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Data Preprocessing
and the Extended PARAFAC Model

Richard A. Harshman and Margaret E. Lundy

DATA PREPROCESSING
Definitions and Objectives
Definitions

Two Kinds of Preprocessing. By data preprocessing we mean any
transformations of the data values that are performed before
fitting the main analysis model. For convenience, we define two
broad classes of preprocessing: data conversion and data adjust-
ment. This distinction is somewhat arbitrary, but, if not taken
too seriously, it will simplify discussion.

Data conversions take one kind of data and transform it into a
different kind, usually entailing a change in the form of the
model that is subsequently fit to the data. In chapter 5, we
discussed two types ' of data conversions and their implications:
(a) the conversion of profile data into covariances (or sums of
cross-products) prior to indirect fitting, and (b) conversion of
proximity data into scalar products as part of multidimensional
scaling. Data adjustments, on the other hand, take data of a
given kind and transform it into an improved or more standard-
jzed version of data of the same kind. Adjustments do not re-
quire a change in the form of the model, although they may
implicitly extend the model being fit, as we shall see later. In
this section, we will only consider data adjustments.

There are two basic types of data adjustments used before di-
rect fitting of profile data: (a) additive adjustments—for example,
to "center" the data; and (b) multiplicative adjustments—for ex-
ample, to "rescale" or "normalize" the data. Occasionally, a third
type of adjustment might also be useful: (c) nonlinear adjustments
—such as log transformation to "linearize" the data, or the Weeks
and Bentler (1979) rank transformation to deal with nonmetric
data. (We will not consider this third case in this chapter.)
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Additive Adjustments. In traditional two-way factor analysis,
the raw score matrix is often transformed so that the scores for
each variable have zero-mean. This involves a simple additive
adjustment——-the mean for each wvariable is subtracted from each
score involving that variable. At other times, score matrices are
iransformed so that the mean for each individual is zero, produc-
ing what is called ipsative data. Both kinds of additive adjust-
ments are commonly called centering, presumably because they
place the origin or zero-point of the measurement scale at the
mean of a set of data values. There are also other kinds of
additive adjustments that are sometimes used. For example, in
multidimensional scaling, an odditive constant is estimated for
each subject, which transforms that subject's interval-scale dis-
similarities into ratio-scale distances. Such additive adjustment
does not produce data with zero-mean, in part because negative
distances are not permitted. (These additive constants were
mentioned briefly in chapter 5.)

In this section, we will restrict our discussion of additive
adjustments to consideration of various kinds of centering. There
are many ways of centering a three-way array, but we will find
that only some of these are appropriate methods of preprocessing
for three-way factor analysis or multidimensional scaling. In
particular, we will demonstrate that, to be appropriate, centering
must be performed over one-way subarrays, such as rows, col-
umns, or "tubes."

Multiplicative Adjustments. In two-way factor analysis, the
data are often adjusted so that the variance of each wvariable is
unity. This is accomplished by multiplying all the data points for
each variable by the reciprocal of the standard deviation for that
variable. In other applications (such as multidimensional scal-
ing), the data may be adjusted so that the scores for each sub-
ject have a sum of squares equal to unity. In general, such
multiplicative adjustments are accomplished by considering the
data in subsets and multiplying the values in each subset by a
constant selected so that the size of observations in the subset
will have some desired property (for example, mean-square 1.0).
When used to equate the size of observations across subsets,
such multiplicative adjustments are often called standardizing or
normalizing (although standardizing is also used to refer to the
combination of additive and multiplicative adjustment that trans-
forms a set of values to z-scores). Multiplicative adjustments can
also be used to vary the overall data size across different subsets
(for example, as a means of accomplishing a weighted least-
squares analysis, to be described below).

Multiplicative adjustments are often useful in three-way appli-
cations, but there are many possible ways of performing such
adjustments, and, once again, we shall find that only some of
these are appropriate for three-way factor analysis or multidimen-
sional scaling. It will be demonstrated that multiplicative adjust-
ments, unlike centering, must be performed over two-way sub-
arrays (that is, "slices" of the three-way array).

Objectives of Preprocessing

Preprocessing plays a very important role in three-way analysis.
We saw in the previous chapter how conversion of profile data to
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covariances or scalar products allows us to use indirect fitting,
which permits modified or alternative models of the data, thus
extending the power and generality of the PARAFAC procedure,
Preprocessing plays an equally important role in direct fitting of
profile data. Once again, it will allow us to fit extended versions
of our analysis model and thus increase the generality of the
three-way procedure. We will explore this extended PARAFAC
perspective in more detail later in this chapter. In the present
section, however, we adopt a complementary perspective, where
preprocessing is used to make the data appropriate for the PARA-
FAC model. We will also focus on several additional advantages of
preprocessing data before analysis.

Eight Objectives. There are at least eight basic reasons for
preprocessing data before performing a PARAFAC analysis: (a) to
make the data appropriate for the PARAFAC model by removing
unwanted constants and eliminating some kinds of conditionality
(to be explained below); (b) to emphasize relationships among
patterns of change in certain modes, rather than among baseline
values; (c) to weight and thus emphasize or ignore particular
subsets of the data during the analysis, or, conversely, to
equate the influence that different wvariables, stimuli, subjects,
and so forth have on the form of the final solution; (d) to equate
the size of presumed error variance components across different
subsets of the data; (e) to standardize the data so that compari-
son of loadings across levels is facilitated; (f) to standardize the
overall scale so that comparisons across data sets is facilitated;
(g) to standardize the data so that useful added interpretations
of the factor loadings are possible (for example, as correlations,
variance components, and so on); and (h) to permit fitting of an
extended PARAFAC model.

Objectives (a) and (b) are accomplished by various additive
adjustments, and objectives (c) and (d) are accomplished by
multiplicative adjustments. Finally, objectives (e) through (h)
are accomplished by means of both additive and multiplicative
adjustments., Of these various objectives, (a) is probably the
most general and important application of preprocessing, and it
will be considered in detail in the following discussion. After
that, we will consider (b) through (g). Interpretation in terms
- of the extended PARAFAC model (objective [h], which is closely
related to objective [a]) will be taken up in the latter part of the
chapter.

Making One's Data More Appropriate for the PARAFAC Model
Restrictiveness of the Formal Model

The form of the basic PARAFAC-CANDECOMP model (5-3) appears
to require what Stevens (1946) would call ratio-scale measure-
ments. That is, the data values must be strictly proportional to
the underlying quantities being measured, so that a zero in the
data represents a complete lack of the property being measured,
and 4 units represents exactly twice as much of the property as 2
units. This strong level of measurement appears necessary
because the factor model is formulated in terms of proportional
changes in factor contributions from one level of a given mode to
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the next. Computing such proportional changes implies estimation
of a true zero for each factor, which implies knowledge of the
true zero-point on the variables from which those factors are to
be extracted. Yet with much of the data encountered in the
social sciences and elsewhere, one does not know the true zero;
there are arbitrary origins and unknown additive constants that
make the measurements interval scale at best. Furthermore,
social sciences data is often "row-conditional” or "column-condi-
tional"; that is, there may be a different measurement scale from
one row to the next or from one column to the next. For exam-
le, each person may have a different subjective origin to his
scale, or each variable might involve a different additive con-
stant. Since there are no explicit terms in the model and no
features in the fitting procedure designed to take care of such
arbitrary origins and constants, Sands and Young (1980) have
suggested that the practical application of the model may be
seriously limited.

However, the model's formal measurement level is not as crucial
as one might expect. While it is true that PARAFAC treats the
data as ratio scale, so do all other metric factor analysis models,
including Tucker's three-mode model and almost all varieties of
traditional two-way factor analysis. Despite this formal limitation,
factor analysts have not had trouble coping with interval-scale
data. In part, this is because factor analysis was traditionally
conceptualized in terms of correlation matrices. The conversion
of raw data to correlations before performing factor analysis
eliminated the problem of origin and so allowed investigators to
avoid the issue. The first stages of such conversion implicitly
perform a centering operation that transforms an interval-scale
data matrix into appropriate ratio-scale form. (Such centering
operations will be discussed below.) But conversion to correla-
tions is not necessary for interval-scale data to be successfully
factor-analyzed. As we shall see, additive constants can be
represented as extra factors with constant loadings in one or
more modes, and thus, in theory, can be easily accommodated
within the factor-analytic model by slightly increasing the dimen-
sionality of the solution. It can be argued, therefore, that the
limitation of metric factor analysis to ratio-scale data is more
apparent than real.

Unfortunately, however, extracting biases and constants as
extra factors has drawbacks when one tries to discover the
preferred rotation for the factor axes; hence, an alternative
approach is preferred. Authors such as Horst (1965), who
applied two-way factor analysis directly to raw profile data, found
a simple solution to the question of origin that bypassed full
consideration of measurement issues: First, convert the data to
deviation score form (usually as z-scores), either by rows,
columns, or both, and then apply the factor analysis to these
standardized scores. This approach is usually rationalized in an
ad hoc fashion, as a method of concentrating on deviations from a
group mean; the mean is taken to be an alternative reference
point suitable for cases in which the true origin was unknown or
undefined. As we shall see, however, this standardizing pro-
cedure can be justified in terms of a more theoretically based
rationale,
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With three-way arrays, the question of proper centering ang
scale adjustment becomes much more subtle; many alternative
possibilities exist, and the "easy" or "natural" approaches are not
always correct. It becomes important to develop an explicit
rational basis for choosing among different procedures for pre-
processing. We advocate here a set of criteria based primarily on
an algebraic analysis of the effects of the preprocessing on the
latent structure of the data. To do this, we must begin with 3
simple model of the raw data. This model includes terms repre-
senting the factors we wish to extract, along with terms repre-
senting the undesirable constants and biases that obscure the
true origin and make the data interval scale (and row- or column-
conditional) rather than ratio scale. We then study the effects of
alternative preprocessing transformations on both the factors and
on the unwanted components. "Good" preprocessing will remove
the undesired components while leaving the latent factors rel-
atively unchanged.

We first apply this theoretical analysis to the question of
preprocessing two-way arrays and demonstrate that it confirms
the appropriateness of the methods currently used in two-way
factor analysis. We then extend it to the three-way case to
discover which of the many possible three-way centering and
standardizing techniques are in fact appropriate for three-way
factor analysis.

A Model for Interval-Scale Data

Two-Way Case. Suppose we have a data matrix X that fits the
structural model of factor or principal component analysis, except
that there are additional constants present that obscure the origin
of the variables. There may be a constant term h offsetting the
data as a whole from true ratio-scale properties. In addition, if
the origin of the data is row- or column-conditional, then there
would be additional constants h; or h;, which would describe how
the ith row or jth column deviates from ratio scale (after adjust-
ment by h). If we let x;; be the element in the jth row and jth
column of X, our expression for the latent structure of a data
point might be written as follows:

r

r=jr

Here, as earlier, the a;, and b;, terms represent the factor
loadings for Modes A and B, respectively, and e;; represents
random error.

For ease of discussion, let us interpret (6-1) in terms of a
concrete example. Suppose that the data matrix X is a two-way
array of stimulus ratings, with rows corresponding to stimuli
(pictures of products) and columns corresponding to judges, and
that two factors underlie the systematic ratio-scale part of the
data. All judges are rating a common set of stimuli on a particu-
lar quality (such as attractiveness). Thus, the data entry
described by (6-1) is the attractiveness score of stimulus j as
rated by judge j. The a-loadings indicate how much each stim-
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alus has of each type of attractiveness on a ratio scale. For
example, the two types of attractiveness might be the aesthetic
and economic advantages of the products. The b-loadings (which
in some cases would be called factor scores or factor score esti-
mates) are proportionality coefficients that relate the size of a
given subject's ratings to the amount of each type of attractive-
ness possessed by the stimulus. When considered in this way, it
pecomes apparent that two-way factor analysis is formulated in
terms of ratio-scale quantities.

In addition to the q;, b;, terms representing the factor contri-
butions, we have included additional h;, hj, and h-terms in the
model, representing the unknown constant offsets for each row
and column, and an overall additive constant, which disturb
proportionality and thus cause the data to have conditional inter-
val-scale rather than unconditional ratio-scale properties. Let us
consider the interpretations that these extra terms might have in
our hypothetical analysis of rating scales. In such a study, the
true zero-point for attractiveness would be hard to define and
would almost certainly differ from a zero data value. In fact, the
responses would typically be made on a rating scale, with points
on the scale ranging from 1 to 9 and the two ends of the scale
labeled "unattractive" and "attractive." It is clear that a rating
of "2" on this scale is unlikely to represent twice as much attrac-
tiveness as a rating of "1." Thus, an overall additive constant is
necessary to shift the zero-point somewhere nearer the middle of
the scale. This is provided by the h-term. But a single con-
stant may not be enough. If a given rater views "unattractive"
as a negative quality equal and opposite to "attractive," the
neutral point may be at 4.5. But for other raters who view
"unattractive" as simply a lack of attractiveness, it may be nearer
the low end of the scale. Because of such subject-to-subject
variation, an hj term is also needed to specify the shifts in the
baseline for the jth rater. Finally, there might also be shifts in
the baseline from stimulus to stimulus, although it seems less
likely in this particular example. In other cases, however, shifts
from row to row might seem plausible; for example, if the data
were test scores, with rows representing the particular tests and
columns representing the subjects. To provide for the general
case, our model includes both an h; and h; term.

Direct factor analysis of our hypothetical ratings data, without
preprocessing, would be an example of fitting a ratio-scale model
to row- and column-conditional interval-scale data. If we only fit
r-factors, the obtained loadings would be distorted by the pres-
ence of the constants h;, hj, and h in the data. However, the
fact that the ratings do not properly reflect the zero—point of the
attributes being measured can be easily corrected within the
context of the two-way factor model. One solution would be to
extract two extra dimensions. If, as in our example above, there
were two '"real" dimensions present, then a third and fourth
d}ilmension would be needed. The dimensions could be defined so
that

ai3 = hj , ajiy =1 (6-2)

and
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bj3=1,bj1+=hj+h.

(Here we have absorbed the overall bias h into the fourth dimen-
sion. There is no reason why it might not have been divided
between the two dimensions or absorbed into the third dimension
instead; the choice is arbitrary.) With such additional factors,
one can represent conditional origin interval-scale data within the
framework of a ratio-scale factor model.

For this example, there should be a four-dimensional solution
that would recover the factor loadings for the first two dimen-
sions correctly while isolating the constant biases into a third and
fourth dimension. However, because of error in the data, the
four factors that explain the largest proportion of the wvariance
will not exactly correspond to the two "true" factors plus the two
factors representing the additive constants. If the error is not
too large, it should nonetheless be possible to find a rotation in
which these factors are closely approximated.

PARAFAC Three-Way Case. Both the PARAFAC model and
Tucker's three-mode model focus on components that an analysis
of variance would call three-way interactions. That 1is, they
describe components whose pattern of change from one level of
Mode A to the next depends simultaneously on the levels of Mode
B and Mode C involved, as well as the levels of Mode A. The
sizes of the factor contributions normally vary as a function of all
three modes, because normally the loadings for a given factor
vary in size across the levels of all three modes. Thus, in order
to take all the unwanted offsets into account, we need to consider
the consequences of not only the global constant h and "one-way"
effects (the hj, hj, and now hk terms) that are constant across
two modes, but also the consequences of "two-way" effects, which
arise out of the interaction of a particular pair of modes and are
constant over a third mode.

For simplicity, let us return to our example involving rating-
scale data. Suppose that each judge now rates each stimulus on
several scales; in addition to "unattractive-attractive," he also
rates the stimulus pictures on "practical-impractical," "fun-dull,"
"appealing-unappealing," "economical-uneconomical," and so on.
This would generate a three-way array whose general entry would
be the rating of stimulus / by judge | using scale k. As before,
we might want to have an overall baseline term and terms for
biases due to particular people, stimuli, and now scales. But we
can also imagine that a particular person has an idiosyncratic
interpretation of a particular scale and uses that scale as if it
had a different neutral point. This would be a two-way inter-
action of person and scale that would be constant across stimuli.
We might adjust for such effects by means of a doubly subscript-
ed constant hjk. Similarly, we should consider possible two-way
interactions of particular people with particular stimuli and par-
ticular scales with particular stimuli. For example, if one of the
stimulus pictures included a beautiful model, the scale "attractive-
unattractive" might take on a special meaning with respect to this
stimulus, which would uniformly alter the neutral point of ratings
for this stimulus-scale combination across all subjects. Thus,
within the PARAFAC framework, we might represent three-way
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arrays of interval-scale data in terms of the following general
form:

Xijik = L @ibjrcip) + hij + hiy (6-3)
r

+hjk+hi+h/+hk +h+e,-/-k.

This representation could easily be adapted to incorporate the
Tucker three-mode model or other metric three-way models by
simply modifying the first term. In (6-3) the first term repre-
gsents the PARAFAC-CANDECOMP factor model; by replacing it
with the corresponding triple summation from Tucker's model and
applying the algebraic transformations discussed below, we could
prove the appropriateness or inappropriateness of different types
of preprocessing for these models. It quickly becomes apparent,
however, that the consequences of the transformations on the
h-terms are the same regardless of the exact representation of
the factors and that the consequences of the transformations on
the factor component are similar for all current metric three-way
models. Thus, all of the conclusions reached concerning repre-
sentation of interval-scale data and the appropriateness of dif-
ferent centerings will apply equally to PARAFAC and Tucker's
three-mode or other metric three-way models, with the exception
of those considerations that involve the intrinsic axis property of
the PARAFAC-CANDECOMP model.

Now, since the unsubscripted and singly subscripted h-terms
can be absorbed into the doubly subscripted ones as the investi-
gator sees fit, the general expression for a interval-scale three-
way array might be written more simply:

Xjjk = ) (Grbjrckr) + hij + hjx + hjx + ejjx (6-4)
r

Given this representation, let us consider how it can be incor-
porated within the ratio-scale framework of three-way factor
analysis. The effects represented by the h;; term, for example,
cannot in general be represented as a single factor. In fact, this
set of effects constitutes a two-way array (replicated identically
across all levels of the third mode) which may have a complex
structure, with a rank possibly equal to the number of rows or
columns (whichever is less) in the hj; table. Hopefully, however,
the systematic part of the two-way biases will have a relatively
low dimensionality; we might therefore approach the representa-
tion of these biases as a traditional two-way factor-analytic prob-
lem. We could decompose each of the two-way arrays of h-values
into a set of factors in order to represent its effects in terms of
our model.

Although decomposing a two-way table of, say, h;; values
would normally vyield two-way factors, in order to incorporate
these effects into our three-way factor model, we could express
them in terms of three-way factors with constant loadings across
a third mode. This would give us a three-way (such as PARA-
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FAC) representation of the three-way array of bias components
that is added to the data array by the hj; term in equation (6-3),
Obviously, the hjx and hj, terms could be represented in
analogous fashion, and so we could rewrite our expression for the
interval-scale data as:

Xijk = Z (airbjrckr) + Z (aisb/scks) (6-5)
r S
+ 1 (gihjcie) + | (@ubjucky) + €jjk »
t u

with the constraints that:

all ¢xs = a constant, (6-6)
all bjt = a constant, and
all g;, = a constant.

