orthogonally constrained PARAFAC analysis—see chapter 6.)

This type of cross-model comparison was originally suggested
in the slightly more restricted context of three-way multidimen-
sional scaling; Harshman (1972b) suggested transformation of
IDIOSCAL (symmetric T2) to maximize agreement with PARAFAC2,
and Cohen (1974) suggested transformation of T3 or T2 for
comparison with INDSCAL. The first successful demonstration of
this idea was by Cohen (1974), who implemented it by the ingeni-
ous method of applying CANDECOMP directly to the core matrix to
obtain an approximation in the same dimensionality as the Tucker
solution, then using the factor-loading matrices of the CANDE-
COMP solution to transform the Tucker dimensions. Similar
procedures involving transformation of the Tucker core to IND-
SCAL form were subsequently suggested by McCallum (1976), and
Carroll, Pruzansky, and Kruskal (1980). The latter authors
developed an application of their linearly constrained three-way
model CANDELINC, which turned out to be precisely equivalent to
Cohen's procedure and suggested that the INDSCAL-like solution
that they could obtain in this way would be useful as a starting
position for true least-squares INDSCAL analysis (see Carroll and
Pruzansky 1979). Kroonenberg and de Leeuw (1980) (see also
Kroonenberg 1981b) have developed a program called TUCKALSZ
for fitting the T2 model to data by the method of alternating
least-squares. They have incorporated into this procedure an
option for approximate diagonalization of the core matrix, based
on an algorithm described by de Leeuw and Pruzansky (1978).



The PARAFAC Model / 183
The "Extended Core" Tucker Model T2

Tucker's original model places fairly strong constraints on the
patterns of individual differences in use of dimensions. The Hj
for each level of Mode C must be a weighted combination of the
glices of the core matrix. A more general model would be to allow
each individual to have an arbitrary Hi. This was suggested in
the context of analysis of symmetric scalar product data for MDS
by Carroll and Chang (1970), who subsequently called the model
IDIOSCAL, for IDIOsyncratic SCALing model (Carroll and Chang
1972). The same model, given a slightly different interpretation,
was independently proposed by Jennrich (1972). Tucker (1972)
incorporated the possibility for this kind of generality by allowing
the third dimension of the core matrix to become "extended" until
it had as many levels as there were levels of Mode C of the data
array itself. The extended core also was useful in interpretation
of Tucker's model in the context of MDS. The Tucker model with
this extended core is called T2 by Kroonenberg and de Leeuw
(1980) because it provides a reduced-dimensionality representation
for only two of the three modes of the data. The T2 algebraic
model would be given by (5-33), in which each Hyg would be one
slice (the kth frontal plane) of the core.

Most of the points that were made above about the T3 model
also apply to T2. The same alternative interpretations of "factor"
can be applied, and the same reinterpretations of the model can
be used to place it and PARAFAC-CANDECOMP in a common
conceptual framework. Interestingly, much the same limits on
dimensionality also apply. The earlier demonstration that it is
possible to combine all the dimensions that have the same Mode A
and Mode B loadings but different Mode C loadings applies re-
gardless of the number of levels of Mode C. Hence, an upper
bound for the number of PARAFAC dimensions needed to "embed"
or represent a given T2 structure is still the product of the two
smaller ways of the core matrix—in this case, g, q,—regardless of
the number of distinct levels of Mode C. For example, a T2
model with two dimensions in Mode A, three in Mode B, and 80 in
Mode C (for 80 subjects) would be equivalent to a six-dimensional
PARAFAC model or a T3 model with a 2 x 3 x 6-dimensional core.

Comparison with Other Three-Way Models

Several other three-way models have been proposed, but space
limitations prevent us from discussing them in any detail here.
Table 5-1 presents a summary of one family of related models for
three-way profile data. Some of these models have been proposed
and programmed by one or more groups of investigators, others
have been proposed but not yet incorporated into a working
program, and still others are included simply for comparison or
theoretical interest. The models range from the most general,
which allows a completely different set of dimensions for each
two-way slice of the three-way array (Tl-1), to the most re-
stricted, which assumes exactly the same structure in all slices
(T1-9). Tucker's T3 and T2 and the PARAFAC-CANDECOMP
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TABLE 5-1. Some Three-Way Models for Profile Data

(T1-1) lk = ﬁkgkg-k Independent spaces
(T1-2) lk = Agkg:k or AE:k Unconstrained object variation (equals two-
mode analysis of the "string out" data)
(T1-3) lk = A(B + yk)’ ("Continuous") Object variation
(T1-4) lk = Agk(g + yk)’ Mixed variation
(T1-5) lk = Aﬂkg: Tucker's T2
9
- = 4 1

(T1-6) X Al z cktgt)g_ Tucker's T3

t=1
(11-7) X.¢ = AD HD B~ PARAFAC3
(T1-8) X, = ADB” PARAFACT
(T1-9) lk = AB” Two-mode analysis of "collapsed" (averaged)

data

models will be found at intermediate positions. This table pro-
vides an idea of some of the different wvariations of three-way
factor analysis that might be of interest. It focuses on versions
of the models suitable for direct fitting of profile data and does
not include special forms that arise from indirect fitting.

Corballis' Three-Way Model

A different kind of three-way model not included in Table 5-1 has
been presented by Corballis (1973) as an extension of a factor-
analytic model for change proposed by Corballis and Traub
(1970). It is defined in terms of correlation matrices rather than
profile data matrices. Even though it has been neglected in the
three-mode literature, it is mentioned here because it provides an
interesting complement to the more familiar models given in Table
5-1. It has the form

Ckk* = Ag Dggr Ak* + Egpx (5—41)

where Cii* is the matrix of correlations or covariances between
the values obtained for a set of variables when they were meas-
ured on a set of cases on occasion k and the values for the same
variables on the same cases but measured on occasion k*, Ay is
the factor-loading matrix for occasion k; Ag* is the corresponding
factor-loading matrix for occasion k*; and Dygg* is a diagonal
matrix of weights, the product of the diagonal scaling matrices
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for occasions k and k*, Thus the model considers both the
matrices of covariances within occasions (when k = k*) and be-
tween occasions (when k # k*) . Note that this model differs from
any we have considered previously in that the factor-loading
matrix A is subscripted. The model incorporates the idea that
the precise pattern of factor loadings and factor scores for a
given factor might change between occasions (such as when a
given test is not measuring exactly the same thing when adminis-
tered to subjects at different ages). These changes are not
assumed to be proportional or to have any other particular form;
in fact, they are not, in general, representable as a linear trans-
formation of some common A. In this respect, the model is more
flexible than any other three-way models that we have consid-
ed.

. It might be thought that this model reduces to the overly
general model given in the first line of Table 5-1, where there is
no constraint on how the dimensions for one value of k (one
occasion or jindividual) are related to those for another. This is
not true, however, because (5-41) requires an assumption that
each factor is orthogonal to all other different factors not only
within occasions, but also between occasions. This requirement
has the further consequence that all patterns of factor change
across occasions must also be orthogonal.

Corballis and Traub (1970) and Corballis (1973) point out that
the strong orthogonality assumptions of this model are generally
sufficient to insure a unique solution for all the A loading
matrices and for the other parameters, as well. Is this unique-
ness another possible source of empirically meaningful axes?
Once again, we would suggest that one's confidence in the ori-
entation of axes provided by any procedure is a function of the
plausibility of the assumptions invoked to obtain the wunique
solution. To many investigators, the orthogonality assumptions
might seem too strong to be plausible. But it is an interesting
question: How plausible are they as an approximation, and how
distorted would the recovered factors be when the "true" factors
are moderately correlated? This is presumably a problem for a
Monte Carlo study. Corballis (1973) cautions us that "a potential
difficulty is that the factor rotations specified by the model may
not make sense, [that is], the factors may be uninterpretable."
To our knowledge, there have been no applications of this model
other than the demonstration application in the Corballis article
(1973).

