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PARAFAC: Parallel factor analysis 

Richard A. Harshman and Margaret E. Lundy 
Department of Psychology, University of Western Ontario, London, Ontario, Canada 

Abstract: We review the method of Parallel Factor Analysis, which simultaneously fits multiple 
two-way arrays or ‘slices’ of a three-way array in terms of a common set of factors with differing 
relative weights in each ‘slice’. Mathematically, it is a straightforward generalization of the 
bilinear model of factor (or component) analysis (xij = X~=,a,,bj,) to a trilinear model (xijk = 
C~=Iai,bjrckr). Despite this simplicity, it has an important property not possessed by the two-way 
model: if the latent factors show adequately distinct patterns of three-way variation, the model is 
fully identified; the orientation of factors is uniquely determined by minimizing residual error, 
eliminating the need for a separate ‘rotation’ phase of analysis. The model can be used several 
ways. It can be directly fit to a three-way array of observations with (possibly incomplete) factorial 
structure, or it can be indirectly fit to the original observations by fitting a set of covariance 
matrices computed from the observations, with each matrix corresponding to a two-way subset of 
the data. Even more generally, one can simultaneously analyze covariance matrices computed 
from different samples, perhaps corresponding to different treatment groups, different kinds of 
cases, data from different studies, etc. To demonstrate the method we analyze data from an 
experiment on right vs. left cerebral hemispheric control of the hands during various tasks. The 
factors found appear to correspond to the causal influences manipulated in the experiment, 
revealing their patterns of influence in all three ways of the data. Several generalizations of the 
parallel factor analysis model are currently under development, including ones that combine 
parallel factors with Tucker-like factor ‘interactions’. Of key importance is the need to increase 
the method’s robustness against nonstationary factor structures and qualitative (nonproportional) 
factor change. 

Keywords: Three-way exploratory factor analysis; Unique axes; Parallel proportional profiles; 
Factor rotation problem; Three-way data preprocessing; Three mode principal components; 
Trilinear decomposition; Trilinear model; Multidimensional scaling; Longitudinal factor analysis; 
Factor analysis of spectra; Interpretation of factors; ‘Real’ or causal or explanatory factors; L.R. 
Tucker; R.B. Cattell. 

1. Introduction 

Parallel factor analysis extends the ideas and methods of standard two-way 
factor analysis to three-way data. A key motivation for this is the possibility that 
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‘simultaneous factor analyses’ of several matrices in parallel can sometimes lead 
to a unique set of factors for which any rotation of axes will cause a loss in total 
fit. This is similar to the way in which solving simultaneous equations allows the 
family of possible solutions for any single equation to be reduced to a unique 
solution for each unknown that fits all the equations in parallel. 

The original inspiration for PARAFAC came from R.B. Cattell, who argued 
that the rotational indeterminacy of factor analysis can be overcome by seeking 
“Parallel Proportional [factor] Profiles” in two solutions at once (Cattell, 1944; 
Cattell and Cattell, 1955). He reasoned as follows: if the same factors are 
present in two different datasets, but change their relative proportions of 
variance-accounted-for by distinct amounts from one dataset to the next, then 
there is only one unique set of axis orientations in both spaces which will reveal 
this parallel proportional relationship; hence, by discovering that unique posi- 
tion, one can empirically determine the approximate orientation that the factors 
must have had when the data were generated (cf. Cattell, 1978, Section 6.3). 

2. Some PP models of three-way variation 

This special issue of CSDA describes many different methods of multi-way data 
analysis. To avoid repetition of points made by other authors, we omit a general 
literature review and concentrate directly on our family of Parallel Profiles 
multi-way models and analysis procedures (Harshman, 1970; Harshman and 
Lundy, 1984a); the simplest of these is PARAFACl (also known as PARAFAC). 

PARAFACl is based on the trilinear model given in Equation 3 of Section 
2.1. Harshman (1970) developed it by generalizing Cattell’s (1944) idea of 
Parallel Profiles factor rotation. Carroll and Chang (1970) independently arrived 
at the same trilinear model by generalizing Horan’s (1969) work on individual 
differences in multidimensional scaling. They called the trilinear model 
‘CANDECOMP,’ for ‘CANonical DECOMPosition,’ and developed from it the 
widely used MDS (MultiDimensional Scaling) procedure INDSCAL. Other 
important early contributors include, for example, Bloxom (19681, and Sands 
and Young (1980). 

Considered by itself, the trilinear model would seem to be somewhat restric- 
tive: it requires ratio scale data, and, in particular, systematic proportional 
changes from one level to the next in the pattern of influences of each latent 
factor in each of three ways (or ‘modes’ ‘1 of a multimode data set (Harshman 
and Lundy, 1984a, p. 130). Yet even in this strongest form, the model has found 

r Tucker (1963,1964) coined the term “mode” to reflect the fact that each way of a multiway 
dataset can represent a different “mode of measurement” or “mode of classification” of the data. 
Carroll and Arabie (1980) introduced a distinction between ‘n-way,’ which was the number of 
subscripts for the datapoint, and ‘n-mode,’ which was the number of differently labeled subscripts 
(i.e., the number of distinct ‘modes of classification’ of the data). Under their interpretation, a 
symmetric correlation matrix would be two-way but have only one mode, repeated for both ways. 
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a growing number of interesting applications, particularly in the ‘harder’ sci- 
ences, such as chemometrics (Burdick et al., 1990; Geladi, 1989; Ross et al., 
1991; Smilde and Doornbos, 1991). Statistical Science recently published a useful 
expository introduction and overview of applications to spectroscopy (Leurgans 
and Ross, 1992; see also the accompanying commentaries by Burdick et al., and 
Kroonenberg). In such applications, the existence of ‘true’ factors is taken for 
granted, and the ability of the trilinear (PARAFAC-CANDECOMP) model to 
uncover such factors is considered an important advance. 

Most data are not initially ratio-scale; variables may have arbitrary zero points 
and/or standard deviations. But these can be removed by array preprocessing 
methods discussed in Section 3.2.1. Even greater flexibility can often be ob- 
tained by applying PARAFAC to covariances or cross-products rather than raw 
scores. Some examples of applications using array preprocessing and/or indirect 
fitting methods include Cole and Ray (1985), Field and Gaupe (19911, Haan 
(1981), Harshman and DeSarbo (19841, Harshman et al. (1977), Kettenring 
(1983), Meyer (1980), Ossenkopp and Mazmanian (1985), Snyder et al. (1983) 
and Trick and Katz (1986). 

2.1. Derivation of the basic t&near factor analysis model 

The trilinear model underlying PARAFAC or CANDECOMP may be the 
simplest nontrivial way to extend the algebra of the factor analysis model from 
two-way to three-way data. To see this, it is helpful to start with the scalar form 
of the two-way model: 

Xij=aiIfjI +ai2fi2+ * * * +airfjr+ * ** +aiRfjR +eij, (1) 

where xii is the entry in row i and column j of the I by J data matrix X, and 
the terms a,, fjI, . . . , ai, fir,. . . , aiRfiR represent the additive contributions of 
factors 1 through R to this observed value. The eij is an error term or residual; 
its hypothesized properties depend on whether one is fitting the principal 
components or the common factor model (see Section 2.3.4). 

Recall that xii is often obtained by measuring attribute i on entity j; in this 
case the weights ai, are traditionally called factor ‘loadings’ while the weights 
fir are called factor ‘scores’. These two sets of weights traditionally have 
different standardization conventions and often different methods of estimation. 
Fundamentally, however, both sets of weights play the same role: to represent 
the amount of a factor’s influence or importance at a given level of a given mode 
of the data. Furthermore, both sets of weights represent variations in a factor’s 
influence multiplicatively - by proportionally stepping up or down the size of all 
of a factor’s contributions from one level of a particular mode to the next. 

Because the same basic role is played by both sets of weights, we consider the 
tradition of distinctive naming and standardizing conventions for each set to be 
overly specialized. In some modern applications (e.g., chemistry) it is unclear 
which set of weights should be called ‘factor loadings’ and which ‘factor scores.’ 



42 RA. Harshman, M.E. Lundy / PARAFAC 

Therefore, we adopt a more neutral and general set of mode naming, weight 
naming, and standardizing conventions. We say that X is a two-way matrix in 
which the rows represent levels of ‘Mode A’ and the columns represent levels of 
‘Mode B.’ The two-way model is then written: 

Xii = ailbj, + ai2bjz + * * * +airbjr + * . . +aiRbjR + eij. (2) 

Standardization (e.g., to column mean squares of 1) is applied to one set of 
weights, and the scale of the data then fixes the sizes in the other set. The 
choice of which mode to standardize depends on the particular data involved 
and the analysis perspective adopted. The term ‘loadings’ can be applied loosely 
to either set of weights. In the mode that reflects the scale of the data, stronger 
interpretations of the variations in size of loadings are often possible. (For 
detailed discussion, see Harshman and Lundy, 1984a, pp. 192-203). 