Thus, two-way interactions can be decomposed into a set of
two-way factors, which can be incorporated into the three-way
model as factors that have constant loadings over a third mode,
If desired, these two-way factors could further be decomposed
into deviations plus main effects (that is, factors that are con-
stant across two modes), to more closely parallel the longer form
of (6-3). Such additional decomposition would be purely to
facilitate some preferred scheme of interpretation, however, since
no improvement in fit would be obtained by the extra terms and
the particular manner of the decomposition would be somewhat
arbitrary.

Disadvantages of Treating Constants as Extra Factors. Al-
though (6-5) shows how the factor-analytic model can be con-
sidered appropriate for conditional-origin interval-scale data, the
representation of bias and constant terms as extra factors can
pose problems for the actual processes of factor estimation and
rotation. As noted earlier, the presence of random error in the
data normally prevents the extraction of factors with precisely
constant loadings; factors often emerge with some of the constant
variance mixed in with the variance of factors that are noncon-
stant across all modes. Even if it were possible to extract the
constants unperturbed by error, existing methods for factor
rotation do not automatically find the desired solution—one that
has dimensions of the form specified in (6~6) or, in the two-way
case, as described by the constraints of (6-2).

When fitting the PARAFAC model to three-way  arrays, a
further consideration is involved: We want to preserve the intrin-
sic axis property of the solution. As noted in chapter 5, how-
ever, it is generally necessary that factors show distinct patterns
of variation across all three modes for their contributions to be
unambiguously sorted out from other possible linear combinations
with other factors (that is, in order for their axis orientation to
be uniquely determined). It is apparent from (6-5) and (6-6)
that the extra . factors that we might incorporate to represent
constants and two-way interactions do not show the necessary
distinct patterns of variation across all three modes. Indeed,
since they are defined by what are essentially two-way arrays
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(replicated across a third mode), they' show the classic rotational
indeterminacy of two-way factor analysis. If the sum of squares
due to these extra factors is substantial, then they tend to
emerge even in solutions of low dimensionality, probably mixed in
with the unique three-way factors that we are trying to identify.
The indeterminacy of these two-way interaction factors causes the
factors of interest to appear indeterminate, and the resulting
solution in general is quite hard to interpret. Thus, the ap-
proaCh of treating unwanted constants as extra factors seems to
have too many drawbacks to recommend it for normal three-way
PARAFAC analysis. There is, however, an alternative way to
deal with the unwanted constants: Remove them by appropriate
preprocessing .

Transforming Interval-Scale into Ratio-Scale Data

Instead of including extra factors in our model to represent any
unwanted constants or biases that may be present in the data,
another approach is to remove such constants by special data
transformations preceding the factor analysis, or in other words,
by data preprocessing. First, we will show how this is done for
two-way data and then extend it to the three-way case.

Two-Way Case. As mentioned earlier, the problem of arbitrary
origin was traditionally dealt with in two-way factor analysis by
means of centering, removing means from the rows and/or columns
of a data matrix. This set the new origin at the group mean on
each row or column. The procedure was justified as a way of
focusing attention on the deviations from the mean. But is such
a justification adequate? What information is lost or distorted by
this procedure? In more precise terms: How is our interpretation
of the underlying "true" factors of these centered scores dif-
ferent from the interpretation we would have obtained could we
have factored the original uncentered data without the interfering
constants?

If we algebraically examine the traditional centering process
using our model of interval-scale data ([6-1]), we see that cen-
tering has very desirable properties. It removes the unwanted
and unknown constants that obscure the origin of the data and at
the same time performs only a minor transformation on the factors
in which we are interested. Since this transformation does not
usually interfere with our ability to interpret the solution, we are
able to get essentially the same information that we would have
obtained had the original data been ratio scale in the first place.
This algebraic result provides a firm basis for concluding that
centering is an appropriate method of preprocessing in two-way
factor analysis.

Let us adopt the convention that a dot in place of a subscript
means that the term has been averaged across the levels of that
subscript. For example, if there are n levels to Mode A, then

1 n
Xj = ) z (Xi/') ’ (6-7)

i=1

and similarly for other subscripted terms.
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Let us return again to our example of the ratings matrix X,
where x;; represents the rating of the ith stimulus by the jth
judge. Suppose the original data differs from ratio scale because
of an overall constant h and an offset h; for each judge, but
there are no differential offsets for each stimulus. Thus, our
data point before centering has the underlying structure

xjj = ) (@ bj) + hy + h + e . (6-8)
r

We wish to determine what happens to this structure after center-
ing. We start with the description of the effects of centering
defined in terms of the observed scores. If we let xl represent
the data point after centering across stimuli, then we can start
with the expression:

" 1
Xjj = Xpj = Xxj =X = gL () . (6-9)
r

To determine the effects on the underlying structure, we substi-
tute from (6-8) into (6~9) and simplify, obtaining:

! (aibj,) + hj + h + e (6-10)
L

-1
n

I ~13
o

( ¥ (ajrbjy) + hj + h + ) .
i r

By distributing the summation over /i and rearranging the terms
of (6-10), we obtain:

n
32’./' - Z (@i bjp) + hj + h + ejj - Z (bjr ( 71721 (@;r)))
r j=

1 n
(hj) - (h) - EZ (eif) .
1 i i=1

I ~13

Sl
Il o~

1
n

i 1

Since the average of a constant is the same constant, the sixth

and seventh terms are not affected by the summation. We can
use the dot notation to simplify the remaining terms and obtain:

;2/./. = Z (airbfl') + hi +h +ej- z (b,-,(a_, ))

r r
- hj-h-e;

Collecting like terms, we obtain:

%7 =) ((ajr - a,)bj;) + (ejj - ej)
r
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1f we let Gjr = air - a.r and 5/] = ejj - e.j, we have the following
simple expression for the underlying structure of the data matrix
after centering:

*
;,'/' =1 (airbjr) + €jj . (6-11)
p

The consequences of centering the data are simple: The factor
loadings for one mode are centered, as are the error terms, and
the constants h and h; disappear. The centered data is now ratio
scale and can be represented (aside from the random error)
simply in terms of the underlying factors of attractiveness. We
can recover these factors accurately after the centering opera-
tion, since the b-coefficients (in this example, person weights or
factor score estimates) are unaffected by the centering, and the
g-coefficients (or factor loadings) are the same except that the
mean value of a for each factor has been subtracted out (that is,
the loading matrix A is column-centered). Thus, the shape of
the profile of factor loadings is unaffected, and only the elevation
is changed. Since most of the interpretation of a factor is based
on the relative values of the loadings on the different stimuli,
rather than the absolute size of the loadings, the centering
operation does not normally interfere with our interpretation of
the factor.

Similarly, if there had been bias or offset terms that differed
across stimuli but were constant across persons (h; terms), then
centering across persons would have removed these terms. In
this case the factor scores or b-terms would have been centered
but not the loadings or a-terms. As noted earlier, the occur-
rence of h; terms might be more plausible if our data consisted of
ability test scores for a group of people; this is where centering
across persons is most commonly employed.

Centering both rows and columns of X can be accomplished by
applying the second centering o]geration to the result obtained by
the first centering. If we use X;; to represent an element of the
double-centered data array X, then we could compute it as fol-
lows:

° * *

Xij = Xjj = Xj.»
Double-centering removes both h; and h; terms; it also column-
centers both the Mode A and Mode B tables of factor loadings and
double-centers the error terms. It otherwise leaves the latent
structure unchanged. As has been indicated elsewhere (Horst
1965), the effects of double-centering are the same, regardless of
the order of the centering operations performed; this becomes
clear when one sees that double-centering can also be repre-
sented—more compactly but less transparently—as a single opera-
tion defined in terms of the original row and column means:

§</’j= Xij = Xj, = Xj o+ X,
When the response scale is clearly offset from psychological

zero, as in the rating scale example, the most important conse-
quence of the centering operation is often the removal of the
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overall constant h. This could be accomplished by centering in
either direction. However, the elimination of the conditionality of
origin can also be important, and this requires centering the
correct mode.

Matrix Formulation of the Effects of Centering. In the pre-
ceding discussion, we used scalar notation to deduce the relation-
ships between the form of a given factor before and after center-
ing. We used this method because it easily generalizes to n-way
arrays. However, with two-way arrays, there is a matrix repre-
sentation of centering that allows one to demonstrate its effect on
the latent structure most clearly. Horst (1965) defines a matrix
that he calls a centering matrix. We will call this matrix L, (for
the n by n version of L needed for column-centering) or L, (for
the m by m version needed for row-centering). The matrix is
defined as follows:

IR
Lp=1 -2 (11, (6-12)

where 1 is an n-element column vector, all of whose entries are 1,
and | is an n by n identity matrix. The matrix L, is symmetric,
idempotent, and has rank n - 1. Its rows and columns sum to
zero. Its diagonal elements are equal to (n - 1)/n, and off-
diagonal elements are equal to -1/n. The matrix

X=1,X (6-13)

is the colgmn—centered version of X; that is, the sum of each
column of X is zero.

To determine the effects of centering on the latent structure
of X, we may replace X by its representation in terms of factors.
So, if

X =AB” +E, (6-14)

where A is the n by r matrix of factor loadings and B is the m
by r matrix of person loadings (factor scores or component
scores), then by premultiplying both sides of (6-14) by L,, we
obtain

L,X =L, (AB” +E) (6-15)

or

1}

L, X = (L,A) B+ (L,E) .

If welet A=L,A and E=L,E , then
X =AB” +E . (6-16)

That is, column-centering X simply column-centers the A matrix
of factor loadings and the matrix of error terms, as we deter-
mined earlier in scalar notation. Similarly, we can row-center X
by multiplying it on the right by an m by m matrix L,,, defined
analogously to L, (L,=1 - (1/m)(11") where 1 is a m-element
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column vector all of whose entries are 1). The result is:

XL,=(AB" +E) L, ,

and so
XLp,=A(B L, +ELp,. (6-17)

Thus, row-centering X simply row-centers the matrix B” and the
error matrix E. Since B” is the transpose of the person-loading
matrix B, row-centering B” is equivalent to column-centering B.

Finally, as noted earlier, we can apply both row- and column-
centering to a data matrix, in either order, with the same result:
Both row sums and column sums will be zero. The effect of
double-centering on the latent structure is:

L,XL, = (L,A) (B L,) + L,EL, =AB~-+E . (618)

Double-centering the data matrix simply column-centers both
matrices of factor loadings and double-centers the error matrix.

Some Interpretations of the Effects of Centering. From these
two-way results, we can state a rule that will enable us to gen-
eralize to three-way arrays: Centering across any mode of the
data matrix simply centers the errors across that mode and col-
umn-centers the factor-loading matrix for that mode. For any
given axis orientation, a column-centered factor matrix generally
leads to the same interpretations as an uncentered factor matrix.
Geometrically, after centering, the axes are parallel to the corre-
sponding axes before centering; they have simply been translated
as a unit from the original arbitrary origin to a new origin at the
centroid of the configuration. Thus, centering by rows or col-
umnszcan be said to preserve the factor structure underlying the
data.

The conclusion that centering the data across levels of a given
mode centers the corresponding factor loadings also implies that
centering removes unwanted components that are constant across
that mode. We showed earlier how terms that are constant across
levels of a given mode are equivalent to factors with constant
loadings in that mode. Because centering the data across levels
of a given mode column-centers the factor-loading matrix for that
mode, those factors with constant loadings in the centered mode
are transformed into factors with zero loadings in that mode and
hence vanish.

The above discussion shows that the effects of different cen-
terings are quite straightforward in the two-way case. None-
theless, there has been considerable controversy on this point,
with some authors claiming that different factors can be uncover-
ed by different centerings. One reason that some investigators
may have gotten this impression is that different centerings can
give different relative emphasis to the several dimensions under-
lying a data set; the relative emphasis of dimensions before and
after centering is determined by the relative sizes of the sums of
Squares of their original loadings compared to their column-cen-
tered loadings. This change in sums of squares will change the
relative contributions of the dimensions to each unrotated factor
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or principal component. If some nonnegligible components ayre
discarded to obtain a lower-dimensional solution, then different
parts of the factor space might be discarded in the centereq
versus uncentered solutions.

Perhaps the most serious obstacle to recognizing the samenegg
of factors before and after centering has been the rotationa]
indeterminacy of the two-way model. Centering either mode wij
change the orientation of the principal components, and centering
across levels of a given mode will also change the best simple
structure orientation of the factors in that mode. These artificia]
differences have led authors to overlook the essential sameness of
the centered factors.

For example, Horst (1965) examined the effects of centering on
the wunderlying dimensions by comparing the basic structure
(similar to the unrotated principal components or singular value
decomposition) of a data matrix before centering to its basic
structure after centering. But the orientation of axes in the
basic structure solution is determined by the directions that
successively maximize variance-accounted-for. These directions
will usually be different after the translation of origin that re-
sults from centering, and so comparing the two basic structures
amounts to comparing factors that have not only been translated
but also rotated into different orientations. Naturally, this
obscures the essential sameness of the dimensions. Although
Horst presented a complex procedure for deriving the centered
basic structure solution from the noncentered, and vice versa, he
failed to mention the very simple relation between the two struc-
tures that applies with suitable rotation to restore the equivalence
of axis orientations in the factor space.

The straightforward effects of centering may also be obscured
if the pre- and postcentered versions are rotated to simple struc-
ture using Varimax, Oblimin, graphical rotation, or some other
such criterion. Column-centering a factor-loading matrix changes
the number and positions of near-zero entries in the matrix and
thus affects the axis orientations obtained when simple structure
or related analytic rotation techniques are applied to the dimen-
sions of the centered mode. By centering across variables, for
example, and then rotating the variable loadings to simple struc-
ture, one could easily get the idea that novel dimensions have
been revealed by this ipsative analysis. Once again, this is an
illusion caused by looking at the same configuration from a differ-
ent angle and location. Furthermore, it could be argued that the
empirical rationale behind rotation in search of hyperplanes does
not directly apply to a mode that has been centered; any hyper-
plane that results from a number of variables being unaffected by
a given factor should go through the true ratio-scale origin of
the space and not the centroid origin that results from centering.

It must be acknowledged, however, that the error terms are
also modestly affected by centering and hence the perturbations
of the true factor loadings due to error may change slightly with
different centerings. If the error is random with expected value
of zero, the deviations from zero-mean error in the columns or
rows of any particular matrix of observed errors will usually be
small and so centering would not normally have much effect on
these components.
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Extension to Three-Way Centering. In three-way factor analy-
sis of raw or profile data, the question of origin becomes con-
siderablY more complicated. Thus, we must start by defining
some terms. There are three types of centering that might
seem natural. We have called them fiber-, slab-, and grand
mean- (global-) centering; Kruskal (chapter 2) calls them one-
way, two-way, and three-way centering.?3

Fiber- or one-way centering subtracts means computed over
one-way subarrays. Since there are three kinds of fibers—rows,
columns, and "tubes" (see Figure 6—1)—there are three corre-
sponding varieties of fiber-centering. Slab- or two-way centering
subtracts means computed over two-way subarrays. Since there
are three kinds of slabs—Ilateral, horizontal, and frontal (see
Figure 6—1)—there are also three types of slab-centering. Grand
mean- or three-way centering subtracts the mean computed over
the entire three-way array (that is, the grand mean). There is
only one variety of three-way centering.

Fiber-centering removes means computed across all levels of a
given mode, holding the level of the other two modes fixed.
Thus, we say that fiber-centering is done across Mode A, across

Figure 6-1. Fibers and Slabs in a Three-Way Data Array
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Mode B, or across Mode C. In slab-centering, means are com-
puted across all levels of two modes, holding the third fixed,
Thus, we say that slab-centering is done across Modes A and B,
across Modes B and C, or across Modes A and C.

Examples of each type of centering are:

)?ijk = Xjjg = X, global- (three-way) centering; (6—19)

Rijk = Xijk = X k slab- (two-way) centering (6-20)
across Modes A and B;

Xijk = Xijk = X_jk fiber- (one-way) centering (6-21)

across Mode A.

(Here, again, a dot in place of a subscript indicates that a mean
was computed across all levels of the missing subscript.)

To determine which of these centering procedures would pro-
vide appropriate preprocessing for three-way factor analysis, we
will algebraically determine their effects on a model of three-way
interval-scale data. For example, when testing different center-
ings as possible preprocessing for PARAFAC, we will use a model
of data that incorporates the PARAFAC model of the factor com- -
ponent, along with our standard terms for the two-way, one-way,
and overall biases. Similarly, we can see which centerings pro-
vide appropriate preprocessing for Tucker's model by applying
them algebraically to a model of interval-scale data in which the
T2 or T3 representation of factors replaces the PARAFAC-CANDE-
COMP representation. It will become apparent, however, that the
same conclusions about appropriate preprocessing hold for all
current metric three-way factor models.

The model of three-way interval-scale data ([6-3]) is rather
long and unwieldy. To simplify our discussion, we will break it
into three parts. We can consider the expression for a data point
to be constructed of error plus two different systematic parts:
(a) a systematic trilinear part represented by the basic factor
model (initially taken to be the PARAFAC-CANDECOMP model),
which we will call ¢;;x; and (b) a systematic but troublesome part
not represented by the basic PARAFAC-CANDECOMP model (ex-
cept by adding factors with constant loadings in one or more
modes), which we will call h;jx. This latter part is a sum of the
parts explicitly represented in (6-3) as two-way and one-way
terms plus an overall constant. Thus,

where
tijk = L (@ bjrcir) (6-23)
r

and

hijk = h,/ + hjp + h/k + h; + h/ + he + h . (6"24)
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We are now able to test different types of centering to see if
they eliminate the hjjx component but leave the t;jx component
relatively unchanged (that is, changed only in a simple way that
does not increase the dimensionality or obscure the interpre-
tation). First, we note that we can investigate the effects on the
two systematic components separately, since the linearity of the
centering operation insures that the effects on each part are
independent of the other part. For example, since

1
X jk =% L (tijk + hijk + ejjk)
1
1 1 1
== ; (tije) + H/Z (hijk) + B/Z (ejj) »

we can rewrite this as:

Xje =t v hjete . (6-25)

Substituting into our general expression for one-way centering
and grouping like terms, we obtain:

Xiie = X jk = Wi =t ) + (hyje = h ) (6-26)

+ (eljk - e./'k) .

In other words, centering the data by a given method can be
thought of as independently centering each of the additive compo-
nents of the data by that method.

Let us now ask what the effects of the different centerings are
on the trilinear and bilinear parts of our model. We begin with
fiber-centering, which happens to have desirable properties.

Centering of One-Way Arrays. Applying fiber- or one-way
centering to the trilinear part of the model, we obtain:

ik~ Lk = L Cirbjrekr) (6-27)
- %z (1 G@irbjrcer))

tik =tk =1L (@b cpp) (6-28)
RRC ,1,2 ((a;,))))

tijk = tjk =1 Wjrcprlas, —a,)) . (6-29)

r

If, as before, we place a "*" above a centered component, we
obtain:
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tiik= z (G,,',-bl'er,-) . (6—30)

r

Thus, fiber-centering has a very simple -effect on the trilinear
part of three-way arrays, strictly analogous to the effect of
traditional centering on the bilinear part of the two-way arrays:
It results in the same number of dimensions and the same load-
ings, except that the loadings for the mode across which the
centering was done are themselves column-centered. In this
case, since we centered across Mode A, the Mode B and C load-
ings were unaffected, and the Mode A loadings for each factor
had the mean Mode A loading for that factor subtracted out.