PARAFAC3 and PARAFAC2

It might be useful to note briefly some related intermediate ver-
sions of three-way factor-analytic models that form a bridge
between PARAFAC1 and T3 or that have been considered else-
where as interesting variants. However, this somewhat technical
discussion is not essential for understanding the subsequent
sections of this article; therefore, the less theoretically inclined
reader may wish to skip to the discussion of ALSCOMP, below.
PARAFAC3 in General Form. In Table 5-1, a model called
PARAFAC3 is placed between T3 and PARAFAC1l. If we consider
this model in its most general form, where the left-hand matrix of
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weights Dy need not be the same as the right-hand matrix Dy,
PARAFAC3 can be interpreted as a four-mode or fourway model,
Applied to the analysis of cross-product or covariance matrices, it
resembles the Corballis (1973) model in that it fits both the
between-occasion and within-occasion cross-products. In this
application, X, would represent the matrix (X% X;), in other
words, the matrix of cross-products between data on occasions k
and f. In this application, PARAFAC3 differs from Corballis'
model in that it assumes constant A and B matrices rather than
ones that vary across occasions. It also incorporates a central
matrix H, which allows for oblique relationships among dimen-
sions.

The PARAFAC3 model is not restricted to analysis of cross-
products or covariances; it can be applied to rectangular matrices
of raw-score or profile data or to square matrices of asymmetric
relationships. Such data might be obtained in some kind of
four-way experiment. For example, X, might represent the
ratings of stimulus K in context or situation f, and all X, matri-
ces would contain ratings made by the same common set of raters
(represented by the rows of X) on a common set of rating scales
(represented by the columns of X ). Or, it might be applied to
transition matrices, such as a matrix whose rows and columns
correspond to the same categories of automobiles and in which the
cell x;; represents the trade-in of an automobile in category i for
a new one in category j. The matrix X, might then represent
the number of people involved in such transitions who are trading
in their old automobiles manufactured in year Kk for new auto-
mobiles manufactured in year f. In this application, the H matrix
would represent an asymmetric pattern of transitions between
categories. Such an application would be a four-way example of
DEDICOM (see below).

The PARAFAC3 model has not been incorporated into a com-
puter program, but it has been subjected to some mathematical
analysis. An important reason for interest in this model is that it
has been proven (Harshman 1981) that PARAFAC3 has the intrin-
sic axis property under reasonable conditions of data adequacy
that are similar, in some respects, to those for PARAFAC1l. It
provides a wunique solution without requiring the orthogonality
assumptions of the Corballis model.

PARAFAC3 in Three-Mode Form. 1If we take the special case
of PARAFAC3, where kK = f, we obtain a three-mode model with
intermediate generality between T3 and PARAFACI1. This version
can be interpreted in the same terms as the general Tucker T3
model, in which there are "interactions" between the Mode A and
Mode B dimensions; but in PARAFAC3, these interactions are
fixed and described for all subjects by H. It can also be rein-
terpreted in terms of more "global" dimensions by the methods
noted earlier for T3, In either interpretation, individual differ-
ences between subjects (or whatever sources of variation are
represented by the levels of Mode C) are of the simpler kind
assumed by all the PARAFAC =series models: Differences in the
importance or salience of the dimensions for different levels of
Mode C. The weights defining the significance or contribution of
dimensions on the kth occasion are given by the diagonal elements
of the diagonal matrices Dy.
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PARAFAC2 and DEDICOM. When the three-mode version of
PARAFAC3 is applied to symmetric matrices of scalar products or
covariances, we obtain the PARAFAC2 model. This model is
useful for oblique axis indirect fitting of PARAFAC and as a
multidimensional scaling model that allows individual differences in
the saliences of oblique dimensions (Harshman 1972b). While
PARAFAC2 is more general than the PARAFACI model for covari-
ances, since the indirectly fit axes can be oblique, it requires a
constant set of angles between dimensions across levels of Mode C
(for instance, across occasions) and thus is more restricted than
T3.
PARAFAC?2 involves an H that is square and symmetric. (The
symmetry is not required, however.) When PARAFAC3 or PARA-
FAC2 is applied to a set of square n by n matrices describing
relationships among n things—such as stimulus confusion matrices
(see Dawson and Harshman 1983), matrices describing the number
of people making telephone calls or perhaps migrating from the
row place to the column place, the number of people switching
from the row product to the column product, and so forth—we
obtain the three-way DEDICOM models (see Harshman, Green,
Wind, and Lundy 1982; Harshman 1978). If we allow H to be
asymmetric but require B = A, we obtain the three-way "single
domain" DEDICOM model; if we relax this requirement, we obtain
the three-way "dual domain" model.

Despite its intermediate position in Table 5-1, PARAFAC2 (and
the three-mode case of PARAFAC3) is not easily obtained as a
special case of T3. This is because PARAFACZ requires that the
individuals' Hg matrices be obtained by weighting a fixed cosine
matrix. In other words,

Hy = Dgk WDy (5—-42)

where Dy is a diagonal matrix giving the weights of the dimen-
sions for the Kth individual (or on the Kth occasion). It is not
obvious that a set of matrices of this kind can be obtained by
taking different linear combinations of a few slices of any core
matrix. Nonetheless, because any "extended" T2 core can be
replaced by a moderate-sized diagonal or superdiagonal T3 core
(as shown earlier), it is possible to represent PARAFAC2 and
PARAFAC3 in terms of a T3 model. First, we set up a T2 model
for which the slices of the extended core matrix have the form
given in (5-42); then, we "collapse" the extended core to a T3
core with at most q;qp slices.

Given that such a T3 representation is possible for any PARA-
FAC2 and PARAFAC3 structure, should we call these models
special cases of T3? This may straining the sense of "special
case." Even though there exist T3 solutions in moderately higher
dimensionalities that would provide the same fitted values Xijk as
these PARAFAC models, one cannot obtain these models from T3
(or T2 or IDIOSCAL) by simply constraining certain terms to be
zero, or fixed, or equal, and so forth. In order to find an
"extended core" that has the special form required by PARAFAC2
and PARAFAC3, one must solve what is really the same problem
as fitting these PARAFAC models to any other data array. Thus,
it is perhaps better to treat PARAFAC2 and PARAFAC3 as sep-
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arate models with their own interesting properties, such as in-
trinsic axes in certain circumstances (Harshman 1981).

The ALSCOMP Procedure

The Basic Idea of ALSCOMP: Nonmetric PARAFAC-CANDECOMP,
Sands and Young (1980) have developed an algorithm and associ-
ated computer program called ALSCOMP (for Alternating Least-
Squares COMPonents analysis). ALSCOMP is not really a new
structural model but rather a new and more flexible estimation
procedure, one that allows nonmetric fitting of the basic PARA-
FAC-CANDECOMP model (2-3) and (2-4) to a wide class of data.
With their procedure, the data can be treated as ratio, interval,
ordinal, or nominal scale, or some combination of these, and can
be considered as "subject conditional," or "variable conditional,"
or the like (that is, having a measurement scale that differs from
subject to subject, variable to variable, and so on).

The authors compare their procedure to other recently devel-
oped three-way procedures (including those for PARAFAC, CAN-
DECOMP, and the Tucker three-mode model) and stress that "be-
cause all of these [other] . . . procedures place stringent re-
quirements on the measurement characteristics of the data, none
of them are applicable to most of the data types usually encoun-
tered in psychological research" (Sands and Young 1980). They
suggest, therefore, that the ALSCOMP algorithm provides the
only suitable method of fitting the PARAFAC-CANDECOMP model
to most social sciences data.

How Essential is Nonmetric Fitting? While it is true that early
applications of PARAFAC and CANDECOMP analysis often met with
discouraging results, this probably occurred because the intrinsic
axis property was interfered with by problems with the data
characteristics and/or model appropriateness. PARAFAC has
performed well in recent years, providing meaningful solutions to
a wide range of data. How are we to explain this fact? The
answer probably lies in the modifications and improvements to the
analysis and particularly to the data preprocessing procedures
that have been developed more recently. These improvements
(discussed in chapter 6) have resulted in much greater flexibility
in application of the model to real data; in fact, they have ex-
tended the flexibility or applicability of PARAFAC in some ways
beyond that of ALSCOMP (although in other ways ALSCOMP is
still more general).

Where the more sensitive intrinsic axis property is not part of
the solution, metric procedures have been successful for some
time. Sands and Young do not comment on the apparently suc-
cessful application of Tucker's model to a number of different
data sets (as reviewed elsewhere in this volume), nor do they
mention the much longer history of the successful social sciences
applications of conventional two-way factor analysis, which is also
a metric procedure and thus involves the same "stringent" theo-
retical requirements on the measurement characteristics of the
data.