The two-way factor model is bilinear, since it is linear in one set of weights 
(e.g., the Mode A loadings) if the other set of weights (e.g., the Mode B 
loadings) are considered fixed, and vice versa. To generalize (2) into the 
three-way PARAFAC-CANDECOMP model, one simply adds a third set of 
weights. Weights in this third set play the same sort of role in the model as those 
in the other two sets. That is, they proportionally step up or down the 
contribution of particular factors at each level of a particular way or ‘mode of 
measurement’ of the dataset (in this case, the third way or mode); hence the 
generalized model is trilinear. The third way is called Mode C, and so the 
generalized form of the model becomes, in scalar notation, 

xijk = ailbjlck, + ai2bj2ck2 + * . . +airbjrckr + . . * +aiRbjRckR + eijk. (3) 

Here, xijk is an entry in a three-way array X with Modes A, B and C. For 
example, it might be the value of variable i as measured on entity j on occasion 
k. The ai, gives the weight or loading of factor r on level i of Mode A; bj, and 
ckr give the weight or loading of the same factor on level j of Mode B and level 
k of Mode C, respectively; eijk is the residual or error term. 

Once we view the weights for all modes in a uniform manner, it becomes 
natural to consider further multilinear generalizations incorporating additional 
sets of weights: 

Xijkl... = (ailbj,Ck,d,, . * ’ ) + (aizbj,Ck,d,, * * . ) + * ‘. +(airbjrCkrdlr ’ ’ ’ ) 

+ . . . 
+ ( aitZbjRck17dLR ’ . . 

) + eijk[ . (4) 
Carroll and Chang (1970) and Harshman (1970) are among those originally 
proposing such generalizations; Carroll and Chang actually developed a com- 
puter procedure with 7-way generality, but the computational inefficiency of 
carrying the extra subscripts when they were not needed led to the development 
of a version specifically for analysis of symmetric, 3-way data (SINDSCAL, see 
Pruzansky, 1975 as cited in Arabie et al., 1987). In this article, we will limit 
ourselves to consideration of three-way arrays. 
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2.2. Dimensional uniqueness and the ‘intrinsic-axis property’ 

Our strongest motivation for developing and using three-way Parallel Profiles 
models is the potential for overcoming the ‘rotation problem’ of traditional 
factor analysis, at least in some circumstances. It is well known that the two-way 
model is underdetermined by the two-way data that it fits. Instead of calling 
upon additional criteria (such as ‘simple structure’), to select among the multi- 
plicity of solutions, one can collect stronger data - with systematic three-way 
variation - and fit the trilinear model. Given appropriate three-way system 
variation 2, this model is not undetermined by the data. 

2.2.1. Proofs 
Several mathematical proofs of the uniqueness of PARAFAC-CANDECOMP 
axes have been derived, each based on a different set of assumptions concerning 
the data (DeLeeuw and Pruzansky, 1978, p. 483; Harshman, 1972; Jennrich, in 
Harshman, 1970). The most general proof to date of the uniqueness of the 
(trilinear) model is due to Kruskal (1976, 1977). (PARAFAC uniqueness also 
follows as a special case of the uniqueness of the more general PT2 model, see 
Section 5.2.) 

The implications of these uniqueness theorems can be briefly summarized as 
follows: PARAFAC factor axes will be uniquely oriented if, in each of at least 
three modes or ways of an n-way dataset, each factor has a pattern of variation 
in ‘influence’ (i.e., in size of weights) distinct from all other factors. ‘Distinct’ 
means that, for any two factors, we must be able to find two slices of the array in 
which the percentage increase or decrease between slices in the one factor’s 
loadings is different from the percentage increase or decrease in the other%. 

Mathematical study of the uniqueness of trilinear decompositions is a contin- 
uing area of research interest (e.g., Kruskal, 1989; Leurgans and Ross, 1992; Ten 
Berge, 1991; Ten Berge et al., 1988). An informal international symposium on 
rank, uniqueness, and related properties of three-way arrays and their trilinear 
(PARAFAC-CANDECOMP type) decompositions (focusing, in particular, on 
Kruskal’s recent results) was held in Groningen, The Netherlands, in August, 
1991; as of this writing, however, the proofs and discussion are only available by 
contacting the participants. 

2.2.2. Interpretation of uniqueness 
Uniqueness per se is not necessarily empirically meaningful or informative. For 
example, the uniqueness of the Singular Value Decomposition and (unrotated) 
Principal Components Analysis is obtained by imposing restrictions (of compo- 

2 ‘System Variation’ is coordinated proportional changes in the contributions of a given factor 
from one level to the next in at least three ‘ways’ of an n-way array. It is contrasted to ‘Object 
Variation’, in which the factors change proportionally in two modes (such as Variables and 
Persons) but not in the third mode (e.g., Occasions). In Object Variation, each object has its own 
idiosyncratic pattern of variations in the importance of factors across levels of the third mode (see 
Harshman, 1970, pp. 20-22). See also Sections 2.3.2.1 and 4.4.1.1. 
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nent orthogonality and/or successive variance maximization) that are mathe- 
matically convenient but empirically implausible, or, at best, arbitrary. Thus, 
there is no reason to expect the unique axes so determined to be oriented in the 
factor space so as to best correspond to empirical processes that generated the 
data. There are several conditions that, if fulfilled, make it more likely that 
uniqueness implies probable identification of the most scientifically meaningful 
orientation of factor axes in a given factor space. According to these principles 
the uniqueness should be: 

1. Well Motiuated. The uniqueness determining conditions should be non- 
arbitrary - they should be empirically motivated by known or anticipated traces 
or characteristic effects of the causal processes or ‘organic unities’ that underlie 
the systematic patterns in the data. Mathematically, the assumptions, restric- 
tions, or characteristics of the formal model that determine uniqueness should 
do so in a way that is highly plausible empirically/scientifically for the data 
under study. 

2. Testable. It should be possible to determine whether the data display 
enough of the uniqueness determining characteristics (the particular systematic 
characteristics that the formal model depends on to determine location of the 
factor axes) to in fact stably determine a meaningful set of axes. It should be 
possible for some datasets to fail this requirement and so for some solutions to 
be non-unique. Further, is should be possible to test a given solution/dataset 
and determine whether it is reliably unique or not. 

3. Univocal. If a dataset fulfills the conditions allowing a particular model to 
define a set of unique axes, this should be subject to only one plausible 
interpretation - that this is the location of the axes most likely to correspond to 
the causal or organic unities underlying the data. There should be no plausible 
alternative interpretation of the result. In short, any unique axes obtained 
should be quite hard to explain scientifically other than by postulating that the 
factors have identified influences acting in the data and that the influences’ 
direction of action and patterns of relative weights are roughly as represented in 
the factor analysis results. 

When we use these principles to evaluate previous criteria for orienting factor 
axes (details omitted here due to space limitations), we find: (a) Thurstone’s 
(1947, chapter 14; see also Cattell, 1978, Sections 6.4-6.7) rationale for the 
‘simple structure’ search for hyperplanes is empirically well motivated, testable 
(with effort), and relatively univocal. When hyperplanes are well defined, the 
rotation they determine (e.g., graphically) is likely to place axes approximately in 
the direction of action of ‘real’ empirical influences. (b) VARIMAX, OBLIMIN, 
and related analytic rotation methods are more problematic, however, because 
their ‘simplicity’ criterion is flawed: it can be optimized by finding clusters as 
well as by hyperplanes. In studies with careful sampling of variables, analytic 
rotation will generally (though not always) tend to find hyperplanes, but in less 
well designed studies, these methods will often simply reflect the researcher’s 
preconceptions back to him by placing factors through those clusters of similar 
or highly related variables that were built in at the start of the study. 
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Fig. 1. 

2.2.2.1. Evaluation of PARAFAC uniqueness PARAFAC axis orientation is not 
influenced by clusters, hyperplanes, or any other within-space configurations. It 
relies instead on finding systematic relationships between several parallel factor 
spaces. 

1. Motivation. PARAFAC determines unique axis orientation by seeking out 
systematic proportional stretching or contraction of distances (from one two-way 
subset of the array to the next) along a consistent set of directions in the factor 
space (Figure 1). Such systematic proportional variations in inter-point distances 
along particular directions should only be present if there are, in fact, common 
influences each acting on a particular set of several variables in the space. These 
influences can be detected as distinct factors if the underlying influences change 
their importance relative to one another from one two-way slice to the next. 

2. Testability. A standard part of recommended PARAFAC analysis proce- 
dure is to test the reliability of the axis orientations determined by PARAFAC 
using split-half or other methods (e.g., see Section 4.4.3). If the reliability test 
fails, PARAFAC factors cannot be trusted. If it succeeds, the axis agreement 
across split halves would seem to demonstrate that systematic expansions or 
contractions of interpoint distances are reliably found in particular directions in 
the factor space. 

Other tests are also possible. For example, to test for required qualitative 
consistency of the factor structure across groups, ages, conditions, etc. one can 
often compare separate analyses of systematically different subsets of the data 
(e.g. young vs. older, condition 1 vs. 2, etc.). 

3. Univocality. If proportional stretches and contractions of interpoint dis- 
tances in the factor space are demonstrated by consistent split-half PARAFAC 
factors, it is hard to see how this three-way regularity could arise except through 
a common influence oriented along each direction of consistent stretching and 
contraction. However, is not such a common influence on several variables more 
or less what we mean by a ‘common factor’? 

Of course, it is always possible that someone will, in the future, come up with 
a persuasive alternate explanation of the systematic stretches and contractions, 
and/or of the replicating PARAFAC unique axes in a particular dataset. 
However, this is true of any scientific explanation. In the meantime, such a 
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vague speculative ‘possibility’ does little to diminish the present fact that there 
is only one apparent explanation for the replicable unique axes in the dataset, 
and that explanation seems scientifically sensible and well motivated by what we 
know of the data. 