Now, to complete our examination of fiber-centering, we must
test its effects on the troublesome hjjx part. We proceed in the
same way as before:

hije = b ji = Chjj + hje + hjp + b + By + e + h) (6-31)
- (h; +hyg +hjg+h +hi+ b+ h)

hijk = hjx = Chjj = hj) + (hig = hyg) (6-32)
+ (hjx = hjg) + (h; = h)

+(h/‘h/)“f(hk'hk)+(h‘h)

* *

* *
hffk:hi/+hik+0+hi+0+0+0' (6—33)

We find that fiber-centering across Mode A causes all the h-terms
that do not have an /j-subscript to wvanish. In other words,
fiber-centering across Mode A removes all the terms that are
constant across the levels of Mode A. For the other components,
which vary across levels of Mode A, the original terms are re-
placed by the corresponding j-centered versions.

The effect of fiber-centering on the error term is simply to
center the errors across that mode; that is,

€ijk T €. jk T 2/'//( . (6-34)

Because our model of three-way interval-scale data treats all
three modes symmetrically, it follows that the effects of centering
across Mode B and Mode C are equivalent to the effects of Mode
A centering, shown above, except that the affected modes are
correspondingly changed. Thus, centering across Mode B causes
the bj, term of the trilinear part to be centered, the h-terms that
do not have j-subscripts to vanish, and the error components to
be centered across Mode B.

As with two-way arrays, a three-way array may be double-
centered or triple-centered by centering across several modes in
succession. The order of the operations does not matter, so long
as the values input to each successive centering operation are the
residuals from the prior stage of centering. Thus, if we first
center over Mode A, then the doubly centered data point is
computed as follows:
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° * 1 *
Xijk = Xijk ~ 372 (Xijk) (6-35)
i

1t does not, in general, equal
Xjjk = X.jk T Xi.k -

with fiber-centering, it is possible to represent the effects of
centering a three-way array by matrix notation. If we consider
the three-way array to be composed of a set of p two-way ar-
rays, each n by m, then we can represent double-centering
across both Modes A and B by extending (6-18) to the three-way
case as follows:

{xjjk} = {Xx} = the three-way array , (6—36)
L, X)Ly =L, (ADgB” +E) Ly, and (6-37)
L, X)Ly = (LL,A)Dg (LpB) +LyEL, (6-38)

If we represent the doubly centered data as X » then
° * x E
Xk = ADgB + E | (6-39)

That is, double-centering the three-way array by means of two
fiber-centerings is equivalent to double-centering each constituent
Xk matrix. The result is that the Mode A and Mode B factor-
loading tables are column-centered, and the error component is
double-centered.

If we represent our unwanted h-terms as extra factors that
are constant across the levels of one or more particular modes,
then we can see that double-centering eliminates all the factors
that are constant in either Mode A or B, since both of their
factor-loading tables are column-centered. The only h-terms that
remain are those that vary across both Modes A and B but are
constant across levels of Mode C.

The more stages of centering that are performed, the greater
the number of h-terms that are removed. Single-centering re-
moves the overall constant h and two of the three one-way ef-
fects, along with one of the three two-way effects. Double-
centering removes the remaining one-way effect and another one
of the two-way effects, leaving only one of the doubly subscript-
ed h-terms remaining. Finally, it can easily be shown that
triple-centering the data array removes all of the h-terms and
leaves all three of the factor-loading tables for the trilinear part
column-centered.

In theory, then, triple application of fiber-centering leaves the
data in ideal condition, with all the troublesome constants and
one- and two-way components removed. In practice, however,
triple-centering can have an additional, less desirable effect. It
sometimes causes too severe a reduction in the "signal-to-noise"
ratio in the data, as will be discussed below. Since double-
Centering removes all the unwanted components except one, it can
be very effective in cleaning up even difficult data. It is often
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possible to choose the modes to be centered so that the two-way
term remaining after double-centering is so small as to be insig~
nificant. Thus, double-centering is often the optimum method of
removing unwanted constants from one's data. Naturally, how-
ever, not all data require double-centering. Some may not re-
quire any centering at all, although this would be unusual.

Centering the data centers one or more tables of factor load-
ings, and this can sometimes affect one aspect of factor inter-
pretation: It can become more difficult to distinguish wunipolar
factors (with high influence on a few variables and no effect on
the rest) from certain kinds of bipolar factors (those with high
influence on some variables and moderate opposite influence on
many other variables). The problem does not arise with more
clear-cut bipolar factors, with roughly equal numbers of loadings
at each pole and a larger group of loadings closer to the origin,
However, when the configuration of loadings does not make the
bipolarity of a factor clear and the unipolar-bipolar distinction ig
important in a particular mode, then one might want to consider
centering another mode instead.

Centering of Two-Way Subarrays. We can now compare the
effects of fiber-centering versus slab-centering. Many investiga-
tors have considered slab-centering to be the most natural kind
for three-way factor analysis. Yet, as we shall shortly see, it
has undesirable effects. It does not remove all the h-terms and,
most seriously, it distorts the trilinear part of the data, increas-
ing its dimensionality.

In slab- or two-way centering, the mean is computed for all
the points at a given level of a particular mode (namely, for all
the points in that two-way subarray or slice of the data) and
then subtracted from all the points at that level. For example,
means might be obtained for each stimulus by averaging across
persons and scales; the points are then centered as follows:

;él'jk = xijk - Xj. = xijk - Tn}'b- Z ( z (Xi/k)) . (6—-40)

J k
Now it is easily shown (by arguments parallel to those made above
for fiber-centering) that slab-centering the data is equivalent to
slab-centering each additive part in our representation of the
data. Hence, we once again can simplify our discussion by
considering the effects of centering on each of the three com-
ponents of the data ([6-22]) separately. First, let us consider
its effects on the trilinear part, which after slab-centering would
have the form:

tijk= ti.. =) (@irbjrckr) (6-41)

“%p Y CY C) (apbjrce,))) -
r / k

Rearranging the terms, we obtain:
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tijk ~ ti.. = L (air{bjrcr (6—42)
r

1
“mp IZ [ Z (bjrckr )

Unfortunately, no further simplification of (6—42) is possible.
Obviously, the effect of slab-centering on the trilinear part of
the data is not as simple as the effect of fiber-centering, since
there is no direct representation in terms of changes in the Mode
B or C loadings.

This example shows that slab-centering across Modes B and C
removes the mean bj,ck, product from each bj,ck, part before it
is multiplied by the aj, coefficient. A more straightforward
statement of the effects of slab-centering on the trilinear part is
given by (6—41). Slab-centering across Modes B and C adds an
artifactual dimension, whose loadings in Mode A are -1.0 times the
mean value in each Mode A slice, and whose loadings in Modes B
and C are all equal to 1.0. Thus, the constant that is added to
center the data becomes another constant factor, rather than
simplify"-‘?che solution.

Let us now look at the effects of slab-centering on the hjjk
part of the data. We begin with:

hijk = hi.. = (hjj + hjx + hjx + hj + hj + hg + h) (6—43)

- (hi, + h, *hj +hi+h +h +h)

hijk = hi.. Chij = h;.) + (hjg = h ) (6—44)

+(h,'k"h,'_)+(h,'—h,')+(hl"'h')
+ (hg —h )+ (h-h)

The effect of centering across two-way subarrays is to eliminate
any h-terms that are constant in those subarrays. In our exam-
ple, we centered across the bc subarray for each level of j.
This eliminated the h-terms that were constant across both b and
¢ (that is, constant across all the cells in each bc¢ slice). Thus,
a single application of two-way centering will remove any overall
constant h and a single one-way constant (for example, h;). The
preprocessing also alters the two-way h-terms. In our example,
the h;; and hj;, arrays were each single-centered, and the hjg
two-way array was globally centered (that is, the overall or
grand mean for that array was removed).

The first important fact to notice about the effects of slab-
centering on the h-terms is that far fewer terms vanish than with
fiber-centering. The second point is that none of the two-way
interaction terms, the doubly subscripted h-terms, vanish.
Instead, these two-way arrays are partially centered. It is clear
that a single application of slab-centering is less effective than a
single application of fiber-centering in removing h-terms.

By applying the same algebraic analysis, it is easy to show
that successively applying slab-centering across two or three
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modes will still not remove all the unwanted h-terms. Triple
slab-centering—for instance, by first performing bc—centering
then ac-centering, then ab-centering—will remove all the h-term;
that are constant over two modes. Thus, it will remove all the
one-way effects in the h-component of the data (reintroducing
such effects from distortion of the t-component, however; geq
below). It will double-center all the two-way h-arrays but wij
not in general cause any of them to vanish. ,

Even though slab-centering removes a singly subscripteq
h-component, it reintroduces an unwanted constant of the same
form because of its distortion of the t-component of the data,
Thus, for example, any advantage to be gained from bc-centerin
because of the removal of h; might be cancelled out by the ag-
dition of the extra dimension needed to fit the t;  term. Thig
extra dimension has exactly the same form as hj; that is, it
varies across Mode A and is constant across Modes B and C. 1f
this extra dimension is smaller in mean-square contribution thap
the constant that is removed, the bc-centering might provide 3
net gain in interpretability of the solution. This could occur if
the underlying factor structure of the data happened to be such
that the products of the Mode B and C loadings had means of
approximately zero. But, on the other hand, if the h; bias in
the data were small and the mean product of Mode B and C
loadings were large for some factors, then the slab-centering
could prove clearly detrimental.

Thus, we find that slab-centering is undesirable for several
reasons: (a) it introduces unwanted constants because it trans-
forms the trilinear or t-component of the data in a manner incon-
sistent with the factor model; (b) it does not remove two-way
interaction terms; and (c) it removes only one of the one-way
constants, If the basic requirements for good preprocessing are
that it remove much of the unwanted part of the data and pre-
serve the wanted part, then two-way centering is theoretically
inadequate on both counts. The practical consequences of these
inadequacies will depend on the particular structure of the data
but will sometimes be quite substantial.

Three-Way Centering (removing the grand mean). The results
for global-centering follow closely those for slab-centering and
can be proven by very similar arguments. Thus, they will only
be stated briefly without proof. Removal of the grand mean has
little effect on the structure of the data. Its effect on the
trilinear f-component of the data is again an inappropriate shift of
origin, which introduces a spurious factor; in this case, the
factor is constant across all modes, with contributions equal to
t . . Al of the individual h-terms are globally centered; conse-
quently, the only h-term to vanish is the overall constant h.
The benefit versus the harm of global-centering thus depends on
the relative size of h  compared to ¢t , which in turn depends
on the unknown values of the h-terms compared to the a;, bj,ckr
loadings.

Appropriate Centering Independent of One's Model of the
Biases. If one believed the data had the structure

Xijk = ) (Girbjrckr) + b+ ejjp s (6-45)
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then one might be temp.ted to apply glopal-centering; that is,
ove the grand mean, in order to get rid of the h-term. One
re,mht reason that a centering that treats all points uniformly
ml%ld be appropriate since the conceptualized disturbance h
w&ects all points uniformly. This would overlook the fact that
alobal_centering also removes the mean from the trilinear part of
the data, and this disturbs its’ratio-scale properties. The prop-
er constant to add to data W}th structure as in (6—45) is -h.
However, since the size of h is unknown, then there is no ob-
vious global adjustment that can be pfarformed. Subtracting out
the grand mean S}lbtracts the quantity (h + t ), which can
distort the data a little or a lot, depending on the size of t _ .

A similar argument demonstrates why slab-centering is inap-
propriate, even when one is convinced that'the only unwanted
biases present are terms that are constant within two-way slices
of the data (that is, when one is convinced that the only h-terms
present are singly subscripted ones). Slab-centering will remove
these h-terms but introduce equivalent singly subscripted offsets
due to its effect on the trilinear part. For example, if bc-cen-
tering is used, the old h; values will be eliminated, but a new set
of h; will be introduced which equal -(#;,. ). And these spurious
offsets will appear regardless of whether or not the original data
had such offsets. Indeed one can start with synthetic data that
is perfectly appropriate for the trilinear model and which is fit
exactly in r dimensions and, by triple application of slab-cen-
tering, distort the data so that it takes r + 3 dimensions to fit it
exactly. In Monte Carlo experiments that we have performed, the
fit in r dimensions after slab-centering has been as low as two-
thirds of the fit that would have been obtained with correct
centering.

Summary.  Surely, a minimum requirement of "appropriate"
preprocessing should be that it preserves the appropriateness of
any factor structure underlying the data. In particular, if we
start out with error-free r-dimensional data appropriate to the
model, the preprocessing should not make the data inappropriate
to the model or create spurious factors and thus inflate the
dimensionality. Fiber-centering preserves appropriateness, but
slab- and global-centering do not.

Since the main objective of centering is to turn interval-scale
data into ratio-scale data and eliminate conditionality of origin,
appropriate centering methods should remove additive constants
and one- and two-way effects that would otherwise interfere with
the analysis. There is no single centering that removes all these
effects, but application of one-way or fiber-centering to all three
modes can do so. (However, application to two rather than three
modes removes all but one of the possible biases and often pro-
vides preferable results.) Two-way or slab-centering does not
generally remove two-way interaction components, and it replaces
any preexisting one-way bias effects with new one-way biases.
One must guess about the factor structure and the preexisting
biases in order to decide whether the bias removed is likely to be
more or less severe than the one introduced. Fortunately, how-
éver, one need not guess about the loading patterns of the latent
.factors in order to justify fiber-centering, since it does not
Introduce spurious components.
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Multiplicative Adjustments:
Reweighting and/or Equating Aspects of the Data

Principles Behind Reweighting

Not for Improving Appropriateness. The objectives of multip}i-
cative adjustment are somewhat different from those of additive
adjustment. PARAFAC does not use data rescaling to make dat,
more consistent with the factor model. If there is size-condition-
ality in the data, the differences in scale usually vary acrogg
levels of a mode (that is, they are slab-conditional) and so are
easily accommodated within the PARAFAC model. For example, if
one subject has a more extreme response style than another ang
hence tends to use the endpoints of his rating scales, this ig
captured within the model by assigning the subject larger weights
on all factors. Consequently, all entries in the row of the sub-
ject-weight matrix corresponding to that subject will be propor-
tionally increased in order to reflect the larger size of his rat-
ings. Similar effects occur in the variable-weight matrix if one
variable is measured in different units than another. Thus,
despite such slab-conditional variations in scale size, the dimen-
sionality of the solution will not be affected nor will the structure
of the factor-loading matrices (except as differences in the overall
sizes of entries in different rows).

If however, there are fiber—-conditional differences in size, the
data will not be strictly appropriate for the PARAFAC model,
This might happen, for example, if a subject arbitrarily uses
extreme ratings when rating some stimuli and very moderate
ratings when rating other stimuli, simply because of fluctuations
in his response style that were independent of his perceptions of
the stimuli. PARAFAC preprocessing does not have a satisfactory
general method of making such fiber-conditional data appropriate
for the PARAFAC model. However, the success of PARAFAC with
real data suggests that such fiber-conditionality of scale size is
usually either absent or insignificant and so does not seriously
interfere with the data analysis process. The importance and
effects of fiber-conditionality of size have yet to be thoroughly
investigated.

While slab-conditionality of scale does not make the data in-
appropriate for the PARAFAC model, it does have other undesir-
able consequences that often make multiplicative adjustment desir-
able. It can complicate comparison of factor loadings between
rows of a factor matrix and can cause some subjects or variables
to have much more influence on the form of the final solution than
others. To cope with such difficulties, PARAFAC incorporates
size-rescaling options as a standard part of preprocessing. Here
we discuss how size-rescaling can be used to change the relative
influence of different parts of the data; this application is called
reweighting. We then discuss how size-rescaling can be used to
make factor loadings more directly comparable across slabs, as
well as to facilitate the comparison of fit values and so forth
across data sets; this second application is called size-standard-
ization.

Need for Reweighting. With real data, the analysis model is
never expected to fit perfectly; any solution is a compromise.
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Hopefully, however, it is a compromise that most clearly resolves
those aspects of the data of greatest interest or importance, even
though it may lose some information concerning other less impor-
tant aspects. To make such a beneficial compromise more likely,
we will often need to influence how the compromise is to be re-
solved. Thus, with any data set, we should consider questions
of relative sensitivity of the analysis to different aspects of the
data. We may wish to modify the relative influence on the solu-
tion that can be exerted by different aspects—such as baseline
versus deviations—or different segments of the data—such as one
roup of variables versus another. It may be appropriate to
equalize the influence of different parts of the data (for instance,
data from different subjects) or, conversely, to weight certain
parts of the data more than others. In the following discussion,
we consider how preprocessing can be used to accomplish such
changes.

Definition of "Influence.” What does it mean when we say that
one part of the data has "more influence" on the form of the final
solution than another? Basically, we mean that the structure
underlying the influential part of the data has a stronger effect
on the factor loadings. Suppose, for example, we compare the
effects on the solution of randomly permuting or scrambling the
elements within different subsets of the data. If one subset has
more influence than another, then scrambling the elements in that
subset will cause a larger change (on the average) in the factor
loadings obtained by PARAFAC analysis than would be caused by
scrambling the elements within the other subset. Alternatively,
we could compare the effect on the loadings of split-half analyses
when we exchange different subsets of the data between split-
halves.

Reweighting to Modify "Influence.” For least-squares fitting
procedures, the influence of a given part of the data is deter-
mined by the amount that the error sum of squares can be re-
duced by fitting that part. Thus, to change the relative influ-
ence of particular data segments, the relative proportion of the
total squared errors contributed by these parts must be changed.
In some analysis procedures, this is accomplished by means of
weights applied within the error computation algorithm; each error
component is multiplied by the weight chosen for that part of the
data before it is added to the error sum of squares. This pro-
vides a weighted least-squares solution, which allows the investi-
gator to modify the influence of different parts of the data.
However, the PARAFAC fitting procedure does not directly incor-
porate any method of assigning different weights to the errors
contributed by various parts of the data; it simply minimizes the
error sum of squares over the entire data set. Nonetheless, one
can indirectly weight different sources of error—change the
relative error sum of squares contributed by different parts of
the data—by changing the actual size of different parts of the
data itself,

Surprisingly, one useful type of multiplicative reweighting can
be accomplished by additive adjustment of the data. A set of
data points can be thought of as having two underlying aspects—
baselines and deviations from baselines—and additive adjustment
pPreprocessing alters their relative influence. In particular,
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centering emphasizes deviations or change across levels of the
centered mode by effectively multiplying baselines by zero ang
deviations by 1.0 in that mode.

In contrast, multiplicative adjustment alters the relative in-
fluence of one set of data points as compared to another. If 5y
the data points within a particular subset of the data are in-
creased in size, then the points in this subset become more
influential in determining the form of the final solution. The
opposite happens if they are decreased in size. There are two
reasons why one might want to change the relative importance of
different subsets of the data. The first is to deliberately make
the influence of certain segments of the data unequal; one might
want to reduce the relative importance or impact of data from
certain segments of the three-way array (such as certain vari-
ables, subjects, stimuli, and so on) because these are considered
unreliable or unimportant. The second reason is the converse of
the first, that is, to equalize the weight given to different
aspects of the data. For example, certain segments of the data
(such as certain variables) may happen to contain much larger
numbers than other segments because of arbitrary differences in
scale of measurement, yet we may not want them to influence the
form of the final solution more than any other variables. Re-
weighting can equate the influence of the segments.