Comparison of ALSCOMP with PARAFAC. What are the advan-
tages and disadvantages of ALSCOMP versus PARAFAC algorithms
for fitting (5-3) and (5-4)? We do not have space to discuss this
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issue in detail here, but there are several points that should be
mentioned. PARAFAC preprocessing methods (discussed in the
next section) eliminate the requirement for ratio-scale data and
ermit several kinds of data conditionality, so the basic criticism
of Sands and Young is considerably weakened. Nonetheless,
PARAFAC is still a metric analysis procedure. As we noted
earlier, however, almost all factor analysis and many MDS proce-
dures are metric; yet, they have been shown to be generally
quite robust, perhaps because the solution is highly overdeter-
mined by the data. The differences between the results obtained
by metric and nonmetric fitting are typically modest, even when
the data are known to be only ordinal scale, as Weeks and Bent-
ler (1979) concluded from a Monte Carlo study using two-way data
and as Harshman and Howe (1979) found in a Monte Carlo study
using three-way MDS data that violated the Euclidean distance
formula. Carroll and Chang (1970) also developed a "quasi-non-
metric version of INDSCAL," but in practice it gave results that
were not appreciably different from the metric version. Hence, it
was not considered to justify the extra analysis cost (Carroll and
Chang 1970). (They did not develop a fully nonmetric version,
because they doubted that it would provide any greater advan-
tages.)

gThe distinction between continuous and discrete data is also
not crucial for PARAFAC, as demonstrated by recent Monte Carlo
results of Sentis, Harshman, and Stangor (1983), who found that
PARAFAC quite successfully recovered continuous latent structure
from binary data. Thus, it appears that in the vast majority of
cases, nonmetric fitting may provide at best only a subtle im-
provement over the solution obtained by metric procedures.

Despite all the reservations listed above, there are no doubt
certain cases involving systematic and extreme violations of in-
terval-scale properties in which nonmetric procedures provide
significantly better representations of the data than metric proce-
dures. It is not clear, however, whether such extreme cases
occur in real data except on rare occasions. Furthermore, in
those special cases in which nonmetric analysis would make a
substantial improvement, there may be special approaches to
metric analysis that would provide similar results. Weeks and
Bentler (1979) suggest that preprocessing the data by conversion
to ranks (their "rank-linear" procedure) will provide most of the
benefits of nonmetric analysis in such cases. We have not yet
explored the effects of this kind of preprocessing in conjunction
with PARAFAC. However, for cases in which nonlinearity is. the
problem, it has been demonstrated earlier (Harshman 1970, chap-
ter 6; Terbeek and Harshman 1972) that the intrinsic axis prop-
erties of PARAFAC may often make it feasible to explicitly repre-
sent nonlinearities as extra dimensions and thus not only fit such
data but quantify their nonlinear structure. Similar represen-
tations of nonlinearities are possible with intrinsic axis multi-
dimensional scaling methods such as INDSCAL or the MDS applica-
tion of PARAFAC. In fact, Chang and Carroll (1978) in an
INDSCAL study of color perception, found "extra" dimensions
beyond what would be theoretically expected; the form of the
dimensions suggested that they might be due to nonlinear com-
ponents involved in the reported similarities of colors.
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Since mnonmetric analysis involves fewer assumptions thanp
metric analysis, it might seem advisable to use nonmetric ap-
proaches "just to be safe." However, one must balance potential
benefits of nonmetric analysis against potential disadvantages,
Sometimes the nonmetric procedures provide worse solutions than
metric procedures, because they are subject to certain degenera-
cies—such as a number of points collapsing into a single location
in the space—that the metric procedures avoid. Study of the
Sands and Young article also suggests that, with some data,
ALSCOMP may also be more subject to local optimum problems than
metric ALS (Alternating Least-Squares) procedures such as
PARAFAC. A nonmetric analysis fits far more parameters to a
given data set than does a metric analysis; sometimes the data set
is not large enough to determine all these parameters adequately,
Also, ALSCOMP requires the user to specify the level of measure-
ment of the data. The Monte Carlo results reported by Sands
and Young (1980) indicated that incorrect specification could lead
to considerably poorer recovery of the latent structure.

Finally, it should be pointed out that some of the most serious
problems with fitting the PARAFAC-CANDECOMP model may be
due to other things than violation of metric assumptions. Two
cases, in particular, are worth noting:

a. Often the problem is that the data include certain unwanted
components that interfere with intrinsic axis solutions (for
instance, multiple factors constant in one mode but not
others). It takes particular kinds of preprocessing to remove
such contaminants and permit meaningful intrinsic axes to be
defined by the part of the data that remains.

b. At other times, the data is technically inappropriate for either
PARAFAC or ALSCOMP because it is generated by a process
with a more complex structure (similar to the structure of
Tucker's model). As we note in chapter 6, uninterpretable
"degenerate" solutions with very highly correlated factors
sometimes provide better fit to such data than interpretable
solutions with factors resembling the "true" latent axes. The
problems caused by such complex data should interfere equal-
ly with metric and nonmetric analysis. To cope with this
situation, extended PARAFAC incorporates options for special
analysis constraints that can block such degenerate solutions.
Analysis with these constraints will permit recovery of rea-
sonable approximations of the true dimensions, even though
the fit to the data is lower than for the degenerate solution.

For these reasons, the extended PARAFAC model—made possible
by the current PARAFAC procedure that incorporates special
preprocessing and constraint options—provides certain kinds of
generality that the ALSCOMP model does not.

In summary, then, both the ALSCOMP and PARAFAC programs
have their particular strengths and weaknesses. Although there
may still be situations in which the ALSCOMP nonmetric procedure
could reveal more than PARAFAC (such as nominal data), there
appear to be other circumstances in which ALSCOMP could not
deal with the data as effectively as PARAFAC preprocessing and
the extended PARAFAC model. We do not yet know the relative
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frequency of the two classes of situations "in the real world."
Overall, it may be that PARAFAC and ALSCOMP will frequently
give similar results, but such a statement is speculative, since to
our knowledge no systematic comparison of the two procedures
has yet been undertaken.

Other Models and Procedures. Space limitations prevent us
from discussing a number of other models and procedures for
three-way factor analysis that have been developed. For exam-
ple, Bloxom (1968) has developed a version of Tucker's model in
which the subject weights and errors are treated more specifically
as random variables. Bentler and Lee (1978, 1979) have carried
the statistical development of T3 even further; their approach
also links three-mode fa(,:tor analysis with structural equation
modeling and permits confirmatory factor analysis, estimates of
standard errors, and so on. Finally, the important models for
the analysis of covariance structures proposed by Jdreskog (1971)
and others are certainly relevant in the broader context of three-
way data analysis but had to be omitted from this discussion in
order to permit more detailed development of ideas within the
scope of this chapter.

Comparison with Two-Way Factor Analysis

Of the various three-way models, PARAFAC is probably the one
most directly related to traditional two-way factor analysis. When
we apply PARAFAC to a three-mode array with only one level to
the third mode (namely, the two-way special case), it reduces
directly to traditional two-way factor or component analysis. In
contrast, the Tucker model reduces to a less conventional but
interesting representation in which there is a core matrix that has
only one slice. (The two-way version of Tucker's model is dis-
cussed in some detail by Levin 1965.)

On the one hand, with appropriate preprocessing and scaling
of the output loadings (as noted briefly earlier and described in
more detail in appendix 5-1), PARAFAC gives results identical to
those obtained with traditional programs for two-way singular
value decomposition or principal component analysis. This prop-
erty was exploited by Reddon, Marceau, and Jackson (1982), who
used PARAFAC as an efficient way to obtain the first few vectors
of the singular value decomposition of the more than five hundred
items of the MMPI; their solution was then rotated by Varimax to
obtain an interpretable principal axis solution. On the other
hand, by fitting covariances or correlations and choosing the
option to ignore the diagonal, PARAFAC can be used to perform
common factor analysis; the solution that results is equivalent to
that produced by the MINRES procedure (Harman and Jones 1966)
or by the more common principal factor method based on iterating
on the diagonal (when iteration on the diagonal is allowed to
reach true convergence).

Of course, when PARAFAC is applied to two-way data, the
intrinsic axis property is not obtained; the solution shows the
classical rotational indeterminacy of two-way factor analysis.
However, by exercising the option to require orthogonal loading
matrices in both modes simultaneously, a unique solution can be
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obtained with axes oriented as in unrotated principal componentg
analysis or principal factor analysis. This solution can then be
rescaled and rotated by some suitable analytic or graphical method
to obtain the final desired result.