2.2.2.2. Intrinsic axis property For PARAFAC-CANDECOMP and related 
parallel-profile factor models, finding the optimal orientation of the factor axes 
is an intrinsic part of optimizing the fit of the trilinear factor model to three-way 
data; if the factors have shown distinct patterns of change, then any other axis 
orientations will reduce the fit of the model to the data. Thus, such models are 
said to have an intrinsic axis property. (For further discussion, see e.g., Harsh- 
man and Lundy, 1984a, pp. 147-169, particularly 163-167.) This name distin- 
guishes the kind of uniqueness of PP models from the more arbitrary uniqueness 
of certain other multidimensional models, such as principal components analy- 
sis. It also distinguishes them from models which are themselves intrinsically 
nonunique, but which determine unique solutions by adopting added side 
conditions, such as maximizing a simple structure criterion in the factor loading 
matrix. 

2.3. Direct and indirect fitting 

In the three-way case it becomes particularly important to distinguish two 
different approaches to fitting the factor model to data: (a) to directly fit a raw 
score or profile data matrix, or (b) to fit a matrix of covariances or cross-prod- 
ucts (or pseudo scalar products) derived from the raw data. Following Kruskal 
(19781, we refer to the first as direct fitting and to the second as indirect fitting 
of the structure in a data matrix (see also Harshman, 1972; Harshman and 
Lundy, 1984a, pp. 133-140; Snyder et al., 1984, pp. 9-14). 

Although these approaches yield equivalent factors in the two-way case 
(unless diagonal estimation is performed), they are not, in general, equivalent in 
the three-way case. (One special case in which they are equivalent arises when 
the dataset is a fully crossed three-way array and the columns of factor weights 
are orthogonal in at least two ways of the array.) Direct and indirect fitting each 
have their own distinct advantages and disadvantages. 

2.3.1. Direct fitting 
As described in Section 2.1, PARAFAC can directly fit the trilinear model to 
three-way ‘raw data’ (or, equivalently, centered and standardized raw score 
data). The scalar form of the model is given in (3); a matrix formulation is often 
written by giving a general expression for an arbitrary two-way slice: 

X,=ALI,B’+E,, (5) 

where X, is I by J, the kth slice of an I by J by K array X; A is an I by R 
factor loading matrix for Mode A; B is a J by R loading matrix for Mode B; D, 
is an R by R diagonal matrix with diagonal elements taken from the k th row of 
C, a K by R loading matrix for Mode C; and E, is the k th slice of the residual 
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array E. A Kronecker or tensor-product form is given in the article by R. Coppi 
elsewhere in this issue. 

One advantage of direct fitting is that it does not require orthogonal factors 
in any mode of the data, since the loading matrices A, B, and C need not be 
columnwise orthogonal. Another advantage is that the analysis directly provides 
weights or loadings for all three modes at once. A disadvantage of direct fitting 
is that it makes stricter assumptions about the three-way proportionality of the 
pattern of factor variation in the data, requiring System Variation *. Another 
disadvantage is that (because of the characteristics just mentioned) direct fitting 
is subject to ‘degenerate solutions’ (see Section 5.51, whereas indirect fitting 
(using PARAFACl) appears imune to this problem. 

2.3.2. Indirect fitting 

2.3.2.1. Single sample indirect fitting If the algebraically identical trilinear 
model is applied to raw data indirectly, by using its trilinear structure to 
represent parallel cross-product or covariance matrices derived from raw data, it 
is not necessary that the raw data show System Variation, but only that the 
couariunces have such structure, a condition usually easier to fulfill. For covari- 
ante matrices, it is necessary simply that the average importance of each factor 
varies from one covariance matrix to the next in a distinct fashion. 

To indirectly fit the raw data array &, one might, for example, compute 
covariances across Mode B at each level of Mode C, to obtain an I by Z by K 
three-way array _Y in which the kth slice consists of covariances among the I 
variables on occasion k. In matrix form the model becomes 

Y k =ALI*A’ + EE’ k k, (6) 

where Yk is Z by I, the k th covariance matrix in an Z by Z by K array r; A and 
D, are as defined in Section 2.3.1 for the direct fitting model, and EEL is the 
matrix of residual or error covariances. Here, the second table of factor loadings 
(B in the direct fitting model) is identical to A as a consequence of the 
symmetry of the covariance matrices. Further, Dz contains the squares of 
entries obtained in the direct fitting case, where & itself is analyzed. Thus the 
indirect-fitting equivalent of (3) is 

Note that reference to the pattern of loadings in Mode B disappears from the 
indirect fitting model. Thus, it is no longer required that the changes in Mode C 
(e.g., occasions) be proportional across levels of Mode B (e.g., individuals) since 
Mode B has ‘vanished.’ This indirect approach was used in a longitudinal 
personality analysis (Haan, 1981) to analyze the ‘object variation’ of personality 
change. Although direct fitting could have been performed, it was deemed too 
restrictive to assume that the pattern of change in importance for a given 
personality factor across time points in the life-span was proportional from one 
person to the next. 
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2.3.2.2. Multiple sample indirect fitting Alternatively, one can compute each 
covariance matrix using a different sample of Mode B levels. The generalized 
model for the raw data (ignoring, for the moment, details regarding the 
stochastic or error part) would be: 

X, =AD,B;. 

To obtain the corresponding covariance model, let 

(8) 

and let 

(10) 

where @k is the correlation (or covariance, or mean-cross-product) matrix for 
factor weights in Mode B at level k of Mode C. 

If one allows Q, to change arbitrarily from one value of k to the next, the PP 
solution is not unique (Meredith, 1964). One can subject the common factor 
space to an arbitrary nonsingular linear transformation T, and absorb the 
inverse transformation into the weight and angle matrices. 

Let A*=AT, then 

(11) 
However, it is often theoretically plausible that factor intercorrelations will stay 
more or less the same across the particular set of k in a dataset. If we can 
require that 

@,=Q> (12) 

for all k, the axes can be uniquely recovered (Harshman and Lundy, 1991). Note 
that only after this restriction are we looking for common directions of stretch 
and contraction of the configuration across levels of Mode C. And, if stretches 
in common directions are reliably detectable in the data, this systematicity of the 
stretches provides the empirical evidence for a particular nonarbitrary orienta- 
tion of common factor axes. 

Of course, it is often unrealistic to expect exactly the same directions of 
stretch across multiple levels of Mode C. Fortunately, approximate stability of 
axes is all that is needed for the model to work, and so the assumption of 
common directions of stretch is often a reasonable simplifying approximation. 
However, if the variation in axis orientations is too great, then degenerate 
and/or unstable solutions will result if a ‘common direction’ simplifying as- 
sumption is attempted (see Section 5.5). This stability of axis orientation is an 
implicit assumption in direct fitting as well, since variations in factor weights are 
assumed to stay proportional at different levels of each mode. 
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2.3.3. Further indirect fitting models 
We conjecture that even more general models, ones that allow ek to vary in 
certain constrained ways across different k, will still have unique solutions. In 
such cases, the empirical evidence for particular orientations of factor axes is 
modified. The evidence that was previously provided by finding more consis- 
tency in the directions of stretch or contraction than we could explain as due to 
chance, will be replaced by a subtler but still convincing systematicity. We will 
find more consistent patterns of constraints in the shifting directions of stretch 
than we could explain as due to chance (e.g., we will demonstrate split-half 
cross-validations of the constraint patterns). We are exploring some models of 
this kind (called PT3). 

A natural special case of (12) arises if we assume orthogonality of the factors 
in the mode over which the covariances are computed (in this example, Mode 
B). If 9 = (l/J,)B;B, = I, then 

D,@D, = D; (13) 
and 

1 
y = -_x X’ -/@A 

kJkkk k’ 
(14) 

This is the same PARAFACl model of covariances that was derived in Section 
2.3.2.1 from consideration of the more restricted case of a three-mode, single 
sample, repeated measures dataset with orthogonal factors in the mode over 
which the covariances are computed. To avoid this restrictive orthogonality 
assumption implicit in the use of indirect fitting with the PARAFACl model, 
one can indirectly fit a more general model, such as PARAFAC2 (Section 5.2). 

Indirect fitting is quite useful when one wants to investigate factor variations 
across levels of fixed-effect categories such as sex, clinical diagnosis, etc., or to 
analyze cross-sectional longitudinal data. 

2.3.4. Indirect fitting to estimate communalities and fit the common factor model 
By analyzing covariance matrices and choosing the PARAFAC option to ignore 
all diagonal entries, one can fit a three-way version of the ‘common factor’ 
model. (Set parameter IGDIAG = 1 to continuously reestimate diagonals during 
the iterative fitting; at convergence, each matrix contains its own communality 
estimates.) Replacing self-covariance values, which are inflated by error and 
specific-factor variance, with less inflated values (i.e., estimated communalities) 
would seem as appropriate for three- as for two-way analysis. 