Weighted Least-Squares

Weighted Least-Squares via Preprocessing. By multiplying all the
data points for a particular variable by a constant k, we accom-
plish exactly the same effect as if we weighted all the errors
involved in fitting that wvariable by the constant k (and also
multiplied the factor loadings for that variable by k). Thus, we
can obtain a weighted least-squares solution by ordinary least-
squares fitting, if it is preceded by appropriate preprocessing
and followed by compensatory rescaling of the resulting factor
loadings.

For example, suppose we wished to include a particular var-
iable in our analysis in order to see how the factors would load
on it, but we suspected that the data for that variable might not
have the same structure as the other data in the analysis or
might otherwise be inappropriate for the PARAFAC model deter-
mined by the rest of the data. Thus, we might want the data for
that variable to have very little effect on the final solution. We
could accomplish this by dividing all the values for that variable
by some constant, such as 10*3, so that they would be very much
smaller than all the other data in the array. Two things would
happen as a result. First, the factor loadings for that variable
would become very small—1073 times the size they would otherwise
have had. Second, both the fitted parts and the residuals for
the data points involving that variable would be reduced by a

factor of 1073, As a consequence of this second fact, there
would be no appreciable contribution to the error sum of squares
from that wvariable. The least-squares fitting criterion would

determine the factor loadings for the rest of the data without
being influenced by any need to reduce the errors contributed by
that variable, since they would already be so small. When the
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final solution is obtained, we could recover the appropriately
scaled factor loadings for the variable in question by multiplying
its factor loadings by 103,

We can algebraically develop the general rationale for this
reprocessing approach to weighted least-squares. In an un-
weighted PARAFAC analysis of a three-way array, we seek to
minimize the quantity

T CY €Y (lejjkl®)) (6—46)
i J k

Since €jjk is equal to the difference between the observed x;jx
and the PARAFAC estimate of x;j,, (6-46) is equivalent to:

IO CY Uxije = I (abjreen)12))
i / k r

With the standard PARAFAC fitting procedure, all squared errors
of a given size count equally toward the total error sum that is to
be minimized. Now suppose, for example, that we wanted to
weight the errors for some variables more than others. If var-
iables corresponded to levels of Mode A, we could accomplish this
weighting by multiplying each error from level /i of Mode A by a
weight factor w;. We now seek to minimize

z ( z ( z ([W,'e,'jklz))) ’ (6-47)
i / k

or
Z ( z ( z ([W,'{X,'/'k - Z (a/,b/,ck,)}]z))) ’
i J k r

which is equal to:

2 ( z ( 2 ([Wixijk - z (w,-a,-,bj,ck,)]z))) . (6—48)
i J k r

Now, suppose we consider a set of weighted raw data points,
Xiik» such that Xijk = WiXjjk,» and, likewise consider a row-weight-
eé Mode A factor-loading matrix A, such that &;, = wjg;,. Then,
we could rewrite (6—48) as:

z ( Z ( z (B%i/k - z (3irbirckr)]2))) . (6—49)
i J k r
To find the &, b, and c loadings that will minimize (6~49), we

merely need to perform an ordinary least-squares PARAFAC
analysis of the weighted data matrix X. But minimizing (6—49) is
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in fact equivalent to minimizing (6—47). Thus, we see that an
ordinary least-squares analysis of the weighted data vyields the
required weighted least-squares solution. However, since the a,,
values are equal to a w;jag;j,, they must be multlphed by the in-
verse of the weights applied to the data to give the ¢;, loadings
that are used to predict unweighted X.

We can readily see how weighting the variables will result in
much closer fit to the data values that have large weights than to
those that have small ones. We need only represent this weight-
ing as premultiplication of Xj; by a diagonal matrix W whose jth
diagonal element is the weight for the jth variable. Now, if

* * *

Xk =WXk=ADkB’+Ek,

X, =W1X, =w-'A DB” +W-1 E, . (6-50)

In this  representation of X,, the rows of the factor loading
matrix A are multiplied by the inverse of the weights applied to
the data, and the rows of the exror matrix are multiplied by the
inverse weights, as well. Now E  was an ordinary least-squares
error matrix for the estimation of X, and so most of the rows and
columns of this matrix w111 usually have errors of comparable size.
However, the rows of W lE; in (6-50) will usually be very un-
equal in size. Where the diagonal weight matrix W had a 1arge
diagonal entry, the corresponding row of the error matrix W™lE,
will have small entries, and vice versa. Therefore, those rows of
X that were made large by W are associated with small errors of
fit in (6-50), while those rows that were made small are asso-
ciated with large errors of fit. On the other hand, if we thought
that there were big imbalances in the sizes of the errors in X
before reweighting, then reweighting could be used to make the
errors more equal,

Two Bases for Reweighting. One approach to justifying the
reweighting of wvariables in this way is to assume that we are
making the variance of the error terms uniform throughout the
data array. This then justifies a statistical model with fixed
error variance, as mentioned in Kruskal (1981; see also chapter
2) and discussed later in this chapter. Another approach, how-
ever, is based on the realization that in addition to random error,
there is likely to be specification error for each component of the
. data. That is, there is likely to be systematic error because the
model is only an approximation to a more complex systematic
structure. From such a perspective, we would often like to
reweight data to adjust the trade-offs between different sources
of systematic error that arise as part of this approximation pro-
cess. In essence, we may want to equate the sensitivity of the
analysis to the specification error in the different parts of the
data or to deliberately make the sensitivity unequal for theoretical
reasons. Such alteration of the sensitivity of the model to dif-
ferent parts of the data is also sometimes done to obtain "robust"
statistical procedures.
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Appropriateness of Different Rescaling Methods

When dealing with three-way data, we see that there are several
different ways in which rescaling can be performed. We could
,pply multiplicative adjustments to fibers or one-way subarrays,
to slabs or two-way subarrays, or to the entire three-way array.
To determine the appropriateness of different rescaling schemes,
we proceed in a manner similar to our investigation of centering.
We start with a model of the structure underlying the data and
then consider the effects of the rescaling on this structure. If
the structure is preserved or only modified in a simple way that
does not adversely affect interpretation, then the rescaling meth-
od is said to be appropriate. 1If, at the same time, the objectives
of rescaling are achieved, then the method is said to be effective.

For investigation of the effects of rescaling, we can consider a
simplified trilinear model of the structure underlying the data.
We could assume that one- and two-way components have been
removed by prior centering operations. Even if we do not want
to make this assumption, the simple trilinear model is appropriate
since, as we have shown earlier, the one- and two-way compo-
nents can be embedded in it by simply considering them to be
extra factors.

One-Way or Fiber-Rescaling. In fiber- or one-way rescaling,
multiplicative adjustments are made to one-way subarrays—to
rows, columns, or "tubes." It does not matter what determines
the size of these adjustments, but for simplicity we can assume
that they adjust the fibers so that they each have mean-square of
1.0. If these scale factors are designated by the letter s fol-
lowed by subscripts, we have three different directions of re-
scaling that are possible: rescaling of each row of each slab by
the coefficient s;;, rescaling of each column of each slab by the
coefficient s;;, and rescaling of each tube by the coefficient s;;.
Let us consider, as an example, rescaling of columns. Our
representation of the rescaled data is:

;//’k = SikXijk (6-51)
or
Xijk = Sik L (@irbjrChr) + Sikejjk » (6-52)
r
or
Xijk = L (G, (Sjkbjrcpr)) + Sik€iip (6-53)
r

The expression (6—53) cannot be represented by any simple
modification of the three-way structure that existed before stand-
ardization. The factor contributions to each column (each jk
pair) are subject to a potentially different rescaling, but no such
column-specific rescaling is feasible within the PARAFAC or
Tucker model. Hence, the number of PARAFAC factors required
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to fit the data after such preprocessing will in general be highey
than the number of factors required before such preprocessin
Empirical tests with error-free synthetic data show that fibep.
rescaling of just one mode will add more than three extra dimen-
sions to the data structure and decrease the fit value at the
original true dimensionality by as much as 20-40%.

We conclude that fiber-rescaling of the data points is pg
appropriate for the PARAFAC model. Similarly, if we carry
through the same reasoning with the Tucker model, we obtajy
similar results at each step and end up with:

Xijk = Y (ajp Y O} (sjkbjsCre9rse)) + Sjk€ijk - (6-54)
r s t

Thus, it is apparent that fiber-rescaling is also inappropriate for
the Tucker model.

Two-Way or Slab-Rescaling. When performing slab-rescaling,
we multiply all the elements in a given two-way subarray of the
three-way array by the same constant (for size-standardization,
we use the constant that gives a mean-squared data value of 1,0
in the rescaled slab). For example, if we rescale Mode B, we
multiply the entries in each level | of Mode B by some multiplier
sj. The algebraic representation of the effects of this transfor-
mation is:

§ijk =s; z (a/'rbjrckr) + Si€jjk » (6-55)
r

which equals

RXijk = 1 (air(spbjr)ckr)) + speiji - (6-56)

r
Thus, slab-rescaling has a simple representation in terms of the
PARAFAC or Tucker model: It just multiplies each row of the
Mode B loading matrix by the corresponding constant sj. Similar
results hold for slab-rescaling of Mode A or C. In all cases, the
dimensionality of the data remains the same, and the loadings for
two of the three modes are unaffected.

Slab-rescaling can also be represented in matrix terms as
multiplication of the rescaled mode by a diagonal matrix with
diagonal entries equal to the rescaling coefficients. For example,
rescaling of Mode B would be accomplished by means of an m by
m diagonal scaling matrix S, and its effects on the underlying
structure would be written as follows:

Xe= X Sp = ADg B~ S, + E4 Sy : (6-57)

* *
ADyB” + Eg,

where*é =S,B and Ek= ExSp . Since S, is diagonal, each row
j of B is equal to the corresponding row of B multiplied by a
constant s;.
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In the affected mode, the transformation can be visualized
geometrically as moving each point along its radius from the
origin, so that its distance from the origin is s; times its prior
distance. When the s; are selected so that all the levels of the
rescaled mode have equal mean-square, then the points are pro-
jected out onto the surface of a hypersphere of unit radius.
However, if the model does not fit the data perfectly, then the
points will fall short of the surface of the hypersphere.

Now that we have seen the simple effects of rescaling a single
mode, it is easy to show that multiple rescalings—such as rescal-
ing both the levels of Mode A and Mode B-—can be accomplished
without changing the dimensionality of the solution and without
changing the patterns within rows of the factor loading matrices.
In general, if

sisisk ( L (@jrbjrcir) + €ji) (6-58)

r

"

*
Xijk

then

§ijk Y ((si9;,) (Sibjr) (Skckr)) + SiSiSk €ijk - (6-59)
r

We conclude that two-way rescaling is appropriate for PARA-
FAC; similar arguments show that it is also appropriate for
Tucker's three-mode factor analysis.

Slab-Rescaling of Several Modes. While the effect of multiple
rescalings on the factor loadings is straightforward, the effect on
the slab mean-squares is somewhat more complicated. If rescaling
of Mode A is followed by rescaling of Mode B, the effects of the
second rescaling will modify the results of the first one. For
example, if we size-standardize within the levels of Mode A so
that each level has a mean-square of 1.0 and then size standard-
ize within the levels of Mode B, the result will generally be that
the levels of Mode A no longer have a mean-square of 1.0.
However, if one wants to size-standardize both Mode A and B
simultaneously, this can be accomplished by iteratively applying
standardization to first one mode, and then the other, and then
the first again, and so on until the results converge on a solution
in which both modes have a mean-square arbitrarily close to 1.0
for all levels. Likewise, such iterative procedures can be used to
size-standardize all three modes simultaneously. Iterative re-
scaling is an option of the PARAFAC program, and experience
with this procedure demonstrates that it usually converges in a
small number of iterations (usually 3-6, seldom more than 20).

The purpose of iterative rescaling is to discover the multiplica-
tions that will jointly standardize several modes simultaneously.
By representing the process of iterative rescaling in matrix
terms, we can see that the final result could be accomplished by
a single rescaling matrix S applied to each rescaled mode. If we
use S;, to represent the rescaling matrix applied to Mode A on
iteration 1, and similarly S p1 for rescaling Mode B on iteration 1,
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and so forth, we can represent the process of iterative rescaling
Modes A -and B as follows:

*

Xk = o o 848,358,281 Xk Sp1Sp28p38py+ + » (6-60)
=8,X, 8

Iterative rescaling of several modes to obtain a mean-square of
1.0 in each level of each rescaled mode produces the same effect
on the data regardless of the order in which the modes are
rescaled. For example, iteratively standardizing the modes in the
order ABABA . . . produces the same converged result as ig
obtained by starting the sequence with Mode B (that is, using
the order BABA . . . ). This mode-order independence is g
highly desirable property, which obtains with PARAFAC prepro-
cessing but not with other plausible methods. Rescaling based on
variance rather than mean-square does not have this property
(unless the two criteria are equivalent, due to prior centering
that causes slab means in each standardized mode to be zero),
nor does rescaling in which each iteration involves centering and
rescaling a given mode before the next mode is preprocessed.

Note that we have been consistently referring to standard-
ization of the mean-square (or, equivalently, root-mean-square)
of the levels of a mode, rather than standardization of the wvar-
iances. There are several reasons for this. We feel that this is
a more general criterion, one that applies equally well both to
cases in which we also center the data and thus remove baselines
(hence, in which a mean-square of 1.0 is equivalent to a variance
of 1.0) and to cases in which we do not center because we con-
sider the baselines of interest (hence, in which equating mean-
squares does not generally equate variances). In the latter case,
it would seem illogical to standardize the data on the basis of
mean-squared deviations (variance) when the quantities being
minimized—and which determine the influence of the various data
points—are mnot deviations but rather the mean-squared data
values themselves (or, more precisely, their residuals).

The most conclusive reason, however, for size-standardizing
the mean-square (or root-mean-square) rather than the variance
is that use of the mean-square makes standardization of multiple
modes possible. It is generally not possible to standardize sev-
eral modes to unit variance simultaneously. For example, when
we iteratively rescaled the slabs of an wuncentered three-way
array such that on each step unit variances were produced within
the levels of a rescaled mode, the procedure converged on a
solution that only had unit variances in the slabs of the last mode
rescaled. The slab variances in the other rescaled mode or modes
were uniform but were not equal to 1.0. In one case, for exam-
ple, the wvariances were close to 1.2 in one mode and 1.1 in
another. After a few cycles, level variances in all modes re-
mained unchanged by successive iterations.

The PARAFAC iterative rescaling procedure is closely related
to the iterative proportional fitting procedure used to equate the
marginal frequencies in contingency tables. The convergence and
other properties of iterative proportional fitting are discussed by
Bishop, Fienberg, and Holland (1975), among others.
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Three-Way Rescaling. For completeness, we mention the case
in which all entries in a three-way array are multiplied by the
same constant s. If the three-way array constitutes the entire
data set under analysis, then three-way rescaling will have no
effect on the solution other than to multiply all the coefficients by
s in the mode selected to represent the scale of the data. For
example, if Modes A and B were standardized and Mode C repre-
sented the scale of the data, then all the Mode C loadings would
pe multiplied by s. Those fit measures that are scale-dependent
(such as mean-square error) will be multiplied by $2 or s, de-
ending on the measure.

There are occasions when one might want to multiply only a
part of the total three-way array by some constant. As noted
earlier, this technique can be used to perform a weighted least-
squares analysis. For example, one might wish to fit a model
determined primarily by variables 1-15 and have the solution only
modestly affected by the characteristics of variables 16-30. A
simple approach would be to scale variables 1-15 so that their
mean-squares were 1.0 but scale variables 16-30 so that their
mean-squares equaled some smaller constant, such as .2. The
resulting solution will, in some sense, be five times more sensitive
to the characteristics of variables 1-15 than to variables 16-30.
In terms of squared errors, the solution will be 25 times more
sensitivé to variables 1-15. In addition, the two groups of
variables will have different sized loadings; all loadings for
variables 16—30 will have been effectively multiplied by .2, and so
these loadings should be multiplied by 5 to restore them to equiv-
alent scale before they are compared to the loadings of variables
1-15.

Multiplicative Adjustment for Data Standardization

In the preceding section, we discussed multiplicative adjustments
used to alter the relative influence of different parts of the data.
In this section, we consider multiplicative adjustments for a
different purpose: To facilitate comparisons of estimated param-
eters either within or between solutions. One may want to stand-
ardize the size of different parts of a data set—such as different
variables, subjects, and so forth—to facilitate comparison of the
loadings across these parts or to standardize the size of the data
as a whole to permit comparison of loadings, mean-square error
values, and likewise across several data sets. Finally, size-
standardization is used in conjunction with centering so that
useful added interpretations of the factor loadings (as correla-
tions) becomes possible.

Standardization of Levels within a Data Set

It often happens that different variables included in a three-way
data set might have different and incomparable units of measure-
ment. It would be meaningless to compare, for instance, the size
of tremor in millimeters with reaction time in milliseconds. In
such cases, the differences in size of measurements for these
variables should generally be removed by size-standardization;
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otherwise, they will act as a confounding source of size differ-
ences in factor loadings. They are typically removed in two-way
factor analysis.

Sometimes, differences in overall size between levels arise from
the same sources as differences within levels. In the Harshman,
Ladefoged, and Goldstein (1977) analysis of variations in tonguye
shapes, certain locations on the vocal tract showed small vap-
iations in tongue position, whereas others showed much larger
variations. Yet it was not considered appropriate to use stand-
ardization to remove these overall size differences, because they
were interpreted as being a part of the same overall linguistic
pattern that generated the within-location wvariations in position,
The differences in mean-squares between levels of that mode were
interpreted as a natural consequence of the differences in effects
of the underlying tongue factors.

There are times, however, when one should consider size-
standardization within levels of a mode, even when all the levelg
of that mode are measured in the same nonarbitrary units. This
can happen when there are large, naturally occurring differences
between the size of the values corresponding to different levels of
a given mode. For example, in one study, each of 24 persons
was videotaped while performing 7 tasks involving manipulation of
blocks to solve verbal or spatial puzzles (Hampson forthcoming),
The videotapes were then scored for the frequencies of 38 dif-
ferent behaviors made during performance of each task. In the
resulting 24 x 7 x 38 three-way array, some classes of behaviors
had much smaller overall frequencies than others. Consequently,
the factor loadings for these behaviors were much smaller than
the loadings for other behaviors, even when the low-frequency
behaviors were in some sense crucially related to the given fac-
tor. This interfered with the interpretation of the factor-loading
matrix for the behavior mode. Therefore, in some analyses,
Hampson size-standardized the levels of the mode corresponding
to behavior type. This made the sizes of loadings for the dif-
ferent behaviors directly comparable. In general, after such
size-standardization, a small loading means that there is little
relation between the factor and that level of the mode (for exam-
ple, that class of behavior); a large loading means a strong
relationship.