The fact that PARAFAC bears this very direct relationship to
two-way factor analysis facilitates interpretation of the loadings in
the three-way case. We saw earlier how interpretive conventiong
can be carried over directly from the two-way case. For exam-
ple, when doing direct fitting, weights for one of the three modes
can be given a conventional interpretation as "factor loadings®
and weights for the other two can be interpreted as defining
"factor scores" (or "factor score estimates") of the traditional
kind.

In this chapter, we have discussed the PARAFAC models for
tactor analysis (both direct and indirect fitting) and multidi-
mensional scaling. We have examined the intrinsic axis property
and compared PARAFAC with other models, particularly Tucker's
three-mode factor analysis models.

In chapter 6, we will describe the results of our efforts at
extending the domain of PARAFAC analysis to a wider range of
data types by means of three-way data preprocessing and special
analysis procedures. ?

APPENDIX 5-1:
SCALING AND INTERPRETATION OF PARAFAC LOADINGS

Size-Standardization of Loadings
Size Indeterminacy

There is a multiplicative indeterminacy in the scaling of factor
loadings for PARAFAC, as there is with all factor-analytic proce-
dures. The loadings for a given factor can be scaled upward or
downward in one mode, provided that compensatory adjustments
are made to the size of loadings in the other mode(s). For
example, all the loadings for a given factor can be doubled in one
mode and halved in another, and the resulting factor contribu-
tions (triple products) remain unaffected. In general, we can
rescale the ag;,, bj,, and ¢k, loadings for factor r by any con-
stant multipliers k,(;) for Mode A, k,(p) for Mode B, and K, (¢
for Mode C, so long as (k,(5))*(k,(p))*(k;(c)) = 1. The new
loadings for factor r would be defined as follows:

Gir = (Kr(a))0ir » Ejr = (kp (o) bjr »  Ekr = (Kp(c))Ckr -

These rescaled loadings would provide exactly the same fitted
values, residuals, and so forth as the prior loadings.

Since within any mode such rescaling multiplies all the loadings
for a given factor by the same constant, this size indeterminacy
does not affect the pattern of relationships used for identification
and interpretation of a given factor. It can affect interpretation,
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however, if loadings below a given size are considered "insigniti-
cant" and are disregarded; a factor scaled up or down will appear
to have more or fewer large-sized loadings. Furthermore, if
different k, values are used for each r (that is, for each factor),
then rescaling will change the relative sizes of loadings in differ-
ent columns and will therefore complicate the comparison of rela-
tive contributions of factors to a given variable or occasion.

Standardization Conventions

A similar indeterminacy exists in two-way factor and principal
component analysis of profile data, where it has been resolved by
adopting a convention in which the factor weights for one mode
are set to unit variance and called "factor scores," "component
scores," or "factor score estimates." As a result, weights in the
other mode reflect the scale of the data and the "absolute" size of
factor contributions and are called "loadings." For example,
when the data consist of variables measured on cases, the stand-
ardization is usually applied to the person weights while the size
of the factor contributions is expressed in the variable weights.

We have adopted a similar convention for PARAFAC analysis of
three-way profile data: Two of the three loading matrices are
typically size-standardized so that the mean-squared factor load-
ing for each factor in each mode is equal to 1.0; as a result, the
size of loadings in the remaining factor-loading matrix is deter-
mined by the size of factor contributions to the data. (In con-
trast to the two-way case, we often use the term "loadings" to
refer to weights in any of the three modes, since we treat the
modes more even-handedly.) The loadings in this nonstand-
ardized matrix take on the same units as the original data meas-
urements; thus, they have some sort of "absolute" meaning that
allows one to compare the size of loadings across columns, and to
evaluate the size of a given loading against some external criteri-
on to determine whether it reflects a substantial or trivial rela-
tionship. With standardized modes, on the other hand, loadings
are evaluated in relative terms; a large loading means that the
factor has a relatively strong relationship to that level of the
mode, compared to other levels. Thus, the loadings are inter-
preted in the same way as any other z-score standardized vari-
ables.

Any one of the three matrices resulting from analysis of a
given data set could be taken as "the" primary loadings matrix,
provided the k, values used to standardize the solution had been
selected so that the columns of the other two matrices were set to
unit mean-squares. Indeed, the results of a given analysis can
be rescaled several different ways to change the mode that is
interpreted as "loadings" in the sense used in two-way factor
analysis. The investigator could therefore initially look at "load-
ings" on variables and factor or component "scores" on people
and occasions but then rescale the variable and occasion entries
and look at occasion "loadings" and variable and person "scores."
No new analysis or estimation procedures would be required to
get values in any mode that would reflect the scale of the data
and provide cross-factor comparability. However, if the "load-
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ings" were to be given additional interpretations—for example, ag
beta weights or variance components—then particular data-center-
ing and size-standardization would be required, as described
below. Since in some data sets these prerequisite characteristicg
might not be true of every mode, the special interpretations of
loadings that they permit might not be possible for every mode,
(Details on the required conditions are discussed in the following
two parts of this appendix.)

Interpretations of Loadings

In two-way factor analysis, factor loadings are often given special
interpretations, for example, as beta weights. If the factors are
orthogonal, loadings are often interpreted as the correlation
between a variable and a factor, and the sum of the squared
loadings for a given wvariable is the proportion of the variance
predicted by the factors, also known as the "communality,"
Before we can invest PARAFAC loadings with such additional
meaning, certain conditions must be met. The data must be
size-standardized in certain ways, and the loadings must then be
scaled in a coordinated fashion. In the following discussion, we
will first consider the more general interpretations of PARAFAC
loadings that are possible, regardless of data standardization, and
then develop the additional meanings that can be attributed to the
loadings in certain special cases.

General Interpretation of Loadings as Regression Weights

The trilinear PARAFAC and bilinear factor analysis or principal
component models can be thought of as equivalent to multiple
regression models, except that the data is being predicted from
latent factors rather than observed wvariables. Recall that the
basic multiple regression model can be written (in the g predictor
case) as

Yi = a1Xj1 + GXjo + « . .+ AgXjqg t € , (5—-43)

where the y; is the value of the dependent variable for the jth
case, and Xj1, Xj2, « « . are the values of the independent or .
predictor variables for the jth case; the oy, a;, . . . are the
regression weights; and ¢; is the residual or error of prediction.
Typically, there is also an intercept or constant term included,
but we omit this and consider regression "through the origin."
The intercept term would permit the regression model to account
for an additive constant in y. We consider such an additive
constant as one of the h-terms in our model of interval-scale
conditional-origin data (chapter 6, equation [6—3]) and assume
that it has been removed by an appropriate preprocessing stage.
The regression model (5-43) can be transformed into the
two-way factor-analytic model by letting x;1 = bj1, that is, by
taking the predictor variables to be the scores of each case on
latent factors rather than on observed variables. To complete the
transformation into a factor-analytic model, we simply consider n
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different y-variables at the same time, so that we have n differ-
ent regression equations predicting the n variables from the g
latent factors. For the ith such variable, the score of the jth
case would then be written yjj, and the equation predicting that
variable would have the regression weights d;;, @;;, and so forth,
and an error term €j;.

To generalize this to three-way factor analysis, we simply take
a j* that ranges over two modes rather than one—for example,
over occasions as well as cases. If there are m cases (that is, if
the maximum value of [ is m) and p occasions (that is, the maxi-
mum value of kK is p), then j* =j + (k -1)m, and the maximum
value of j* is (mp). To obtain a regression of the same form as
(5-43), we replace x; with Xj», where Xxj+ = (bjck). Thus, we
obtain a regression in which the data values are predicted from
factor or component scores for each case on each occasion, and
these scores are given by the product of Mode B and Mode C
weights. By considering i variables simultaneously, we obtain a
set of regression equations for which the ith equation is

YVijx = Gj1Xj*1 + AjpXjxg + . . . + QjgXjxq + €jjx , (5—-44)
or
Yigjk)y = ain(bjic i) + ajp(bjacir) + . . . (5-45)

+ aiq(b/qckq) + €j(jk) -

We see that the factor loadings a;;, d;5, and so on are simply
regression weights in a multiple regression equation predicting
the y values of the ith variable from scores on the factors, as
before; only now we consider the scores to be a function of the
occasion as well as the case. Carroll and Chang (1980) use
similar reasoning in their development of the alternating least-
squares method for fitting CANDECOMP.