Nonetheless, we agree with Tucker, Horst, Kruskal, and others who consider 
an analysis ‘factor analysis’ in the broad sense even if it has a principal-compo- 
nents-like error model, so long as it is used to identify latent factors. In 
particular, when PARAFAC is used for direct fitting (e.g., see example applica- 
tion, below), or for other ‘component-like’ analyses, one need NOT restrict 
interpretation to mere descriptive summarization of data. Many analytic models 
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that are fit by least-squares to the raw data are quite appropriately used to 
discover latent sources of variation and/ or estimate population parameters. 

3. Algorithm and program characteristics 

3.1. Estimation procedure 

3.1.1. Unconstrained estimation 
The fitting method used for PARAFAC is Alternating Least Squares, also 
known as Iterative Least Squares (Weld, 1966). The trilinear model is broken up 
into three sets of parameters, such that it is linear in each set given fixed values 
for the other two sets. 

Each set (each mode’s loadings) is estimated by simple linear regression 
methods. We can ‘string out’ the slices of the three-way data array into a 
two-way partitioned matrix consisting of a sequence of slabs, one for each level 
of Mode C. Then, we can write the model as 

A[D,B’ID,B’I .** ID,B’] = [x, IX, l *** IX,]. (15) 
This is solved by postmultiplying both sides of (14) by the generalized inverse of 
[D,B’ I * * * I D,B’]. The revised loadings for Mode B are obtained by the 
equivalent procedure, holding Modes A and C fixed, and for Mode C by holding 
A and B fixed. Each iteration thus gradually improves all the parameter 
estimates. In the PARAFAC program, an elementary linear extrapolation 
procedure was adopted to accelerate convergence (Harshman, 1970, pp. 32-33); 
note, however, that much more sophisticated methods have subsequently been 
proposed by Ramsay (19751, and may be worth exploring. It is also noteworthy 
that Kiers and Krijnen (1991) have recently developed a special version of the 
PARAFAC algorithm that can provide considerably faster estimation when one 
of the three modes is much larger than the other two, e.g., 20 stimuli, 30 rating 
scales, 250 raters. 

3.1.2. Constrained estimation 

3.1.2.1. Theoretical constraints To test theoretical models, it is easy to hold 
loadings in a particular mode (or two modes) fixed at a preselected set of 
theoretical values and just update the loadings in other mode(s) plus overall 
scale for each of the factors. Less restrictive constraints can be enforced by 
applying projection matrices to the data before trilinear analysis (see Carroll et 
al., 1980); a potentially useful method of more flexible constraints has recently 
been suggested by Takane et al. (1991). 

3.1.2.2. Orthogonality constraints It is sometimes useful to impose orthogonal- 
ity or zero-correlation constraints when doing direct fitting. In this case, when 
the PARAFAC user requests orthogonality constraints for a given mode, a 
modified regression procedure is used to estimate the loadings for that mode. 
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Initially this was implemented via a Gram-Schmidt procedure inside the itera- 
tive loop. But this provided only an approximate least squares solution. A true 
conditional least squares regression solution was worked out in 1986 in collabo- 
ration with Martin Koschat at Bellcore. It is closely related to Cliffs (1966) 
method of orthogonal rotation to congruence. Again, taking Mode A as an 
example, the orthogonally constrained loadings are estimated (up to a resealing 
of columns) by the modified regression formula 

Ao= Y’F(F’YY’F)-1’2, (16) 

where A” is the columnwise orthogonal estimate of Mode A loadings, F is the 
matrix of predictors ([D,B’ ( . . . I DKB’]‘), 

variables ([X, I . . . 1 x,]‘). 

and Y is the matrix of predicte4 
Unfort unately, (16) also constrains the columns of A 

to have sums of squares of one. To minimize the loss in fit caused by this scale 
restriction, a second stage is added to the constrained estimation procedure: F 
is resealed (by R bivariate regressions) to maximize fit of AF’ to Y ‘. To obtain a 
least-squares solution unaffected by the scale restriction, this (two-part ALS) 
procedure must be iterated until convergence. In practice, however, this special 
scale adjustment can be omitted when (16) is inside the main ALS loop in 
PARAFAC (unless all three modes are constrained to be orthogonal), since 
estimation of nonconstrained mode(s) readjusts the column scale of F on every 
iteration. 

It is only feasible to require orthogonality if, in the Mode to be constrained, 
the factors are ‘bipolar’ (i.e., have many positive and many negative loadings); it 
is not feasible if more than one of the factors are ‘unipolar,’ (i.e., have mostly 
loadings of a given sign and only a few small loadings - or none - of the 
opposite sign). Orthogonality constraints would force all but one of the unipolar 
factors to be bipolar, so that the between-factor loading-crossproducts sum to 
zero. 

For this reason, PARAFAC also provides an option for zero-correlation 
constraints, a milder and more widely applicable method of insuring indepen- 
dence of factor variations. To impose this constraint, we use a modification of 
the orthogonality constraint procedure. Again, take Mode A as an example. On 
each PARAFAC iteration, we compute R using (161, but with a modified data 
matrix f that has been centered across Mode A (i.e., rowwise); then we estimate 
column constants to add to A” in order to predict the means as well as deviations 

of Y. These column constants are given by Y’(F’)‘, where Y= Y - f, the matrix 
of row means removed from Y. 

3.1.3. Starting position for iteration 
The initial configuration or starting position for the iterative procedure can be 
random, theory-determined, or the result of some other analysis. We suggest 
using six random starts to confirm the within-sample uniqueness and optimality 
of an obtained solution. If all six solutions agree, then the probability is less than 
0.05 that an equally or more likely alternative solution can be found using 
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additional random starting positions from the same distribution. If alternative 
solutions do emerge, then the investigator can see if they are due to local 
minima or competing quasi-global solutions, caused perhaps by extraction of an 
insufficient number of factors (with different subsets of the total set of dimen- 
sions showing up in differs : solutions), or by inadequate system variation in the 
three way data to uniquely determine some or all of the axes. (For a discussion 
of the relevant diagnostics, see Harshman, 1984, pp. 580-583). 

3.2. Input data characteristics for the program 

Input data are usually organized as a series of matrices concatenated to form a 
‘strung out’ 3-way array. Single matrices can be analyzed by treating them as an 
array with just one level of Mode C, but such an analysis would not have a 
unique solution; it would be equivalent to a regular two-way factor analysis. We 
will consider only the true three-way case here. 

Input data may be covariance-like measures (with 2 identical ways) or raw 
score profile data (usually with 3 distinct ways). Correlational data are not 
strictly appropriate, since they impose different resealings of the raw data in 
each correlation matrix (see Harshman and Lundy, 1984a, p. 141). All ways/ 
modes of the data are treated similarly during the iterative process. 

Missing data are allowed, and the program reestimates the values in missing 
data locations to make them consistent with the overall model. Starting esti- 
mates for missing values are either the input values, or the mean computed over 
all nonmissing values in the same location of the other matrices. Subsequent 
estimates are updated on each iteration, and are computed from the factor 
loadings at that iteration. To perform a three-way common factor analysis, 
communality estimates can be placed in the diagonals of each matrix, or the 
diagonals can be treated as missing (equivalent to iteration on the diagonals). 
Large blocks of systematically missing data and incomplete factorial designs are 
handled with the ‘Incomplete Mode’ variant of PARAFAC (see Section 5,). 

3.2.1. Data manipulation and preprocessing 
It is important to remove extraneous constants and/or two-way interactions 
before fitting the trilinear model. Failure to eliminate baseline offsets will throw 
off proportionality relationships and so may seriously interfere with the identifi- 
cation of parallel profile axes. 

Preprocessing issues become considerably more subtle when three-way data 
are considered. Not all plausible transformations are in fact appropriate. Identi- 
fying the allowable preprocessing transformations (ones that do not distort the 
trilinear structure of the data) has been a subject of considerable study and 
some debate. (For mathematical analysis of ‘appropriate’ vs. ‘inappropriate’ 
preprocessing steps, the reader is referred to Harshman and Lundy, 1984b; and 
Kruskal, 1984). 

Technically, the input data (after any necessary preprocessing) should be 
either interval scale or ratio scale (although it appears that rank data can 
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sometimes be input and treated as interval scale data, e.g., see Weeks and 
Bentler, 1979). Before preprocessing, it can be fiber- or slab-conditional with 
respect to origin and slab-conditional with respect to scale. 

3.2.1.1. profile data PARAFAC has extensive capabilities for preprocessing 
raw score or profile data prior to direct fitting. It employs those types of 
centering and standardization combinations that do not alter the data structure. 
(Surprisingly, some common two-way methods distort the data structure when 
incorrectly generalized to three-way arrays; see, e.g., Harshman and Lundy, 
1984b, pp. 225-253). Fiber-centering (removing row, column or ‘tube’ means) 
and slabwise size standardization or normalization (equalizing the mean square 
in data slices) are the basic types of preprocessing available. Centering and/or 
standardization can be done for any combination of one or more modes. Size 
standardization on more than one mode requires iterative preprocessing, as 
does centering and standardizing on the same mode. Usually the iterative 
procedure converges in 3 to 6 iterations. 

Centering is used to remove constants and conditionality that would other- 
wise make the data inappropriate for the PARAFAC model. If such constants 
are not present, fiber-centering has no effect on the trilinear structure of the 
three-way array, except that the factor loadings for the centered mode(s) are 
themselves column-centered (Harshman and Lundy, 1984b, p. 234). Emphasis in 
the centered mode(s) is thus shifted from baseline values to differences across 
levels (i.e., patterns of change). 