However, there is sometimes a disadvantage to standardizing
the size of the different behaviors. This problem arises in the
Hampson example. Some cells in the data array correspond to
behaviors with very small overall frequencies and are thus based
on such small samples of that type of behavior that they are
unreliable estimates of the relative population frequencies for
those behaviors. When slabs containing many such cells are
increased in size to make the size of their factor loadings directly
comparable to those of different behaviors, there is a substantial
increase in the proportion of error in the overall data set. The
most unreliable low-frequency data values are increased in influ-
ence, and the most reliable high-frequency data values are de-
creased in influence. Consequently, the solution changes. If the
reweighting is severe, there could be a deterioration of the
stability and thus the interpretability of the solution. In gen-
eral, the investigator employing reweighting should be alert to
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the danger of overinflation of error.

An alternative method of making the data values directly
Comparable is to standardize the loadings but not rescale the
data. For example, one could divide each row of the factor-
Joading matrix for a given mode by the standard deviation of the
data at that level of that mode. This provides standardized
loadings without altering the relative weighting of the data values
during the analysis, an approach that is discussed in more detail
later. When deemed useful, this approach could be combined with
judicious data reweighting.

Standardization of Overall Size across Data Sets

As noted earlier, when PARAFAC is used to perform direct fitting
of profile data, the output loadings are usually standardized in
such a way that factor loadings for one of the three modes reflect
the scale of the data—namely, they are in the same units as the
data and of the appropriate size to predict the observed data
values. Similarly, when cross-product or covariance data is
analyzed, the output loadings are usually standardized such that
the two identical modes jointly reflect the scale of the data. To
facilitate comparison of such loadings between data sets, it is
often useful to standardize the overall size of the data wvalues.
In two-way factor analysis, this is usually accomplished by con-
version of the data on each variable to z-scores. With PARAFAC,
similar standardization options are available to set the mean-
square for each level of one or more modes to 1.0 before the
analysis and thus equate the overall size of the data. When no
slab-standardization was desired, one could simply divide all of
the data points in the array by the root-mean-square value of the
data.

Standardization to give Added Meaning to Factor Loadings

It was noted in chapter 5 (and in more detail in appendix 5-1)
that particular combinations of centering and size-standardization
would permit factor loadings to take on additional meaning. For
example, if the data were size-standardized within levels of Mode
A (so that the mean-square for each variable is 1.0) and centered
across the levels of Mode B and/or C (so that the mean for each
variable is 0), then the data consists of z-scores for each var-
iable. If the output is also standardized so that Mode A reflects
the scale of the data, then Mode B and C loadings can be inter-
preted as estimates of factor scores with Mode A as factor load-
ings of the traditional kind (factor pattern coefficients in the
oblique case, and correlations between factors and variables in
the orthogonal case). However, the joint application of both
centering and size rescaling requires more complex iterative
pPreprocessing, as will be discussed below.

Combined Additive and Multiplicative Adjustments
Often, an investigator would like to accomplish several of the

above listed objectives of preprocessing in the same data set.
Centering one or more modes is almost always advisable in order



252 /| RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

to remove unwanted constant components and two-way interac-
tions, as well as to emphasize interesting variations rather thap
baselines. At the same time, equalization of the influence of
different variables and subjects is also usually desirable, along
with the standardization of the data that facilitates interpretation
of the resulting factor loadings. However, the joint use of
centering and size-standardization raises new issues and complica-
tions, because the two types of preprocessing interact.

Interaction among Preprocessing Operations

The joint application of both size-standardization and centering
requlres more complex iterative preprocessing than either alone,
since some multiplicative adjustments disturb previous additive
adjustments, and vice versa. For example, if the data are first
fiber-centered on Mode B and then slab size-standardized on Mode
B, the standardlzatlon disturbs the effects of the centering;
consequently, the data’ is” standardized but is no longer centered,
If we recenter Mode B, then the standardization of Mode B ig
disturbed, although the mode is closer to equal mean-squares
within levels than it was initially. To jointly accomplish both the
centering and the size-standardization of a given mode requires
repeated iteration of the preprocessing operations.

In general, the interactions of the multiplicative and additive
preprocessing steps can be described as follows: Size-standard-
ization of any mode disturbs prior centering on that mode but not
on the other two modes; centering on a given mode not only
disturbs prior standardization of that mode but of the other two
modes as well., Thus, there are only a restricted number of
combinations of additive and multiplicative preprocessing that can
be performed without iteration between the additive and multipli-
cative stages. Pure centering requires no iteration whatsoever,
Pure standardization of more than one mode requires iteration
within the standardization step (as described in [6-60]). Itera-
tion between centering and standardization steps is only required
if both centering and size-standardization are being performed on
the same mode. (Here we always refer to fiber-centering and
slab-standardization, since we established earlier that these are
the appropriate forms of these operations.)

Matrix Representation

The results of iterative application of joint additive and multipli-
cative preprocessing can be represented in compact matrix terms.
Suppose that both centering and size-standardization are request-
ed for Modes A and B of a three-way array. The same centering
and standardization properties would thus be required across all
levels of Mode C. 1If X, represents the slice of that array at the
kth level of Mode C, we can represent the resulting operations as
follows:

Xe =0 oo S22 Wn(Sa1(LpyXe Ly)Sp1)L,y)8p2) o o o (6-61)

= M, X, M7
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That is, all the operations performed on the left-hand side of Xy
can be represented by a single matrix M, ; similarly, the opera-
tions on the right-hand side can be represented by Mj; . Note
that each size-standardization step in (6—61) is the result of an
iterative standardization, since, in this example, two different
modes were being standardized, and the standardization of the
first would disturb the standardization of the second. Thus, in
(6-61), the S matrices each represent the compressed product of
a series of individual iterations, so that, for example, S;; in
(6-61) is equivalent to the whole string of diagonal rescalings
summarized in (6-60) as S;. Note also that the rescaling and
centering matrices are not specific to the kth slice but rather are
applied uniformly across all slices of the three-way array.

The properties of the summary standardization matrices M, and
M, are still under study. It can be shown, for example, that
they are necessarily column-centered. (Note, however, that the
right-hand transformation in [6-61] is written M} and hence is
yow-centered as it occurs there.) When the initial step in the
iterative sequence is centering, they are necessarily double-cen-
tered. More importantly, it is known that when M, and M, are
determined by iterative preprocessing, their form is not unique
for a given X and a particular set of centering and/or standard-
izing conditions but depends also on the sequence of operations
used, and, in particular, on whether the initial operation is
centering or size-standardization. As a consequence, the pre-
processed data that results are also not unique. Fortunately,
however, with real data, the different solutions obtained by
starting the iterative preprocessing sequence with centering
versus standardization seem to lead to similar results, at least in
the cases we have tried to date.

To simplify the relationship between the raw and the preproc-
essed data, we now sometimes employ only part of the iterative
sequence, equivalent to the initial centering followed by the
standardization operations shown with subscript 1 in (6-61).
This one cycle preprocessing gives results similar to those ob-
tained when iterative preprocessing is carried to convergence but
simplifies the extended PARAFAC model associated with the analy-
sis. (The relationship between preprocessing issues and the
extended PARAFAC model will be discussed briefly later in this
chapter.)

General Linear Preprocessing
More General Preprocessing Transformations

An Example Involving First-Differences. Suppose that we are
studying economic time-series data and that each successive level
of Mode C represents the same variables, measured for the same
industries, but in successive years. For some purposes, we
fnight want to focus on the rate of changes in such data and
ignore the overall trends. This could be done by taking first-
difference scores, which would be the discrete analog of the first
derivative of the variables across time. To prepare a data set
for factor analysis, we could construct a preprocessed data array
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in which each Mode C slab represents the difference between two
successive levels of the raw data array. But would such 3
preprocessed array be appropriate as input for a PARAFAC
analysis? If the initial structure of the raw data were appropri-
ate for the model, would the transformed data also be appropri-
ate?

This example prompts us to inquire into a wider range of
possible data preprocessing operations and to ask how we can
decide whether these are "appropriate" in the sense used earlier,
For example, does the taking of first-differences of successive
levels of a mode constitute appropriate preprocessing? If we
start with a model of our data and carry through the algebraic
representation of this preprocessing, we find that it does. With
error-free data, the solution remains unchanged except that the
Mode C loadings for the preprocessed data are equal to the
first-differences of the adjacent levels of the original Mode C
factor-loading matrix. Thus,

*
Xijk = Xijk = Xij{k-1)

"

L (@irbjr (ckr = Ck—1)r ) + (€jjk = €ijk-1)) -
L .

This result shows that the taking of first-differences has the
same desirable properties that we noted above for fiber-centering
and slab-preprocessing. That is, it does not inflate the dimen-
sionality of the array, and it has straightforward consequences on
the factor-loading matrices. As before, the effect of the pre-
processing on the factor loadings mirrors its effect on the data.

Matrix Formulation. These parallels are not coincidental but
rather can be seen as part of a more general pattern. To under-
stand this pattern, it is useful to formulate the preprocessing in
matrix terms. For our example of taking differences of succes-
sive years, we can represent the preprocessing transformation in
matrix terms by slicing our three-way array into lateral slabs,
which are variables by occasions, rather than frontal slabs, which
are variables by industries. We then represent the arbitrary n
by p slab for the jth level of Mode B (for the jth industry) as
follows:

*
Xj = X; Taits

where Ty is a p by (p - 1) matrix that has the form:

-1 0 0 0 O .0
1 -1 0 0 O0...0
0 1 -1 0 O . 0
6 0 1 -1 0 .. 0
6o 0 o0 1 -1...0
60 0 o0 0 0. -1
6 0 o0 0 O 1
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*
The resulting matrix X is an n by (p - 1) matrix whose rows
represent variables and whose columns represent first-differences
of the value of those variables over successive pairs of years.

Linear Transformations Provide "Appropriate" Preprocessing.
More generally, a very broad family of preprocessing operations
can be written as linear transformations or recombinations of the
levels of a mode. For example, we commented earlier that the
result of combined fiber-centering and slab-standardization ap-
plied to several modes requires iteration to determine the correct
transformations but once determined can' be written in terms of
single linear transformation matrices for each mode (namely, M, ,
M,, and M.), as defined in (6-61). It can easily be shown, in
fact, that any kind of preprocessing that can be expressed as a
linear recombination of the levels of a given mode (and thus in
matrix terms as multiplication of slices of X by some common
matrix T) will be appropriate preprocessing in the sense meant in
this article.

Consider any preprocessing representable by multiplying all
the slices of the matrix X by the transformation T. We obtain
the following simple expression for the effect of this preprocess-
ing on the latent structure of the preprocessed data X:

*

Xk Xe T =A Dy (B°T) + (E,T) (6-62)

= A Dg é’ + Ek ’
or, for Tucker's model T3 we would write:
Xp=Xe T =AHg (B°T) + (E,T) (6-63)

=AH, B +E,,

where the constituent matrices are as defined in chapter 5. The
effects on the latent structure can be interpreted as simply an
application of the linear transformation T to the factor-loading
matrix for the transformed mode and to the corresponding mode of
the three-way error matrix. Hence, the preprocessing is appro-
priate since (a) the dimensionality of the data is not inflated, and
(b) the post-preprocessing structure bears a straightforward
relationship to the original structure. As in all the other cases
considered earlier, the transformation of the affected factor
loadings is of the same kind as the transformation applied to the
preprocessed mode and should thus be easily intelligible to the
investigator. The preprocessing is effective because when it is
applied to data that is inappropriate (in ways anticipated by a
plausible model of our raw data), many of the inappropriate
characteristics of the raw data disappear and new spurious com-
ponents are not introduced. In the case of first differences, we
might have in mind a model of the raw data in which there are
large but irrelevant components that change in unpredictable ways
but only slowly so that they are very similar from one occasion to
the next. First-difference preprocessing would greatly reduce
these irrelevant components and bring out the changes of inter-
est. It would also remove two of the three singly subscripted
and one of the three doubly subscripted h-terms in our model of
conditional-origin interval-scale data.
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In this particular example, we apply the preprocessing to Mode
B. However, since all three modes have equivalent status, it can
be shown that the same properties hold when the preprocessing ig
applied to any of the three modes. Furthermore, since such j
transformation of one mode does not interfere with the factor
structure of any other mode, the effects of double and triple
preprocessing can be obtained by simply applying the several
preprocessing transformation matrices to their respective factor-
loading tables.

The underlying unity of all these appropriate transformations
can be seen most clearly by treating them all as instances of 3
generalized kind of matrix multiplication.

Appropriate Preprocessing as Array-Matrix Multiplication

Multiplying a Three-Way Array by a Two-Way Matrix. Mathemati-
cians have generalized the operation of matrix multiplication to
include the multiplication of a three-way array by a two-way
matrix (for instance, see Kruskal 1977). The logic of this gener-
alization is straightforward. Consider the matrix product

Y=XT.

Suppose we initially take X to be an n by m two-way array
and postmultiply it by an m by u matrix T to obtain an n by u
product matrix Y. The columns of Y are simply linear recombina-
tions of the columns of the original X. Here, the weights con-
tained in the jth column of T are applied to the columns of X,
which are then summed to produce the jth column of Y.

Now suppose that X is not an n by m two-way matrix but an
n by m by p three-way array. Instead of thinking of X as
composed of m vertical columns, we now consider it to be made up
of m vertical slabs. Each slab is n by p. The product Y is now
an n by u by p three-way array, made up of u vertical slabs. .
In this case, the weights contained in the jth column of T are
applied to the vertical slabs of X to produce the jth vertical slab
of Y. An alternative way of looking at the multiplication of a
three-way array by a matrix is to consider it as a set of parallel
two-way matrix multiplications. If the n by m by p array X is
postmultiplied by an m by u matrix T, the result obtained is the
same as if each n by m slice of the three-way array is postmulti-
plied by the m by u matrix T.

In a similar fashion, for premultiplication of the three-way
array X by a u by n matrix T, the n elements in the jth row of
T are the weights applied to the horizontal slabs of X so that
their sum will equal the jth horizontal slab of Y. Finally, if a p
by u matrix T is applied to the third mode, the p elements in the
kth column of T are the weights applied to the frontal slabs of X
to obtain the kth frontal slab of Y. (For a picture of the three
kinds of slabs, see Figure 6-1.)

Appropriate  Preprocessing is Array-Matrix Multiplication.
From the definition of array-matrix multiplication just given, it
should be apparent that all examples of appropriate preprocessing
that we have discussed can be considered instances of multiplica-
tion of a three-way array by one or more matrices. In fact, all
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examples of appropriate preprocessing of which we are presently
aware fall into this class. Such array-matrix multiplication gen-
erates the class of operations that can be represented as linear
transformations of a mode, as in (6-62), and thus have the
desirable properties that make them appropriate as preprocessing
for three-way factor analysis.,

This unified characterization of appropriate preprocessing
methods resolves the apparent anomaly that emerged earlier in
which the appropriate additive adjustment seemed to require a
different kind of operation (fiber transformation) than was re-
quired by the appropriate multiplicative adjustment (slab trans-
formation). We can now interpret both kinds of preprocessing,
along with their various iterative combinations, as special cases of
a single kind of operation: multiplication of a three-way array by
a matrix. At the same time, we find that the inappropriate
preprocessing methods (slab-centering and fiber-standardization)
cannot be interpreted in this way.

Of course, not all matrices constitute effective preprocessing
transformations, even when correctly applied to the data via
array-matrix multiplication. In order to determine which family of
preprocessing transformations is most appropriate for a given
kind of data set, it is still essential to consider a mathematical
model of the structure of the data and examine the effect of
proposed preprocessing transformations on that model, as was
done above. In particular, the terms representing the inappro-
priate part of the data should vanish, and those representing the
appropriate part should retain their simple form. And in any
given analysis, one must further select the optimal member or
members of the family of appropriate preprocessing transforma-
tions, based on the particular characteristics of the data set at
hand.

Some Practical Guidelines for Application of Preprocessing

To conclude this section, we should like to give the reader some
brief summary guidelines for selection of preprocessing proce-
dures, based partly on general principles and partly on experi-
ence:

1. It is almost always desirable to center across at least one
mode. This removes unwanted constants and provides an
approximation to ratio-scale data. Centering two modes is
often optimal but rarely is centering three.

2. If there are meaningless differences in origin across the
levels of a given mode—for example, due to different arbi-
trary or incomparable measurement scales—it is usually ad-
visable to center to remove these differences.

3. In selecting which modes to center, consider where there are
likely to be effects that do not vary across levels of a mode.
In other words, identify likely singly subscripted and doubly
subscripted h-terms, and center those modes in which the
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10.

11.

unwanted effects are constant. For example, each subject's
overall biases, which are constant across the ratings of 3]
stimuli, can be removed by centering across stimuli.

For reasons not yet well understood (but probably related to
the complex individual differences in relationships that leagd
to degenerate solutions, as described later), it is usually
undesirable to center across the person mode. This result
is surprising, since centering across persons is a traditiona]
method of preprocessing in two-way factor analysis. How-
ever, in three-way intrinsic axis methods, such centering
sometimes seems to emphasize those individual differenceg
that are inconsistent with the model and that cause problems
for the determination of axis orientations. Centering acrosg
persons may not be problematic if used as preprocessing for
Tucker's T2 or T3 model, in which axis orientation is deter-
mined by reference to outside criteria.

If there are meaningless arbitrary differences in scale size
across the levels of a given mode—perhaps due to differ-
ences in the unit of measurement—it is generally advisable to
remove these differences by standardizing within the levels
of that mode.

One may sometimes want to remove overall differences in
mean-square across levels of a mode, even when these dif-
ferences are meaningful and result from genuine differences
in the process being measured (such as different frequencies
of movements, in the example given in the section on Multi-
plicative Adjustment for Data Standardization), to equalize
the influence of different levels on the solution.

Reweighting other than size-standardizing (such as for
weighted least-squares analysis) may sometimes seem advis-
able, as described in the section on Reweighting and/or
Equating Aspects of the Data.

With three-way rating-scale data—for example, stimuli by
scales by persons or judges—good results have been repeat-
edly obtained when the scales and the stimuli are centered
and the scales and the persons are size-standardized.

More generally, it has often been found useful to standardize
two modes and center two modes, but not the same two
modes, so that one mode is simply centered, one mode is
simply standardized, and one mode is both centered and
standardized.

It is often necessary to try several different preprocessing
methods and compare their effects on the form of the factor-
analytic solutions that result. Select the preprocessing that
produces the most interpretable solution.

Technically inappropriate centerings can sometimes work out
fairly well in practice if the distortions they introduce are
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smaller than the distortions they remove. Nonetheless, there
seems no reason to use an inappropriate method when appro-
priate ones exist that work at least as well and do not risk
introducing serious distortions into the solution. Many
examples of both appropriate and inappropriate preprocessing
are given by Kroonenberg (1983)."