Interpreting Regression and Factor Weights

In the most general case, application of regression involves no
standardization of predictor or predicted variables. In such
applications, the B weights (as nonstandardized regression
weights are often called) have no special interpretation except
that they give the amount of each predictor variable needed to
generate the composite that best approximates the predicted
variable. Similarly, when PARAFAC is applied to raw data with
no special scaling, the sizes of the factor loadings have no special
interpretation except that they give the amount that must be
contributed by each factor in each mode for the g factors to best
predict the data array. Additional meaning can be attributed to
regression weights or factor loadings only when the data and the
factors have special properties, such as zero-mean, unit variance,
and/or orthogonality.

For example, recall the effects of variable standardization in
regression. Size-standardizing the X values permits straightfor-
ward comparison of the sizes of regression weights. Differences
in weights now directly reflect differences in size of the contribu-
tion of the associated predictors to Yy, without being influenced
by the overall size (mean-square) of each predictor variable.
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Size-standardizing y permits the size of regression weights to be
compared across different wvariables, data sets, and so forth,
When both the predicted and predictor variables are standardized
to be z-score variables (with mean zero and variance 1.0), then
the B weights of the regression become fully standardized and are
called "beta weights." In addition, if the predictor wvariables are
mutually uncorrelated, the transformation of both x and y to
z-scores permits each beta weight to be interpreted as the simple
product-moment correlation between the predictor and the predict-
ed variable.

Similarly, in PARAFAC analysis, standardization of y (the
data) and x (the predictor "factor scores") allows the loadings to
take on the additional interpretations possible with z-score re-
gression. Suppose, for example, that we want Mode A weights to
take on this extra meaning. We need to standardize the data and
the output factor loadings so that Mode A factor weights are
interpretable as the beta weight "loadings" and the products of
Mode B and C weights give the predictor variable "factor scores"
in z-score form. To do this, the data should be centered across
Mode B and/or C, so that there is a mean of zero within each
level of Mode A. (Recall that fiber-centering a given mode will
slab-center the other two modes, as is apparent from inspection
of Figure 6-1 in chapter 6.) The data should also be size-
standardized on Mode A, so that within each level of Mode A the
data have a mean-square of 1.0 (computed across all levels of the
other two modes). This would transform the data at each level of
A into z-scores and thus provide the necessary standardization of
y in our corresponding regression equation.

In addition, the output loadings should be standardized so that
the b and ¢ weights have a mean-square of 1.0 for each factor
(and thus the Mode A loadings reflect the scale of the data);
then the x;«, factor scores or factor contributions will also be
z-scores. To show this, we first show that the xj., will have a
mean of zero and then that they will have a variance of one.

It is easy to see why the Xj:, predictor variables must have a
mean of zero. Since we are assuming that either Mode B or C
(or both) has been centered, it follows that either the Mode B or
Mode C factor-loading table is column-centered (as proven in
chapter 6). As a result, the total set of "factor scores," across
all levels of both Modes B and C—that is, the products bj,Ck, for
all jk combinations—has the zero-mean property of Zz-scores.
This is because

LI (bjreer) = [ bjr (L cir) = 1 cir (] bjr)
j k j k k i

which implies that the sum of the bc products are zero whenever
either the sum of the b or of the ¢ terms is zero.

It is also easy to establish that the bc products for any factor
have unit variance whenever both the b and the ¢ weights for
that factor have unit variance, since the mean-square of the bc
products is equal to the product of their respective mean-
squares. In other words,
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Thus, the bc terms, the x;j« of equation (5-44), have unit vari-
ance and zero means and hence are z-scores.

We have now shown how to set up a PARAFAC analysis so that
both the y and X terms in the corresponding regression equation
(5-44) will be Z-scores. When this is done, the factor loadings in
the nonstandardized mode (in the example, Mode A) of the PARA-
FAC output can be considered beta weights. This makes them
strictly comparable to loadings obtained by conventional two-way
factor analysis.

If, in addition, the factors are orthogonal across Mode B or C
(or simply within each B by C slice), the Mode A factor loadings
can be interpreted as simple product-moment correlations between
the data (at that level) and the contributions of the factor (at
that level). Additional interpretations in terms of variance com-
ponents are also possible, but they will be discussed later in this
appendix.

Of course, when analyses are performed without imposition of
an orthogonality constraint in Mode B or C, exact orthogonality of
the resulting loadings will be very wunlikely. However, if for
each pair of factors the product of the Mode B cosine and the
Mode C cosine is small, the above relationships will be closely
approximated.

If the factors are not orthogonal across levels of Mode B or C
(or at least within the Mode B by C slices at each level of Mode
A), standardizing the data and the output to obtain a loading
matrix interpretable as beta weights will produce a factor-loading
matrix of the kind obtained in traditional oblique two-way factor
analysis. In terms of the above example, the Mode A loadings
matrix would be the analog of the factor pattern matrix in an
obliquely rotated two-way solution. The bj, ¢x, products them-
selves would be the estimated factor scores. Thus, the matrix of
correlations between the b; ¢y, scores for the factors would be
the phi matrix of "correlations among the factors," as traditionally
interpreted. This correlation could be quickly computed for any
pair of factors by computing the cosine of the angle between the
two factors in Mode B and similarly in Mode C and then taking
the product of these two cosines. (The factor cosines are com-
puted as the inner product of the factor-loading vectors after the
vectors have been scaled to unit length.)

Other interpretations of loadings from two-way factor analysis
can also be carried over into the three-way domain. Thus, for
those accustomed to looking at traditional factor loadings and
interpreting them in particular ways, a method is available for
obtaining interpretations of this kind from three-way PARAFAC
analysis.,
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Interpretation of Loadings
as Variance (or Mean-Square)
Components: Orthogonal Case

If the factors are orthogonal, it is possible to interpret the
loadings as describing components of the total variance (or mean-
square) contributed by particular factors at particular levels of
mode, even when the data have not been size-standardized ang
centered in the way required for interpretation of loadings ag
beta weights. In the following discussion, we will prove such
relationships for Mode A factor loadings only, since the arguments
for Mode B and Mode C factors are parallel.

We start with an expression for MSQ , the mean-square dats
value at level /| of Mode A (if the data has zero-mean at each
level of A, MSQ will be the variance of level j):

L5y (xjjk)? = MSQ; . (5-46)
mp
i k
By substituting the PARAFAC model for x;;,, we obtain:
X Z ( z (alr /rckr) + ei/'k)z = MSQ,- . (5—47)
/ k r

Now, because the error part is orthogonal to the systematic factor -
part, we have:

Yy} (Girbjerr))z + (eijk)z) = MSQ; . (5—48)
j k

r

If we assume that the factors are orthogonal to one another, their
cross-products vanish, so we can write:

XE ( ] (a bfct) + e ) = MSQ, (5-49)
]

r

By rearranging the order of summation, pulling the constant
g-coefficient outside the summation over j and k, and moving the
constant divisors m and p inside where appropriate, we obtain:
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If we have size-standardized the PARAFAC Joadings (as opposed
to standardizing the data) so that they have a mean-square of 1.0
in Mode B and Mode C, we obtain:

1

Z(a,?r)(l)(l) + s

L] €hk = MSQ;
j Kk
or, subtracting the error mean-square from both sides,

I (a2) = MSQ, - % ZZe,?/-k : (5-51)
r /

In other words, when the factors are orthogonal in Mode B or C
(or simply across all the points in the B-C slice), the sum of
squared loadings in a row of the Mode A matrix gives the mean-
square accounted for by the g-factor model at that level of Mode
A (namely, the total mean-square minus the error mean-square at
that level of Mode A). Furthermore, it follows that: (a) each
squared loading equals the mean-square contribution of a particu-
lar factor at that level; (b) by computing the average squared
loading for each column of the Mode A matrix, one can obtain the
mean-square contribution of each factor to the total data; and
(¢) the sum of these quantities across the r factors equals the
total mean square predicted by the PARAFAC model at that di-
mensionality.