Standardization is used to remove differences in mean square values that 
might otherwise cause some variables to influence the solution too much, others 
not enough. The consequence of standardization for the solution is that each 
row of factor loadings (in a mode where the data were standardized) is itself 
‘restandardized,’ i.e., the loadings for a given level of the output are multiplied 
by the same resealing constant that was applied to that level of the input 
(Harshman and Lundy, 1984b, p. 246). 

There are no definite rules for selecting among the appropriate data center- 
ing and/or standardizing options, just guidelines (see Harshman and Lundy, 
1984b, pp. 257-259). Some experimentation with preprocessing applied to 
different combinations of modes may be necessary, in order to get the most 
interpretable solution. 

We note in passing that preprocessing is also necessary in two-way factor 
analysis, since the two-way model also assumes ratio-scale data. However, well 
established conventions (e.g., conversion to correlations before factoring) al- 
lowed users to be unaware of these issues. 

3.2.1.2. Covariance data For covariances, PARAFAC can do ‘Equal- 
Average-Diagonal’ scale standardization, which equates the variance associated 
with each variable in the total data array while preserving the proportional 
differences among slices, and hence among factors, from one two-way slab to 
the next. As mentioned in Section 3.2, correlational data are inappropriate for 
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PARAFAC analysis, because the computations involved impose different scaling 
on each matrix; thus, any proportionalities in relationships across the matrices 
are disturbed. 

3.2.1.3. Dissimilarity /similarity or distance data PARAFAC can also be used 
to perform three-way multidimensional scaling by indirectly fitting the weighted 
Euclidean distance model to similarities or dissimilarities. This is equivalent to 
Carroll and Chang’s (1970) INDSCAL procedure. The similarities/ dissimilarities 
are first transformed to scalar products (e.g., by use of the DISTIN program that 
accompanies PARAFAC) and then the trilinear model is fit to them. The model 
to represent this is the same as the one given above for covariances, except now 
A is interpreted as the matrix of stimulus projections onto dimensions and the 
estimated D, (often written Di as in equation (611 gives the squares of the 
dimension saliences for the k th subject. 

3.2.1.4. Elimination of preprocessing An alternative approach is now being 
developed which could often eliminate the need for preprocessing. It handles 
baseline offsets and other (either unwanted or interesting) constants by fitting 
additional parameters during data analysis (see Section 5.4). Multiplicative 
parameters are also included in this extended model, and can be used to equate 
or otherwise adjust ‘corrected’ variances that are present after extranious 
constants have been identified and removed. 

3.2.2. Necessary input data characteristics for uniqueness 
Where the assumptions of the PARAFAC model are more or less fulfilled (the 
three-way variation has a substantial part that can be considered ‘system 
variation’ 2, and the factors show consistent (qualitative) patterns of loadings, 
consistent orientations and distinct patterns of size variation across the levels of 
each mode) then the solutions are generally well-behaved - they converge and 
are unique and interpretable. If there are factors which do not show distinct 
variation in two of three modes (or in all three modes, of course> then these 
factors will be combined into a single composite factor by the analysis. If there 
are factors which do not show distinct variation in one mode, then the subspace 
spanned by those factors will be recovered, but will fail to have uniquely 
oriented axes. During data analysis, this might be revealed by the program 
converging on different ‘rotations’ for those dimensions from different starting 
positions, while the remaining dimensions are stable across starting positions. 
However, the presence of substantial error may produce a sample specific 
‘unique’ solution (within-sample uniqueness). The safest test of generalizable 
unique axes (across-sample uniqueness) is obtained by comparing solutions 
based on random split halves of the data, as noted in the application example 
(Section 4) and illustrated in detail in Harshman and De Sarbo (1984). 

Where the data have non-stationary patterns with more complex structure 
than provided for by the PARAFAC model (e.g., Tucker structure; see Kroo- 
nenberg, 1983; Lundy et al. 1989; Tucker, 1964, 1966, 1972) and as a result a 
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large amount of systematic variance cannot be well approximated by the 
PARAFAC proportional model, nonconverging ‘degenerate’ solutions can oc- 
cur. Degenerate solutions have two or more factors that are highly negatively 
correlated, are generally uninterpretible, and are reliably obtained from differ- 
ent starting positions; they are discussed in some detail in Kruskal et al. (1989) 
(see also Harshman and Lundy, 1984b, pp. 271-274). In most case, the degener- 
acy can be blocked and an interpretable solution obtained (with some loss of fit) 
by constraining the factors in one mode to be orthogonal or have zero-correla- 
tions, or by using indirect fitting (PARAFACl) which is generally immune to 
degeneracies. Even better, a two-stage least-squares analysis can sometimes aid 
in recovery and interpretation of the structural complexities that caused the 
degeneracy (Lundy et al. 1989). 

3.3. Program output characteristics 

Besides the factor loadings, PARAFAC supplies other information to help in 
assessing the solution. Fit values provided are R-squared, Stress and Mean 
Squared Error. These are useful for ‘fit versus dimensionality’ plots. Also, the 
Root Mean Squared (RMS) contribution of each factor is printed. When the 
data have been centered in at least one mode (as is usually the case) and the 
factors are mutually orthogonal in at least one mode, the squared RMS values 
are the variances accounted for by the factors. Interfactor correlations are 
cross-products are given for each mode. These indicate factor profile similarity, 
and in one sense orthogonal&y or lack thereof; thus they help to confirm 
whether a solution is ‘degenerate.’ Goodness of fit of the solution may be 
studied in more detail with the aid of an error analysis table, which lists the 
Mean Square Error and Stress values for each slice of each mode of the data 
array. This indicates which parts of the data are fit better or worse than others. 
Exceptionally large mean squares for particular levels may indicate problems in 
the data (e.g., data entry errors, out-of-range values). 

We suggest split-half analyses as the best way to confirm the solution 
(Harshman, 1984, pp. 587-591). If essentially the same (or a similar) solution is 
replicated in both split halves, you have confirmed that the PARAFAC axes 
reflect genuine and reliable patterns of stretch or contraction of the factor space 
across the third mode (see Section 4.4.3). 

The CMPARE program which accompanies PARAFAC can be used to 
compare solutions quantitatively; it computes interfactor correlations and cross- 
products for each mode, within and between solutions. The PFPLOT program 
which also accompanies PARAFAC can display the loadings projected onto 
each factor axis (useful when interpreting the factors) or projected onto the 
coordinate plane defined by a pair of factor axes (useful for showing clusters of 
points or shears in the space). 

Additional output information is also optionally provided, such as data 
residuals, rate of change in parameters, current estimates of missing values, etc. 
To save space, these are not discussed here. 
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4. Example application: Hemisphere involvement in task-directed movements 

4.1. Theoretical rationale for the study 

In humans, each cerebral hemisphere tends to control muscles on the ‘opposite’ 
(contralateral) side of the body. This is particularly true for distal muscles such 
as those involved in fine movements of the fingers. However, little information is 
available on how the two sides of the brain interact during complex tasks that 
involve use of both hands. Does each hemisphere simultaneously control the 
contralateral hand in a semi-independent but cooperative fashion? 

Likewise, we don’t know whether motor control is influenced by the relative 
hemisphere involvement in the intellectual aspects of the task being performed. 
What would happen, for example, if the task required such sophisticated 
nonverbal cognitive processing that the right hemisphere could better determine 
which actions were appropriate; would the right hemisphere then transmit its 
conclusions to the dominant left hemisphere for execution, or would it issue 
motor commands directly to the hands? Finally, since the right hemisphere can 
better control fine movements of the left hand, would a greater reliance on left 
hand manipulations result? 

We consider here data from an experiment that addressed such questions 
(Hampson and Kimura, 1984). In this experiment, the investigators studied the 
hand movements of normal people performing similar tasks in several different 
circumstances. By manipulating the cognitive demands of physically equivalent 
motor tasks, they sought to discover how changes in the degree of right vs. left 
hemisphere cognitive inuolvement would affect the pattern of right vs. left 
hemisphere motor inuolvement. 

4.2. Previous data collection and analysis 

4.2.1. Data collection 
Twenty-four right-handed college students, 12 male and 12 female, were individ- 
ually videotaped while they assembled blocks to accomplish each of eight tasks 
set by the experiments. The cognitive nature of the tasks differed: some were 
highly verbal (e.g., making particular kinds of words using alphabet blocks) and 
some were much more spatial (e.g., reconstructing designs or pictures using 
blocks painted with lines and shaded sections). The physical part of all the tasks 
was more or less the same: rearrange small wooden blocks on a tabletop. 

4.2.2. Data classification and coding 
An initial study of videotapes of several pilot subjects was used to develop 
descriptions of all the different kinds of hand movements observed under these 
circumstances. Then, by ‘combining closely related descriptions’ (p. 1111, Hamp- 
son and Kimura developed a taxonomy of 19 different movement types (e.g., 
‘pick up block,’ ‘lean/rest,’ etc., see Table 1, column 2). 
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Data coding then proceeded as follows: For each subject, for each task, 
Hampson examined the videotape record during a 1 minute period beginning 30 
seconds after the start of the task. She counted the number of right hand, left 
hand, and bimanual movements 3 of each of the 19 types during this period. 
These counts were the ‘raw data’ used by Hampson and Kimura (19841, and are 
the data which we were given to reanalyze. Data from the seven experimental 
tasks were used in our reanalysis (see Table 2); we omitted the neutral ‘control 
task’ on Hampson’s recommendation, as zero frequencies were obtained for 
almost all movement types, due to the simplicity of the task. On the other hand, 
we included a ‘sequencing’ task that Hampson and Kimura had omitted as 
problematic. 