THE EXTENDED PARAFAC MODELS
PARAFAC Preprocessing as a Basis for More General Models
Extension to Conditional-Origin Interval-Scale Data

Two Perspectives. In our earlier treatment of the topic, we
interpreted centering as a method of making a wide class of data
appropriate for a more restricted model. However, the opposite
perspective is also possible. We can also consider centering to be
a way of making the PARAFAC model less restricted and hence
appropriate for more general types of data.® In any PARAFAC
analysis in which preprocessing is employed, the combined pre-
processing-factor extraction procedure can be thought of as
fitting an extended PARAFAC model. There is a family of such
models, and the particular model that is fit in any particular
analysis is determined by the specific preprocessing options
selected (for instance, which modes are centered for that analy-
sis). Similar extensions of Tucker's model can also be formu-
lated.

Extension via Centering. Since PARAFAC centering is based
on an explicit model of conditional-origin interval-scale data, this
model ([6—3]1 or [6-4]) can be considered part of an extended
PARAFAC model. From this perspective, the means that are
removed by centering are considered additional terms in the
PARAFAC representation.

Suppose, for example, that we center across all three modes
before performing a PARAFAC analysis. This centering process
can be thought of as estimation and then removal of the first
three components of the following model:

Xijk = hij + hjx + hjx + ) (ajbjcpr) + €jjp (6-64)
r

In addition to the ratio-scale components that were part of the
basic PARAFAC model (5-3), this extended model directly incor-
porates the offsets that make the data interval scale and fiber-
conditional in origin.

While the form of (6-64) is fairly compact, we should keep in
mind that it implicitly incorporates the additional constant terms
given in (6-3). The doubly subscripted h-terms of (6—64) can be
considered to have absorbed and can thus also represent the
effects of the unsubscripted additive constant h, the singly
§ubscripted main effects hj, hj, and hg, as well as the two-way
interactions. If desired, the grand mean and main effects (to use

-
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analysis-of-variance terminology) can be extracted from the
two-way hjj, hjx, and h;jx arrays by conventional methods. The
resulting model would be closely related to those proposed b
Gollob (1968) for the two-way case and by Gower (1977) for the
three-way case.

As noted earlier, one could also subject these h-arrays to
two-way factor analysis to bring out further structure. For
example, we saw how hjx two-way interactions could be due to
one or more factors that are constant across Mode A. Two-way
factor analysis of this array could uncover these dimensions,
The factors would, of course, be rotationally indeterminate and
would therefore need to be rotated to simple structure or to con-
gruence with factors extracted by PARAFAC from the three-way
interactions (see below). These additional factors could then be
incorporated into the analysis model by giving them constant
loadings in the third mode, much as in (6-5) and (6~6).

To provide the most complete example, the extended model that
results from triple-centering was represented in (6—64). Asg
noted earlier, however, triple-centering often reduces the size of
the systematic part of the data too much without appreciably
reducing the size of the random error; thus, it impairs the
signal-to-noise ratio of the data. On occasion, we have recovered
meaningful factors from triple-centered data, but we wusually
obtain better results with double-centering. The mode left un-
centered, if carefully chosen, can be one that has minimal con-
stant components not already removed by the other centerings.

The extended model that would result from double-centering
would have two of the three h-terms in (6—64). For example, if
Mode C were not centered, the hj;; term would not be part of the
extended model being fit in that particular analysis.

One-Stage and Two-Stage Least-Squares. From the extended
model perspective, PARAFAC can be considered to be a two-stage
least-squares fitting procedure. Since the mean is a least-
squares estimate, computation of means as part of centering is the
first least-squares stage of the procedure. Least-squares fitting
of the factor model to the residuals is the second stage.

Unpublished theorems by Kruskal (1977) show that when the
centering is across fibers, this two-stage least-squares procedure
is equivalent to a one-stage least-squares fit of an extended
model (such as [6—64]). That is, the procedure of first esti-
mating and extracting fiber means and then performing PARAFAC
analysis of the residuals produces exactly the same model param-
eters, fitted values, and residuals as would be produced by using
a more general least-squares procedure (such as a- hill-climbing
procedure) to directly solve for the least-squares fit of all the
means and factor loadings at the same time.

Kruskal's theorems also show that this equivalence of two-stage
and one-stage least-squares procedures does not hold if slab-
centering or global- (grand mean-) centering is used (Kruskal
1977). These other kinds of centering do not as neatly allow one
to treat the combined centering-factoring procedure as the fitting
of an extended model. Thus, although Kruskal's results were not
known at the time PARAFAC centering was being developed, they
provide an additional reason for preferring fiber-centering over
other kinds of centering for three-way factor analysis.
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Further Extensions: Additive Factor Change

Additive Change in One Mode. The system variation model
([5-3]) permits only multiplicative changes in factors across levels
of a mode. That is, the factor weights (for instance, factor or
component scores) can change from one occasion to the next only
by being multiplied by some coefficient, as shown in (5-6).
However, we might want to consider a more general expression
for the way that component scores are related across occasions,
one that incorporates additive shifts in the factor baseline, as
well as multiplicative shifts in the factor size or variance.

We might expect additive shifts in the factor score baseline
values in, for example, a study of animal stress and adaptation in
novel environments. Suppose we measure animals' behavior—
including number of vocalizations, exploratory movements, at-
tempts to escape, and so on—during several successive exposures
to the novel environment. We could then apply PARAFAC to
these data in an attempt to identify a few factors—such as gen-
eral activity, stress, and so forth—that would explain the be-
havioral differences among animals and across occasions.

Besides proportional changes in these factor scores across
occasions, we might also anticipate additive shifts in their base-
line values due to the animals' adaptation to the new environment.
Hence, we would want a more general model than (5-3) to incor-
porate these baseline shifts. With the desired extended model,
the expression for fjir (the factor score of the jth animal on the
kth occasion for factor r) would not simply be bjrCckr but instead
would have the general linear form

fikr= (bjrckr + dkr(p)) » (6—65)

where the b- and c-terms are defined as usual, and the di,(p)
term represents the additive shift in factor r on occasion k that
is constant across levels of Mode B (namely, animals). This
model is more general than that for system variation ([5-6]}) but
less general than the one for object variation ([5-7]); here, the
additive shifts are the same for all animals,

Expression (6—65) can be viewed as a linear regression equa-
tion that predicts fjkr, the factor score of the jth animal on
occasion kK from the animal's basic level of factor r. The pre-
diction equation multiplies the base level of the factor, bjr, by a
slope term for occasion Kk, ckr, and adds .an intercept term for
occasion Kk, dg,. Thus, the full PARAFAC representation be-
comes:

q
Xijk = ) (@i (bjrCrr + dicrp) 1) + €jjkc s (6-66)
r=1

which can be rewritten:

q
Xijk = ) (ajpbjrcer) + ) (@ipdirp) ) + €jjk - (6-67)
r=1 r=1
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Thus, we obtain a PARAFAC model with up to g extra factors,
There is one extra factor for each dimension that shows nonzero
additive shifts across occasions.

The extra factors in (6—67) have two distinguishing character-
istics: (a) they are constant in Mode B; and (b) factor r in the
second set has the same Mode A loadings as factor r in the first
set. These two characteristics make it possible to fit models like
(6-67) as another extension of the original PARAFAC analysis
procedure,

The extra factors generated by the baseline shifts in the p
original factors appear as two-way interactions constant over Mode
B and would thus contribute to the h;jx terms of the extended
PARAFAC model. By centering on Mode B, these extra com-
ponents are extracted during the first stage of fitting and so are
eliminated from the second stage. Thus, the presence of factor
change of this more general kind does not interfere with extrac-
tion of the correct form of the Mode A factor loadings, nor does
it interfere with the estimation of each Mode B base level for each
factor (the b;, terms).

To identify the extra factors contributed by the additive
shifts, we could rotate factors extracted by two-way analysis of
the hjx terms into a position where the Mode A loadings resemble
as closely as possible the Mode A loadings obtained from the
PARAFAC analysis of the centered data. Alternatively, one could
simply use regression to estimate weights for these factors.
Starting with the assumption that there are dimensions in the hj;
table that have the same Mode A factor loadings as the dimensions
subsequently extracted from the centered data, one could simply
estimate their weights on occasion kK by using regression to
predict the raw data from the Mode A loadings.

Additive Change in Several Modes. In a completely general
PARAFAC model that treats all three modes even-handedly, one
“would want to allow for additive shifts of factor baselines in any
of the three modes. For a given factor r, there are six possible
two-way additive contribution factors: two with the same Mode A
loadings (one of these two is constant in Mode B and the other is
constant in Mode C), two with the same Mode B loadings (con-
stant in Mode A or C), and two with the same Mode C loadings
(constant in Mode A or B). The full model would have the form:

Xijk = L @ipbjcp, + qpdp, ) *+ 000 (6-68)
r

+ bjrdkr(a) + bjrdir(c) + Ckrd/'r(a) + Ckrd/'r(b)) .

The simultaneous interpretation of all the shifts in such a model
is not straightforward; indeed, it is not clear that all these shift
terms would ever be needed simultaneously. Nonetheless, (6—68)
displays all the varieties that might be needed in one or another
situation. (We will not pursue this model further in this chap-
ter.)

Perhaps the most important point to be made about additive
factor shifts is that they need not interfere with the identification
of the basic g three-way factors when proper centering is em-
ployed. Furthermore, the shift scores can in fact be estimated
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after the central PARAFAC analysis by factor score estimation
methOdS.

Extensions via Reweighting and Size-Standardization

The PARAFAC model can also be extended by incorporation of the
effects of multiplicative preprocessing. Suppose, for example,
that we had rescaled data values within levels of all three modes
pefore performing a PARAFAC analysis, perhaps to size-standard-
ize within the levels of all three modes. As a result, we analyze
a data array whose entries were equal to s;jsjsxXjjx, where s; is
the constant multiplier for the ith level of Mode A (the ith diag-
onal element of the rescaling matrix S;, as defined earlier in this
chapter), s; is the multiplier for the jth level of Mode B, and s;
is the multiplier for the kth level of Mode C. We might then
consider our solution to represent the fitting of the extended

model

1 1 1
Xijk = 57 5T S ( ; (@jrbjrcrr) + €jjx) » (6-69)
or equivalently,
xijke = 1 @irbjrcer) + = = = (@) (6-70)
r

where 3/, = aj,/s;, Bj, = bj,/sj, and ékr = Ckr/Sk. Our interpre-
tation of (6—69) and (6-70) depends on our motivation for apply-
ing the rescalings. We will mention two basic motivations: (a) an
attempt to achieve uniform error standard deviations, and (b) a
desire to differentially weight particular subsets of the errors.

Making Error Standard Deviations Uniform. We could adopt
the perspective advocated by Kruskal (chapter 2) and assert that
the rescaling was applied because we believed that the original X
array had entries with greater error in some levels of each mode
than others and that our goal in rescaling was to make X appro-
priate for a model in which all the €;;x in (6-69) are drawn from
distributions with the same standard deviation. The scaled errors
in (6-70) then represent our estimates of how the size of the
error in X actually varies, and so the terms s; and so forth are
an extension of the model to explicitly represent error standard
deviations.

Of course, as Kruskal points out (see chapter 2), we cannot
actually observe the error, and so the rescalings are determined
on the basis of our beliefs about the errors. Usually, its size is
assumed to be approximately proportional to the size of the data
itself. There are several justifications for such an assumption.
For example, there are many psychological situations in which this
Proportionality is known to hold, such as when subjects are asked
to make judgments of the properties of stimuli (for instance, the
weight of objects). More generally, it is often thought that the
variables in a given data set are roughly equal in reliability so
that the random component will be approximately the same propor-
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tion of the total variance across all variables. Of course, this
will not be exactly true, but in the absence of other knowled e
it can often be considered a best approximation; it would b;
unusual to have very precise and reliable observations in the
same data set with very imprecise and unreliable ones. Furthep-
more, if we knew that we had such a combination of reliable ang
unreliable observations, then we would presumably not rescale the
data uniformly, or at least we would not adopt this uniform-erre,
- justification for our rescaling.

If a substantial part of the error is thought to be specificatiop
error—systematic error introduced because the model is ng
strictly appropriate for the data (for example, when the mode] ig
too simple to represent all the complexities of the data)—then it
is often reasonable to consider this specification error roughly
proportional to the size of the data. The assumption is that the
model has roughly the same degree of inappropriateness for a)
the different observations (for all variables, subjects, and g
on). Again, in the absence of other knowledge, this is often a
good working assumption. It implies that those levels of a mode
in which the mean-square is larger probably have error compo-
nents that are also larger by roughly the same proportion.

However, if we expected that certain parts of the data woulg
have greater specification error than others, we might choose
rescaling coefficients that were not based on size-standardization
of the data itself but instead were based on our external esti-
mates of the error components in different parts of the data. In
this case, the preprocessing would probably be a noniterative
multiplication of the levels of particular modes by particular
values.

Weighting Errors Differentially. Alternatively, we could view
(6-70) as a weighted least-squares model. In this case, the s,
Sjs and s; values might be determined by other means than data-
standardization. When the weighting of different parts of the
data is based on our estimate of the reliability of those parts, or
on our beliefs about the relative inappropriateness of the PARA-
FAC model for different parts of the data, this weighted least-
squares approach does not differ much from the approach that
aims to equate error terms across the data. However, when our
weights are based on assessment of theoretical importance of
different parts of the data or on the relative "cost" associated
with not fitting different parts of the data (in some practical
application), then the weighted least-squares approach introduces
a novel rationale for (6—70).

Rescaling Loadings but Not Data. Recall from our earlier
treatment of multiplicative adjustment that the second reason for
rescaling aspects of the data was to facilitate comparison of
loadings through size-standardization within levels of a particular
mode. This method of achieving comparability of levels of a mode
is appropriate if one also wants to equalize the influence of the
levels of that mode on the solution, since such influence equaliza-
tion is a necessary consequence of size-standardization.

However, suppose one does not think that the levels of 2
particular mode should have an equal influence, perhaps becau
those levels with small values are based on fewer observation
and hence are less reliable (as in the example given in the se
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tion on Multiplicative Adjustments for Data Standardization).
Then, a different method of obtaining comparable loadings is
called for. In an earlier section, we briefly mentioned an al-
ternative approach that involves rescaling the loadings but not
the data. Here, we explain the extended model that this implies.

The size of a factor loading is influenced by two things:
(a) the strength of the relationship between factor and vari-
able—such as how much the factor influences a particular vari-
able, subject, occasion, and so on; and (b) the overall size of
the data values that the factor loading is supposed to predict—
such as whether the variable is measured in large units or small
ones. For example, the larger the data values at the ith level of
Mode A (in comparison to other levels of that mode), the larger
the corresponding row of factor loadings will have to be (in
comparison to other rows of the Mode A factor-loading matrix).
When these variations in overall size are deemed extraneous, we
need to disentangle their effects from loading differences that are
due to variations in strength of factor-variable relationship so
that the two influences can be interpreted separately. _

We can construct an extended version of the PARAFAC model
in which these two different influences on factor-loading size are
represented by separate parameters in the model. As a first
approximation, we could divide each row of the factor-loading
matrices A, B, and C by the root-mean-square of the correspond-
ing level of the data, obtaining row-standardized loading matrices
, B, and C. To maintain accurate representation of the data,
we would compensate for these changes in the loadings by incor-
porating new s-coefficients that explicitly represent the differ-
ences in overall size or scale for the levels of each mode. This
extended model would be written as follows:

xijk = %Sk L @5, 8, ) + (&) (6-71)
r

where s; is the scale coefficient (in this case taken to be the
root-mean-square of the ith level of Mode A), and g, is the size-
standardized factor loading defined as ajr/Si. This model is
equivalent to (5-3) except that the expression for the systematic
part has been expanded slightly; the effects of differences in
data size across levels are now represented by separate terms,
leaving the factor-loading matrices to express unambiguously the
strength of relationship between a factor and a variable, person,
and so forth. Note particularly that in both (5-3) and (6-71),
the error term is unweighted. The size-standardized factor
loadings of (6—71) can be obtained by an unweighted analysis.
Hence, the potential problems of the weighted model in (6-70),
such as inflation of error in levels with small mean-squares, do
not arise,

Issues Concerning Estimation of Size-Coefficients., In the
foregoing discussion, we suggested estimating the s-terms in
(6-71) by simply taking the root-mean-square of the correspond-
ing levels of the data. In some situations, however, this might
not represent the effects of data size as completely or correctly
as desired. That is, a data matrix multiplied by the inverse of
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these s-values would not generally have all the effects of data
scale removed. This is because the effects of the several stand-
ardizations on level sizes would interact; the resulting data array
would thus have modest variations from a mean-square of 1.,
across the different levels of two modes. (The last mode stand-
ardized, of course, would not have this problem.) For some
purposes, it would be more desirable to use s-values determined
by iterative size-standardization of a "spare copy" of the data
(that is, define the s to be the diagonal elements of the S ma-
trices defined above).

The issue of which s-coefficients to use in (6~71) would seem
to hinge on the following question: What is the most appropriate
weighting of the elements within a given slab when computing the
relative size of that slab compared to other slabs in the same
mode? One approach is to use the "raw" slab root-mean-squares,
This implies that each data point in the slice is taken as it is,
independent of what position it has in other modes, and with no
consideration of how the weighting coefficients of other modes
might reduce or enlarge it to accomplish removal of scale effects
from the other modes. Another approach mentioned above is to
use the s-values that would be determined by an iterative size-
standardization of the data. By this method, the investigator
equates the relative size of the slabs in a given mode after re-
moving size differences due to variations across levels of other
modes. This implies that each data point in a given slice is
weighted by the $-values determined for the other two modes
before the s-value for that mode is computed. We are not experi-
enced enough yet to know when each perspective is more appro-
priate; indeed, the choice may depend on the particular data
application and perspective of the investigator. We speculate,
however, that the latter approach might seem more appropriate
when two ways of the data correspond to the same entities; an
example of this as part of a two-way DEDICOM analysis of fre-
quencies of different automobile trade-ins can be found in Harsh-
man, Green, Wind, and Lundy (1982), along with a more detailed
discussion of rationale and comparison of results with those
obtained by reweighting the data before analysis.

Even when one or two (but not all three) modes of the data
have been rescaled to reweight the influence of different parts, it
still might be deemed desirable to incorporate data size-coef-
ficients into the final model. One would then have a mixed
model, which would combine an attempt to separate factor impor-
tance from data size effects,and which would also have a weighted
error term. We have not yet had any experience with application
of these more complex adjustments for data size differences and
thus do not know whether they have important advantages over
the simpler models.

Complications Arising
from Combined Additive
and Multiplicative Preprocessing

As noted earlier, combined additive and multiplicative preprocess-
ing is accomplished by iterative procedures. This approach was
adopted on pragmatic grounds: (a) it is a method for discovering
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the transformations that accomplish several different standardiza-
tion objectives simultaneously (for instance, set fiber means
across two modes to zero and simultaneously set slab levels to
mean-square of 1.0 in two modes); and (b) data preprocessed in
this way often reveals meaningful structure that was not acces-
sible before preprocessing. Often, when meaningless degenerate
solutions are obtained with a given data set, the right combina-
tion of iterative preprocessing options will allow the investigator
to recover meaningful, interpretable solutions.