Interpretation for Nonorthogonal (or Orthogonal) Factors

When factors are not orthogonal, then the step from (5-48) to
(5-49) does not follow. However, if we have size-standardized
Modes B and C so that their mean-squared loading is 1.0, there
is still a straightforward interpretation for the size of a;, (disre-
garding sign) that holds whether or not factors are orthogonal:
a;, gives the root-mean-square average size of the contribution of
factor r to level i of the data. (Recall that by a factor's "contri-
bution" we mean the triple product ag; b ck,, one of the q addi-
tive components of the predicted value for x;jx.) The size of
factor contributions is expressed in the same units as the data;
for example, if the original measurements were in centimeters
displacement, the factor contributions will of necessity be in
terms of centimeters displacement, and so ag;, can be interpreted
as giving the (RMS) average centimeters of displacement at level i
due to factor r (see, for example, Harshman, Ladefoged, and
Goldstein 1977). This property of loadings—sharing the same
units as the data—is sometimes quite useful for application of the
results of the factor analysis (see, for example, Ladefoged,
Harshman, Goldstein, and Rice 1978).

It is easy to establish the validity of this general interpreta-
tion. When the Mode B and C loadings for each factor have a
mean-square of 1.0, then, as we proved above, the bc products
also have a mean-square of 1.0. But whenever a set of numbers
with unit mean-square are multiplied by a constant (such as q;,),
their mean-square becomes the square of that constant (a? ) and
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so their root-mean-square must be the absolute value of that
constant (|a@;;|). The algebraic argument for this is obtained by
following the same steps as those that took us from equation
(5-50) to (5-51) but considering only the one-factor case, so that
the sum over r vanishes.

Since the mean-square of the contributions of factor r at level
i of Mode A is (a;,)?, the average squared value in column r of A
gives the mean-square contribution of factor r in the data as g
whole. When the factors are not orthogonal, the sum of the
column mean-squares will not equal the total mean-square predict-
ed by the model, because some of the mean-squares will be over-
lapping. But as the factors become less and less oblique, indi-
vidual factor mean-squares overlap less and less, and their sum
approaches the mean-square of X;;x, the part of the data fit by
the model. This is true not only in the data as a whole, but also
at each level of A.

Special Cases

If the data are centered across Mode B or C and thus have a
mean of zero at each level of Mode A, then the factor contribution
mean-squares discussed above become equal to factor contribution
variances, and the equations above can be interpreted in terms of
variance components. For example, (a;,)? would give the vari-
ance of the contributions of factor r to level i of the data; thus,
the absolute value of the loading would give the standard devia-
tion of the factor contributions, a reasonable measure of factor
influence and one which (as noted earlier) is in the same scale as
the data itself. To take another useful example, (5-51) would
imply that for orthogonal factors, the squared loadings in a given
row of the Mode A matrix sum to the variance predicted by the
factors (the "variance accounted for") at that level.

When the data are also size-standardized so that their overall
mean-square is 1.0, then, for orthogonal factors, each squared
factor loading can be interpreted as the proportion of variance
contributed by that factor at that level. Thus, when the squared
loadings are summed across rows, the sums can be interpreted as
the proportion of data variance accounted for by the g-factor
model at each level of Mode A (the "communality" of each level).
When averaged down columns, the mean-squared loading of each
factor can be interpreted as the proportion of the total data
variance accounted for by that factor. (In this latter case,
taking the column sums of squares, rather than mean-squares,
will give the three-way equivalent of eigenvalues or squared
singular values.)

If the preprocessing of a given data set had included double
size-standardization—for example, both within levels of Mode A
and within levels of Mode B, when the data were centered on
Mode C—then it would be possible to consider two different sets
of alternative standardized loadings for the data. One might
scale the output so that the Mode B and C loadings have sums of
squares equal to 1.0 (in order to interpret the Mode A loadings
in the traditional way), and then rescale the output so that Modes
A and C have mean-squares of 1.0 (to interpret the Mode B
loadings in the traditional way).
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Before we invest too much effort in such procedures, however,
we should remind ourselves that a given set of factor loadings
can be examined to determine the meaning of the factor or its
attern of effects in a given mode, regardless of the scaling of
the loadings matrix. Such basic interpretation is accomplished by
looking at the relative sizes of different loadings within the factor
and determining what might best distinguish those items lying at
one pole of the dimension from those lying at the opposite pole.
Since such comparisons within a factor are not affected by colum-
nar scale adjustment of the loadings matrix, it is only for special
interpretation in terms of factor-variable correlations or wvari-
ance-accounted-for that one need worry about the special stand-
ardizations discussed above.

"Factor (Component) Scores"

Give the strong parallel that can be established between one of
the PARAFAC loadings matrices (in the example above, the Mode
A matrix) and the traditional two-way "factor loadings" matrix,
what can we make of the PARAFAC loadings matrices for the
other two modes (in the example, the Mode B and C matrices)?
As we have already noted, these matrices can be compared to the
traditional factor score or component score matrices from a two-
way analysis. A slightly different perspective, which we have
adopted in this chapter, interprets the entries in the Mode B and
Mode C loading matrices as expressing the average (that is,
root-mean-square) size of factor or component scores for each
factor, within particular levels of the mode in question. The
individual factor score estimates, or principal component scores,
are given by the direct or Kronecker product of the Mode B and
Mode C loadings vectors for each factor (that is, the b;,ck,
double-product terms corresponding to each jk combination).

It should be noted, however, that factor scores computed in
this fashion strictly conform to the "strong" restrictions imposed
by the PARAFAC '"system variation" model, as explained earlier.
In contrast, indirect estimation of factor scores by regression
methods (as described by Harshman and Berenbaum 1981) would
allow estimation of variance components of the factor scores that
might follow more general patterns of variation.

As we noted earlier, some contemporary psychometricians have
adopted conventions regarding the use of the terms "factor"
versus "component" that are more restricted than our usage here.
They would refer to the (bj,ck,) products as "component scores,"
since they are based on’ loadlngs obtained by direct fitting.
They would also use "component scores" to refer to any scores
estimated after indirect fitting, so long as the diagonals of the
covariance matrices used in the indirect fitting contained unal-
tered wvariances. They would reserve the term "factor score
estimates" for the scores obtained (by regression or other meth-
ods) after fitting the "common factor model" (namely, when indi-
rect fitting is performed in which the covariance matrix diagonals
are replaced by estimates of common variance or "communality";
this is accomplished in PARAFAC when the diagonals are '"ig-
gored“ by iterative reestimation during the ALS fitting proce-
ure).
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Loadings Standardization when Doing Indirect Fitting

If the data being analyzed are summed cross-products, or covari-
ances, a modified standardization convention is required to main-
tain comparability between the results of three-way and two-way
analysis and between direct and indirect fitting methods. Ba-
sically, the Mode C loadings must be scaled so that their mean ig
1.0 and the scale of the data is jointly reflected in Modes A and
B.

For solutions obtained by analysis of covariance matrices, the
Mode A and Mode B loadings tables are identical, since the co-
variance data is symmetric across Modes A and B. Both sets of
loadings correspond to the Mode A table of the direct fit solution,
However, the Mode C table contains entries that correspond to
the squares of the entries obtained with direct fitting. This is
because the data variances and covariances are averages of
cross-products, and in each cross-product, the Mode C loadings
occur twice. For this reason, we scale the Mode C weights so
that the average first power of the entries in each column ig
equal to one; it is not appropriate to set their average square to
one, since they are already squared quantities. As a result, we
obtain Mode C weights that directly equal the factor (or "factor
score") variances at each level of Mode C; the average factor
score variance over all levels of Mode C is 1.0, as is appropriate
for z-scores. The scale of the data is then jointly reflected in
Modes A and B. (Both Mode A and B loadings are multiplied by
the square root of the scale factors that would otherwise be
applied to a single mode—these scale factors are the square roots
of our three-mode generalization of eigenvalues.)

When the data have been suitably size-standardized so that the
average covariance matrix is a correlation matrix!0 (we call this
"Equal Average Diagonal® or EAD standardization), then the
resulting Mode A or B weights will have the characteristics of
traditional "loadings." They can be interpreted as beta weights
and have the same properties as the loadings obtained from
two-way factor analysis of correlations or from factor analysis by
direct fitting of z-score standardized data. In fact, with error-
free data, when extracting the correct number of factors for
perfect fit, the two kinds of loadings will be identical. That is,
the Mode A loadings obtained by indirect fitting, when scaled in
this modified fashion, are identical to the Mode A loadings that
would be obtained by direct fitting of the profile data, when
appropriately scaled and centered, as described earlier. In the
more general case of fallible data with "true" and "error" factors
that are not strictly orthogonal in any mode, the result of indi-
rect fitting will be similar but not identical to the result of direct
fitting.