4.2.3. Hampson and Kimura ‘s analysis 
Rather than statistically assessing changes in each of the 19 movement types 
individually, Hampson and Kimura (1984) combined functionally similar move- 
ment types into broader categories for analysis. To reduce the number of 
variables involved, they classified each of the 19 individual movement types into 
one of 5 broader movement categories: Active, Auxiliary, Non-contact, Self- 
touching/rest, and Miscellaneous. Separate right and left hand composite 
scores for each movement category were then computed for each subject during 
each task period. To assess relative hand usage, the composite left and right 
hand counts were converted into {(R minus L)/(R plus L>} movement ratios. 
This resulted in 5 ratios per task per subject. These ratios were then analyzed by 
various methods including multivariate ANOVA. Their statistical results showed 
that shifts in {(R - L)/(R + L)) movement ratios were indeed observed, but, as 
predicted, “only for movements that played a functional role in task perfor- 
mance” (Hampson and Kimura, 1984, p. 102). 

4.3. Motivation for a three-way factor analysis 

4.3.1. Experimenter’s motivation 
(a) To test and confirm (or revise) taxonomy of movements. The pattern of 

R-L shifts observed is of course affected by the movement classification scheme 
that is used to combine individual movement types into larger functional 
movement categories. Since this scheme is influenced by the theoretical frame- 
work in which the authors formulated the study, it would be interesting to see if 
an ‘atheoretical’ factor analysis of the original, unclassified 19 movement types 
would confirm the authors’ five movement categories. In this regard, the 
rotational uniqueness or intrinsic-axis property of PARAFAC is particularly 
attractive because it provides a stronger kind of confirmation if its unique 
factors line up with Hampson and Kimura’s a priori categories. 

3 The bimanual movement counts were included in some analyses but were too sparse to 
substantially affect the results. For simplicity we concentrate here on the right and left move- 
ments. 
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(b) To test for category specificity of cognitive task effects with factor-derived 
and hence more theoretically neutral categories. 

(c) To obtain a more comprehensive and detailed picture of experimental 
results. PARAFAC can provide a single, integrated solution in which each 
factor has loadings for each of the original 19 movements, 7 experimental tasks, 
and 24 people. Instead of R-L ratios (which do not tell how much each 
component of the ratio is changing) the raw counts for each hand can be 
analyzed. Such detailed information on broad patterns (factors) arising from the 
experiment might lead to new insights into the movement mechanisms under 
study. 

4.3.2. Methodologist’s motivation 
(a) This is a nontrivial problem. These movement data have an interesting 

mix of suitable and unsuitable three-way structure. The useful answers to be 
obtained are not obvious in advance, yet there is an objective character to the 
data and a considerable neuropsychological body of information to help decide 
whether the results are scientifically meaningful. 

(b) Causal issues. The experimental nature of the Hampson and Kimura 
study makes consideration of causal issues more straightforward. Hence it 
provides a way to discuss questions of how factor axis orientations do or don’t 
approximate ‘real’ causal factors. 

4.4. Three-mode analysis procedure 

4.4.1. Choosing direct vs. indirect fitting 
Before performing a PARAFAC analysis, one needs to consider whether the 
patterns of data variation in the three-way array will be appropriate for direct 
fitting or whether it requires indirect fitting (i.e., whether system variation is 
present at the raw data level, or only at the level of covariances, see Section 2.3). 
For the Hampson movement data, we decided that while both kinds of variation 
would be present, it would be most useful to perform direct fitting, so as to 
concentrate on the experimental effects. 

4.4.1.1. Inappropriateness and appropriateness of the direct-fit model The sub- 
jects’ spontaneous movement patterns would probably not vary in parallel 
profiles form from one subject to the next. Each person could be expected to 
have nonrandom but idiosyncratic kinds of movements that would be used to 
achieve particular results. For example, some people might be habitual ‘block 
sliders,’ while others might be ‘block placers,’ etc. Consequently, one person 
would not generally use the various movement types in the same relative 
proportions as someone else. Three-way data like this, where a large part of the 
systematic variation follows patterns that are idiosyncratic for each data generat- 
ing object, are said to show ‘object variation’. These patterns can be explored by 
using indirect fitting (and we have, in fact, tried some indirect fitting analyses, 
but we have no space to discuss these here). 
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In contrast, the experimentally induced variations in subjects’ movement usage 
might well obey the coherent three-way proportionality needed for direct fitting 
PARAFAC analysis. Such variation is called ‘system variation’ because it can be 
thought of as arising out of the three-mode system as a whole rather than 
separately for each object (for further discussion, see, e.g., Harshman and 
Lundy, 1984a, pp. 130-133 and 140; Harshman, 1970, pp. 20-24). 

4.4.1.2. An argument for a system variation component to the variation There is 
a theoretical argument to support the idea that Hampson and Kimura’s experi- 
mentally induced shifts in movement usage might show the desired system 
variation to allow them to be identified and extracted by PARAFAC. It is based 
on the notion that the influence of greater left or right cerebral hemisphere 
cognitive engagement (due to the nature of the task being solved) might act 
proportionally across levels of each of the three modes. In Mode A, the strength 
of the effect may vary proportionally from one movement type to the next, being 
greatest for those types most directly related to task solution, such as picking up 
blocks, placing blocks, and so on; it would also be proportionally increased in all 
the left hand and decreased in all the right hand categories, or vice versa. In 
Mode C, it should proportionally change from one task to the next. For 
example, a proportionally greater number of right hand movements would be 
expected in all affected movement categories during the verbal tasks. Finally, it 
is less certain, but still plausible, that the degree of asymmetry of cerebral 
engagement in problem solving movements would proportionally change from 
one subject to the next, depending on the general tendency of any particular 
subject to rely more on verbal or spatial task solution strategies. Subject 
differences might also arise if different subjects had different degrees of cere- 
bral lateralization of the spatial or verbal cognitive functions (or motor func- 
tions) engaged by the tasks. 

Thus direct fitting will not detect all the patterns of object variation that 
would be detected by indirect fitting, but it would concentrate most effectively 
on the experimental variation of interest. For the purpose of this analysis, 
therefore, we chose direct fitting. 

4.4.2. Preprocessing the three-way array 
Psychological and behavioral measurements usually have arbitrary baselines 
which obscure the proportionality of changes; hence one almost always need to 
‘center’ (subtract out means) across at least one mode (Harshman and Lundy, 
1984b, p. 217 ff). We initially centered the Hampson movement data across 
levels of Mode C (tasks) before performing the PARAFAC analysis (centered 
xijk = xijk - (l/K)Cf= 1Xijk). However, the resulting solutions showed that this 
centering over-emphasized object variation (i.e., idiosyncratic subject-task inter- 
actions) in the array. By using bootstrapping we could identify a meaningful 
reliable pattern related to tasks and movements in the third factor, but by this 
point the analysis had become overly complicated. 

We decided to try, instead, an analysis of the data without any centering. 
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While this is usually ill-advised, it seemed possible that in these particular data 
the experimental effects were directly measured at ratio-scale, without spurious 
baselines 4. 

We did apply one modest preprocessing adjustment to the data. The data 
were size-standardized to have unit mean-squares within each level of Mode C. 
This gives the data from each task potentially equal influence on the total 
solution. 

4.4.3. Factor analyses 
The data were analyzed at one through four dimensions. A diagram was 
constructed showing improvements in fit value (R-squared) vs. number of 
factors. This is interpreted in the same way as in standard two-mode factor 
analysis. The shape of the diagram suggests the presence of one major factor 
and a second moderate sized factor. Additional smaller factors might be 
present, but this is somewhat ambiguous. To save space, we omit the plot. The 
r-squared values were: 1D = 0.471, 2D = 0.556, 3D = 0.595, 4D = 0.625. Stress 
values were = 0.639, 0.585, 0.559, 0.537. 

As noted earlier, our main test of dimensionality is how many factors are 
demonstrably replicable. We used the ‘orthogonal split half approach previously 
employed, for example, in Harshman and DeSarbo (1984). That is, subjects are 
randomly divided into four quarter-samples, which we called QA, QB, QC, and 
QD. This allows us to create split-half samples in two different ‘orthogonal’ 
ways: (a) Half1 = (QA + QB) vs. Half2 = (QC + QD); and (b) Half3 = (QA + 
QC) vs. Half4 = (QB + QD). We then perform PARAFAC analyses on each of 
these half samples, and compare the results. Replication of a factor between 
either Half1 and Half2 or between Half3 and Half4, demonstrates that it is 
generalizable, because such a replication across either pair of independent 
subsamples could not be explained simply on the basis of chance. 