However, when we consider the effects of iterative combined
centering and size-standardization in the light of possible ex-
tended models of the data, we realize that such procedures intro-
duce unanticipated subtleties and complications of interpretation.
More than one way of preprocessing will accomplish a given set of
standardization objectives, but the different methods result in
different standardized data sets, which can sometimes vyield dis-
gimilar solutions. One is then faced with the question of how to
determine if a particular approach is "optimal." Even more per-
plexing is how to relate the solution for iteratively preprocessed
data to an extended model of the original data. We are still
investigating these issues of data preprocessing and cannot vyet
present a fully satisfactory solution; however, we mention them
here to introduce the reader to our current thinking on them.

Dependence on Order of Operations. While the results ob-
tained from iterative combinations of additive and multiplicative
preprocessing depend on the order in which the preprocessing
operations are performed, things could have been much worse.
The nature of this order dependence is less serious with PARA-
FAC preprocessing than with any other method of iteratively
combining multiplicative and additive preprocessing of which we
are aware.

It is useful to distinguish two kinds of order dependence that
iterative preprocessing schemes might be subject to: (a) mode-
order dependence; and (b) operation-order dependence. Mode-
order dependence occurs when the result of iterative preproces-
sing depends on the order in which the modes are preprocessed.
In contrast, operation-order dependence occurs when both cen-
tering and standardization are involved in iterative preprocessing;
the converged result depends on whether the process begins with
centering or with standardization.

Let us first consider an example of mode-order dependence.
Suppose we want to center and size-standardize both Mode A and
Mode B of a two-way array. If we do this by first centering and
standardizing Mode A, then centering and standardizing Mode B,
and then repeating A, B, A, and so on until the process con-
verges, we end up with a different final result than if we start
by centering and size-standardizing Mode B, then A, then B, A,
and so forth until convergence. Both converged matrices are
doubly standardized; that is, they have both variances of 1.0 and
*ow and column means of zero. But their particular data entries
—and more importantly their factor structures—will differ quite
substantially., Thus, this procedure has the undesirable property
that the result obtained by preprocessing the transpose of a
matrix is not the transpose of the result obtained by preproces-
sing the original matrix itself.
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This type of order dependence was first noted by Catte}
(1966), who experimented with the method of iteratively centerin
and size-standardizing one mode before proceeding to the other,
as described above. Cattell's discouraging findings caused some
investigators (such as Kroonenberg 198la) to take a relatively
gloomy view of attempts to iteratively standardize several modes,
However, as we pointed out earlier, pure size-standardization of
several modes, if iterated and carried to convergence, is inde-
pendent of the order in which the modes are standardized,
Thus, PARAFAC size-standardization (like PARAFAC centering) is
not subject to mode-order dependence.

When performing combinations of additive and multiplicative
preprocessing that require iteration, PARAFAC uses a different
sequence of operation from that employed for two-way arrays by
Cattell. It first centers all requested modes, then iteratively
standardizes all requested modes, then returns to update the
centering, and so on. Because in the most recent versions of
PARAFAC full iterative size-standardization is employed between
each centering step, the combined procedure is a sequence of
individual parts, each of which is free of mode-order dependence;
therefore, the total preprocessing is also free of mode-order
dependence. With PARAFAC, the transpose of a preprocessed
matrix or three-way array is thus equal to the result that would
be obtained by preprocessing the transpose of the original matrix
or array, provided the requested preprocessing objectives are
transposed appropriately.

While PARAFAC preprocessing procedures are free from mode-
order dependence, they are subject to operation-order depend-
ence. With some synthetic data sets, when we compare results
obtained by starting with centering versus starting with size-
standardization, we find that we have two different outcomes,
both of which fulfill the preprocessing objectives but have quite
different factor structures in the preprocessed modes (although
the same number of dimensions as the original data). How, then,
is one to decide which operation to use first? And how does one
argue for the optimality of a given solution when a different
result could have been obtained by a different order of preproc-
essing operations? We currently employ the following tentative
principles for preprocessing.

When, as is usually the case, we suspect that major compo-
nents of the raw data are constant in one or more modes, and we
think that removing them would make the data more appropriate
for the model, we consider it preferable to center as the first
stage of iterative preprocessing. This eliminates these unwanted
components and lets successive preprocessing and analysis pro-
ceed on the parts of the data of greatest interest. When the raw
data contains such constants, standardization as a first stage of
preprocessing would disturb the constants and presumably make
their extraction more difficult.

If, on the other hand, we suspect that the major constant
biases and two-way interactions have been obscured by different
scales of measurement, subject response styles, or other influ-
ences on the sizes of entries in different levels of particular
modes, then it might be necessary to standardize these modes to
make these artifactual components appropriately constant before
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ntering. When there is a serious question as to whether it is
cere appropriate to size-standardize first or instead to center
ioor whether to do only a partial size-standardization, then

nter, then a fuller iterative size-standardization and center-
ce __it is necessary to try out the different procedures and
ing are the interpretability of the resulting solutions.
comTPo date, when we have used real data to compare the results
of initial centering versus initial standardization, we found very
little difference between the PARAFAC solutions obtained with the
two kinds of iterative preprocessing. For example, both pre-
rocessing methods were used for analysis of the semantic-
gifferential ratings of automobiles and celebrities described by
Harshman and De Sarbo (appendix C). To our surprise, the
correlations and factor congruence measures for the corresponding
factors in the two solutions were usually .99; none was below
.98, Similar results have been obtained with other data sets of
the same general kind. But at the same time, parallel compari-
sons with certain synthetic data sets have resulted in factor
correlations more in the range of .7. We do not yet understand
what properties of the real data sets make them so relatively
immune to preprocessing order-dependence. It may be that the
problem of order-dependence is of greater theoretical than prac-
tical concern, but it might instead be that we have not checked
out the degree of order-dependence on a sufficiently wide range
of data types.

The Relation between Original and Preprocessed Data. Earlier
in this chapter, we demonstrated how fiber-centering preserves a
very simple relationship between the structure of the original data
and that of the preprocessed data. In the error-free case, the
factor-loading tables of the centered modes are themselves col-
umn-centered. Similarly, we determined that slab-rescaling also
preserves a simple relation between the original and preprocessed
solutions; namely, the rows of the factor-loading table for the
rescaled mode or modes are multiplied by the same rescaling
coefficients as were applied to the corresponding levels of the
data (again, in the error-free case). This was found to be true
even when several modes were iteratively rescaled. But when we
considered the combined iterative application of centering and
size-standardization, we were not able to describe the effect on
the loadings in any simple straightforward way. The transforma-
tion of the factor loadings is described by the M, (or My or M. )
matrix, whose general properties are not well understood.

The possible complexity of the transformation imposed by
iteratively centering and standardizing a given mode becomes
clearer when we consider the effects geometrically. The center-
ing operation shifts the origin of the axes to the centroid of the
points. Then the size-standardization operation shifts these
points along their radii from this origin out toward the surface of
the unit hypersphere. If we consider the points in the full
dimensionality that provides perfect fit, then the points are in
fé}ct moved to the surface of a hypersphere of unit radius in this
high dimensional space. This shift redistributes the points, and
so their centroid is no longer at the origin. The successive
centering operation shifts the origin to the new centroid and the
Process continues until the points are distributed in such a way
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across the surface of the hypersphere that their centroid is at jtg
origin.

Algebraically, we can describe the consequences of the succeg-
sive operations applied to the data in terms of the equivalen;
operations applied to the factor-loading matrix. That is, th,
factor-loading matrix is sequentially column-centered and they
row-rescaled until the process converges.

One theoretical consequence of this apparent complexity is thy
we are not able to write a simple extended PARAFAC model. Tpe
best we can do—at least until we understand the properties of
the M matrices better—is to write an opaque expression, such ag;

Xe = (M;Y A) D (Mgt B) +M;L Ep Myt (6~72)

This example represents the model resulting from iterative pre-
processing of Modes A and B but not C. Similar models woulgd
result from other combinations of preprocessing.

Perhaps when using fully iterative preprocessing we would do
better to talk of the extended PARAFAC procedure, rather thap
an extended model for the original data. The objective of such
an extended procedure is to reveal certain structure that can be
found in the data after other unwanted effects are removed.

"One-Cycle" Preprocessing. One method of simplifying the
relationship between the original data structure and the preproc-
essed data structure is to truncate the iterative process after
only one full iteration. Thus, preprocessing would consist of
centering all requested modes, followed by iterative size-stand-
ardization of all requested modes (or vice-versa, depending on
whether initial centering or initial size-standardization was used),
This "one-cycle" preprocessing allows us to write a simple ex-
tended PARAFAC model for the data; the preprocessing matrix M
has the simple form SL or LS. The scalar form of the extended

PARAFAC model can be written as:

L 1 1 1 .. . .
Xijk = T —SI_ ?k— [hij + hjg + hik (6-73)

+ ) (GirbjrCir) + €jjk)

if initial centering is used, and in a slightly different form—with
the h-terms outside of the parentheses and the Ss-terms inside—if
initial size-standardization is used.

Because of the usual rapid convergence of the iterative pro-
processing procedure, one-cycle preprocessing has produced
results quite similar to full iterative preprocessing. The inter-
pretation of the factors has been virtually identical. However, all
the preprocessing objectives are not fully met at the end of one
cycle. If, for example, initial centering is used, then the sub-
sequent standardization usually disturbs the zero-means in the
preprocessed modes. Thus, the h-terms of the extended model
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do not represent the entire two-way mean components in the data.
Also, the trilinear part of the model generates fitted values whose
means are not exactly zero. While this is different from the
familiar roles played by such terms in two-way models, we see
hing wrong with such a representation.

The h-terms of the three-way model are defined by their
distinctive functional roles (having to do with offsets arising from
conditional origins, factors constant across one mode, plus part of
the two-way effects in the trilinear component), rather than by
the fact that they express all the two-way components of the
fitted part of the data.

Other Approaches. Kettenring (1983) discusses ways of
extending the information obtained in analysis by combining
PARAFAC and analysis of variance. Models that combine the two
perspectives have also been proposed by Gollob (1968), Gower
(1977), and Lohmoller (1979, as noted in Kroonenberg [1983]).
(The reader is referred to Kroonenberg [1983, 135-41] for fur-
ther discussion of these models.)

not

An Orthogonally Constrained Model:
Degenerate Solutions and Their Remedies

We have seen several extensions of PARAFAC's applicability that
result from implicit generalizations of the algebraic model. We
now discuss an important extension of applicability that results,
surprisingly, from placing a restriction on the model. The re-
striction consists of orthogonality or zero correlation constraints
on the factor-loading patterns in one or more modes of the solu-
tion. For some three-way data sets it appears that the restricted
model has a "robustness" that allows it to provide more meaning-
ful solutions, despite its formal inappropriateness.

While the usefulness of an orthogonality constraint has been
demonstrated repeatedly in the last few years, we are only now
beginning to understand why it works. The following account
should be considered simply as a brief progress report of ongoing
research.

The Classical Patterns of Degeneracy

During the initial period after development of PARAFAC, its
primary applications were indirect fitting to accomplish multidi-
mensional scaling (see Gandour and Harshman 1978; Terbeek 1977
Terbeek and Harshman 1972) and direct fitting of physiological/
acoustic profile data (see Harshman, Ladefoged, and Goldstein
1977; Harshman and Papcun 1976; Lindau, Harshman, and Lade-
foged 1971). It generally worked well in these applications.
Eventually, however, PARAFAC began to be applied to a wider
range of data types, particularly profile data of more psycho-
logical origin, such as semantic differential ratings. With these
data, we would frequently observe certain characteristic but
uninterpretable patterns of factor loadings that we have come to
call degenerate solutions. We saw that the occurrence of these
degenerate solutions was one of the most serious problems inter-
fering with wide application of PARAFAC to profile data.
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Degenerate solutions are characterized by factors with ve,
high correlations (.80-.98) in Modes A and B, and usually Mg
C, as well. However, Mode C is typically used for Pel‘Sor?
weights; thus, correlations are sometimes lower (.50—.80) in this
mode, even in degenerate cases, perhaps because of the lowey
reliability of person weights that are based on only one subject'g
data. Mode C is also typically the one mode left uncentereq, So
it shows high cross-products even when it does not show sycy
high correlations.

The loading patterns on these factors are usually quite diffj-
cult to interpret, and in any case, because of the high correl,-
tions, there would be only one interpretation for the severa]
dimensions in the solution. In the classic pattern of "hard-corer
degeneracy, the correlations between a pair of factors will have ,
triple product across modes that is negative; that is, their Moge
A correlation times their Mode B correlation times their Mode C
correlation will be large and negative. Therefore, a high nega-
tive correlation between factors will be found in either one or i,
all three modes.

Circumstances Yielding High Factor Correlations. We noy
distinguish three or four conditions in which highly correlateq
factors can occur. The first is not considered evidence of de-
generacy, whereas the other three represent successively more
extreme types of degenerate solutions.

The first condition in which high correlations might be ob-
served occurs when more factors are extracted from a data set
than are actually present in the data set or can be supported by
the data set. It can be demonstrated with synthetic data that
highly correlated factors will sometimes occur in this situation,
but several features distinguish this case from one in which a
true degeneracy is present. The highly correlated factors emerge
after the extraction of several meaningful nondegenerate factors,
The triple product of factor correlations for these extra factors
might sometimes be high and negative but at other times might be
high and positive and would more often be lower in magnitude,
The high correlations, when found, presumably are due to chance
collinearity as a result of the random axis orientation in the
subspace spanned by the redundant dimensions. Thus, such
correlated dimensions were not necessarily interpreted as a symp-
tom of degeneracy but rather as an indication that we had ex-
ceeded the correct dimensionality for a given data set.

With error-free synthetic data, the highly correlated dimen-
sions resulting from extracting too many factors will vary across
different starting positions. With real data containing error, the
solution may or may not be unique, since the fitting of error
might cause one orientation to be strongly preferred. However,
the arbitrary nature of the axis orientation for these extra dimen-
sions should be revealed by comparing solutions obtained in two
split-halves of the data set, in which the random error would not
be the same.

The second occasion on which high correlations are observed
occurs when the data have not been adequately preprocessed. I
the dimensionality is low and yet we observe the "classical"
degenerate pattern of very high factor correlations (with one of
three of them negative), we may suspect a degenerate solution,
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ticularly if consideration of other information (such as fit
i number of dimensions extracted, replicability of the

s . .
vahfne’rate solution across split-halves, theoretical expectations,
dx?cgl so on) suggests that there should be more systematic dimen-
a

ions present. If, as is of?en t?le case, better preprocessing
sl ws additional meaningful dimensions to be uncovered, then we
ilnzw that we were dealing with a "soft" or easily overcome de-
gen;;zcythird situation is degeneracy that persists even after
several attempts at c?refully chosen preprocessing.. Then we
might be confrontefi w1th. hard-core degeneracy. This .would' be
most strongly confirmed .1f the pattern of degenerate dimensions
was replicable across 5p‘ht-halves of a data set and if imposition
of orthogonality constraints caused a noticeable drop in the fit
value, yet revealef:l much more mea}'xingful dimensiqns (which,
sample size permitting, §hou1d be replicable across split-halves).

There is a fourth situation that could develop, although we
have not yet observed it except with synthetic data. A hard-
core degenerate solution might occur that could not be overcome,
even by imposition of orthogonality constraints. In such a case,
imposition of orthogonality constraints would presumably produce
solutions that were not interpretable and perhaps not replicable
across split-halves.

1Soft" (easily overcome) Degeneracies. Sometimes highly
correlated and uninterpretable dimensions even occur in a two-
dimensional analysis of a given data set. Yet examination of the
fit-versus-dimensionality curve for these data sets often suggests
that more than one dimension is present. Our Monte Carlo stud-
jes have shown that highly correlated dimensions can sometimes be
obtained as one consequence of analyzing data that does not have
the independent patterns of variation for each factor needed to
determine a unique solution (for instance, when several factors
are constant in a given mode) or when artificial additive constants
(h-terms) have been added to the data. We originally thought
that all degenerate solutions were caused by such extraneous
components or conditionality in the data, and PARAFAC pre-
processing methods were developed primarily so that meaningful
solutions could be recovered with data of this kind. For many
data sets, the preprocessing does just that.

As an example, consider the analysis discussed by Harshman
and De Sarbo (appendix C). The data consisted of ratings of 25
stimuli (celebrities and automobiles) on 39 rating scales by 34
individuals. (Appendix C, Table C-1 gives the loadings obtained
before data preprocessing.) Note that the first factor is constant
in two of the three modes; its Mode A loadings are close to 1.0
and its Mode C loadings are close to 3.5, which is the center of
the 7-point rating scale. Its Mode B loadings show a pattern of
V.ariation across scales that represents a strong positive evalua-
tion, indicating that subjects took the zero-point for these stimuli
to be of very high positive evaluation. We might suppose that
thés dimension is adjusting for the arbitrary displacement of the
origin from true zero, that is, the h-term in (6-3). However, it
shows variations in the baseline across stimuli and so would more
accurately be described as representing h + hj in (6-3). The
explanation is not as simple as this, however. The second and
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third dimensions do not represent independent patterns of infly-
ence freed from the baseline that the first factor represented,
Instead, they are very highly intercorrelated and also resemble
the first dimension in Mode B but show more complex patterns ip
Modes A and C. The correlations among dimensions (appendix C,
Table C-4) reveal the classic high negative triple product acrosg
modes. However, there is a dramatic difference between this
solution and the one obtained after iterative preprocessing: The
highly correlated dimensions have disappeared, and the solution ig
much more interpretable (see appendix C, Tables C-5 and C-¢,
and Figures C-1 through C-3).

Difficult or "Hard-Core" Degeneracies. With the development
of PARAFAC preprocessing procedures, we were frequently able
to prevent or overcome degenerate solutions. However, there re-
mained some solutions that were not improved, even after the
most careful and extensive preprocessing efforts. Even when
attempts were made to encourage noncorrelated dimensions (for
instance, by using an orthogonal approximation to the solution as
a starting position for further iterations), the solution would
quickly return to the degenerate form. Furthermore, this degen-
erate form was consistent across different random starting posi-
tions and replicable across split-halves of the data. And so it
would seem that the highly correlated dimensions were strongly
determined by the data itself. Indeed, any less correlated solu-
tions obtained by subsequent application of orthogonality con-
straints usually had noticeably poorer fit. This indicated that
despite the high correlations, successive dimensions in these
degenerate solutions did not represent redundant information.

The pattern of factor correlations obtained in these cases
always showed a characteristic "signature": The triple product of
the Mode A times Mode B times Mode C correlation between a pair
of factors not only was quite high, but invariably was negative in
sign. Yet both theoretical arguments and empirical tests with
synthetic data indicated that if the problem was simply one of too
many dimensions or inadequate determination of axis orientation
by the data, then only some high correlations would be expected,
and for these, the triple product of correlations in the three
modes would be positive at least as often as it was negative. It
seemed that something additional was causing the high negative
correlations, that some unknown phenomenon was forcing a special
form on the solution. We soon found a practical method of over-
coming the problem, but only now are we beginning to understand
theoretically what causes it.

Application of Orthogonality Constraints

In an attempt to block the classical pattern of degeneracy, a
special option was incorporated into the PARAFAC program that
allowed the user to constrain the factors in one or more modes to
be orthogonal (or uncorrelated, which would be more appropriate
if the mode contained all positive loadings). We reasoned that if
highly correlated factors were prohibited by means of such a
constraint, then interpretable dimensions might emerge.