When doing indirect fitting, one can compute measures of the
fit to the covariances -(for example, mean-square error, Stress,
R-squared), but one often wants to obtain an index of the implied
fit of the factors to the original data from which the covariances
were computed. This is what is normally reported in two-way
factor analysis. Such a fit value is easily obtained by simply.
averaging the squared loadings in each column of the Mode A
matrix, to obtain the variance accounted for by that factor (or
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summing the squared loadings to obtain the generalized eigenvalue
for each factor). By summing variance estimates across factors,
we obtain the total variance accounted for by the solution. The
latter value could also have been obtained by summing squared
loadings in each row of A to get the predicted diagonal elements
of all the covariance matrices fit by the analysis. The average of
these diagonals gives the desired quantity, namely, the variance
of the original profile data that is indirectly fit by the model;
since the original diagonal elements of the covariance matrices
represent the variances of the variables in the profile data, the
fitted part of these diagonals represents the fitted part of the
original data variance.

When EAD normalization is used, the average diagonal in the
data is 1.0, and so the average predicted diagonal gives the
proportion of variance accounted for by the solution, and the
mean-squared loading for a given factor gives the proportion of
the total variance contributed by that factor. The proportion of
the common variance contributed by each factor is simply the
mean-squared Mode A loading for that factor divided by the total
of mean-squared Mode A loadings for all factors in the solution.

APPENDIX 5-2:
A METHOD OF TRANSFORMING ANY TUCKER REPRESENTATION
INTO A COMPACT PARAFAC-CANDECOMP REPRESENTATION

Suppose a three-way array has an exact Tucker representation
and we wish to find the corresponding PARAFAC-CANDECOMP
representation that provides perfect fit in the lowest possible
dimensionality. The following is a method of deriving the desired
PARAFAC-CANDECOMP representation by operations on the Tuck-
er representation. We will describe the method in terms of opera-
tions on a T3 model; however, the same procedure will work with
a T2 model, as noted at the end of this appendix.

This procedure demonstrates that the trilinear rank of an
array—that is, the number of "triads" or PARAFAC dimensions
needed to provide exact fit to the array (Kruskal 1977)—is de-
termined by the trilinear rank of the core matrix, which is the
number of PARAFAC dimensions needed to exactly fit the core
matrix.

The T3 Starting Point
Standard Form

Let X be an n by m by p three-way array. For notational con-
venience, we conceptualize it as composed of p successive n by m
"slices" or two-way arrays; the kth such slice is called Xi. To
express the T3 representation of X in matrix terms, we use the
same convention as in (5-4); that is, we represent the three-way
array by providing a general expression for the kth slice. We
call the initial form of our T3 model (T3), and write it as follows:
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dc
(T?’)l: Xk = A [ z thGt] B”, (5—52)
t=1

where the matrices A, B, and C are factor-loading matrices for
Modes A, B, and C, respectively. A is n by g, with arbitrary
element ajr, B is m by g, with arbitrary element bjs, and C is p
by g, with arbitrary element ckt. The "core matrix" G is 3
three-way array considered for convenience as a set of slices G;;
there are g, such slices, each slice being g, by q,.

Individualized. Form

If we let Hy represent the matrix of interactions between Mode A
and B dimensions for the kth level of Mode C (for instance, for
the kth person), then we can write an "individualized" form of
the model,

Xk= AHkB’ » (5—53)

where

9c
H, = Ckt G
k t=Z1 ! (5-54)

In this "individualized" form of the model, each level of Mode C
has a matrix Hy, which gives that level's interactions between the
Mode A and B dimensions. For example, if the levels of Mode C
represent persons, then each Hy gives the idiosyncratic changes
in Mode A and/or B axis orientations and weights for the kth
person. As shown in (5-54), each H; is a weighted combination
of the slices of the core matrix, with the fth slice weighted by
the kth person's loading on the fth dimension of Mode C.

The Transformation

To find the most compact PARAFAC-CANDECOMP model that
represents this same data structure, we need to perfectly "diag-
onalize" the slices of the core array. We can do this by applying
PARAFAC to the core, although other related methods, such as
that of de Leeuw and Pruzansky (1978), should also work. Note
that we do not seek an approximation but rather a perfectly
fitting PARAFAC representation. To find this exact representa-
tion, we take advantage of the fact that PARAFAC can fit more
dimensions than there are levels to any way of the array (Harsh-
man 1970; Kruskal 1976). For an arbitrary core that is roughly
cubical, the required diagonalized equivalent will in general be
slightly larger than the original core, but not by much. As
Kruskal has pointed out (personal communication, April 1983), in
all such cases that we have examined, the PARAFAC dimensionali-
ty g does not exceed (g, + qp - 1), where g, and g, are the
number of levels of the two smaller ways of the core.

Thus, we begin by applying PARAFAC to the core. To de-
scribe the PARAFAC representation of the core, we employ a
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matrix formulation of the same kind as used earlier in this chap-
fer. The PARAFAC representation of the three-way core array G
js specified by giving a general matrix representation of an
arbitrary tth slice G;:

G, = AD,B", (5-55)

where (if an exact PARAFAC solution requires g factors) A would
be 2 g, by g matrix of PARAFAC loadings on Mode A of the core,
and B would be a g, by g matrix of PARAFAC loadings on Mode
B of the core, with D; being a diagonal g by g matrix, whose
diagonal elements are the PARAFAC loadings on Mode C of the
core. To provide an exact representation, the D, will sometimes
be larger than the corresponding G;. For example, in the case
of a 2 x3 x5 core matrix, where each G; slice is 2 x 3, the
PARAFAC representation would require at most four dimensions to
perfectly fit G. (For some 2 x 3 x 5 cores, it would require
less.) In the four-dimensional case, A would be 2 x 4, B would
be 3 x 4 (and so B” would be 4 x 3), and C would be 5 x 4.
Each D; would be a diagonal 4 x 4 matrix.

We now need to find the factor loadings for the data array X
that go along with the "diagonalized" form of its core array.
These will be obtained by appropriately transforming the original
Tucker loadings. Substituting our PARAFAC-CANDECOMP repre-
sentation of the core (5-55) back into our basic model (T3);
(given by [5-52]), we obtain:

qc
Xe=Al ) cke (ADB"IB” . (5-56)
t=1

Since A and B do not change with t, we can move these constant
terms outside the summation over t, and obtain:

qc
Xe = A[A( Z ck¢Dy) B’1 B~ . (5-57)
t=1
Regrouping terms, we obtain:
ac
X = (ARY( ] cktDy)(B” B7) . (5-58)
t=1

We can interpret the A and B matrices as defining linear trans-
formations of the original (T3); loading matrices for Modes A and
B. So, if we define the transformed loading matrices as

A=AA, B=BB , (5-59)

and if we define a new "diagonalized" core matrix G composed of
gc diagonal slices G; such that

Gt = Bt [}
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then we can write an expression for a partially transformed T3
model, which we call (T3),:

dc

(T3)2: Xk = z\ ( z that) é ‘. (5—-()0)
t=1

This model has the same structural form as (T3);_ given above in
(5-52) but uses transformed component matrices and B, which
are n by g and m by g, rather than A and B, which are n by q,
and m by g, . It also has a modified core G, which is g by g by
gc, instead of G, which is ga by gp by G . It is not fully
transformed into a PARAFAC-CANDECOMP form, however, since it
has the same matrix of Mode C loadings as (T3);, and the core
matrix is not superdiagonal.

Nonetheless, model (T3), gives rise directly to a PARAFAC-
CANDECOMP representation when we write it in "individualized"
form, as was done for (T3); in (5-53). We simply define

ac q

Hk: z Ck'tétz
t=1 t =1

3}

[ ]

ktDt » (5-61)
which allows us to write (T3), as
* *
X.= AFH¢ B~ . (5-62)

Now it is apparent from (5-61) that all the matrices that are
summed to produce H, are diagonal, and so Hg is itself diagonal.
Hence, (5-62) can be considered a PARAFAC model. For unifor-
mity of notation, we can let Hy = D, and rewrite (5-62) as the
PARAFAC-CANDECOMP model

X.=ADyB", (5-63)

where A is an n by g matrix of Mode A loadings, B is an m by g
matrix of Mode B loadings, and Dy is a g by g diagonal matrix
whose diagonal elements constitute the kth row of C, a p by g
matrix of Mode C loadings. This gives the PARAFAC-
CANDECOMP representation of the three-way array X, which is
equivalent to the Tucker representation (T3);.