In the Hampson and Kimura data, the results of our split-half tests were as 
follows: the one-dimensional solution replicated across both sets of split halves. 
In the two-dimensional solution, factor 2 replicated across Half3 vs. Half4 but 
not Half1 vs. Half2. Factor 1 of the 2D solution replicated across both sets of 
splits. These results indicate that we can cross-replicate at least two stable, 
generalizable, factors. In contrast, the 3D and 4D solutions did not replicate 

4 Since the data were counts of movements, there is a superficial sense in which the data are 
clearly ratio-scale. Zero movements is a ‘true zero’ and 10 movements is clearly twice as much as 5 
movements. However, the key question is not whether the data are ratio-scale in this superficial 
sense, but whether the measurement of the underlying psychological processes is truly ratio scale. 
Is the natural baseline for the behavior that we are measuring zero movements, or some 
spontaneous level of movements that would be present even in the absence of the tasks? The prior 
analysis by Hampson and Kimura (1984) indicated that the effects of the experimental manipula- 
tions were selectively modulating the generation of task directed or problem solving movements. 
Perhaps, in the absence of a problem, the natural level of such movements would indeed be zero. 
If so, then the raw counts of movements in this class might indeed provide ratio-scale measure- 
ment of the strength of the underlying movement generation processes of interest. 
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across either set of splits. Apparently, we are unable to recover more than two 
stable factors from these data. (For more details on method, including quantita- 
tive assessment of agreement across split halves, see, for example, Harshman 
and DeSarbo, 1984). 

4.5. Interpretation of the solution 

4.5.1. Descriptive level 
Loadings from the two-factor PARAFAC analysis of the full Hampson move- 
ment data are shown in Tables 1 and 2. We interpret these loadings in ways 
similar to the way loadings are interpreted in two-way factor analysis. In this 
case, neither Mode A nor C are scaled to look like correlations, but we can 
think of them instead as regression weights. 

In Mode A the factors are highly ‘hand specific,’ with factor 1 showing large 
positive loadings for Active movements generated by the right hand and factor 2 
showing large positive loadings for Active Movements generated by the left 
hand. Some Auxiliary movement types show movements of the opposite hand, 
but this is consistent with the fact that this category of movements perform a 
secondary or ‘assisting’ role. 

In Mode C, factor 1 seems to be a general factor active during all tasks, 
though slightly more active for the verbal tasks. In contrast, factor 2 has much 
higher loadings on the nonverbal tasks than on the verbal ones. 

(a) Taxonomy and (b) selectivity of hand movement effects: The key move- 
ment distinction made by Hampson and Kimura was between activities involved 
in task solution, (mainly Active and Auxiliary categories) and those not so 
involved. Recall from Sections 4.4.1.1 and 4.4.1.2 that PARAFAC factors should 
have substantial loadings on those movement categories that are sensitive to the 
effects of task manipulation, but not on other categories. We find that 
PARAFAC loads highly on just Active and Auxiliary movement categories. This 
provides strong support for the basic experimental distinction proposed by 
Hampson and Kimura, and the direction of the selective effects on these 
categories also confirm the particular predictions of Hampson and Kimura as to 
the nature of verbal and nonverbal task involvement 5. 

’ Actually, to unambiguously test the taxonomy one would want either to standardize variance of 
the levels of Mode A on input, or (if this would amplify noisy variables too much) adjust the 
loadings on output for differences in input variance. And/or we might use bootstrapping to 
determine which loadings are statistically significant. The bootstrapping of our prior analysis of 
these data (when centered across Mode C - not reported here) did, in fact, confirm that only the 
Active and Auxiliary variables loaded significantly on the factors - with one or two interesting 
exceptions, particularly ‘Hover Moving.’ Space limitations preclude consideration of either a 
bootstrap of the uncentered solution or an additional PARAPAC analysis of the uncentered data 
but with Mode A standardized, to investigate this question more adequately. Thus for expository 
reasons we concentrate on the one solution deliberately ignoring input differences in levels of 
Mode A. 
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Mode A: Movement Loadings 

No. Movement Cate- 

gory 

Hand Factor 1 Factor 2 

- 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Slide Block Actv 

Pick Up Block Actv 

Place Block Actv 

Slide & Reject 
Block 
Pick up & Reject 
Block 
Transfer from one 
hand to other- 
most active hand 
Adjust Block 

Actv 

Actv 

- 

Actv 

Stabilize Block Aux 

Stationary Contact Mist 

Rotate Block in Air Mist 

Rotate Block on 
Tabletop 
Self Touching 
Movement 
Finger Tapping on 
Table 
Finger Tapping on 
Blocks 
Lean/Rest 

Actv 

Self 
Tch 
Mist 

Mist 

Point 

Hover Moving 

Hover Stationary 

Rotate Hand/Limb 
without contact 

Self 
Tch 
Non 
Con 
Non 
Con 
Non 
Con 
Non 
Con 

L - 0.142 
R 2.745 
L 0.362 
R 3.404 
L - 0.105 
R 3.745 
L - 0.196 
R 0.478 
L 0.043 
R 0.227 
L 0.268 

R 0.054 
L 0.338 
R 1.146 
L 0.722 
R - 0.233 
L 0.307 
R 0.684 
L - 0.025 
R 0.043 
L - 0.245 
R 0.384 
L 0.260 
R 0.158 
L 0.008 
R 0.124 
L 0.006 
R 0.040 
L 0.806 
R 0.354 
L 0.032 
R 0.162 
L 0.004 
R 0.536 
L 0.447 
R 0.340 
L 0* 
R 0.043 

4.009 
0.379 
1.568 

- 1.085 
2.683 

- 1.475 
1.458 
0.761 
0.112 

- 0.028 
0.178 

0.332 
0.527 

- 0.290 
0.488 
1.485 
0.406 
0.158 
0.150 
0.010 
1.385 
0.424 
0.061 
0.159 
0.028 
0.054 
0.018 
0.018 
0.163 
0.531 
0.007 

- 0.088 
0.594 

- 0.137 
0.204 
0.184 
0* 

- 0.019 

* No movements of this type made with this hand. 

This factor analysis does not allow us to test the full taxonomy of movement 
categories, including those not related to task solution, since as noted in 
Sections 4.4.1.1 and 4.4.1.2, the use of direct fitting with these data concentrated 
the analysis on the task-specific effects. To examine the full set of movement 
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Mode C: Task Loadings 

No. Task Name Type Factor 1 Factor 2 

1 Palindromes V 1.063 0.614 
2 Crossword V 1.079 0.599 
3 Cued Crossword V 1.044 0.596 
4 Nonverbal Sequencing * ? 1.114 0.527 
5 Modified Jigsaw NV 0.945 1.170 
6 Rotated Figure NV 0.953 1.047 
7 Figure Reconstruction NV 0.756 1.779 

* Not used in Hampson and Kimura (1984) analysis. 

patterns it would be necessary to do indirect fitting analysis (see Section 2.3.2 
for mathematical discussion of indirect fitting). 

(c) New insights: Since the factor analysis was conducted on raw counts for 
each hand, rather than L-R ratios, it is possible to see where the locus of hand 
movement change lies. The loadings suggest that it is primarily in the frequency 
of left hand movements. Some other new results are discussed in terms of causal 
scientific interpretation of the factors, Section 4.5.2.1. 

4.5.2. ‘Explanatory’ (scientific) level 
It is striking how well the properties of the PARAFAC factors mesh with 
neuropsychological theory. From the Hampson and Kimura article it is clear 
that the key underlying causal constructs behind their experiment are the 
cognitive-motor activity of the right and left cerebral hemispheres. Elegantly, 
the PARAFAC factors are directly interpretable as reflecting the ‘voluntary’ 
action of left hemisphere (factor 1) and right hemisphere (factor 2) in the 
experimental situation. The right hand specificity of loadings on factor 1, and 
the left hand specificity of loadings of factor 2 suggest this interpretation. In 
addition, factor 2 is mainly sensitive to activation by non-verbal tasks, as would 
be appropriate for the right hemisphere. More detailed consideration of the 
factor loadings reveals further details consistent with a linking to these neu- 
ropsychological theoretical constructs. 

4.5.2.1. New results The factor analysis reveals some details not easily apparent 
in the Hampson and Kimura ANOVA results. For example, from Mode C 
loadings it appears that the left hemisphere’s influence is almost as strong on 
nonverbal as on verbal tasks, whereas the right hemisphere’s is much stronger 
during nonverbal tasks. This might be interpreted as some kind of consequence 
of left hemisphere ‘dominance’ in right handed individuals, or it might indicate 
that a good deal of analytic-verbal mediation is involved in all the tasks used in 
the experiment. Further experimentation would seem necessary to resolve this. 
This pattern could also conceivably be produced by something peculiar to this 



64 R.A. Harshman, h4.E. Lundy / PARAFAC 

experiment. So this should be checked in new data before strong scientific 
conclusions are drawn. 

The need for two factors rather than one shows that the process controlling 
these hand movements is ‘two-dimensional’ (rank-2). Two factors are necessary 
to adequately capture the complexity of the hand shift patterns. This supports 
the idea that the two hemispheres exert their effects quasi-independently (at 
least in this situation). 

Various other potentially useful quantitative findings emerging from the 
factor analysis include the following: (a> The experimentally manipulated shifts 
(as fit by the factor analysis) account for roughly half of the variation in hand 
movements in the data. (b) The relative size of left hemisphere (factor 1) and 
right hemisphere (factor 2) influence across the experiment as a whole is 0.77 vs. 
0.40. 