- The constraint worked surprisingly well. In most cases, it
was sufficient to apply the constraint to only one of the three
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modes. This prevented the degenerate dimensions from emerging
in all modes and provided dimensions with quite distinct interpre-
tations. Once again the systematic nature of the degenerate
solutions was emphasized. Apparently high correlations in all
three modes (with either one or three negative correlations) were
necessary for the fit value to benefit from the degeneracy. If
high correlations were prevented in one mode, then they did not
form in the other two. In the case of three-way rating-scale
data, the constraint was generally applied to the scales mode,
although sometimes the stimulus mode was used with success
(Dawson 1982; also see below). Interestingly, the constraint did
not act as effectively when applied to the subject mode.

Not only were the dimensions obtained after application of the
constraint almost always interpretable, but we have begun to
accumulate evidence that they are in some sense empirically valid.
One example of such evidence is Harshman and De Sarbo (appen-
dix C). In this study, preprocessing fixed the initial "soft"
degeneracy, and the classic pattern of "hard core" degeneracy
did not emerge until four dimensions were extracted, at which
oint only two dimensions participated in the degeneracy. When
split-half analyses of the data set were performed, however,
highly correlated dimensions emerged in the three-dimensional
solutions (due perhaps to the small sample size [17] in each
half). But by applying orthogonality constraints to the scales
mode, we were able to obtain interpretable three-dimensional
split-half solutions. In this case, we knew what the valid three-
dimensional solution should look like, based on the interpretable
full-sample solution. Thus, it is noteworthy that the solutions
that emerged from the constrained split-half analyses very closely
resembled the interpretable three-dimensional unconstrained
solution obtained with the total sample.

In another recent PARAFAC application, Dawson (1982) per-
formed an analysis of judges' rating-scale reactions to a set of
metaphors. His unconstrained two-dimensional analysis vyielded
highly degenerate solutions. By application of the orthogonality
constraint in the stimulus mode, however, -he obtained a two-
dimensional solution that was not only highly interpretable but
congruent with theoretical predictions.

In certain special cases, it is useful to apply orthogonality
constraints to two or all three modes to obtain a solution whose
axes are oriented in the directions more closely analogous to
~unrotated principal components. In Snyder, Walsh, and Pamment
(1983), this approach was justified by special theoretical con-
siderations and provided a satisfying solution. In general,
however, it is desirable to apply the orthogonality constraint to
only one mode. This allows the orientation of axes to be estab-
lished by the proportional profiles criterion without undue influ-
ence from the orthogonality constraints. Constraints applied to
only one mode would allow the intrinsic axis property to determine
the choice among the infinite set of solutions that are orthogonal
in one mode; however, double or triple constraints would force
the solution to be some compromise between the unique orientation
determined by proportional profiles and that determined by prin-
cipal-components-type criteria.

As we gain experience with these constraints, we are becoming
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increasingly convinced that the distortions that they impose on 4
solution generally have relatively minimal effects on the interpre-~
tation, as can be demonstrated by applying the constraints tq
synthetic data with oblique axes in all three modes. In exchange
for these minor distortions, the constrained solution is robust ip
the sense that it usually has a much more meaningful interpreta-
tion than the unconstrained degenerate solution does. Sometimeg
it is useful to apply these constraints even when actual degener-
acies are not present in the unconstrained solution. Moderately
high correlations and dimensions that are difficult to interpret
might also justify use of the constraint.

Searching for the Cause of "Hard-Core" Degeneracies

As we mentioned earlier, we initially attributed the problem of
degenerate solutions to data peculiarities, such as extra con-
stants, two-way interactions, and so on. This explanation was at
least partly correct, since the problems with many data sets
disappeared after application of adequate preprocessing. How-~
ever, there were degeneracies that were not corrected in this
fashion. They consistently showed a high negative product of
factor correlations for the three modes. Also, we found that
orthogonally constrained solutions sometimes had substantially
poorer fit values than unconstrained solutions in the same dimen-
sionality, even though the unconstrained solutions appeared much
more redundant than the constrained ones. (However, careful
examination of the fitted data produced by a two-dimensional
degenerate solution suggested that the two highly correlated
dimensions were not as redundant as they might seem. Because
of the high negative correlation between the dimensions, their
common part was largely cancelled out when they were added
together to fit data, and the subtle differences between them
became magnified to produce different and more interpretable
dimensions.) Thus, we had to seek some other special character-
istic of the data that could account for these properties of the
degenerate solutions.

Hypothesis Testing by Data Synthesis. Since the most strik-
ing characteristic of the degenerate solutions is the fact that
successive dimensions look like only slightly modified versions of
previous ones, we began with the premise that the degenerate
solutions were an attempt to fit individual variations in the pat-
terns of the loadings. If each subject had points that were
idiosyncratically displaced relative to those of other subjects,
then the PARAFAC program might extract two or more similar
dimensions to more closely approximate the subjects' alternative
versions of a given dimension, _

Therefore we generated "perturbed" subject spaces; that is,
we synthesized profile-type data from two underlying "true"
factors that had been additively "perturbed," with a different
random perturbation used for each subject. We then performed a
two-dimensional PARAFAC analysis of the data to see if the
solution would be degenerate. The perturbations themselves were
uniform random numbers selected from the range (-1,1), a differ-.
ent one for each loading that was to be perturbed. Before being.-
added to the loadings, they were rescaled so that the mean-.
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gared perturbation value for a factor in a given mode was equal
59 some proportion of the mean-squared true loading value for
:ﬁat factor; for example, sometimes we used perturbations that
had 2 mean-squared value equal to half of the mean-squared
Joading value. Since we took Mode C to represent person
weights, we never distorted the true loadings in Mode C but
selectively perturbed the factors in one or both of the other two
modes. . .

In addition to varying the size of the perturbations, we also
varied the amount of additional error (using 0%, 5%, and 20%) and
the relative size of the underlying factors in the data. Regard-
less of the combination of perturbation and error in the data,
however, we were not able to produce fully degenerate solutions.
We frequently obtained factors that were highly correlated (that
is, 0.77 or above) in one mode; occasionally we saw correlations
above 0.7 in two modes, but never in all three. The solution
that was most like a degenerate one had factor correlations of
0.68, -0.99, and 0.73 in Modes A, B, and C, respectively; it was
obtained by analyzing error-free 18 x 18 x 18 data with one
underlying factor that was almost three times the size of the
other and with the larger factor equally perturbed in both Modes
A and B. On the basis of these tests, therefore, we concluded
that perturbations of the underlying factors were not an adequate
explanation of the degenerate solutions that we had seen. How-
ever, idiosyncratic variations in the location of points in each
subject's space might contribute to some instances of highly
correlated factors in one or perhaps two modes.

Hypothesis Testing by "Filtering" the Data. Finally, to test
the assumption that the problem was due to some pattern of
individual perturbations in the loadings of each dimension, we
decided to remove all such perturbations (while retaining stretch-
es and other linear transformations) and see if the degeneracies
disappeared. For this test, we used real data rather than syn-
thetic data. We applied a "filter" to the data for each person,
making sure that each row of that person's data fit into the
common row space for all subjects and similarly that each column
fit into the common column space.

To accomplish this "filtering," we first determined an arbitrary
set of basis vectors for the common space by averaging the data
across persons and then performing a component analysis or
singular value decomposition of the matrix of means. Suppose we
represent the average subject matrix as X; then we can write this
decomposition as follows:

X, =X=PDQ" .

i
070

To test the cause of degeneracies in a u-dimensional PARAFAC
solution, we used uU-dimensional filters; that is, we used the .
orthonormaj matrices P, and Q,, consisting of the¥U columns of p— First
and Q, respectively, to construct orthogonal projection matrices

that projected each person's data into the U-dimensional subspace

of the common space.
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The filtered matrix for subject k is called Fx and has tp,
property that each column of Fi is some linear combination of tpe
columns of P, and each row is some linear combination of tpe
columns of Q,. This is accomplished with the orthogonal projec-
tion matrices P,P7, and Q,Q%, as follows:

Fe = Py Py X Q, Q7 - (6-14)

We then submitted this filtered version of the data to PARA-
FAC analysis. The results were clear cut. Although the fjt
value increased dramatically—from R-squared of .44 to .94 in one
case and from .28 to .89 in another—the loadings obtained iy
Modes A and B were almost identical to those obtained by analysig
of raw data. The solution was still degenerate, although Mode ¢
loadings were sometimes much less correlated. This demonstrated
to us that it was not some idiosyncratic fluctuations or perturba-
tions of individual loadings that were the cause of the degenerate
solutions, since these had all been removed. Instead, the source
of the degeneracies had to lie in the linear transformations that
related each subject's space to the common space. Indeed, dif-
ferences in the subjects' linear transformations of the common
space constituted the only possible differences left after the
filtering operation, yet the degeneracies still appeared.

Such individual differences, where each person's space was a
different linear transformation of a common space, had to go
beyond individual differences in the amount of stretch of the
factor axes, since such differences could readily be represented
by PARAFAC without degeneracies. There must also have been
differences in either the obliqueness of dimensions or the direc-
tions of stretch (that is, individual rotations of axes before
stretching or contracting them), or perhaps both. These are just
the kind of more general transformations permitted by the Tucker
three-mode model. In other words, it appeared that in the
hard-core degenerate cases, the problems may have been caused
by the fact that the data showed the kind of variations that could
only be compactly represented by the Tucker T3 or T2 models; it
appeared that. the patterns in the data were too complex for the
PARAFAC model.

Our hypotheses thus became the following: The hard-core
degenerate solutions were attempts by PARAFAC to approximate
the more general patterns of variation consistent with Tucker's
model, using a bizarre combination of the more restricted
PARAFAC factors; when we applied the orthogonality constraint,
we somehow prevented this approximation procedure and forced
PARAFAC to find a solution that had lower overall f{it but
presented the underlying dimensions in a more straightfor-
ward, interpretable manner. In other words, we hypothesized
that constrained PARAFAC provided a meaningful fit to a subset
of the Tucker structure that had a simple PARAFAC representa-
tion. ' g

Successful Synthesis of Data Causing Degeneracies. As a first
test of this hypothesis, we generated data using the Tucker T3
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el and analyzed it with PARAFAC to see if we could find T3

m;ictures that produced the characteristic signature of de-
senerate solutions found with real data. We were successful.

Furthermore, we began to see which features of the Tucker
actures would give rise to the degeneracy. For the same

s‘;tern of off-diagonal cells, we synthesized data sets in which
we varied the size of the superdiagonal elements of the Tucker

core matrix (the elements for which r = s = t). When these were
Jarge compared to the other elements of the core (such as 2 or 4
gersus -.5 to .9) then the resulting data had a structure dom-
inated by aspects for which the PARAFAC model was appropriate,
and thus the solut.ion was nqt degenerate., However, when we
syntheSized data with supel:dlagonals that were only moderately
larger than the other entries (such as 1.0 to 1.5 versus -.5
to .9), we obtained degenerate solutions. The sign pattern for
the off-diagonal cells of the core matrix also seemed to affect the
jikelihood of obtaining degenerate solutions. Some patterns (for
instance, negative entries in certain locations) increased the
likelihood of obtaining degenerate solutions, but other patterns of
core matrix entries did not produce degeneracies at all. How-
ever, since these investigations are still in the preliminary
stages, further generalizations would be premature.

When the degenerate PARAFAC dimensions obtained upon
analysis of the synthetic data were correlated with the "true"
Tucker dimensions used to generate it we found a very interest-
ing pattern. A particular dimension (for instance, dimension 1)
would be well recovered in one mode, but another (for instance,
dimension 2) would be well recovered in the other mode. This
surprising pattern was similar to a phenomenon that was observed
in the Harshman and De Sarbo (appendix C) analysis. When the
ttrue" dimensions of the three-dimensional solution—that is, those
obtained with the total sample—were correlated with the de-
generate dimensions of the three-dimensional solutions (found
when analyzing the split-half samples), we sometimes found that
the "redundant" dimension of the degenerate solution resembled
the second true dimension in Mode A but the third true dimension
in Mode B. This similarity in the behavior of our synthetic and
real data analyses further indicated that we were "on the right
track" with our hypothesis about the cause of degenerate solu-
tions.,

Testing Recovery via the Orthogonality Constraint. As a next
step, we tried applying the orthogonality constraint to the syn-
thetic T3 data to see if it aided in recovering the "true" under-
lying dimensions. (By "true" dimensions, we now mean the ones
associated with large superdiagonal cells in the T3 core matrix
used to generate the data.) The success depended, once again,
on the size of the superdiagonal cells versus the off-diagonal
cells, For all but the most severe cases, however, the ortho-
gonality constraint worked quite well, providing solutions in
which the PARAFAC dimensions correlated 0.84 to 0.99 with the
"true" Tucker dimensions. Furthermore, the intrinsic axis prop-
erty of the PARAFAC solution allowed the "true" T3 dimensions
associated with large superdiagonals to be recovered and inter-
Preted without rotation.
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Current State of this Research

Currently, we are collaborating with J. B. Kruskal of Bell L.
oratories on a series of mathematical and empirical investigaﬁonS
of how and why the T3 model can give rise to such patterns (
degeneracy. We are also exploring psychological models of pat-
terns of individual differences (and thus particular core Matrix
structures) that might result in degeneracies and are beginnij,
to examine real data that causes degeneracies to determine tpq
core matrix that would be estimated by suitable Tucker analysig
of such data.

As part of this work, Kruskal has been able to confirm mathe-
matically that T3 data in which the elements of the core matrix
have certain sizes will lead to degeneracy when fit by a PARAFACQ
model. For example, he can define relations among the core
matrix elements that determine whether a 2 X 2 X 2 core matrix
has trilinear rank of three or two. When the core is rank 2 apg
far above the boundary to the rank 3 region, the PARAFAC
solution will have nondegenerate form and should recover the
"true" dimensions well. When the core is rank 3, however,
unusual things can happen, including degenerate two-dimensiona]
PARAFAC solutions. Some preliminary results were reported in
two papers presented at the 1983 Psychometric Society meetings
(Harshman, Kruskal, and Lundy 1983; Kruskal, Harshman, ang
Lundy 1983).

To summarize, it seems likely that the latent structure of man
three-way profile data sets is well approximated by the PARA-
FAC-CANDECOMP model (after preprocessing); these do not yield
degenerate solutions. And for others that may not conform quite
as closely to the model, preprocessing may often make them
suitable for PARAFAC analysis by changing the size of different
elements in the core matrix so that the preprocessed data will
yield acceptable solutions even without orthogonality constraints;
this might account for many cases of "soft" degeneracies. For
still other data sets, however, the T3 or T2 model may be the
only sufficiently general representation, even after preprocessing;
these data would give rise to "hard core" degeneracies. :

Nonetheless, by wuse of orthogonality constraints, many of
these latter cases might be usefully subjected to PARAFAC analy-
sis. The orthogonality constraint apparently forces PARAFAC to
fit a subset of the Tucker variations, those that can be simply
and meaningfully expressed in terms of orthogonal PARAFAC
dimensions.

To understand the full complexity of such data, of course, one
needs to apply the Tucker model(s), perhaps by means of Kroon-
enberg and de Leeuw's (1980) TUCKALS programs (see also
Kroonenberg 1981b, 1981c). However, it might be useful to use
them in conjunction with the orthogonally constrained extended
PARAFAC model, since it has the intrinsic axis property and so
might help to determine an empirically meaningful rotation of the
Tucker solution. In the same vein, it might be useful to add
some Tucker-related options to PARAFAC, such as a method of
estimating the core matrix associated with a given set of PARA-
FAC axes. There would seem to be a convergence of the two
perspectives, and methods of combining the Tucker and PARA-
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AC-cANDECOMP approaches would seem to provide a wvaluable

A tion for future research.

direc

More Basic Generalizations

In these chapters, we have considered PARAFAC] and its exten-
sions. We have only noted in passing that there are also funda-
mental generalizations of the model, such as PARAFAC2 (mention-
ed in chapter 5). These would allow the proportional profiles and
intrinsic axis methods to be applied to data that currently cannot
pe properly fit, even by the extended versions of the PARAFACI1
model. For example, PARAFAC2 (Harshman 1972) allows oblique
axis analysis of cross-product matrices, and PARAFAC3 allows
even more general structures to be investigated. DEDICOM
(Harshman 1978; Harshman, Green, Wind, and Lundy 1982) allows
a type of factor analysis or multidimensional scaling of a matrix of
relationships that are not necessarily symmetric (for instance, the
apumber of telephone calls between different towns, alphabetic
confusions, international trade balances, and so on). This model
has both two- and three-way versions. There is also a "linked-
mode" version of PARAFAC1, in which two or more different
three-way data sets that share a common mode (for example, if all
were based on the same stimuli) can be analyzed with the con-
straint that the dimensions for the common or linked mode be the
same. Discussion of generalizations such as these is beyond the
scope of this chapter. We merely mention that work on such
models is being undertaken and that they may further extend the
domain of data to which three-way factor-analytic and multidimen-
sional scaling methodologies can be usefully applied.

NOTES

1. We should note in passing that less subjective measures
can also have the problem of an uncertain origin. Interval-scale
data can arise even when the measures have a superficial true
zero (for example, counts of the number of observations that
fulfilled certain criteria, or the number of people in a certain
location at a certain time) if there is a threshold before nonzero
counts begin to be observed. Even though such counts represent
a ratio-scale measure of the directly observed quantities (for
example, the number of observations fulfilling a particular crite-
rion), they may represent only an interval- or ordinal-scale esti-
mate of the underlying influence that one is trying to get at by
means of those quantities. Horst (1965) gives the example of
items designed to measure intelligence. A count of the number of
test items passed successfully might seem like a ratio-scale value
with a true zero, but if the items were all of sufficient difficulty,
then younger children or less-bright adults might fail all the
items and yet still have considerable intelligence.

2. Some might object that the effect of centering cannot
always be this simple, since when X is full column rank (rank m
for an n by m matrix), row-centering will reduce it to rank
m -1, But even this is just the effect of a translation of axes.
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For example, consider a 3 x 3 square matrix representing the
position of 3 points in a three-dimensional space. Centering ty;q
matrix shifts the points so that the origin of the space is at the
centroid of the points. This makes all three points lie on a plane
through the origin and hence reduces the dimensionality of thej,
space from three to two, simply by translation of axes.

3. Others have informally called them "spaghetti," "lasagnau
and "meatloaf" centering.

4. We do not agree with some of Kroonenberg's (1983) pre-
processing recommendations, for reasons that should be apparent
after reading the preceding section of this chapter. His djs-
cussion of preprocessing and many examples are most instructive
however, and his book is a valuable source of information abou;
three-mode factor analysis in general. Unfortunately, we did net
receive it in time to discuss it elsewhere in this chapter.

5. This perspective was first suggested to us by Kruskg
(personal communication, 1980) and is explicitly mentioned i
Kruskal (1983), reprinted in this volume. We have also been
recently informed by Kroonenberg (personal communication, 1983)
that Lohmoller (1979) has considered three-way models with some
additional additive terms. We have not yet seen this work,
however, and so cannot comment on it.

6. This example is based on a study being done at the Uni-
versity of Western Ontario by P. Ossenkopp, L. Sorensen, and
D. Mazmanian.
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