T3 in "Superdiagonal" (PARAFAC-CANDECOMP) Form

From (5-63) we can directly obtain a T3 representation in which
the core matnx is superdiagonal (that is, has nonzero entries
only when r = s = t). We simply define our transformed Mode ¢
loading matrix for T3 as a matrix that has the diagonals of the
matrices as its rows. That is, ¢ is a p by g matrix for which

t = att(k) ’
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where dtt(k) is the tth diagonal element. of 5/(. With these
revised Mode C loadings, we can define the core matrix as the
three-mode equivalent of an identity matrix. Thus, if Juut is the
element in the wuth diagonal cell of the tth slice of the revised
core matrix G, then

guut =1 if t =u, 0 otherwise.

We can now write the T3 model in explicit superdiagonal or
PARAFAC-CANDECOMP form, as follows:

q
(T3)3: Xe =A[ § &,6,1B-. (5-64)
=1
Transforming T2

The same procedure can be applied to find the PARAFAC-CANDE-
COMP representation for a Tucker T2 model, in which the core

matrix has as many Mode C levels as the data array X. We
simply apply PARAFAC to the extended core. In the argument
above, this would, mean that de = p. This presents no new

difficulties for the PARAFAC decomposition in (5-55), and the
rest of the transformation follows as before.

The fact that corresponding dimensions across Mode C can
always be "collapsed" (as described earlier in this chapter) places
the absolute upper bound on the number of needed PARAFAC
dimensions as (q,q,), or the product of whichever two dimension-
alities are the smallest. (Kruskal [1977] gives the same upper
bound.) Consideration of parameter counts or "degrees of free-
dom" of the core and corresponding PARAFAC representation
shows that for T2, "extended cores" that have many levels in one
mode, (q,qp) will often be both a lower and upper bound. On
the other hand, for small cores in which q,, qp, and g, are
similar, our experience suggests that the actual upper bound is
much lower, perhaps (g; + gp - 1). In either case, the trans-
formed representation would be relatively more compact than the
original,

As noted earlier in this chapter, the idea of approximately
"diagonalizing" the Tucker T2 core array has been proposed
previously by several authors (the first of which, to our knowl-
edge, was Cohen [1974]). Thus, the transformations presented
here should be compared with the proposals of Carroll and Pru-
zansky (1979), Cohen (1974), de Leeuw and Pruzansky (1978),
lzlcCallum (1976), and the application of this idea in Kroonenberg
1981b).

NOTES

1. A matrix approach that clearly displays the three-way
Symmetry of the PARAFAC model can be implemented by means of
the Kronecker product notation. This is the approach used by
Jennrich in Harshman (1970, chapter 5). (Tucker [1966] also
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employed the Kronecker product for discussion of three-mode
factor analysis.) The data would be represented as the sum of

different three-way arrays, each array corresponding to the
contribution of one factor. The array corresponding to the
contribution of the rth factor would be represented as the Kyrg-
necker product of the rth column of A with the rth column of B
and C. If we let X equal the three-way array I{x;;x} and E the
three-way array of error terms, and if we use &, to represent
the rth column of A, and similarly for B and C, then, by using
to represent the Kronecker product of two vectors, we can write:

X =) aeb &c +E,
;

While elegant, this representation would involve us with notation
and mathematics less familiar to many who work in this area;
hence, it has not been adopted here.

2. Some would insist on the term "component scores" rather
than "factor scores," as noted earlier.

3. Cattell discusses proportional profiles in several places in
a recent book (Cattell 1978), describing the "confactor rotation"
method with some optimism. However, he still considers the im-
plicit orthogonality constraint (which we saw earlier to be 3
consequence of the use of indirect fitting) to be an unsolved
problem. He does not discuss direct fitting using PARAFAC1 or
indirect fitting using the PARAFACZ model, as possible ways
around this problem.

4. The authors would like to thank J. D. Carroll for sug-
gesting this simple method of embedding T3 in PARAFAC-CANDE-
COMP.

5. Kruskal (personal communication, March 1983) has proven
that a 2 x 2 x 2 core matrix will have a maximum rank of 3 and
that a 3 x 3 x 3 core will have a maximum rank of 5, consistent
with our Monte Carlo results. The interesting thing is that
under a wide range of plausible conditions, a 2 x 2 x 2 core will
have rank 2 or 3, depending on the relative size of different core
elements. Kruskal provides algebraic conditions (inequalities
based on products of particular elements of the core) that deter-
mine whether a 2 x 2 x 2 core will have rank 3 or 2.

6. Some of our Monte Carlo results have led Kruskal to
reexamine these proofs; he now cautions us (personal communica-
tion, March 1983) that the theorems 3a-3d in Kruskal (1977)

require minor modification and are not correct as stated. Thus,

these particular theorems concerning trilinear rank have been
revised. However, theorems in Series 1, 2, and 4 of that paper
still appear to be valid. Copies of corrected versions of Kruskal
(1977) are available from J. Kruskal.

7. This expression for T3 leads to a simple demonstration of

an upper bound on Tucker dimensionalities (closely related to the

upper bound on the embedding PARAFAC representation, given in

Method II and equation [5-31], above). Any Tucker representa- .
tion can always be replaced by one in which the largest mode of =

the core has no more dimensions than the product of the dimen-
sionalities of the other two modes. We show this as follows:

@,
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Suppose;, without loss of generality, that in our model Mode C has
the most dimensions (that is, g, is larger than either g, or gqp).
We can construct an alternative core array and corresponding
Mode C loading matrix that will generate the same data as the
original model. First, we use the original g, by gp by g, core
and Mode C loadings to construct the p different Hyg matrices,
one for each level of Mode C, as defined by (5-34). (If we are
starting with a T2 model, this first step is unnecessary.) Then
we construct a new core matrix that is g, by g, by g,gp—that
is, one that has g, times gqp slices, rather than q.,. We con-
struct the slices of the new core such that there is only one
nonzero element in each slice, and this element occurs at a differ-
ent location in each slice; furthermore, we set these nonzero
elements equal to 1.0, This establishes the new core. Note that
we now have one slice of the core for each cell of an H; matrix,
since Hy is g, by gp. This allows us to obtain the Mode C
matrix corresponding to this new core by simply assigning to each
person a set of Mode C loadings equal to the values in his Hg
matrix. In particular, we obtain the kth person's loading for
factor t from the cell of Hy that corresponds to the nonzero cell
in the tth slice of the new core matrix,

8. The question might be raised as to whether this second
interpretation (5-38) is really different from the first one (5-36).
We would argue that they could describe different states of
affairs. On the one hand, if a new set of stimuli, when judged
by person k, failed to show the same close association between
active and good objects, it would appear that person k's distinct
perspective was specific to particular stimuli, and model (5-35/
5-36) might be more appropriate. On the other hand, if all new
stimuli would be judged by person k in a way more closely linking
goodness and activity, then it might be argued that model (5-37/
5-38) is more appropriate. (Even here, however, it would seem
that one could conceptually distinguish two different cases. In
the first case, the basic meaning of "activity" is unaltered, but
associated with this meaning is a derivative evaluation of "good-
ness," perhaps because person k believes that activity has good
consequences. In the second case, the basic semantic category
itself is changed; for example, person k might not use "activity"
in its pure sense but rather as some notion of "vitality" that
incorporates both aspects of activity and goodness.) This is a
subtle issue, but we believe that the distinction is "real" if it can
lead to different predictions. One way in which this might occur
would be in a four-mode situation.

It is possible to construct four-mode models in which the
indeterminacies of the Tucker model are reduced or eliminated
because different ways of resolving these indeterminacies make
different predictions about how the data might vary across a
fourth mode (see, for example, PARAFAC3, given in Table 5-1
and discussed above under Other Models). One might imagine
such a four-mode model being applied to studies in which each
rater evaluates a given set of stimuli, using a standard set of
rating scales, but repeats the ratings for each stimulus with
respect to several different situations or contexts.

9. General acknowledgments for chapters 5 and 6 are made
at the beginning of this chapter. We would also like to thank
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John Reddon for helpful comments on chapter 5.
10. The covariance matrices are uniformly rescaled as follows:

N Cijk ,
Cijk = T —

[(C,-I-')I/2 (Cj/_)l/z]

where
p

- 1
Cij. = — 1 Ciik >

P k=1

and similarly for ¢j;.. This imposes the same rescaling on all
levels of Mode C and produces the same covariances as would
have been obtained if the raw data for each level of Mode A had
been converted to z-scores before covariances were computed,
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