4.5.2.2. New questions Some questions arising from the factor analysis might 
have potential theoretical importance. For example, why is it that only factor 2 
has substantial negative loadings on the ‘opposite’ hand within some movement 
types? Does this tell us something about reciprocal inhibition, or replacement of 
one movement by another? Likewise, we might ask what differentiates those 
subjects (Mode B, not shown) with equal factor 1 and factor 2 weights from 
those with large factor 1 and vanishingly small factor 2 weights? 

4.6. General methodological conclusions 

Perhaps the most interesting and controversial goal of exploratory factor analy- 
sis is the attempt to uncover ‘real’ functional unities, each of which reflect 
effects of a distinct cause acting in the situation (e.g., see Yates, 1987, pp. l-6). 
Because the Hampson and Kimura study is a true experiment, issues of causality 
are central to a scientific understanding of these data. We see from the above 
Hampson and Kimura’s theoretical constructs underlying the experiment and its 
interpretation appear to correspond well with the interpretation of latent 
constructs one would make based on the PARAFAC-determined orientation of 
factor axes. In this sense, then, the factor analysis may indeed have uncovered 
statistical approximations of ‘real’ functional unities. 

Although the proportional profiles factor orientation is apparently quite 
interpretable and useful, can we say that it is the empirically ‘best’ orientation 
of factors in the space spanned by the solution? Suppose we ignore (or override) 
the uniqueness property and force-rotate the factors to alternative positions, in 
order to explore alternative possible theoretical constructs and interpretations 
that they would suggest. Because there are only two dimensions in this particu- 
lar solution, we can examine the range of alternative rotations by hand. When 
we do this, we discover that in this case other rotations lead to less intelligible 
constructs and interpretations. The most distinct alternative in the two dimen- 
sional space spanned by the PARAFAC factors corresponds to a 45 degree 
rotation of axes. This gives us a set of two constructs in which one factor 
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Fig. 2. 

controls overall activity of both hands, while the other factor controls the 
distribution of this activity between left and right hands. This implies a consider- 
ably different neuropsychological mechanism of motor control than the 
PARAFAC factors, and in fact seems inconsistent with much current knowledge 
in the area. 

5. New developments in parallel factor analysis 

5.1. ‘Linked mode’ and ‘incomplete mode’ PARAFAC analysis 

51.1. Linked mode PARAFAC 
This analysis can be though of as ‘multi-Multimode’ fitting, where several 
multi-way arrays are solved simultaneously, subject to restrictions that a particu- 
lar mode of one array is ‘Linked’ to some specific mode of another, so that they 
are both represented by the same latent factors (Harshman and Lundy, 1984a, p. 
281). More than two arrays may be linked; three linked arrays - linked on 
different modes - are shown diagrammatically in Figure 2. 

Naturally, Linked-Mode PARAFAC models could have many different spe- 
cific forms. Here is one example (ignoring error for simplicity): 

(i) Xl,,= AlDl,,Bl 

(ii) X2,,= A2Dl,,B2 

(iii) X3,.=A2D3,,B3. 

(17) 
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Fig. 3. 

However, an easier way to write such linked models is simply to specify the 
different arrays separately, and then list the linkage conditions. 

Linked Mode analysis provides a useful way of integrating several different 
three-way studies that involve the same measurement scales, or the same 
stimuli, etc. Another interesting case arises when a two-mode array is linked on 
one of its modes to one or more three mode array(s). 

5.1.2. Incomplete mode PARAFAC 
The special handling of data in computer memory in the Linked Mode program 
also allows analysis of an array where large blocks of the data are ‘missing’ or 
undefined, as in Figure 3. Consider, for example, a study where there are too 
many stimuli to be rated by a single individual. One might have individuals 1 
through 10 rate stimuli 1 through 15, subjects 10 through 20 rate stimuli 10 
through 25, etc. with all subjects using the same set of rating scales. The 
Incomplete-Mode (Linked Mode) fitting procedure could solve for a solution 
that unites all the partially overlapping sets of stimuli into one consistent least 
squares estimate of a comprehensive space in which all stimuli reside. In an 
even more economical design, subsets of the subjects could use partially overlap- 
ping subsets of the rating scales (should there be too many scales, as well as too 
many stimuli, for one person to rate). The dataset shown in Figure 3 has 
incomplete overlapping subsets in two of the three modes. (Note, however, that 
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this figure has been simplified for pedagogical reasons; a more complex ‘bal- 
anced’ structure would be needed in many situations) 

5.2. PARAFAC2 

When PARAFAC is used for indirect fitting, the factors are necessarily orthogo- 
nal (see, e.g., Harshman and Lundy, 1984a, p. 139-140). A new program, 
PARAFAC2 allows the factors to be oblique 6 (and still uniquely resolved, 
Harshman and Lundy, 1991). Because it deals with multiple matrices, 
PARAFAC2 requires a consistency assumption: the angle between any particu- 
lar pair of factors should remain the same (or at least roughly similar) in all the 
covariance matrices in the three-way array. 

The PARAFAC:! mathematical model has the following form: 

Cov, = AD,@D, A (18) 

We have a working program that fits this model, but it is in ‘bare bones’ 
research/testing form. We have not yet converted it to distribution level status. 

PARAFAC2 can also be used as an oblique-axis generalization of INDSCAL 
multidimensional scaling (Carroll and Chang, 1970), if applied to pseudo-scalar 
product data derived from similarity data. For a discussion of oblique axis MDS 
see Dunn and Harshman (1982). 

5.3. PARATUCK (PARAFAC-TUCKER) models 

We have recently been exploring a set of quite general parallel factor models 
that combine the intrinsic axis capabilities of PARAFAC with some of the 
greater structural generality of Tucker’s Three-mode Factor Analysis (Kroonen- 
berg, 1983; Tucker, 1964). Of these ‘PARATUCK’ models, the currently best 
studied and furthest developed is the PARATUCK2 family (so called because it 
combines aspects of PARAFAC and with aspects of Tucker’s T2; for informa- 
tion on T2 see Kroonenberg, 1983). The PARATUCK2 (also known as PT2) 
model has the form 

X,=ALD,HRD,B’. (19) 
This model has a unique intrinsic axis solution (given ‘adequate’ data and 
appropriate output standardization conventions concerning column order, size 
of left vs. right D matrix, etc.) Models such as PARAFAC, and PARAFAC2 
can be considered special cases of PT2. We are currently using it to explore four 
versions of three-way DEDICOM (Harshman and Lundy, 1992). 

6 ‘Orthogonal’ and ‘oblique’ are used here in exactly the same sense as in two-way factor analysis. 
For example, in the orthogonal case, the implicit factor scores for different factors are assumed to 
be orthogonal across people, or - more generally - across the levels of the mode over which 
covariances are computed; that is, across levels the mode that ‘disappears’ when one converts to 
covariances. 
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Although working programs for PARATUCK2 (and several special cases) do 
exist, these are minimal programs, set up for our own research and testing of the 
model; they are not yet suitable for general distribution. 

Some practical information on PARAFAC software 

Source Language and Program Installation. PARAFAC and programs that 
accompany it are written in Fortran, and run in batch mode. All except 
PFPLOT conform to PFORT specifications (a portable subset of American 
National Standard Fortran X3.9-1966). Thus they should compile successfully on 
any modern Fortran compiler (requiring only that the compiler include the 
Fortran 66 extensions - which most do). The installation is simple, in part 
because of the batch-mode design. PARAFAC has run successfully on a wide 
variety of computers from Crays to DECs to PCs. 

Sample Memory Requirements. On a Cyber 170 computer, the core memory 
required for the compiled PARAFAC program is approximately 27K words (not 
bytes), not including space required by I/O buffers and arrays. The array space 
required for a ten-factor analysis of 18 by 18 by 35 data is an additional 14K 
words on the Cyber. On an IBM AT computer, using a Ryan-McFarland 
compiler, PARAFAC requires 220K bytes, plus an additional 310K bytes for 
arrays when a 45 by 45 by 20 data arrays is to be analyzed. (Of course, less space 
is required for smaller data sets.) 

Documentation. Documentation for PARAFAC is provided by an extensive user 
manual (Lundy and Harshman, 1985; includes update notes) with over 100 pages 
plus index. For those who like to study the source, there are many comment 
statements in the source code. 

Availability and Distribution Format. PARAFAC and related programs have 
been placed in the public domain. You may get copies from others, and give 
away copies, as you please. ’ 

On request, we will provide copies of the latest ‘standard’ version free of 
charge (except for postage and handling, see below). Our software is currently 
distributed on high density DOS (IBM) PC floppy diskettes. Specify your 
preference for high density 5.25 or high density 3.5 (DOS format), or other (e.g., 
low density 5.25). 

Charges. To cover the costs of media, file copying and checking, mailers, 
postage and handling (and, in the case of the Manual, printing) please include 

’ However, if you change the code, please put a line at the very beginning of the source as follows: 
“‘Lines-,-,-,- modified by . . . , on data . _ . , to produce the effect that . . . “.” This is an important 
courtesy for others who may later get copies of the modified program.) 
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$10.00 for each disk requested, and $30 for each Manual requested 8. Items are 
sent by Air Parcel Post. If faster mail is desired (first class airmail, express mail, 
or courier service), please specify and include enough extra fees to cover the 
extra postage. 

Address requests to: Richard Harshman, Department of Psychology, Social 
Science Center, University of Western Ontario. London, Ontario, Canada N6A 
X2. 
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